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A PSEUDO REPRESENTATION THEOREM
FOR VARIOUS CATEGORIES OF RELATIONS

M. WINTER
Transmitted by Andrew Pitts

ABSTRACT. It is well-known that, given a Dedekind categoryR the category of (typed)
matrices with coefficients from R is a Dedekind category with arbitrary relational sums.
In this paper we show that under slightly stronger assumptions the converse is also true.
Every atomic Dedekind category R with relational sums and subobjects is equivalent to
a category of matrices over a suitable basis. This basis is the full proper subcategory
induced by the integral objects of R. Furthermore, we use our concept of a basis to
extend a known result from the theory of heterogeneous relation algebras.

1. Introduction

The calculus of binary relations has played an important rôle in the interaction between
algebra and logic since the middle of the nineteenth century. A first adequate development
of such algebras was given by de Morgan and Peirce. Their work has been taken up and
systematically extended by Schröder in [14]. More than 40 years later, Tarski started with
[15] the exhaustive study of relation algebras, and more generally, Boolean algebras with
operators.

The papers above deal with relational algebras presented in their classical form. Ele-
ments of such algebras might be called quadratic or homogeneous ; relations over a fixed
universe. Usually a relation acts between two different kinds of objects, e.g. between boys
and girls. Therefore, a variant of the theory of binary relations has evolved that treats
relations as heterogeneous or rectangular . A convenient framework to do so is given by
category theory [1, 12, 13].

Under certain circumstances, i.e. relational products exist or the point axiom is given,
a relation algebra may be represented in the algebra Rel of concrete binary relations
between sets [5, 6, 11, 13]. In other words, the algebra may be seen as an algebra of
Boolean matrices.

As known, not every (homogeneous or heterogeneous) relation algebra or Dedekind
category need be representable and therefore need not be an algebra of Boolean matrices
[1, 3, 4]. In this paper, we will show that it is possible in every Dedekind category R
with relational sums and subobjects to characterize a full subcategory B such that the
matrix algebra B+ with coefficients from B is equivalent to R. This equivalence is not
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necessarily an isomorphism since isomorphic objects from R may be identified under this
equivalence. The objects of B are the integral objects of R. Integral objects are defined
to be those objects A such that the set of relations R[A,A] on A is an integral relation
algebra in the sense of [2]. They may be characterized by the fact that their identity
morphism is an atom. We call B the basis of R.

As shown in [1, 17], every Dedekind category may be embedded into one with relational
sums and subobjects and hence into one which is equivalent to a matrix algebra. This
embedding and the equivalence above is not a trivial one. We show that B is never
isomorphic or equivalent to R and hence, a proper subcategory of R.

Furthermore, we want to demonstrate the strength of our concept of a basis of a
Dedekind category. Therefore, we reprove that every atomic Dedekind category may be
embedded into a product of so-called simple algebras. It turns out that this product is
characterized by an obvious equivalence relation on the class of objects of B.

The paper is organized as follows. In Section 2, we briefly recall some basic defini-
tions of various categories of relations. Section 3 is dedicated to matrix algebras with
coefficients taken from a given Dedekind category. The integral objects and the basis
are introduced in Section 4. Afterwards in Section 5, we prove our main theorem, i.e. a
pseudo-representation theorem for atomic Dedekind categories. Finally in Section 6, we
reprove the theorem mentioned above.

We assume that the reader is familiar with the basic concepts of allegories, Dedekind
categories and the theory of heterogeneous relation algebras. We use the notation of [13].

2. Categories of Relations

Throughout this paper, we use the following notations. To indicate that a morphism R
of a category R has source A and target B we write R : A → B. The collection of
all morphisms R : A → B is denoted by R[A,B] and the composition of a morphism
R : A → B followed by a morphism S : B → C by R;S. Last but not least, the identity
morphism on A is denoted by IA.

In this section we recall some fundamentals on Dedekind categories [7, 8]. This kind
of categories is called locally complete division allegories in [1]. For further details we
refer to [1, 12, 13].

2.1. Definition. A Dedekind category R is a locally small category satisfying the fol-
lowing:

1. For all objects A and B the set R[A,B] is a complete distributive lattice. Meet, join,
the induced ordering, the least and the greatest element are denoted by �AB,�AB,
�AB,⊥⊥AB,		AB, respectively.

2. There is a monotone operation � (called conversion) such that for all relations Q :
A → B and R : B → C the following holds

(Q;R)� = R�;Q�, (Q�)
�
= Q.



Theory and Applications of Categories, Vol. 7, No. 2 25

3. For all relations Q : A → B,R : B → C and S : A → C the modular law

Q;R � S � Q; (R � Q�;S)

holds.

4. For all relations R : B → C and S : A → C there is a relation S/R : A → B (called
the left residual of S and R) such that for all Q : A → B the following holds

Q;R � S ⇐⇒ Q � S/R.

All the indices of elements and operations are usually omitted for brevity and can easily
be reinvented.

Note that the class of complete distributive lattices is equivalent to the class of com-
plete Heyting algebras. A Dedekind category R is called an atomic Dedekind category if
every hom-set of R is an atomic lattice. If every hom-set R[A,B] of R is a Boolean alge-
bra, R is called a Schröder category. We denote the complement of a relation R : A → B
by R. An atomic Schröder category is also called a heterogeneous relation algebra.

We use the phrase “R is a relational category” as a shorthand for fact that R is one
of the structures defined above.

In the next lemma we collect some properties we will need throughout this paper.
Proofs may be found in [1, 9, 10, 12, 13, 16, 17, 18].

2.2. Lemma. Let R be a Dedekind category, A,B,C objects of R and Q ∈ R[A,B],
R1, R2 ∈ R[B,C] and S ∈ R[A,C]. Then we have

1. Q;R1 � S � (Q � S;R�
1 );R1,

2. Q; (R1 � R2) = Q;R1 � Q;R2,

3. Q; (R1 � R2) � Q;R1 � Q;R2,

4. Q � Q;Q�;Q,

5. 		AA;		AB = 		AB,

6. 		AB;		BB = 		AB,

7. 		AB;		BA;		AB = 		AB.

An important class of relations is given by mappings.

2.3. Definition. Let Q ∈ R[A,B] be a relation.

1. Q is called univalent iff Q�;Q � IB,

2. Q is called total iff IA � Q;Q� or equivalently iff Q;		BA = 		AA (or, Q;		BC =
		AC for all C),

3. Q is called a map iff Q is univalent and total.

In the next lemma we collect two fundamental facts concerning univalent relations.
Proofs may be found in [1, 9, 10, 12, 13, 16, 17, 18].
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2.4. Lemma. Let Q ∈ R[A,B] be univalent and R,S ∈ R[B,C]. Then we have

1. Q; (R � S) = Q;R � Q;S,

2. If R is a Schröder category and Q a mapping then Q;R = Q;R.

We define the notion of a homomorphism between relational categories as usual.

2.5. Definition. Let R and S be Dedekind categories and F : R → S a functor. Then
F is called a homomorphism between Dedekind categories iff

1. F (
i∈I

Si) =
i∈I

F (Si),

2. F (
⊔
i∈I

Si) =
⊔
i∈I

F (Si),

3. F (R�) = F (R)�,

hold for all relations R,Si with i ∈ I for some index set I. If R and S are Schröder
categories and F fulfills, in addition,

4. F (R) = F (R),

F is called a homomorphism between Schröder categories.

A pair of homomorphisms F : R → S, G : S → R is called an equivalence iff F ◦ G
and G ◦ F are naturally isomorphic to the identity functors, e.g. F and G are inverses of
each other up to isomorphism.

The relational description of disjoint unions is the relational sum [13, 18]. This con-
struction corresponds to the categorical product. By conversion, a Dedekind category is
self-dual. Therefore, a product is also a coproduct. Here we want to define this concept
for not necessarily finite sets of objects.

2.6. Definition. Let {Ai | i ∈ I} be a set of objects indexed by some set I. An object∑
i∈I

Ai, together with relations ιj ∈ R[Aj,
∑
i∈I

Ai] for all j ∈ I, is called a relational sum of

{Ai | i ∈ I} iff for all i, j ∈ I with i �= j the following holds

ιi; ι
�
i = IAi

, ιi; ι
�
j = ⊥⊥AiAj

,
⊔
i∈I

ι�i ; ιi = I
∑
i∈I

Ai
.

R “has relational sums” iff for every set of objects the relational sum does exist.
For a set of two objects {A,B}, this definition corresponds to the usual definition of

a relational sum. As known, categorical products and hence relational sums, are unique
up to isomorphism.

For given sets of relations Qi ∈ R[Ai, C] and Ri ∈ R[Ai, Bi] for all i ∈ I and relational
sums (

∑
i∈I

Ai, ιi)i∈I and (
∑
i∈I

Bi, ι
′
i)i∈I , we use the notation

∨
i∈I

Qi :=
⊔
i∈I

ι�i ;Qi

∑
i∈I

Ri :=
∨
i∈I

Ri; ι
′
i =

⊔
i∈I

ι�i ;Ri; ι
′
i.
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∨
i∈I

Qi is the coproduct morphism, i.e., it is the unique relation S such that ιi;S = Qk for

all i ∈ I.

2.7. Lemma. Let
∑
i∈I

Ai be the relational sum of {Ai | i ∈ I} and ∑
j∈J

Bj be the relational

sum of {Bj | j ∈ J}. Then for all Rij ∈ R[Ai, Bj] the following holds

1. If R is a Schröder category then ⊔
i∈I,j∈J

ι�i ;Rij; ιj =
⊔

i∈I,j∈J

ι�i ;Rij; ιj,

2. ι�k1
;Rk1l1 ; ιl1 � ι�k2

;Rk2l2 ; ιl2 = ⊥⊥∑
i∈I

Ai
∑

j∈J
Bj
for all k1, k2 ∈ I, l1, l2 ∈ J with k1 �= k2

or l1 �= l2.

Proof. 1. By Lemma 2.4, we have

⊔
i∈I,j∈J

ι�i ;Rij; ιj = (
⊔
i∈I

ι�i ; ιi);
⊔

i′∈I,j′∈J

ι�i′ ;Ri′j′ ; ιj′ ; (
⊔
j∈J

ι�j ; ιj)

=
⊔

i∈I,j∈J

ι�i ; ιi;
⊔

i′∈I,j′∈J

ι�i′ ;Ri′j′ ; ιj′ ; ι
�
j ; ιj

=
⊔

i∈I,j∈J

ι�i ;
⊔

i′∈I,j′∈J

ιi; ι
�
i′ ;Ri′j′ ; ιj′ ; ι

�
j ; ιj

=
⊔

i∈I,j∈J

ι�i ;Rij; ιj.

2. Suppose k1 �= k2. Then we have

ι�k1
;Rk1l1 ; ιl1 � ι�k2

;Rk2l2 ; ιl2 � ι�k1
; (Rk1l1 ; ιl1 � ιk1 ; ι

�
k2
;Rk2l2 ; ιl2)

= ⊥⊥∑
i∈I

Ai
∑

j∈J
Bj

.

The case l1 �= l2 is shown analogously.

Subsets inside a Dedekind category may be represented in two different ways; by
vectors (a relation v such that v = 		; v) or partial identities (a relation l such that l � I).
These two concepts are equivalent and may both be used to characterize subobjects.

2.8. Definition. Let l ∈ R[A,A] be a partial identity. An object B together with a
relation ψ ∈ R[B,A] is called a subobject of A induced by l iff

ψ;ψ� = IB, ψ�;ψ = l.

A Dedekind category “has subobjects” iff for all partial identities there exists a subobject.

Notice, that we have Q;R = Q � R for all partial identities Q and R (see [1, 16]).
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2.9. Definition. Let R be a Dedekind category. Then Rsub is defined as follows:

1. The class of objects of Rsub is given by the class of partial identities of R.
2. The set of relations Rsub[l1, l2] between two partial identities l1 : A → A and l2 :

B → B of R is defined as the set of relations R : A → B such that R = l1;R; l2.

The proof of the following lemma may be found in [1, 17].

2.10. Lemma. Let R be a relational category. Then Rsub is a relational category of the
same kind with subobjects.

Obviously, the functor F : R → Rsub defined by

F (A) := IA, F (R) := R

is an embedding of the corresponding relational categories.

3. Matrix Algebras

Given a Dedekind category R, an algebra of matrices with coefficients from R may be
defined.

3.1. Definition. Let R be a Dedekind category. The algebra R+ of matrices with coef-
ficients from R is defined by:
1. An object of R+ is a function from an arbitrary I to ObjR.

2. For every pair f : I → ObjR, g : J → ObjR of objects from R+, the set of morphisms
R+[f, g] is the set of all functions R : I×J → MorR such that R(i, j) ∈ R[f(i), g(j)].

3. For R ∈ R+[f, g] and S ∈ R+[g, h], composition is defined by

(R;S)(i, k) :=
⊔
j∈J

R(i, j);S(j, k).

4. For R ∈ R+[f, g], conversion is defined by

R�(j, i) := (R(i, j))�.

5. For R,S ∈ R+[f, g], union and intersection are defined by

(R � S)(i, j) := R(i, j) � S(i, j), (R � S)(i, j) := R(i, j) � S(i, j).

6. Identity, zero and universal elements are defined by

If (i1, i2) :=

{ ⊥⊥f(i1)f(i2) : i1 �= i2
If(i1) : i1 = i2,

⊥⊥fg(i, j) := ⊥⊥f(i)g(j), 		fg(i, j) := 		f(i)g(j).



Theory and Applications of Categories, Vol. 7, No. 2 29

7. If R is a Schröder category negation is defined by

R(i, j) := R(i, j).

Obviously, a morphism in R+ may be seen as an (in general non-finite) matrix indexed
by objects from R. The proof of the following result is an easy exercise and is, therefore,
omitted.

3.2. Lemma. Let R be a relational category. Then R+ is a relational category of the
same kind.

Furthermore, the possibility to build a disjoint union
⊎
i∈I

Ji of an arbitrary set {Ji | i ∈
I} of sets indexed by I gives us the following lemma.

3.3. Lemma. R+ has relational sums.

Proof. Let {fi : Ji → ObjR | i ∈ I} be a set of objects of R+. Then the function
h :

⊎
i∈I

Ji → ObjR defined by h(j) := fi(j) iff j ∈ Ji is also an object of R+. Now, we

define

ιi(j1, j2) :=

{ ⊥⊥fi(j1)h(j2) : j1 �= j2

If(j1) : j1 = j2.

An easy verification shows that the above definition gives the required relational sum.

Obviously, R may be embedded into R+ by sending each R to the 1× 1 matrix (R).
It is easily checked that R+

sub has relational sums, too. Hence, every relational category
may be faithfully embedded into a relational category of the same kind with relational
sums and subobjects.

4. Integral Objects and the Basis of R
Following concepts used in algebra, we call an object A integral if there are no zero divisors
within the subalgebra R[A,A]. In other words, the homogeneous relation algebra given
by the set R[A,A] is an integral relation algebra in the sense of [2]. Later on, the class of
integral objects will define the basis of R.

4.1. Definition. An object A of a Dedekind category is called integral iff ⊥⊥AA �= 		AA

and for all Q,R ∈ R[A,A] the equation Q;R = ⊥⊥AA implies either Q = ⊥⊥AA or R =
⊥⊥AA.

There are two other simple properties characterizing the integral objects of a Dedekind
category.

4.2. Lemma. Let R be an atomic Dedekind category. Then the following properties are
equivalent:

1. A is an integral object,
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2. Every non-zero relation in R[A,A] is total,

3. IA is an atom.

Proof. 1. ⇒ 3. : Suppose IA is not an atom. Since R[A,A] is atomic there are at least two
different atoms Q � IA and R � IA. We have Q;R = Q �R = ⊥⊥AA which contradicts A
is integral.
3. ⇒ 2. : Let Q : A → A be nonzero and suppose IA � Q;Q� = ⊥⊥AA. Then we conclude
a contradiction

Q = IA;Q � Q

� (IA � Q;Q�);Q

= ⊥⊥AA;Q

= ⊥⊥AA.

Since IA is an atom we follow IA � Q;Q� = IA and hence IA � Q;Q�.
2. ⇒ 1. : Suppose Q;R = ⊥⊥AA and R �= ⊥⊥AA. Since R is total we conclude

Q = Q; IA � Q;R;R� = ⊥⊥AA;R
� = ⊥⊥AA,

which gives us the assumption.

The special properties of the relations in R[A,A] mentioned in the last lemma may
be transferred to the relation in R[A,B] for an arbitrary object B.

4.3. Lemma. Let A be an integral object of an atomic Dedekind category.

1. If Q;R = ⊥⊥BC with Q ∈ R[B,A] and R ∈ R[A,C] then either Q = ⊥⊥BA or
R = ⊥⊥AC.

2. If S �= ⊥⊥AB then S;		BC = 		AC for all C.

Proof. 1. Q;R = ⊥⊥BC implies Q�;Q;R;R� = Q�;⊥⊥BC ;R
� = ⊥⊥AA. Since A is integral,

we have either Q�;Q = ⊥⊥AA or R;R� = ⊥⊥AA. In the first case we conclude using Lemma
2.2 Q � Q;Q�;Q = Q;⊥⊥AA = ⊥⊥BA. The other case is handled similarly.
2. Analogously to 1. ⇒ 3. and 3. ⇒ 2. of the last lemma by using 1.

Notice, that the last lemma implies that all non-zero relations in R[A,B] are total if
A is integral.

4.4. Definition. Let R be a Dedekind category. The basis BR of R is defined as the
full subcategory given by the class of all integral objects.

As usual, we omit the index R in BR when its meaning is clear from the context.

4.5. Theorem. Let R be an atomic Dedekind category with relational sums, and let B
be the basis of R. Then B is a proper subalgebra of R.
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Proof. Let A be an object of B and ι1 : A → A + A and ι2 : A → A + A the relational
sum. Suppose IA+A is an atom. Then we have

ι�1 ; ι1 � ι�1 ; ι1 � ι2
�; ι2 = IA+A.

Now, we distinguish two cases:

1. ι�1 ; ι1 = ⊥⊥A+AA+A: We conclude

IA = IA; IA = ι1; ι
�
1 ; ι1; ι

�
1 = ι1;⊥⊥A+AA+A; ι

�
1 = ⊥⊥AA,

which contradicts to IA being an atom.

2. ι�1 ; ι1 = IA+A: We conclude

ι�2 ; ι2 = IA+A; ι
�
2 ; ι2 = ι�1 ; ι1; ι

�
2 ; ι2 = ι�1 ;⊥⊥AA; ι2 = ⊥⊥A+AA+A,

which also leads to a contradiction because of the symmetry of ι1 and ι2.

This completes the proof.

The last theorem has shown that the definition of the basis of a Dedekind category is
not trivial, i.e. the basis usually does not correspond to the whole algebra.

In the rest of this section we want to define an equivalence relation ≈ on the basis
of R. Later on, it turns out that the equivalence classes of ≈ characterize the simple
components of the category.

4.6. Lemma. All integral objects A of an atomic Dedekind category have at most two
ideal elements, namely ⊥⊥AA or 		AA.

Proof. Suppose R : A → A is an ideal element. Since IA is an atom R� IA is either ⊥⊥AA

or IA. Suppose R � IA = ⊥⊥AA. Then we have

R = R; IA � 		AA

� R; (IA � R�;		AA)

= R; (IA � R)�

= R;⊥⊥AA

= ⊥⊥AA.

If R � IA = IA we conclude 		AA = 		AA; IA � 		AA;R = R.

The last lemma leads to the following definition.

4.7. Definition. We define a relation ≈ on the class of integral objects of R by

A ≈ B : ⇐⇒ 		AB;		BA = 		AA.
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4.8. Lemma. ≈ is an equivalence relation on the basis of R.
Proof. By Lemma 2.2 ≈ is reflexive. Symmetry is implied by the following property

(∗) 		AB;		BA = 		AA ⇐⇒ 		BA;		AB = 		BB.

To prove this property, suppose 		AB;		BA = 		AA and 		BA;		AB = ⊥⊥BB. Then by
using Lemma 2.2

		AB = 		AB;		BA;		AB = 		AB;⊥⊥BB = ⊥⊥AB

we get a contradiction. The other implication follows by duality.
To prove transitivity suppose A ≈ B and B ≈ C. By definition we have 		AB;		BA =

		AA and 		BC ;		CB = 		BB. By (∗) we get 		BA;		AB = 		BB and 		CB;		BC =
		CC . Using Lemma 2.2 we conclude

		CC = 		CB;		BC

= 		CB;		BB;		BC

= 		CB;		BA;		AB;		BC

� 		CA;		AC

and hence A ≈ C.

Between two objects of different equivalence classes of ≈ there exists only one relation.
Later on, this property gives us the possibility to separate those components.

4.9. Lemma. Let A and B be integral objects of an atomic Dedekind category. Then the
following properties are equivalent:

1. A ≈ B,

2. 		AB �= ⊥⊥AB.

Proof. 1. ⇒ 2. : Since A ≈ B we have 		AB;		BA = 		AA. From this we conclude
		AB �= ⊥⊥AB because otherwise we have 		AB;		BA = 		AB;⊥⊥BA = ⊥⊥AA.
2. ⇒ 1. : Lemma 4.3 gives us the assertion.

Notice, that the last lemma is still valid if only A is integral. Furthermore, this lemma
implies that R = ⊥⊥AB for all R ∈ R[A,B] if A �≈ B.

5. A Pseudo Representation Theorem

Now, we are able to prove our main theorem.

5.1. Theorem. Let R be an atomic Dedekind category with relational sums and subob-
jects and let B be the basis of R. Then R and B+ are equivalent. Furthermore, if R is a
relation algebra R and B+ are equivalent as relation algebras.
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Proof. First, we show that every object A of R is isomorphic to a relational sum
∑
i∈I

Ai

of objects from B. Let {li | i ∈ I} be set of all atoms li � IA. Because R has subobjects,
this gives us a set {Ai | i ∈ I} of objects and a set {ψi | i ∈ I} of morphisms with

ψi;ψ
�
i = IAi

, ψ�
i ;ψi = li.

Together with the computations

ψ�
i ;ψi;ψ

�
j ;ψj = li; lj = li � lj = ⊥⊥AA,

ψi;ψ
�
j = ψi;ψ

�
i ;ψi;ψ

�
j ;ψj;ψ

�
j = ψi;⊥⊥AA;ψ

�
j = ⊥⊥AiAj

and
⊔
i∈I

ψ�
i ;ψi =

⊔
i∈I

li = IA.

and the uniqueness of a relational sum, we have A ∼= ∑
i∈I

Ai and ψi = ιi.

Suppose R � IAi
. Then we have

ψ�
i ;R;ψi � ψ�

i ;ψi = li.

Now, we distinguish two cases:

1. ψ�
i ;R;ψi = ⊥⊥AA: We conclude

R = ψi;ψ
�
i ;R;ψi;ψ

�
i = ψi;⊥⊥AA;ψ

�
i = ⊥⊥AiAi

.

2. ψ�
i ;R;ψi = li: We conclude

R = ψi;ψ
�
i ;R;ψi;ψ

�
i = ψi; li;ψ

�
i = ψi;ψ

�
i ;ψi;ψ

�
i = IAi

.

This shows that IAi
is an atom and hence Ai in B. Now, we define the required equivalence

F : R → B+, G : B+ → R by

F (A) := f : I → ObjB with f(i) = Ai,

F (R) := h : I1 × I2 → MorB with h(i1, i2) = ψi1 ;R;ψ�
i2
,

G(f) :=
∑
i∈I

f(i),

G(h) :=
⊔

i∈I,j∈J

ψ�
i ;h(i, j);ψj

for all R ∈ R[A,B], objects A ∼= ∑
i∈I1

Ai, B ∼= ∑
i∈I2

Bi, f ∈ ObjB+ and h ∈ B+[f, g]. Using

Lemma 2.4 and 2.7 an easy computation shows that F and G are homomorphisms of
Dedekind/Schröder categories.
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Moreover, we have (G ◦ F )(A) =
∑
i∈I

Ai
∼= A such that there is a natural isomorphism

between G ◦ F and the identity on R. Conversely, we have

(F ◦ G)(f)(i, j) = F (
⊔

i∈I,j∈J

ψ�
i ; f(i, j);ψj)

= ψi; (
⊔

i∈I,j∈J

ψ�
i ; f(i, j);ψj);ψ

�
j

= f(i, j).

This completes the proof.

The embedding theorems in Section 2 and 3 give us the following corollary.

5.2. Corollary. Every atomic Dedekind category may be embedded into an atomic
Dedekind category which is equivalent to a matrix algebra over a suitable basis.

6. Simplicity

It is known that every homogeneous relation algebra may be embedded into a product
of simple algebras. This theorem is an application of general a concept from universal
algebra. In [17] it was shown that this theorem can be extended to arbitrary heterogeneous
relation algebras. Furthermore, it was shown that simplicity can be characterize by just
one equation, the so-called Tarski-rule

Q �= ⊥⊥AB implies 		CA;Q;		BD = 		CD

for all Q : A → B and A,B,C,D.
In this section, we want to reprove the embedding theorem above using our concept

of the basis of a Dedekind category and the induced equivalence relation ≈.

6.1. Lemma. Let R be an atomic Dedekind category with relational sums and subobjects
such that all objects of basis B are equivalent (in resp. to ≈). Then R is simple.
Proof. We show that B+ is simple. The equivalence of B+ and R then implies the
assertion. Let e : I → B, f : J → B, g : K → B and h : L → B be objects of B+

and ⊥⊥fg �= R ∈ B+[f, g]. By definition there is a j′ ∈ J and a k′ ∈ K such that
R(j′, k′) �= ⊥⊥f(j′)g(k′). From Lemma 4.3 and the fact that all objects of B are equivalent
we conclude

		e(i)f(j′);R(j′, k′);		g(k′)h(l) = 		e(i)f(j′);		f(j′)h(l) = 		e(i)h(l)

for all i ∈ I and l ∈ L. This gives us

(		ef ;R;		gh)(i, l) =
⊔

j∈J,k∈K

(		ef (i, j);R(j, k);		gh(k, l))
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=
⊔

j∈J,k∈K

(		e(i)f(j);R(j, k);		g(k)h(l))

= 		e(i)h(l)

= 		eh(i, l)

and hence 		ef ;R;		gh = 		eh.

Let B≈ be the set of equivalence classes of ≈, and Bk be the full subcategory of B
induced by the equivalence class k. By the last lemma B+

k is simple.

6.2. Definition. Let K be a set, and Rk for all k ∈ K be Dedekind categories. The
product Dedekind category

∏
k∈K

Rk is defined as follows:

1. An object of
∏

k∈K

Rk is a function f : K → ⋃
k∈K

ObjRk
such that f(k) ∈ ObjRk

.

2. A morphism in (
∏

k∈K

Rk)[f, g] is a function Q : K → ⋃
k∈K

Rk[f(k), g(k)] such that

Q(k) ∈ Rk[f(k), g(k)].

3. The operations and constants are defined componentwise by

(Q;S)(k) := Q(k);S(k),

(Q � R)(k) := Q(k) � R(k),

(Q � R)(k) := Q(k) � R(k),

Q�(k) := Q(k)�,

If (k) := If(k),

		fg(k) := 		f(k)g(k),

⊥⊥fg(k) := ⊥⊥f(k)g(k),

for all Q,R ∈ ∏
k∈K

Rk[f, g] and S ∈ ∏
k∈K

Rk[g, h].

4. If R is a Schröder category negation is defined by Q(k) := Q(k).

An easy verification shows that
∏

k∈K

Rk is indeed a relational category of the same kind

as the components Rk.

6.3. Theorem. Let R be a small atomic Dedekind category. Then B+ and
∏

k∈B≈
B+

k are

isomorphic.



Theory and Applications of Categories, Vol. 7, No. 2 36

Proof. Let f : I → ObjB and g : J → ObjB be objects of B+ and R ∈ B+[f, g].
Furthermore, let

Ik := {i ∈ I | f(i) is a object of Bk},
Jk := {j ∈ J | g(j) is a object of Bk},
fk : Ik → ObjBk

such that fk(i) = f(i),

Rk : Ik × Jk → MorBk
such that Rk(i, j) = R(i, j).

Then we define a functor F : B+ → ∏
k∈B≈

B+
k by

F (f)(k) := fk,

F (R)(k) := Rk.

Using Lemma 4.9 we get

F (R;S)(k)(i, l) = (R;S)k(i, l)

= (R;S)(i, l)

=
⊔
j∈J

R(i, j);S(j, l)

=
⊔

j∈Jk

R(i, j);S(j, l)

=
⊔

j∈Jk

Rk(i, j);Sk(j, l)

=
⊔

j∈Jk

F (R)(k)(i, j);F (S)(k)(j, l)

= (F (R)(k);F (S)(k))(i, l)

and hence F (R;S) = F (R);F (S). An easy verification shows the other required properties
of F and is, therefore, omitted.

Combining our two main theorems, we get the following corollary.

6.4. Corollary. Let R be a small atomic Dedekind category with relational sums and
subobjects. Then R and

∏
k∈B≈

B+
k are equivalent. Furthermore, if R is a relation algebra

R and ∏
k∈B≈

B+
k are equivalent as relation algebras.

Again, using the embedding theorems we get the following corollary.

6.5. Corollary. Every small atomic Dedekind category may be embedded into an atom-
ic Dedekind category which is equivalent to a product of simple matrix algebras.
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