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THE ALTERNATION HIERARCHY
FOR THE THEORY OF µ-LATTICES

LUIGI SANTOCANALE

ABSTRACT. The alternation hierarchy problem asks whether every µ-term φ, that is,
a term built up also using a least fixed point constructor as well as a greatest fixed
point constructor, is equivalent to a µ-term where the number of nested fixed points of
a different type is bounded by a constant independent of φ.
In this paper we give a proof that the alternation hierarchy for the theory of µ-lattices
is strict, meaning that such a constant does not exist if µ-terms are built up from the
basic lattice operations and are interpreted as expected. The proof relies on the explicit
characterization of free µ-lattices by means of games and strategies.

Introduction

The alternation hierarchy problem is at the core of the definition of categories of µ-algebras
[17, 18] which we resume as follows. For a given equational theory T, we let T0 be the
category of its partially ordered models and order preserving morphisms. Out of T0 we
can select objects and morphisms so that all the “desired” least prefix-points exist and
are preserved, this process giving rise to a category S1. The desired least prefix-points
are those needed to have models of an iteration theory [6] where the dagger operation is
interpreted as the least prefix-point. If we use, as a selection criterion, the existence of
greatest postfix-points and their preservation, we obtain a category P1. If we let T1 be
the intersection of S1 and P1, then T1 is a quasivariety and the category of models of a
theory T1 which is axiomatized by equational implications. We can repeat the process
out of T1 and T1 and the iteration of this process leads to the construction of categories
Sn,Pn,Tn for arbitrary positive numbers n. The category of µ-T-algebras is defined to
be the inverse limit of the corresponding diagram of inclusions; the alternation hierarchy
problem asks whether this process stops after a finite number of steps, i.e. whether the
category of µ-T-algebras is equivalent to a category among Sn,Pn,Tn for some n ≥ 0.
The main contribution presented in this paper is theorem 2.6 stating that the alternation
hierarchy for the theory of µ-lattices is strict, i.e. that there is no such number when T

is the theory of lattices.
The alternation hierarchy for the propositional µ-calculus has recently been shown
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the presentation of these results.

Received by the editors 2001 November 10 and, in revised form, 2002 January 27.
Published on 2002 January 31 in the volume of articles from CT2000.
2000 Mathematics Subject Classification: 03D55, 06B25, 91A43.
Key words and phrases: free lattices, free µ-lattices, fixed points, parity games.
c© Luigi Santocanale, 2002. Permission to copy for private use granted.

166



Theory and Applications of Categories, Vol. 9, No. 9 167

to be strict in several cases [2, 7, 16]; together with open problems on fix-point free
polynomials in free lattices [10], these results have challenged us to consider the hierarchy
problem for the theory of µ-lattices; in particular we were interested in understanding
whether the explicit characterization of free µ-lattices [19, 20] could be of help.

It is our opinion that µ-algebras are algebraic objects suitable to generalize the role
of iteration theories in the context of the theorization of communication and interactive
computation. This statement is exemplified by the consideration of free µ-lattices which
have been characterized by means of games and strategies. Games for free µ-lattices
model bidirectional synchronous communication channels which can be recursively con-
structed from a few primitives: left and right choices – the lattice operations – and left
and right iterations – the least and greatest fixed point operators. If G and H are games
for a free µ-lattice, we say that G ≤ H if there exists a winning strategy in a compound
game 〈G,H〉 for a player whom we call Mediator. Such a strategy can be understood as
a protocol for letting the left user of the communication channel G communicate with
the right user of H in an asynchronous way. The order theoretic point of view, which we
adopt here, identifies two such channels G and H if there are protocols in both directions,
i.e. winning strategies for Mediator in both games 〈G,H〉 and 〈H,G〉. The analysis of
different strategies, in the spirit of categorical proof theory and of the bicompletion of
categories [12, 13, 14], is probably a more appropriate setting in which to understand
communication; this study is under way and suggests a possible characterization of free
bicomplete categories with enough initial algebras and terminal coalgebras of functors.
However, we can still ask whether the order theoretic identification is degenerate by pos-
ing the alternation hierarchy problem; its translation in the language of communication
sounds as follows: is every channel equivalent to another one where the number of al-
ternations between left and right iterations is bounded by a fixed positive integer? The
negative answer we provide to the order theoretic problem implies also that a categorical
identification is not degenerate; moreover the answer depends on a coincidence of order
theoretic ideas with categorical ideas. There are games A for which the copycat strategy,
which plays the role of the identity, is the unique strategy in the game 〈A,A〉; because
of that, the asynchronous communication, which is the result of a protocol mediating
between the left user of the left channel and the right user of the right channel, has the
same dynamics as the communication along the single channel A; therefore it happens
to be synchronous and we call these games synchronizing. These games impose strong
conditions on the structure of games H equivalent to A; we show that they are hard, i.e.
they are good representatives of their equivalence class as far as we are concerned with
their alternation complexity.

The ideas presented here have originated from Philip Whitman’s proof that free lattices
are not in general complete [24]. It is difficult to relate these ideas to those contained
in previous works on the alternation hierarchy for the propositional µ-calculus [2, 3, 7,
8, 16, 18]. The main reason is that the traditional models of this calculus are boolean
algebras of sets with modal operators and that the alternation hierarchy for the class
of distributive µ-lattices is degenerate, since every distributive lattice is a µ-lattice. In
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particular, the main theorem presented in this paper cannot be derived from those results,
at least not in a straightforward way. Existing techniques for proving hardness of a µ-
calculus formula, as summarized in [2], are diagonalization arguments and rely on the
presence of the boolean complement; they cannot be applied in the context of µ-lattices.
However, our technique is also a sort of a diagonalization argument, but of a categorical
flavor. An analogous technique for the propositional µ-calculus would go through the
explicit characterization of the order relation by means of refutations [22]. Other works
[1, 5, 15] have studied the structure of games as models of linear logic. With respect to
those works, the focus is here on the algebraic structure imposed by fix-points instead of
the algebraic structure imposed by the multiplicative connectives of linear logic.
The paper is structured as follows. In section 1 we present definitions of key concepts

and introduce the notation we shall use. In section 2 we present µ-lattices and the
alternation hierarchy problem; we sketch the general strategy used to answer the problem.
In section 3 we review the structure of free µ-lattices in view of the hierarchy; for the sake
of completeness, we present once more the proof that the preorder relation on games is
transitive. In section 4 we define synchronizing games and prove their hardness. In section
5 we construct synchronizing games of arbitrary complexity.

1. Notation and useful definitions

1.1. Least and greatest fix-points. Let P be a partially ordered set and let φ :
P ✲ P be an order preserving function. The least prefix-point of φ, whenever it exists,
is an element µz.φ(z) of P such that φ(µz.φ(z) ) ≤ µz.φ(z) and such that, if φ( p ) ≤ p,
then µz.φ(z) ≤ p. The greatest postfix-point of φ is defined dually and is denoted by
νz.φ(z). Least prefix-point and greatest postfix-point are Conway operators in the sense
of [6]. A summary of their properties can be found in [17].

1.2. Pointed graphs and trees with back edges. By a graph G we mean a tuple
〈G0, G1, dom , cod 〉, where G0 is a set (of vertexes or states), G1 is a set (of directed
edges or transitions) and dom , cod : G1

✲ G0 are functions. By a morphism of
graphs f : G ✲ H we mean a pair of functions fi : Gi ✲ Hi, i = 0, 1, such that
f0 ◦ dom = dom ◦ f1 and f0 ◦ cod = cod ◦ f1. We often write a graph as a pair 〈G0, G1〉
and leave in the background the functions dom , cod . If G1 ⊆ G0 × G0, we assume that
dom and cod are the restrictions of the projections to G1.
Let G = 〈G0, G1〉 be a graph, a path γ in G is a morphism of graphs γ : n̂ ✲ G

where n̂ is the graph 0 → 1 → . . . → n. The length of γ, denoted |γ|, is defined to be
n. We set dom γ = γ(0) and cod γ = γ(|γ|). Paths γ1, γ2 can be composed in the usual
way, provided that cod γ1 = dom γ2, and we write γ1 � γ2 for their composition; if g ∈ G0

we write 1g for the unique path γ such that |γ| = 0 and dom γ = g = cod γ. A category
F (G), free over G, is defined in this way. Let G,H be graphs and let f : G ✲ F (H) be
a morphism of graphs, we say that f is non-decreasing if |f(τ)| ≤ 1 for every τ ∈ G1. The
morphism of graphs f is non-decreasing if and only if its extension f : F (G) ✲ F (H)
to a functor is convex, i.e. if f(γ) = δ1 � δ2, then we can find γ1, γ2 such that f(γi) = δi,
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i = 1, 2, and γ = γ1 �γ2. We say that a path γ in G visits a vertex g ∈ G0, or equivalently
that g lies on γ, if there exists i ∈ {0, . . . , |γ|} such that γ(i) = g. We say that a path γ
is simple if it does not visit a node twice, i.e. if γ0 is injective as a function. We say that
γ is a cycle if dom γ = cod γ and that γ is proper if |γ| > 0.
A pointed graph is a tuple 〈G0, G1, g0〉 such that 〈G0, G1〉 is a graph and g0 ∈ G0; we

shall say that g0 is the root of 〈G0, G1, g0〉. A morphism of pointed graphs f : G ✲ H is
a morphism of graphs f : 〈G0, G1〉 ✲ 〈H0, H1〉 such that f0(g0) = h0. An infinite path
in G is a morphism of graphs γ : ω̂ ✲ G where ω̂ is the graph 0→ 1→ . . .→ n→ . . ..
Since the pointed graph 〈ω̂, 0〉 is the inductive limit of the pointed graphs 〈n̂, 0〉, we shall
often identify an infinite path γ with the set {γn}n≥0 of prefixes of γ of finite length. On
the other hand, if {γn}n≥0 is a set of paths such that |γn| = n and γn+1 = γn � τn+1, we
shall use that same notation {γn}n≥0 to denote the infinite path which associates to the
transition n→ n + 1 of ω̂ the transition τn+1. A pointed graph 〈G0, G1, g0〉 is said to be
reachable if for every g ∈ G0 there exists a path γ such that dom γ = g0 and cod γ = g.
Let G be a graph and let g0 ∈ G0, we denote by G, g0 the greatest subgraph H of G such
that 〈H, g0〉 is reachable.
1.3. Definition. A tree with back edges is a pointed graph 〈G0, G1, g0〉 such that G1 ⊆
G0 ×G0 and with the property that, for every vertex g ∈ G0, there exists a unique simple
path γg from g0 to g. In this case, we say that an edge τ : g → g′ is a forward edge if
γg � τ = γg′ and that it is a back edge otherwise.

To give a tree with back edges is equivalent to giving the pair 〈〈G0, F, g0〉, B〉, where
F is the set of forward edges and B is the set of back edges. Then 〈G0, F, g0〉 is a tree,
i.e. a pointed graph such that, for every vertex g ∈ G0, there exists a unique path from
g0 to g; moreover, if g → g′ is an edge belonging to B, then g′ is an ancestor of g in the
tree 〈G0, F, g0〉. We can specify a tree with back edges by giving a pair 〈T,B〉, where
T = 〈T0, T1, t0〉 is a tree and B ⊆ T0 × T0 is a set of pairs with the above property.
Let 〈T,B〉 be a finite tree with back edges. A vertex r ∈ T0 is called a return if there

exists a back edge t → r. Observe that, for an infinite path γ in 〈T,B〉, there exists a
unique return rγ which is visited infinitely often and which is of minimal height. The
height of a vertex in 〈T,B〉 is the length of the unique simple path from the root to the
vertex. Similarly, for every proper cycle γ in 〈T,B〉, there exists a unique return rγ of
minimal height lying on γ. A vertex x ∈ T0 is said to be a leaf if it is a leaf of T in the
usual sense and there are no back edges from x; this can be summarized by saying that
{ g′ |x→ g′ } is empty. There is an operation of substitution of a tree with back edges for
a leaf induced by the analogous operations on trees. Let x be a leaf of 〈T1, B1〉, we define:

〈T1, B1〉[〈T2, B2〉/x] = 〈T1[T2/x], B1 +B2〉.

If 〈T,B〉 is a tree with back edges and t ∈ T0, we say that t is a complete vertex if for
every descendant t′ of t and every back edge t′ → r, r is also a descendant of t. If t is a
complete vertex, we can define trees with back edges T t↓ and T

↓
t so that t is a leaf of T

↓
t , t

is the root of T t↓, and moreover T = T ↓
t [T

t
↓/t]. Indeed, let T1 = T, t and T2 = T ′, t0, where
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T ′
0 = T0 and T

′
1 = T1 \ { τ | dom τ = t }; define then T t↓ as 〈T1, B|T1〉 and T ↓

t as 〈T2, B|T2〉.
A return r is said to be minimal if there are no other returns on the path γr from the
root to r. A minimal return is easily seen to be a complete vertex.

1.4. Games and strategies.

1.5. Definition. A partial game is a tuple G = 〈G0, G1, g0, ε,Wσ〉 where 〈G0, G1〉 is a
graph, g0 ∈ G0, ε : G0

✲ {0, σ, π} is a coloring, and Wσ is a set of infinite paths in
〈G0, G1〉. We require that if ε(g) = 0, then { g′ | g → g′ } = ∅.
The above data must be interpreted as follows: G0 is the set of positions of G, g0 is

the initial position and G1 is the set of possible moves. For a position g ∈ G0, if ε(g) = σ,
then it is player σ who must move, if ε(g) = π, it is π’s turn to move. A position g ∈ G0

is final if there are no possible moves from g, i.e. if { g′ | g → g′ } = ∅. In this case, if
ε(g) = σ, then player σ loses, if ε(g) = π, then player π loses, if ε(g) = 0, then g is a draw
and we call g a partial final position. We shall write XG for the set {x ∈ G0 | ε(x) = 0 }
of partial final positions of G. Finally, Wσ is the set of infinite plays which are wins for
player σ. We defineWπ to be the complement ofWσ; we assume that there are no “infinite
draws” so that Wπ is meant to be the set of infinite plays which are wins for player π. A
game is a partial game G such that XG = ∅. We shall say that a partial game is bipartite
if ε(g) �= ε(g′) for every move g → g′.
In the definitions below, G will be a fixed a partial game as defined in 1.5.

1.6. Definition. A winning strategy for player σ in G is a non empty set S of paths
in G satisfying the following properties:

• γ ∈ S implies dom γ = g0,

• γ1 � γ2 ∈ S implies γ1 ∈ S,

• if γ ∈ S and ε(cod γ) = π, then γ �τ ∈ S for every τ ∈ G1 such that dom τ = cod γ,

• if γ ∈ S and ε(cod γ) = σ, then there exists τ ∈ G1 such that dom τ = cod γ and
γ � τ ∈ S,

• if γ is an infinite path in G such that for every n ≥ 0 the prefix of γ of length n
belongs to S, then γ belongs to Wσ.

A strategy for player σ in G is a nonempty set S of paths in G such that the first
three properties hold. Let γ be a path in G, we say that γ has been played according to
the strategy S if there exists a path γ0 such that γ0 � γ ∈ S.

1.7. Definition. A bounded memory winning strategy for player σ in G is a pair (S, ψ),
where S = 〈S0, S1, s0〉 is a finite reachable pointed graph and ψ : S ✲ 〈G0, G1, g0〉 is a
morphism of pointed graphs. The following properties hold:

• If s ∈ S0 and ε(ψ(s)) = π, then for every τ ∈ G1 such that dom τ = ψ(s) there
exists a transition τ ′ ∈ S1 such that dom τ ′ = s and ψ(τ ′) = τ ,
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• if s ∈ S and ε(ψ(s)) = σ, then there exists τ ′ ∈ S1 such that dom τ ′ = s,

• if γ is an infinite path in S, then ψ ◦ γ ∈Wσ.

1.8. Lemma. Let (S, ψ) be a bounded memory winning strategy for player σ. Then the
set of paths

ψS = {ψ ◦ γ | γ is a path in S and dom γ = s0 }

is a winning strategy for player σ as defined in 1.6.

2. The theory of µ-lattices and the hierarchy

We begin by defining µ-lattices and the hierarchy. We shall later give an equivalent but
more combinatorial definition of µ-lattices using partial games. This approach will allow
us to have a combinatorial grasp on the hierarchy.

2.1. Definition. The set of terms Λω and the arity-function a : Λω ✲ N are defined
by induction as follows:

1.
∧
k ∈ Λω and a(

∧
k) = k, for k ≥ 0.

2.
∨
k ∈ Λω and a(

∨
k) = k, for k ≥ 0.

3. If φ ∈ Λω, a(φ) = k, and φi ∈ Λω for i = 1, . . . , k, then φ ◦ (φ1, . . . , φk) ∈ Λω and
a(φ ◦ (φ1, . . . , φk)) =

∑
i=1,...,k a(φi).

4. If φ ∈ Λω, a(φ) = k + 1, then µs.φ ∈ Λω and a(µs.φ) = k, for s = 1, . . . , k + 1.

5. If φ ∈ Λω, a(φ) = k + 1, then νs.φ ∈ Λω and a(νs.φ) = k, for s = 1, . . . , k + 1.

2.2. Definition. Let L be a lattice, we define a partial interpretation of terms φ ∈ Λω,
a(φ) = k, as order preserving functions |φ| : Lk ✲ L.

1. |∧k |(l1, . . . , lk) =
∧
i=1,...,k li .

2. As in 1, but substituting each symbol
∧

with the symbol
∨

.

3. Let φ ∈ Λω, a(φ) = k, and let φi ∈ Λω for i = 1, . . . , k. Suppose |φ| and |φi| are
defined. In this case we define |φ ◦ (φ1, . . . , φk)| to be:

|φ ◦ (φ1, . . . , φk)|(l1, . . . , lh)
= |φ|( |φ1|(lh−1 , . . . , lh+

1
), . . . , |φk|(lh−k , . . . , lh+

k
) ) ,

where h−
i = 1+

∑i−1
j=1 a(φj), h

+
i =

∑i
j=1 a(φj) and h = h+

k =
∑k
j=1 a(φj). Otherwise

|φ ◦ (φ1, . . . , φk)| is undefined.
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4. Let φ ∈ Λω be such that a(φ) = k + 1. Suppose that |φ| is defined and let s ∈
{1, . . . , k + 1}. If for each vector (l1, . . . , lk) ∈ Lk the least prefix-point of the order
preserving function |φ|(l1, . . . , ls−1, z, ls, . . . , lk) exists, then we define |µs.φ| to be:

|µs.φ|(l1, . . . , lk) = µz.|φ|(l1, . . . , ls−1, z, ls, . . . , lk) .

Otherwise |µs.φ| is undefined.

5. As in 4, but substituting each symbol µ with the symbol ν, and the word least prefix-
point with the word greatest postfix-point.

2.3. Definition. A lattice L is a µ-lattice if the interpretation of terms φ ∈ Λω is a
total function. Let L1, L2 be two µ-lattices. An order preserving function f : L1

✲ L2

is a µ-lattice morphism if the equality |φ| ◦ fa(φ) = f ◦ |φ| holds for all φ ∈ Λω. We shall
write Lω for the category of µ-lattices.

2.4. Definition. We define classes of terms Σn,Πn,Λn ⊆ Λω, for n ≥ 0. We set
Σ0 = Π0 = Λ0, where Λ0 is the least class which contains

∨
k and

∧
k, k ≥ 0, and which

is closed under substitution (rule 3 of definition 2.1). Suppose that Σn and Πn have been
defined. We define Σn+1 to be the least class of terms which contains Σn ∪Πn and which
is closed under substitution and the µ-operation (rule 4 of definition 2.1). Similarly, we
define Πn+1 to be the least class of terms which contains Σn∪Πn and which is closed under
substitution and the ν-operation (rule 5 of definition 2.1). We let Λn = Πn+1 ∩Σn+1 and
observe that Λω =

⋃
n≥0Σn =

⋃
n≥0Πn =

⋃
n≥0 Λn.

2.5. Definition. We say that a lattice is a Σn-model if for every φ ∈ Σn |φ| : La(φ) ✲ L
is defined. Let L1, L2 be two Σn-models, an order preserving function f : L1

✲ L2 is
a morphism of Σn-models if for every φ ∈ Σn the equality f ◦ |φ| = |φ| ◦ fa(φ) holds. We
let Sn be the category of Σn-models and morphisms of Σn-models. We define in a similar
way a Πn-model, a morphism of Πn-models and the category Pn, a Λn-model, a morphism
of Λn-models and the category Ln.

Clearly L0 is the category of lattices and we have inclusion of categories

L0

S1

��
����

P1

��
� ���

L1

��
� ���

��
����

. . . �� � � Ln−1

Sn
��

����

Pn

��
� ���

Ln

��
� ���

��
����

. . . �� � � Lω

The alternation hierarchy problem for the theory of µ-lattices can be stated in
the following way: is there a number n ≥ 0 such that every term φ ∈ Λω is equivalent to
a term φ′ ∈ Λn? Two terms are considered to be equivalent if they have the same arity
and their interpretations are equal in every µ-lattice. This question can be equivalently
formulated as follows: is there a number n ≥ 0 and a category Cn among Sn,Pn,Ln such
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that the inclusion functor Lω ⊂ ✲ Cn is an equivalence of categories? If such a Cn exists,
then Cn = Lω, since if P is a partially ordered set which is order-isomorphic to a µ-lattice,
then it is itself a µ-lattice; as a consequence for every m > n all the Sm,Pm and Lm are
equal to Lω.

2.6. Theorem. The alternation hierarchy for the theory of µ-lattices is strict, i.e. there
is no positive integer n such that Ln = Lω.

Proof. For every n ≥ 0, we exhibit in 3.12 a sub-Λn-model Jn,P of the free µ-lattice JP
over the partially ordered set P . The Λn-model Jn,P is the free Λn-model over the partially
ordered set P , in particular it is generated by P and the inclusion in,P : Jn,P ⊂ ✲ JP
preserves the generators. If Ln = Lω, then in,P has to be an isomorphism; however, we
show in 5.2 that in,P is a proper inclusion for every n ≥ 0 if P contains an antichain of
cardinality six.

The alternation hierarchy problem for a class K of µ-lattices can be stated as follows.
Let Kω be the quasi-variety generated by the class of µ-lattices K in Lω, by which we
mean the closure of the full sub-category determined by objects in K under products, sub-
objects and regular epis. Similarly let Kn be the quasi-variety generated by the class K in
Ln. The inclusion functors Lω ⊂ ✲ Ln restrict to inclusions Kω ⊂ ✲ Kn and the problem
is to determine whether there exists a number n ≥ 0 such that the above inclusion is an
equivalence. The above theorem has the following consequence.

2.7. Theorem. The alternation hierarchy for the class of complete lattices is strict.

Proof. Let K be the class of complete lattices. Since every free µ-lattice can be em-
bedded in a complete lattice by a morphism of µ-lattices, as proved in [19, 20], then
Kω = Lω. Similarly Kn = Ln, since Jn,P is the free Λn-model, so that free Λn-models can
be embedded into complete lattices. However Ln �= Lω.
The theory of µ-lattices has an equivalent presentation by means of a class J of partial

games, cf. 1.5, which are a sort of combinatorial terms. A partial game G in this class
always comes with its set of partial final positions XG; given a lattice L we can define the
partial interpretation of games G ∈ J as order preserving functions |G| : LXG ✲ L.
A lattice L turns out to be a µ-lattice if and only if the interpretation of a partial game
G ∈ J is always defined.
2.8. Definition. A partial game G is in the class L if and only if 〈G0, G1, g0〉 is a finite
tree with back edges and moreover γ ∈ Wσ if and only if ε(rγ) = π. If G ∈ L, we denote
by R(G) the set of positions which are returns of 〈G0, G1, g0〉 and by χ(G) the number
cardG0 + cardR(G).

When specifying a partial game G ∈ L we shall omit the set Wσ, since this is deter-
mined by the underlying tree with back edges and the coloring ε.

2.9. Definition. On the class L the following constants and operations are defined.

0. x is the partial game with just one partial final position, which we again call x.
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1. Let I be a finite set, the partial game
∧
I has starting position ∧0 �∈ I, ε(∧0) = π,

partial final positions i and moves ∧0 → i for every i ∈ I.

2. Let I be a finite set, the partial game
∨
I is defined in a similar way: it has starting

position ∨0 �∈ I, ε(∨0) = σ, partial final positions i and moves ∨0 → i for every
i ∈ I.

3. Substitution. Let G and H be partial games in L and let x ∈ XG. The underlying
pointed graph of the game G[H/x] is obtained by substitution of the tree with back
edges underlying H for x in the tree with back edges underlying G. The coloring ε
is defined accordingly, i.e. if g �= x is a position coming from G0, then ε(g) is as in
G, otherwise, for a position h coming from H0, ε(h) is as in H.

4. µ-operation. Let G ∈ L be a partial game and let x ∈ XG. The underlying graph
of the game µx.G[x] is the same as the underlying graph of G with one more move
x→ g0. The initial position of µx.G[x] is x and we let ε(x) = σ.

5. ν-operation. Let G ∈ L be a partial game and let x ∈ XG. The underlying pointed
graph of νx.G[x] is the same as the underlying graph of µx.G[x], however we let
ε(x) = π.

It is useful to have a picture of these operations.

0. The game x is

x��������

1. 2. Let I = {i1, . . . , in} be a finite set. The games
∧
I and

∨
I are:

π��������

i1��������
����

��
��

�

i2��������
��

. . . in����������������������� σ��������

i1��������
����

��
��

�

i2��������
��

. . . in�����������������������

3. Let G,H be partial games in L and let x ∈ XG. We represent those games as:
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G
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�� ��
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��

��
��

��

H
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The game G[H/x] can be represented as:

��
��
��
��
��

��
��

��
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G
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��
��
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H

4. 5. Let G be a partial game in L and let x ∈ XG. This game can be represented as
above. We represent the games µx.G[x] and νx.G[x] as:

σ��������
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G 	
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G 	
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2.10. Definition. We let J be the class of games G ∈ L for which the following two
conditions hold, for every r ∈ R(G):

1. there exists a unique back edge P (r)→ r,

2. there exists a unique move r → S(r).

We let K be the class of games G ∈ L for which only the first of the two conditions above
holds, for any r ∈ R(G).

We have the inclusion of classes J ⊆ K ⊆ L, but those classes are essentially the
same. A more detailed account of the equivalence between J and K is given in the proof
of theorem 4.2.

We shall write G = H if G,H are partial games and there exists an isomorphism of
structure between them. This means that there exists an isomorphism of the underlying
pointed graphs f : 〈G0, G1, g0〉 ✲ 〈H0, H1, h0〉 such that εG = εH ◦ f0 and such that
γ ∈ WσG if and only if f ◦ γ ∈ WσH . Substitution satisfies the commutativity rule
(G[H/x])[K/y] = (G[K/y])[H/x] if x, y ∈ XG and x �= y. Hence if {Hx }x∈XG

is a
collection of games in L, we shall write by G[Hx/x ]x∈XG

for any sequence of substitutions.
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2.11. Remark. It is possible to show that the class J is the least subclass of L which is
closed under the constants and the operations of definition 2.9. Indeed, a stronger result
holds: a partial game G ∈ J has a unique form x,

∧
I [Hi/i]i∈I ,

∨
I [Hi/i]i∈I , µx.H[x],

νx.H[x], where H or the Hi satisfy χ(H) < χ(G) and χ(Hi) < χ(G). Hence, in what
follows, we shall be able to define by induction on the structure of partial games in J .
In a similar way we define a partial interpretation for games in J .

2.12. Definition. Let L be a lattice. We define an interpretation of partial games
G ∈ J as order preserving functions |G| : LXG ✲ L. The correspondence sending G to
|G| is in general only a partial function, i.e. |G| could be undefined for some G.

0. Let G = x so that XG = {x}. We let |G|(λ) = λ(x).

1. Let G =
∧
I [Hi/i]i∈I , so that XG =

∑
i∈I XHi

. If the { |Hi| }i∈I are defined, then we
define

|G|(λ) =
∧

i∈I
|Hi|(λHi

) ,

where λHi
is the restriction of λ to XHi

. Otherwise |G| is undefined.

2. As in 1, but substituting each symbol
∧

with the symbol
∨

.

4. Let G = µx.H[x] so that XH = XG ∪ {x}. If |H| is defined and if also for each
collection λ ∈ LXG there exists the least prefix-point of the unary order preserving
function

φ( l ) = |H|(λl) ,

where λl(y) = λ(y) if y �= x and λl(x) = l, then we define

|G|(λ) = µz.φ( z ) .

Otherwise |G| is undefined.

5. As in 4, but substituting each symbol µ with the symbol ν, and the word least prefix-
point with the word greatest postfix-point.

2.13. Proposition. A lattice L is a µ-lattice if and only if |G| is defined on L for every
game G ∈ J . An order preserving function f : L1

✲ L2 is a µ-lattice morphism if for
all G ∈ J we have f ◦ |G| = |G| ◦ fXG, i.e.

f( |G|(λ) ) = |G|( f ◦ λ ) ,

for every λ ∈ LXG
1 .
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Proof. Using the correspondence between the rules of definition 2.1 and the operations
defined in 2.9, inductively define for each φ ∈ Λω a pair 〈Gφ, λφ〉 where Gφ ∈ J and
λφ : a(φ) ✲ XGφ

is a bijection, with the following property: for each lattice L, Gφ is
defined on L if and only if φ is defined and moreover

|φ|(λ) = |Gφ|(λ ◦ λφ) .

This shows that if L is a lattice such that |G| is defined on L for every G ∈ J , then L
is a µ-lattice. The above formula shows that if f preserves the interpretation of games,
then it is a µ-lattice morphism:

f ◦ |φ|(λ) = f ◦ |Gφ|(λ ◦ λφ)
= |Gφ|(f ◦ λ ◦ λφ)
= |φ|(f ◦ λ) .

On the other hand, assign to each G ∈ J a pair 〈φG, λG〉 where φG ∈ Λω and λG :
a(φG) ✲ XG is a bijection, so that for each lattice L, |φG| is defined on L if and only
if |G| is defined on L; moreover

|φG|(λ) = |G|(λ ◦ λG) .

This is done by induction on the structure of games in J , cf. 2.11. The game x is sent
to

∧
1, the game

∧
I [Gi/i]i∈I is sent to

∧
k ◦(φGψ(1)

, . . . , φGψ(k)
), where ψ : k ✲ I is a

bijection, and µx.G[x] is sent to µs.φG where s = λ−1
G (x). Similar definitions are given for

games of the form
∨
I [Gi/i]i∈I and νx.G[x].

The above assignment shows that if L is a µ-lattice, i.e. if for each φ ∈ Λω |φ| is
defined on L, then for every G ∈ J |G| is defined on L too. A morphism which preserves
the interpretation of terms will also preserve the interpretation of games:

f ◦ |G|(λ) = f ◦ |φG|(λ ◦ λ−1
G )

= |φG|(f ◦ λ ◦ λ−1
G )

= |G|(f ◦ λ) .

2.14. Definition. We define by induction classes of partial games Sn,Pn,Ln, for n ≥ 0.
We set S0 = P0 = L0, where L0 is the least class which contains x,

∨
I and

∧
I , where I

is a finite set, and which is closed under substitution. Suppose that Sn and Pn have been
defined. We define Sn+1 to be the least class of games which contains Sn ∪ Pn and which
is closed under substitution and the µ-operation. Similarly, we define Pn+1 to be the least
class of games which contains Sn ∪ Pn and which is closed under substitution and the ν-
operation. We let Ln = Sn+1∩Pn+1 and observe that J = ⋃

n≥0 Sn =
⋃
n≥0Pn =

⋃
n≥0 Ln.



Theory and Applications of Categories, Vol. 9, No. 9 178

2.15. Proposition. A lattice is a Σn-model if and only if for every G ∈ Sn |G| :
LXG ✲ L is defined. Let L1, L2 be two Σn-models, an order preserving function f :
L1

✲ L2 is a morphism of Σn-models if and only if for every G ∈ Sn we have f ◦ |G| =
|G| ◦ fXG. Analogous results hold for the classes Pn and Ln, Πn-models, and Λn-models,
Πn-morphisms and Λn-morphisms, respectively.

Proof. The transformation of terms into partial games φ ✲ 〈Gφ, λφ〉, which we defined
in the proof of proposition 2.13, restricts to a transformation Σn ✲ Sn, so that if G
is defined on L for every G ∈ Sn, then L is a Σn-model, and a lattice morphism which
preserves the interpretation of every partial game in Sn is a morphism of Σn-models.
In a similar way the transformation G ✲ 〈φG, λG〉 carries partial games in Sn into

terms in Σn.

In the rest of this section we give a combinatorial characterization of the classes
Sn,Pn,Ln.
2.16. Definition. Let G ∈ L. A chain C in G is a totally ordered subset {r0 < . . . <
rk} ⊆ R(G) such that:

1. ε(ri) �= ε(ri+1), for i = 0, . . . , k − 1,
2. for i = 0, . . . , k − 1, there is a cycle γ of G such that rγ = ri and ri+1 lies on γ.

We say that C is a σ-chain if ε(r0) = σ, otherwise we say that C is a π-chain. We shall
write C � G if C is a chain in G, C �σ G if C is σ-chain in G and C �π G if C is a
π-chain in G.

2.17. Definition. Let G ∈ L, we define

L(G) = max{ cardC |C � G } ,
Lσ(G) = max{ cardC |C �σ G } ,
Lπ(G) = max{ cardC |C �π G } .

For every n ≥ 0, we define the class Ln ⊆ J by saying that G ∈ Ln if and only if
L(G) ≤ n. We let S0 = P0 = L0. For every n ≥ 1 we define the classes Sn, Pn by saying
that

G ∈ Sn if and only if Lσ(G) ≤ n and Lπ(G) ≤ n− 1 ,
G ∈ Pn if and only if Lσ(G) ≤ n− 1 and Lπ(G) ≤ n .
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2.18. Proposition. We have equalities Ln = Ln, for n ≥ 0 and Sn = Sn, Pn = Sn, for
n ≥ 1.
Proof. We prove the proposition for n = 0. Observe that G ∈ L0 if and only if every
chain has cardinality less or equal to 0, i.e. the only chain is the empty set. This happens
if and only if there are no returns in G, since a return r gives rise to a chain {r}. It is
clear that G ∈ L0 if and only if R(G) = ∅.
Suppose that Sn = Sn and that Pn = Pn.
We shall show first that Sn ∪ Pn ⊆ Sn+1 and that Sn+1 is closed under substitution

and the µ-operation.
It is clear from the definition that Sn ∪ Pn ⊆ Sn+1, so that Sn ∪Pn ⊆ Sn+1. The class

Sn+1 is closed under substitution: every chain in G[H/x] is either a chain from G[x] or
a chain of H, since if g ∈ G0 and h ∈ H0, then there is no cycle γ of G[H/x] on which
both g and h lie. It is also closed under the µ-operation. Let G[x] be in Sn+1 and let
C = {r0, . . . , rk} be a chain in µx.G[x]. Observe first that if r0 �= x then {r0, . . . , rk} is
also a chain of G[x]. This is because a cycle γi such that rγi

= ri does not contain the
transition x → S(x), otherwise rγi

= x. If C is a π-chain, then r0 �= x so that C is a
π-chain of G[x] and cardC ≤ n. If C is a σ-chain, we distinguish two cases: either r0 �= x,
so that C is also a chain of G[x] and cardC ≤ n + 1; or r0 = x, then {r1, . . . , rk} is a
π-chain in G[x], so that k ≤ Lπ(G[x]) ≤ n and cardC = k + 1 ≤ n+ 1.
We shall now prove that if C ⊆ J is a class such that Sn∪Pn ⊆ C which is also closed

under substitution and the µ-operation, then Sn+1 ⊆ C. If G ∈ Sn+1 we let ζ(G) be the
number

card {C �σ G | cardC = n+ 1},
and prove that G ∈ C by induction on ζ(G).
Suppose that ζ(G) = 0. Then all chains of G have cardinality less than n so that

G ∈ Ln.

2.19. Lemma. The class Ln is the closure under substitution of Sn ∪ Pn.
Proof. Let G ∈ Ln be a given partial game. If we can find a return r which is a complete
vertex distinct from the root, then we can write G = G↓

r[G
r
↓/r] and deduce that G belongs

to the closure of Sn∪Pn under substitution by the inductive hypothesis that this property
holds for both G↓

r and G
r
↓. If this is not possible, then we claim that every return of G lies

on the same strongly connected component. To justify the claim, we argue that if r is a
return of G, then we can find a path from r to the root, and therefore we can construct
a cycle on which both r and the root lie. Either r is the root itself, or else we can find a
path δ1 from r to a return r′ �= r which lies on γr, since r is not a complete vertex; we
can compose δ1 with a path δ2 from r′ to the root – we can suppose that δ2 exists, since
the height of r′ is strictly less than the height of r – to obtain the desired path.
Thus, in order to prove the lemma, it is enough to observe that if G ∈ L is such

that L(G) = n and every return of G lies on the same strongly connected component,
then G ∈ Sn ∪ Pn. Suppose we can find a σ-chain {r0, . . . , rn−1} as well as a π-chain
{r′0, . . . , r′n−1} in G, both of cardinality n. Choose a cycle γ on which both r0, r

′
0 lie. If
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ε(rγ) = π, then {rγ , r0, . . . , rn−1} is a π-chain of cardinality n + 1. If ε(rγ) = σ, then
{rγ , r′0, . . . , r′n−1} is a σ-chain of cardinality n + 1. This contradicts the hypothesis that
G ∈ Ln.

Using the lemma we conclude that if G ∈ Sn+1 and ζ(G) = 0, then G ∈ C, since C
contains Sn ∪ Pn = Sn ∪ Pn and is closed under substitution.
So suppose that ζ(G) ≥ 1. Consider the following order on σ-chains C such that

cardC = n+ 1:

{r0, . . . , rn} ≤ {r′0, . . . , r′n} if and only if

{r1, . . . , rn} = {r′1, . . . , r′n} and r0 is an ancestor of r
′
0.

Choose a σ-chain C = {r0, . . . , rn} which is minimal with respect to this order. We
claim that r0 is a complete vertex, i.e. we can represent G as G

↓
r0
[Gr0↓ /r0], so that G

r0
↓ =

µr0 .H[r0].
Suppose that r0 is not a complete vertex. We can find a return r which is a proper

ancestor of r0 and a cycle γ on which r, r0 lie and such that rγ = r. If ε(r) = π then
{r, r0, . . . , rn} is a π-chain in G of cardinality n+2, against the assumptions. If ε(r) = σ,
then {r, r2, . . . , rn+1} is a σ-chain which is strictly smaller than C in the previous order,
again contradicting the hypothesis.
Since ζ(G↓

r0
[r0]) < ζ(G) and similarly ζ(H[r0]) < ζ(G), by the induction hypothesis,

we have G↓
r0
[r0] ∈ C and H[r0] ∈ C. Since C is closed under substitution and the µ-

operation, we see that G = G↓
r0
[µr0 .H[r0]/r0] ∈ C.

A similar argument shows that Pn+1 = Pn+1.
By definition it is also clear that Ln = Sn+1 ∩ Pn+1, so that Ln = Ln. This ends the

proof of proposition 2.18.

3. Free µ-lattices and free Λn-models

The goal of this section is to review the characterization of free µ-lattices. We shall then
describe a canonical sub-Λn-model of a free µ-lattice JP and argue that it is the free
Λn-model over the partially ordered set P .

3.1. Definition. Let P be a partially ordered set. A game over P is a pair 〈G, λ〉 where
G is a game in K and λ : XG

✲ P is a valuation of the partial final positions in P .
We write K(P ) for the class of games over P and J (P ) for the subclass of pairs 〈G, λ〉
such that G ∈ J .

We can understand a game over P as a game with complete information with a payoff
function taking values in the partially ordered set P . Player σ is trying to maximize his
payoff, while his opponent π is trying to minimize the payoff; however, we can also adopt
the opponent’s view and think of G as a game over P op, so player π is also trying to
maximize the payoff but in the dual poset.
We shall use the simplified notation G for a game 〈G, λ〉 over P , leaving in the back-

ground the valuation λ : XG
✲ P . In particular, let G ∈ K, let {〈Hx, λx〉}x∈XG

be a
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collection of elements of K(P ), and observe that the set XG[Hx/x]x∈XG
is the disjoint union

of the sets XHx for x ∈ XG; the notation G[Hx/x]x∈XG
will abbreviate 〈G[Hx/x]x∈XG

, λ〉,
where λ(y) = λx(y) whenever y ∈ XHx .
We now describe a preorder on the class K(P ). This is done by constructing a game

〈G,H〉, where G,H ∈ K(P ), and by saying that G ≤ H if one of the players, Mediator,
has a winning strategy in this game, cf. 1.6. This game, which is essentially the same
game described in [5, 15], is played on the two boards G and H at the same time. One
player, the one we call Mediator and denote by the letter M , is a team composed by
player π on G and player σ on H; the other player, whom we call the Opponents and
denote by the letter O, is formed out of player σ on G and player π on H. Mediator, in
order to choose a move, must wait for the Opponents to have exhausted their moves on
both boards. Mediator’s goal is to reach a pair of positions (x, y) ∈ XG ×XH , such that
λ(x) ≤ λ(y); in the case of an infinite play, his goal is to win on at least one board. We
picture the game as follows:

σ :
��
��
��
��
��

��
��

��
��

��

G : π −M − σ :
��
��
��
��
��

��
��

��
��

��

H : π

The frame around Mediator’s team is meant to suggest that Mediator can behave like a
single player, like a master playing on different chess boards, where the Opponents are
indeed two distinct players, since they do not get any advantage from sharing information.
We formally define the game 〈G,H〉 as follows.
3.2. Definition. Let G,H ∈ K(P ). The game 〈G,H〉 is defined as:

• Positions of 〈G,H〉 are pairs of positions from G and H. The initial position is
(g0, h0).

• The coloring ε(g, h) is calculated as ε(g) · ε(h) ∈ {?,M,O}, where the product is
given by the table:

· π σ 0
σ O O O
π O M M
0 O M ? .

If ε(x) · ε(y) =?, i.e. if x ∈ XG and y ∈ XH , then ε(x, y) = O if and only if
λ(x) ≤ λ(y): the pair (x, y) becomes a winning final position for Mediator exactly
when λ(x) ≤ λ(y).

• Moves of 〈G,H〉 are either left moves (g, h) → (g′, h), where g → g′ ∈ G1, or
right moves (g, h) → (g, h′), where h → h′ ∈ H1; however, the Opponents can play
only with σ on G or with π on H. This means that the set of moves is obtained
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from the set G1 ×H0 +G0 ×H1 by removing right moves (g, h)→ (g, h′) whenever
(ε(g), ε(h)) = (σ, σ) and left moves (g, h)→ (g′, h) whenever (ε(g), ε(h)) = (π, π).

A morphism of graphs from (the graph underlying) 〈G,H〉 to the free category on (the
graph underlying) G, is defined as follows: (g, h)G = g and if τ = (g, h)→ (g′, h) is
a left move, then τG = g → g′, if τ = (g, h)→ (g, h′) is a right move, then τG = 1g.
This morphism is extended to a convex functor from the free category on 〈G,H〉 to
the free category on G and to a correspondence sending infinite paths in 〈G,H〉 to
finite or infinite paths in G. We call all these three correspondences left projection
and denote them by ( )L or ( )G. The right projection, denoted by ( )R or ( )H ,
is defined in an analogous way.

• An infinite play γ is a win for Mediator if and only if either its left projection γG
is an infinite play and ε(rγG

) = σ, or its right projection γH is an infinite play and
ε(rγH

) = π.

3.3. Definition. Let G,H ∈ K(P ) be games over P . We declare that G ≤ H if and
only if Mediator has a winning strategy in the game 〈G,H〉.
We remark that if Mediator has a winning strategy in the game 〈G,H〉, then he also

has a bounded memory winning strategy, cf. 1.7. This follows from [20, §4] and from well
known facts of the theory of games played on finite graphs [21, 25].

3.4. Proposition. Let G,H,K ∈ K(P ) be games over P . Then G ≤ G and if G ≤ H
and H ≤ K, then G ≤ K.

3.5. Definition. Let G,H ∈ J (P ). We write G ≡ H if G ≤ H and H ≤ G, so that ≡
is an equivalence relation. We shall denote by [G] the equivalence class of G and by JP
the set of those equivalence classes.

The following is the main result of [19].

3.6. Theorem. For every ordered set P , JP is a µ-lattice, where if G ∈ J and
{ [Hx] }x∈XG

∈ J XG
P , then

|G|{ [Hx] }x∈XG
= [G[Hx/x]x∈XG

] .

The µ-lattice JP is free over P , i.e. it comes with an embedding ηP : P✲ ✲ JP with the
following universal property: if f : P ✲ L is an order preserving function from P to a
µ-lattice L, then there exists a unique morphism of µ-lattices f̃ such that f̃ ◦ ηP = f .

We shall review here the concepts developed to prove proposition 3.4, since we will
need them later.
We proved that G ≤ G by exhibiting the copycat strategy in 〈G,G〉. It is played as

follows. From a position of the form (g, g) it is always the case that the Opponents have
to move just on one board. When they stop moving, if they do, Mediator will have the
opportunity to copy all the moves played by the Opponents so far on the other board
until the play again reaches a position of the form (g′, g′).
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We proved that if G ≤ H and H ≤ K then G ≤ K, by describing a game 〈G,H,K〉
with the two following properties: given two winning strategies R and S on 〈G,H〉 and
〈H,K〉 there exists a winning strategy R||S on 〈G,H,K〉; given a winning strategy T on
〈G,H,K〉 there exists a winning strategy T\H on 〈G,K〉. The game 〈G,H,K〉 is obtained
by gluing the games 〈G,H〉 and 〈H,K〉 along the center board H. One player, whom
we call the Mediators and denote by the letter M , is a team composed by Mediator on
〈G,H〉 and Mediator on 〈H,K〉; the other player, called the Opponents and denoted by
the letter O, is formed out of player σ on G and player π on K. The Mediators can
exchange information through the center board H. The game can be pictured as follows:

σ :
��
��
��
��
��

��
��

��
��

��

G : π − σ :
��
��
��
��
��

��
��

��
��

��

H : π − σ :
��
��
��
��
��

��
��

��
��

��

K : π

3.7. Definition. Let G,H,K ∈ K(P ). The game 〈G,H,K〉 is defined as follows:

• Positions of 〈G,H,K〉 are triples of positions (g, h, k) ∈ G0 ×H0 ×K0. The initial
position is (g0, h0, k0).

• The coloring ε(g, h, k) is calculated as ε(g) · ε(k) ∈ {?, O,M}, where the product is
given by the table of page 181. If ε(x) · ε(z) =?, i.e. if x ∈ XG and z ∈ XK, then if
ε(h) �= 0, then ε(x, h, z) = M , otherwise, if also h = y ∈ XH , then ε(x, y, z) = O if
and only if λ(x) ≤ λ(y) ≤ λ(z).

• Moves of 〈G,H,K〉 are either left moves (g, h, k)→ (g′, h, k), where g → g′ ∈ G1, or
central moves (g, h, k) → (g, h′, k), where h → h′ ∈ H1, or right moves (g, h, k) →
(g, h, k′), where k → k′ ∈ K1; however, the Opponents can play only with σ on G or
with π on K. Several kinds of projections on subsets of the three boards can be defined
as in definition 3.2; they will be denoted ( )G, ( )H , ( )K, ( )〈G,H〉, ( )〈H,K〉,
( )〈G,K〉. Observe that for every path γ, finite or infinite, (γ〈G,H〉)G = (γ〈G,K〉)G = γG
and similar equalities hold in the other cases.

• An infinite play γ is a win for the Mediators if and only if its left projection γG is
an infinite play and ε(rγG

) = σ, or its right projection γK is an infinite play and
ε(rγK

) = π.

3.8. Definition. Let R be a winning strategy for Mediator in 〈G,H〉 and let S be a
winning strategy for Mediator in 〈H,K〉. A strategy R||S for the Mediators in the game
〈G,H,K〉 is described by the formula

R||S = { γ | γ〈G,H〉 ∈ R and γ〈H,K〉 ∈ S } .
Let T be a winning strategy for the Mediators in the game 〈G,H,K〉. A strategy T\H for
Mediator in the game 〈G,H,K〉 is defined by the formula

T\H = { γ〈G,K〉 | γ ∈ T } .



Theory and Applications of Categories, Vol. 9, No. 9 184

3.9. Proposition. The strategy R||S is a winning strategy for the Mediators in the
game 〈G,H,K〉.
Proof. We check that all the conditions of definition 1.6 are satisfied.
If γ ∈ R||S then γ〈G,H〉 ∈ R and γ〈H,K〉 ∈ S, so that dom γ〈G,H〉 = (g0, h0) and

dom γ〈H,K〉 = (h0, k0). Let dom γ = (g, h, k), then (g, h) = (dom γ)〈G,H〉 = dom γ〈G,H〉 =
(g0, h0), similarly (h, k) = (h0, k0), so that dom γ = (g, h, k) = (g0, h0, k0).
Suppose that γ � τ ∈ R||S. From γ〈G,H〉 � τ〈G,H〉 = (γ � τ)〈G,H〉 ∈ R, we argue that

γ〈G,H〉 ∈ R; similarly γ〈H,K〉 ∈ S, so that γ ∈ R||S.
Let γ be a path in R||S and let (g, h, k) = cod γ.
Firstly, let us assume that ε(g, h, k) = O. If τ is a move available to the Opponents from

this position, then it is either a left move or a right move. Suppose it is a left move, say
τ = (g, h, k)→ (g′, h, k). We deduce that ε(g) = σ, which in turn implies that ε(g, h) = O.
Since γ〈G,H〉 ∈ R and cod γ〈G,H〉 = (g, h), then the path γ〈G,H〉 � τ〈G,H〉 ∈ R. We deduce
that γ � τ ∈ R||S, since ( γ � τ )〈G,H〉 = γ〈G,H〉 � τ〈G,H〉 ∈ R and ( γ � τ )〈H,K〉 = γ〈H,K〉 ∈ S.
If τ is a right move, then a similar argument shows that γ � τ ∈ R||S.
Suppose now that ε(g, h, k) = M . If ε(h) = 0 then either ε(g) = π or ε(k) = σ,

suppose ε(g) = π. In this case ε(g, h) =M , and we can find a transition τ of 〈G,H〉 such
that γ〈G,H〉 � τ ∈ R. Since τ = (g, h)→ (g′, h) is a left move, we can lift it to a left move
τ ′ = (g, h, k) → (g′, h, k), so that γ � τ ′ ∈ R||S since (γ � τ ′)〈G,H〉 = γ〈G,H〉 � τ ∈ R and
(γ � τ ′)〈H,K〉 = γ〈H,K〉 ∈ S. We can reason similarly if ε(k) = σ.
Suppose that ε(h) ∈ {σ, π}, say ε(h) = σ. In this case ε(g, h) = M , and we can find

a transition τ of 〈G,H〉 such that γ〈G,H〉 � τ ∈ R. If τ is a left move, then we lift it to
τ ′ as before and conclude that γ � τ ′ ∈ R||S. Hence suppose that τ = (g, h) → (g, h′) is
a right move. Since ε(h) = σ, we deduce that ε(h, k) = O, so that γ〈H,K〉 � τ̃ ∈ S, where
τ̃ = (h, k) → (h′, k). If we set τ ′ = (g, h, k) → (g, h′, k), we deduce that γ � τ ′ ∈ S||R,
since (γ � τ ′)〈G,H〉 = γ〈G,H〉 � τ ∈ R and (γ � τ ′)〈H,K〉 = γ〈H,K〉 � τ̃ ∈ S. We can reason
similarly if ε(h) = π.
Suppose now that (g, h, k) = (x, y, z), x ∈ XG, y ∈ XH , z ∈ XK . Since cod γ〈G,H〉 =

(x, y), we deduce that ε(x, y) = O, so that λ(x) ≤ λ(y). Since cod γ〈H,K〉 = (y, z), we
deduce that ε(y, z) = O, so that λ(y) ≤ λ(z).
Consider an infinite play γ in 〈G,H,K〉 which is the result of playing in this way.

Either γ〈G,H〉 is an infinite play, or γ〈H,K〉 is an infinite play; we suppose the first. If ε(γG)
is not an infinite winning play for player π in G, then γH is an infinite winning play for
σ on H: indeed, the pair (γG, γH) is the left and right projection of the infinite play
γ〈G,H〉, which has been played according to the winning strategy R. We can then argue
that γ〈H,K〉 is also an infinite play, moreover it has been played according to the winning
strategy S. Since γH is not an infinite winning play for π on H, and the pair (γH , γK) is
the left and right projection of γ〈H,K〉, it follows that γK is an infinite winning play for σ
on K. A similar argument is used if γ〈H,K〉 is an infinite play.
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3.10. Proposition. The strategy T\H is a winning strategy for Mediator in the game
〈G,K〉.
Proof. Let γ ∈ T , then dom γ = (g0, h0, k0), so that dom γ〈G,K〉 = (dom γ)〈G,K〉 =
(g0, k0). Similarly, if γ〈G,K〉 = γ1 � τ , then we can find a factorization γ = γ′

1 � γ
′
2 such that

(γ′
1)〈G,K〉 = γ1 and (γ

′
2)〈G,K〉 = τ . It follows that γ1 ∈ T\H .

Choose a play γ ∈ T and suppose that cod γ = (g, h, k), so that cod γ〈G,K〉 = (g, k).
Suppose that ε(g, k) = O and let τ be a move available to the Opponents from (g, k).

If τ = (g, h) → (g′, h) is a left move, then ε(g) = σ, and therefore ε(g, h, k) = O.
The transition τ ′ = (g, h, k) → (g′, h, k) is a move of 〈G,H,K〉, hence γ � τ ′ ∈ T and
γ〈G,K〉 � τ = γ〈G,K〉 � τ ′〈G,K〉 = (γ � τ

′)〈G,K〉 ∈ T\H .
Suppose that ε(g, k) =M , and observe that ε(g, h, k) =M ; we must find a transition

τ such that γ〈G,K〉 � τ ∈ T\H . Suppose also that we have constructed paths {γi}i=0,...,n

with the following properties: |γj| = j, γi is a prefix of γj if i ≤ j, γ � γi ∈ T and
(γ � γi)〈G,K〉 = γ〈G,K〉. Since ε(cod γ � γn) = M , there exists a transition τ such that
γ � γn � τ ∈ T . If τ is a left or right transition, then τ〈G,K〉 is a transition of 〈G,K〉, so
that γ〈G,K〉 � τ〈G,K〉 ∈ T\H , and we are done. If τ is a central transition, then we extend
the above collection by letting γn+1 = γn � τ . Since we cannot build an infinite collection
{γn}n≥0 with the above properties – the infinite path {γ � γn}n≥0 is played according to
the winning strategy T , but it is not a win for the Mediators in 〈G,H,K〉 – we shall
eventually find n ≥ 0 and a right or left transition τ such that γ � γn � τ ∈ T .

Finally, consider an infinite path γ = {γn}n≥0 played according to the strategy T\H .
Consider the set of paths

T (γ) = { γ′ ∈ T | γ′
〈G,K〉 ∈ {γn}n≥0 } .

The set T (γ) is closed under prefixes and it is infinite. Hence, it has the structure of a
finitely branching infinite tree and we can find an infinite path γ′ = {γ′

k} on this tree,
which is a subtree of T , such that γ′

〈G,K〉 = γ. Since T is a winning strategy, we have that

ε(rγG
) = ε(rγ′G) = σ or ε(rγK

) = ε(rγ′K ) = σ.

This concludes the proof of proposition 3.4.

3.11. Definition. For every [G] ∈ JP , we define L[G] to be the number

min{n |L(H) = n ,H ∈ [G]}

and let

Jn,P = { [G] |L[G] ≤ n } .
3.12. Proposition. The set Jn,P is a sub-Λn-model of JP and the embedding ηP :
P✲ ✲ JP restricts to an embedding ηn,P : P✲ ✲ Jn,P . With this structure Jn,P is free
over of P , i.e. the above embedding has the usual universal property with respect to order
preserving functions with codomain a Λn-model.
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Proof. Let G be a game in Ln and { [Hx] }x∈XG
be a collection of elements in Jn,P ; we

must prove that |G|{ [Hx] }x∈XG
∈ Jn,P . For each x ∈ XG choose H

′
x ∈ [Hx] such that

L(H ′
x) ≤ n, so that [Hx] = [H

′
x]. The equalities

|G|{ [Hx] }x∈XG
= |G|{ [H ′

x] }x∈XG

= [G[H ′
x/x]x∈XG

]

show that |G|{ [Hx] }x∈XG
∈ Jn,P , since G ∈ Ln, H ′

x ∈ Ln and Ln is closed under
substitution. Since ηP (p) = [x, λ

p], where λp(x) = p, it is clear that ηP (p) ∈ Jn,P .
As a Λn-model, Jn,P is isomorphic to Ln,P , the antisymmetric quotient of the pre-

ordered class Ln(P ) of pairs 〈G, λ〉 with G ∈ Ln, and we shall prove freeness of Ln,P .
Observe first that the correspondence 〈G, λ〉 ✲ 〈G, f ◦ λ〉, induced by an ordered
preserving function f : P ✲ Q, induces an order preserving correspondence Ln(f) :
Ln(P ) ✲ Ln(Q), and a morphism of Λn-models Ln,f : Ln,P ✲ Ln,Q. This makes up
a functor Ln and ηn is then a natural transformation in the obvious sense.
On the other hand, if L is a Λn-model, then the correspondenceEVn(L) : Ln(L) ✲ L,

defined by EVn(L)〈G, λ〉 = |G|(λ), also preserves the order, so that it induces a morphism
of Λn-models EVL : Ln,L ✲ L such that EVn,L ◦ ηn,L = IdL. To prove this, the same
argument as in [20, §5.15] is used.
If f : P ✲ L is an order preserving function with codomain a Λn-model, then

EVn,L ◦ Ln,f is the desired unique extension of f to a morphism of Λn-models from Ln,P
to L.

We shall denote by in,P : Jn,P ⊂ ✲ JP the inclusion, so that in,P is a morphism of
Λn-models and the equality ηP = in,P ◦ ηn,P holds.

4. Synchronizing games

The goal of this section is to give a general criterion by which to prove that the inclusion
in,P : Jn,P ⊂ ✲ JP is proper.
4.1. Definition. Let A ∈ K(P ). We say that A is synchronizing if it is bipartite and
the only winning strategy for Mediator in the game 〈A,A〉 is the copycat strategy.

The intuitions which have induced us to call these games synchronizing are explained
as follows: if Mediator is playing according to a winning strategy in the game 〈G,H〉,
then it is impossible for both the Opponents to win, so that at least one must lose. We
can imagine therefore that there is a sort of asynchronous game going on between player
σ on G and player π on H, the asynchrony being induced by the mediating choices of
Mediator. However, if G = H = A and the only winning strategy for Mediator in 〈A,A〉
is the copycat strategy, then there are very few mediating choices. If moreover the game
A is bipartite, then the resulting game between player σ on the left and player π on the
right is easily recognized to be equivalent with the game A itself, in which the two players
act on a synchronous base.
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Since a strategy in the game 〈A,A〉 is essentially an endomorphism of A, and the
copycat strategy plays the role of the identity, we may consider a synchronizing game to
be a particular kind of asymmetric object. We remark that if A ∈ J (P ) is such that
L(A) = 0, then A can be identified with a term for the free lattice over P . In this case, A
is synchronizing if and only if it is in normal form as a free lattice term [10, 23]. It is an
open problem whether this notion of synchronizing game leads to a normal form for µ-
lattice terms. Examples of synchronizing games are given in section 5. Their remarkable
property is stated in the following proposition.

4.2. Theorem. Let A ∈ K(P ) be a synchronizing game such that L(A) = n. Then we
can construct a game A• ∈ J (P ) such that L[A•] = n.

4.3. Corollary. In order to show that the inclusion in,P : Jn,P ⊂ ✲ JP is proper, it
is enough to find a synchronizing game A in K(P ) such that L(A) > n.

Proof. In the following let A = 〈A0, A1, a0, ε, λ〉 be such a synchronizing game.
The game A• is obtained from A by forcing property 2 in definition 2.10 to hold. If

we let A• be 〈A• 0, A• 1, a• 0, ε•, λ•〉, this game is formally defined as follows.
• The set of positions is

A• 0 = R(A)× { 0 } ∪ A0 × { 1 } .
The initial position a• 0 is (a0, 0) if a0 is in R(A), otherwise the initial position is
(a0, 1).

• The set of moves is
A• 1 = { (g, 1)→ (g′, 1) | g → g′ ∈ A1, g

′ �∈ R(A) }
∪ { (g, 1)→ (r, 0) | g → r ∈ A1, r ∈ R(A) }
∪ { (r, 0)→ (r, 1) | r ∈ R(A) } .

• We let ε•(g, i) = ε(g), and observe that if ε•(g, i) = 0, then i = 1 and ε(g) = 0;
hence, we define λ•(x, i) = λ(x) if ε•(x, i) = 0.

Observe that this construction preserves the essential structure of cycles and the color
of the returns, from which we deduce that L(A) = L(A•). It is easily seen that A• ∈ J (P ),
so that L[A•] ≤ L(A•) = L(A) = n.
In order to argue that L[A•] ≥ n, choose an arbitrary H ∈ [A•]. A copycat-like

strategy can be used by Mediator to win in both the games 〈A,A•〉 and 〈A•, A〉, so that,
by transitivity, we obtain A ≤ H and H ≤ A. By the analysis of possible plays in the
game 〈A,H,A〉, we shall construct a chain C in H such that cardC = n; it will follow
that L(H) ≥ n and L[A•] ≥ n. If θ is a path in 〈A,H,A〉 or 〈A,A〉, we shall use θL and
θR for the left and right projections, since the notation θA would be ambiguous.
The lemma 4.4 below has the following interpretation: if the Opponents know that the

Mediators are playing according to a winning strategy, then they can choose a path γ of
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A and force the Mediators to play on 〈A,H,A〉 so that the chosen path is played on the
left board as well as on the right board. In this case, we informally say that the Opponents
play along the path γ. We let T be any winning strategy for the Mediators in the game
〈A,H,A〉.
4.4. Lemma. Let γ be a path of A and let a = dom γ. Suppose that there is a position h
of H such that the position (a, h, a) of 〈A,H,A〉 has been reached using T . We can lift γ
to a play θγ of 〈A,H,A〉 with the following properties:

• dom θγ = (a, h, a),

• the left projection ( θγ )L as well as the right projection ( θγ )R are both equal to γ,

• the play θγ has been played according to the strategy T by the Mediators.

Proof. Firstly, we prove the lemma in case γ = a → a′ is a transition of A; we also
suppose that ε(a) = σ; if ε(a) = π we can reason by duality. From position (a, h, a) it is
the Opponents’ turn to move, on the left, so that they can choose the move τ on the left.
Since A is bipartite, we have ε(a′) �= ε(a), and in position (a′, h, a) it is the Mediators’

turn to move. From this position, the strategy T will suggest playing a finite path on
H (a′, h, a) →∗ (a′, h′, a), possibly of zero length, and then it will suggest playing on
an external board. An infinite path played only on H cannot arise, since T is a winning
strategy, and such an infinite path would not be a win for the Mediators. T cannot suggest
a move on the left board - otherwise the strategy T\H would not be the copycat strategy
- hence it will suggest a move on the right board. Since T\H is the copycat strategy, the
only suggested move will be (a′, h′, a)→ (a′, h′, a′).
The generalization of the statement to paths is obtained by induction on the length.

4.5. Lemma. Let θ be a path of 〈A,H,A〉, which has been played according to the winning
strategy T , such that θL = θR. If γ = θL = θR has a factorization γ = γ1 � γ2, then there
exists a factorization θ = θ1 � θ2 such that (θ1)L = (θ1)R = γ1 and (θ2)L = (θ2)R = γ2.

Proof. We shall prove that if δ is a path of 〈A,A〉, which has been played according to
the winning strategy T\H , i.e according to the copycat strategy, for which the equalities
δL = δR = γ hold, then we can lift a factorization γ = γ1 � γ2 to a factorization δ = δ1 � δ2
in 〈A,A〉 such that (δi)L = (δi)R = γi, for i = 1, 2. To obtain the statement of the lemma,
it will be enough to let δ = θ〈A,A〉, and then lift the factorization θ〈A,A〉 = δ1 � δ2 to a
factorization θ = θ1 � θ2, which is possible since the functor ( )〈A,A〉 is convex.
The statement is proved by induction on the length of γ2. If |γ2| = 0, the result is

obvious; suppose therefore that |γ2| > 0. Since |δ| = |δL| + |δR| = 2|γ| ≥ 2, we can write
δ = δ′ � τ ′ where |τ ′| = 2. Since T\H is the copycat strategy and A is bipartite, we deduce
that δ′L = δ′R = γ′, τ ′L = τ ′R = τ so that |τ | = 1, and write γ = γ′ � τ . Let γ2 = γ′

2 � τ and
γ′ = γ1 � γ

′
2. Since |γ′

2| < |γ2|, we can use the induction hypothesis and let δ′ = δ1 � δ
′
2 be

such that (δ1)L = (δ1)R = γ1 and (δ
′
2)L = (δ

′
2)R = γ′

2. Then δ = δ′1 � (δ
′
2 � τ

′) is the desired
factorization.
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The lifting property of the previous lemma can be generalized: if θL = θR = γ1�. . .�γn,
where n ≥ 0, then we can find a factorization θ = θ1 � . . . � θn such that (θi)L = (θi)R = γi
for i = 1, . . . , n.
We have observed that A ≤ H and H ≤ A, hence we shall fix two winning bounded

memory strategies for Mediator in the games 〈A,H〉 and 〈H,A〉, say (R,ψ) and (S, φ),
respectively. We let

K = max(cardR0, cardS0) ,

and consider the strategy ψR||φS in the game 〈A,H,A〉, the definition of which is found
in 1.8 and 3.8.
The following lemma can be interpreted as follows: if the Opponents play enough time

along a cycle γ of A, then they can force the Mediators to play in a cycle of H of the
same color as γ.

4.6. Lemma. Let γ be a proper cycle of A and let θ be a path of 〈A,H,A〉, played accord-
ing to the strategy ψR||φS, such that θL = θR = γK. It is possible to find a factorization

θ = Θ0 �Θ �Θ1

such that ΘL, ΘH and ΘR are all proper cycles. Moreover, ΘL = ΘR = γk, with 1 ≤ k ≤
K, and ε(rΘH

) = ε(rγ).

Proof. Let θ be a path of 〈A,H,A〉, played according to the strategy ψR||φS, such that
θL = θR = γK , where γ is proper cycle of A such that ε(rγ) = π; if ε(rγ) = σ, a dual
argument – with the strategy φS instead of ψR – can be used. According to lemma 4.5,
we can factor θ as

θ = θ1 � . . . � θK ,

so that, for each i = 1, . . . , K, the relations (θi)L = (θi)R = γ hold.
By the definition of the strategies ψR and ψR||φS, there exists a path ρ in R such

that ψ ◦ ρ = θ〈A,H〉. Consider the factorization in 〈A,H〉
ψ ◦ ρ = θ〈A,H〉

= (θ1)〈A,H〉 � . . . � (θK)〈A,H〉 .

Since the functor ψ ◦ is convex, we can lift this factorization to a factorization in R

ρ = ρ1 � . . . � ρK

such that ψ ◦ ρi = (θi)〈A,H〉, for i = 1, . . . , K. Consider also the set

{ dom ρi , cod ρi | i = 1, . . . , K } ,
and observe that there exist i0, i1 ∈ {1, . . . , K} such that i0 ≤ i1 and dom ρi0 = cod ρi1 ,
since cardR0 ≤ K. Let

Υ = ρi0 � . . . � ρi1 ,
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then Υ is a cycle, and if we let k = i1 − i0 + 1, then

(ψ ◦Υ)L = ( (ψ ◦ ρi0) � . . . � (ψ ◦ ρi1) )L
= ( (θi0)〈A,H〉 � . . . � (θi1)〈A,H〉 )L
= (θi0)L � . . . � (θi1)L

= γk .

Observe also that r(ψ◦Υ)L
= rγk = rγ and that ε(rγ) = π. Since ψR is a winning strategy,

we argue that (ψ◦Υ)H is a proper cycle and that ε(r(ψ◦Υ)H
) = π. Otherwise Υ would give

rise, by infinite iteration, to the infinite path Υω in the graphR such that ψ◦Υω = (ψ◦Υ)ω
is not a win for Mediator in the game 〈A,H〉.
In order to conclude the argument, let

Θ = θi0 � . . . � θi1 ,

and find Θ0,Θ1 so that the relation θ = Θ0 � Θ � Θ1 is satisfied. Then ΘL = ΘR = γk

with k ≥ 1 by construction. We have also

ΘH = (Θ〈A,H〉)H
= ( (θi0)〈A,H〉 � . . . � (θi1)〈A,H〉 )H
= ( (ψ ◦ ρi0) � . . . � (ψ ◦ ρi1) )H
= (ψ ◦Υ)H ,

so that we can conclude that ΘH is a proper cycle such that ε(rΘH
) = π = ε(rγ).

The following lemma can be interpreted as follows: if the Opponents play enough time
along a chain C of A, then they can force the Mediators to play along a chain of H of the
same length and color as C.

4.7. Lemma. Let C = {a0, . . . , an−1} be a chain in A. For j = 0, . . . , n − 2, let γj be

proper cycles such that rγj
= aj and aj+1 lie on γj. Factor γj as γj = γ↓

j � γ
↑
j , where

dom γ↓
j = aj and cod γ↓

j = aj+1. Similarly, let γn−1 be a proper cycle of A such that
rγn−1 = an−1 = dom γn−1. For j = n− 1, . . . , 0, define cycles Γj in A as follows:

Γn−1 = γKn−1 ,

Γj−1 = (γ↓
j−1 � Γj � γ

↑
j−1)

K .

Let θ be a path in 〈A,H,A〉, played according to the strategy ψR||φS, such that θL = θR =
Γj. We can find a factorization

θ = Θ0 �Θ �Θ1,

with the property that ΘH is a proper cycle visiting a chain {rΘH
= rj, . . . , rn−1 }. More-

over ε(rj) = ε(aj).
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Proof. We prove the proposition by induction on j = n− 1, . . . , 0.
If j = n− 1, apply lemma 4.6 to θ and γn−1: it is possible to find a factorization

θ = Θ0 �Θ �Θ1

such that ΘH is a proper cycle and ε(rΘH
) = ε(rγn−1) = ε(an−1).

Suppose that we have proven the assertion for j; we prove it for j−1. Let θ be a path
such that θL = θR = (γ

↓
j−1 � Γj � γ

↑
j−1)

K . Apply lemma 4.6 to θ and γ↓
j−1 � Γj � γ

↑
j−1 and

find a factorization

θ = Θ0 �Θ �Θ1

such that ΘH is a proper cycle and ε(rΘH
) = ε(aj−1), since r(γ↓j−1&Γj&γ

↑
j−1)

= rγj−1
= aj−1.

Moreover, there exists k ≥ 1 such that

ΘL = ΘR = ( γk−1 � γ↓
j−1 ) � Γj � γ

↑
j−1 ,

where γ = γ↓
j−1 � Γj � γ

↑
j−1. By lemma 4.5, we can lift the above factorization to a

factorization

Θ = δ0 � δ � δ1 ,

so that δL = δR = Γj. Using the induction hypothesis, there is a factorization

δ = ∆0 �∆ �∆1 ,

such that ∆H is a proper cycle visiting a chain { r∆H
= rj, . . . , rn−1 }; moreover ε(rj) =

ε(aj). Since

ΘH = (δ0 �∆0)H �∆H � (∆1 � δ1)H ,

we deduce that ΘH visits rj, . . . , rn−1. If we let rj−1 = rΘH
, then the desired chain visited

by ΘH is {rj−1, rj, . . . , rn−1}, since ε(rj) = ε(aj) �= ε(aj−1) = ε(rj−1). This concludes the
proof of lemma 4.7.

In order to prove theorem 4.2, choose a chain C of A, the cardinality of which is
maximal, i.e. it is n. Define Γ0 as has been done in lemma 4.7, and let γ be the unique
simple path from the initial position a0 to domΓ0. Using lemma 4.4, we can lift the path
γ � Γ0 of A to a path θγ&Γ0 of 〈A,H,A〉, played according to the strategy ψR||φS by the
Mediators, such that both (θγ&Γ0)L and (θγ&Γ0)R are equal to γ �Γ0. Using lemma 4.5, we
can also lift the given factorization to a factorization θγ&Γ0 = θγ � θΓ0 so that in particular
(θΓ0)L = (θΓ0)R = Γ0. Using lemma 4.7, the center projection (θΓ0)H visits a chain in H
of cardinality n which is, moreover, of the same color as the given chain C of A. This
concludes the proof of theorem 4.2.
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5. Generalized Whitman polynomials

In this section we let X = {a0, a1, a2, b0, b1, b2} be a set of six generators and define a
sequence of synchronizing games W n ∈ K(X), n ≥ 1, such that L(W n) = n. We can
argue that [W n

• ] �∈ Jm,X if n > m, as in 4.3.

5.1. Theorem. For every n ≥ 1, the inclusion in,X : Jn,X ⊂ ✲ JX is proper, where X
is a set of six generators.

5.2. Corollary. If P contains an antichain {a0, a1, a2, b0, b1, b2}, then the inclusion
im,P : Jm,P ⊂ ✲ JP is proper.

The strictness of the alternation hierarchy will follow as explained in 2.6. The con-
struction of the games W n has been suggested by the Whitman polynomial

p(x) = a ∨ (b ∧ (c ∨ (a ∧ (b ∨ (c ∧ x))))) .
Earlier in Birkhoff’s paper [4], a partition lattice and an infinite chain of the form pn(a)
are exhibited, so that the free lattice on three generators is shown to be infinite. A more
functional interpretation of p(x) is given in [24]. P. Whitman proved that the free lattice
on three generators is not complete by showing that free lattices are continuous – so that
if the join of the infinite chain pn(a) exists, then it has to be a fixed point of p(x) –
and by proving that this polynomial has no fixed point. Later, Crawley and Dean [9]
characterized free lattices with infinite operations and used the above polynomial to give
lower bounds on the cardinality of those lattices, and a similar technique was used by
Hales [11] to show that free complete lattices do not exist in general. Philip Whitman’s
result, also documented in the monograph [10], can be used to show that the inclusion
i0,X : J0,X

⊂ ✲ JX is proper when cardX ≥ 3, where we recall that J0,X coincides with
the free lattice on the set X.

5.3. Definition. The game W n is defined as follows:

• The set of positions is
{ gj, wj | j = 0, . . . , 6n− 1 }

and the initial position is g0.

• The set of forward edges is

{ gj → gj+1 | j = 0, . . . , 6n− 2 } ∪ { gj → wj | j = 0, . . . , 6n− 1 }.

• The set of back edges is

{ g3(2n−k)−1 → g3k | k = 0, . . . , n− 1 }.

• ε(wj) = 0, for i = 1, . . . , 6n− 1 and ε(gj) = Qjmod 2, where Q0 = σ and Q1 = π.

• Eventually, λ(wj) = ajmod 3, if j < 3n and λ(wj) = bjmod 3, if j ≥ 3n.
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For example, the games W 1 and W 2 are pictured as follows:

σ�������� a0����������

π��������
��

a1����������

σ��������
��

a2����������

π��������
��

b0����������

σ��������
��

b1����������

π��������
��

b2����������	
��

� �� σ�������� a0����������

π��������
��

a1����������

σ��������
��

a2����������

π��������
��

a0����������

σ��������
��

a1����������

π��������
��

a2����������

σ��������
��

b0����������

π��������
��

b1����������

σ��������
��

b2����������	
��

� ��

π��������
��

b0����������

σ��������
��

b1����������

π��������
��

b2����������	
��

� ��

5.4. Theorem. For each n ≥ 1, the game W n ∈ K(X) is synchronizing and L(W n ) =
n.

It is easy to see that the game W n is bipartite. Moreover:

5.5. Proposition. The unique strategy in the game 〈W n,W n〉 is the copycat strategy.

Proof. In the proof, we shall use the following notation: if g is a position of W n such
that ε(g) �= 0, we shall write wg for the unique g′ such that g → g′ and ε(g′) = 0. We let
Sn(g) be the set of elements g′ such that ε(g′) �= 0 for which there exists a path of length
n from g to g′. We shall use the notation Sng for any element g

′ ∈ Sn(g), Sg will stand for
S1
g and we shall have g = S0

g ; with the above notation we must beware of the fact that
identities like Sng = Sng do not hold. The following lemma will prove to be useful.

5.6. Lemma. If n �≡ mmod 3, then λ(wSn
g
) �= λ(wSm

g
).

Proof. It is enough to observe that if gj → gj′ is an edge, then j′ ≡ j + 1mod 3.
Hence, if g = gi, g

′ ∈ Sn(g) and g′′ ∈ Sm(g), then λ(wg′) ∈ {ai+nmod 3, bi+nmod 3} and
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λ(wg′′) ∈ {ai+mmod 3, bi+mmod 3}. However
{ai+nmod 3, bi+nmod 3} ∩ {ai+mmod 3, bi+mmod 3} = ∅ ,

since i+ n �≡ i+mmod 3.

In order to prove proposition 5.5, we shall suppose that the game has reached a position
of the form (g, g), with ε(g) �= 0. We shall suppose that ε(g) = σ, and use a dual argument
if ε(g) = π. Depending on the Opponents’ choice, we shall analyse the moves available
to Mediator and show that the only possible reply is the one suggested by the copycat
strategy. We shall draw trees to represent possible moves as well as winning strategies for
the Opponents. Positions are labeled on the left by the player who must move. Dotted
transitions are used for Mediator’s moves leading to winning positions for the Opponents.
From (g, g), the Opponents have the following two types of moves:

O

M

(g, g)

(wg, g)
		���������

(Sg, g)
��

From position (wg, g), Mediator can play as follows:

M

O

(wg, g)

(wg, wg)
		��������

(wg, Sg)
��

Position (wg, Sg) is winning for the Opponents, since they can move (wg, Sg)→ (wg, wSg),
where they win because of lemma 5.6.
From position (Sg, g), Mediator can play as follows:

M

O

(Sg, g)(wSg , g) ��

(S2
g , g)




(Sg, Sg)

����
��

��
(Sg, wg)��

We exhibit a winning strategy for the Opponents from position (wSg , g):

M

O

M

O

M

(wSg , g)(wSg , wg) ��

(wSg , Sg)
��

(wSg , S
2
g )

��
(wSg , wS2

g
) ��

(wSg , S
3
g )

��

(wSg , wS3
g
)

��
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We exhibit a winning strategy for the Opponents from position (S2
g , g):

O

M

O

M

(S2
g , g)

(wS2
g
, g)

��

(wS2
g
, Sg)
��

(wS2
g
, wSg)
��

(wS2
g
, wg)��

We exhibit a winning strategy for the Opponents from position (Sg, wg):

M

O

M

(Sg, wg)(wSg , wg) ��

(S2
g , wg)

��

(wS2
g
, wg)
��

To complete the argument, we must show that if (Sg, Sg) is a position such that Sg �=
Sg, i.e. it is of the form (g3k, g3(2n−k)) or (g3(2n−k), g3k) with k ∈ {1, . . . , n − 1}, then
the Opponents have a winning strategy. Suppose that (Sg, Sg) = (g3k, g3(2n−k)), so that
λ(w3k) = a0 and λ(w3(2n−k)) = b0; the Opponents have the following strategy:

O

M

O

M

(g3k, g3(2n−k))

(g3k, w3(2n−k))
��

(w3k, w3(2n−k)) ��

(S2
g , wSg)

��

(wS2
g
, wSg)
��

Similarly, the Opponents have a winning strategy from position (g3(2n−k), g3k). This con-
cludes the proof of proposition 5.5.

5.7. Proposition. The game W n contains a σ-chain of cardinality n. Since
cardR(W n) = n, we deduce that L(W n ) = n.

Proof. Firstly, we observe that R(W n) = { g3k | k = 0, . . . , n−1 }, and then that R(W n)
is itself a chain. For if 0 ≤ k < k′ ≤ n− 1, then 3k′ < 3(2n− k′)− 1 < 3(2n− k)− 1, so
that g3k′ lies on the cycle going from g3k down to g3(2n−k)−1 and back to g3k.
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[3] A. Arnold and D. Niwiński. Rudiments of µ-calculus. North-Holland Publishing Co.,
Amsterdam, 2001.

[4] G. Birkhoff. On the structure of abstract algebras. Proc. Camb. Philos. Soc., 31:433–
454, 1935.

[5] A. Blass. A game semantics for linear logic. Ann. Pure Appl. Logic, 56(1-3):183–220,
1992.
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[10] R. Freese, J. Ježek, and J. B. Nation. Free lattices. American Mathematical Society,
Providence, RI, 1995.

[11] A. W. Hales. On the non-existence of free complete Boolean algebras. Fund. Math.,
54:45–66, 1964.

[12] H. Hu and A. Joyal. Coherence completions of categories. Theoret. Comput. Sci.,
227(1-2):153–184, 1999.

[13] A. Joyal. Free bicomplete categories. C. R. Math. Rep. Acad. Sci. Canada, 17(5):219–
224, 1995.

[14] A. Joyal. Free bicompletion of enriched categories. C. R. Math. Rep. Acad. Sci.
Canada, 17(5):213–218, 1995.

[15] A. Joyal. Free lattices, communication, and money games. In Logic and scientific
methods, pages 29–68, 1997. Proceedings of the 10th international congress of logic,
methodology and philosophy of science, Florence, Italy, August 19–25, 1995.



Theory and Applications of Categories, Vol. 9, No. 9 197

[16] G. Lenzi. A hierarchy theorem for the µ-calculus. In Automata, languages and
programming, volume 1099 of Lecture Notes in Comput. Sci., pages 87–97, 1996.
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