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CONTRAVARIANT FUNCTORS ON FINITE SETS
AND STIRLING NUMBERS

For Jim Lambek

ROBERT PAR�E

ABSTRACT. We characterize the numerical functions which arise as the cardinalities
of contravariant functors on �nite sets, as those which have a series expansion in terms
of Stirling functions. We give a procedure for calculating the coeÆcients in such series
and a concrete test for determining whether a function is of this type. A number of
examples are considered.

1. Introduction

Let Set0 be the category of �nite sets and F : Setop0 ! Set0 a functor. Such a functor
induces a function on the natural numbers f : N ! N by f(n) = #F [n] where #
represents cardinality and [n] is the set f0; 1; 2; : : : ; n � 1g. As two sets have the same
cardinality if and only if they are isomorphic, f could be de�ned by the equation f(#X) =
#F (X) for all �nite sets X. The question we consider is which functions f arise in this
way. As the natural numbers are the cardinalities of �nite sets, and as functors are more
structured than arbitrary functions, one might expect to get a nice class of numerical
functions this way. Let us call them cardinal functions.

For example, the function f(n) = 3n is a cardinal function as it is the cardinality of

the representable functor Set0(�; 3). But what about the functions n2; 2�3n�2n,
�
2n
n

�
, n!,

(2n)!
2n

, and so on? We shall determine a criterion which will help us decide these questions.

We shall see that we are led to certain combinatorial functions, and we can hope for
some applications in that direction. We present none here, but see [3] for applications of
category theory to combinatorics.

The results below were presented at the AMS meeting in Montr�eal in September 1997.
Shortly after, Andreas Blass pointed out to me the paper [2] by Dougherty in which
similar results are obtained. Our Theorems 4.1 and 4.3 are very similar to his Proposition
2.14 and Theorem 1.3. The proofs are not very di�erent but ours have a more categorical
avor. Some lemmas on absolute colimits are of independent interest. The numerical
examples in our paper are new and not without interest.
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2. Absolute colimits revisited

Absolute colimits were introduced in my thesis [4] thirty years ago. When I told Jim
Lambek, who was then my Ph.D. supervisor, about my characterization of coequalizers
which are preserved by all functors, and how they came up in Beck's tripleability theorem
(as it was then called), he said \Good! Write it up. You can call them absolute." I did.
A while later, he asked \Is there a smaller class of functors which would be suÆcient to
test for absoluteness?" There was, namely the representables, and so my thesis began.

In this section we obtain some new results on absolute colimits in Set0.

2.1. Lemma. Let

A0 A1

A2 A

-

-
? ?

f1

f2

B0 B1

B2 B

-

-
? ?

g1

g2

be pushouts in Set0 in which the fi; gi are epimorphisms. Then

A0 �B0 A1 �B1

A2 �B2 A� B

-

-
? ?

f1 � g1

f2 � g2

is also a pushout.

Proof. First, we consider the special case where our pushouts are of the form

A0 A0

A A

-

-
? ?

1A0

1A

f f

B0 B

B0 B :

-

-
? ?

g

g

1B0 1B

Let s be a splitting for g, gs = 1B. Then in

A0 �B A0 �B0 A0 � B

A� B A� B0 A� B;

-

-

-

-
? ? ?

A0 � s

A� s

A0 � g

A� g

f � B f �B0 f �B

the outside rectangle is a pushout, one in which the two horizontal maps are identities,
and the middle vertical arrow is an epimorphism, so the right square is a pushout as
required.
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Now, for the general case, consider

A0 �B0 A1 �B0 A1 � B1

A2 �B0 A� B0 A� B1

A2 �B2 A� B2 A� B

- -

- -

- -

? ? ?

? ? ?

(1) (2)

(3) (4)

where all the arrows are the obvious Cartesian products. By cartesian closedness, ( )�B0

and A� ( ) preserve colimits, so (1) and (4) are pushouts. (2) and (3) are diagrams of the
sort discussed in the previous paragraph, so they are pushouts too. The result follows by
pasting pushouts.

2.2. Remark. The proof of the above lemma goes through, with minor modi�cations
in a monoidal closed category: if the fi and gi are regular epimorphisms, then

A0 
B0 A1 
B1

A2 
B2 A
 B

-

-
? ?

f1 
 g1

f2 
 g2

is a pushout.
For the �rst part of the proof, let �(A0 
 g) =  (f 
B0). Then � and  correspond,

by adjointness, to �� and � such that

A0 [B;C]

A [B0; C]

-

-
? ?

��

� 

f [g;C]

commutes. As [g; C] is monic (g is epic) and f is a regular epi, there exists a unique
diagonal �ll-in �� : A ! [B;C] such that ��f = �� and [g; C]�� = � . Again, by adjointness,
this corresponds to a unique � : A
 B ! C such that �(f 
 B) =  and �(A
 g) =  .
So the required square is a pushout.

The second part of the proof uses only that ( )
B0 and A
 ( ) preserve pushouts.

Recall from [5] that a colimit is called absolute if it is preserved by all functors.

2.3. Proposition. Pushouts of epimorphisms in Set0 are absolute.

Proof. One of the basic results of [5] is that a colimit is absolute if and only if it is
preserved by all representables. In the case of Set0, the representables [A;�] are �nite
powers ( )#A, and by Lemma 1, a �nite power of a pushout of epimorphisms is again a
pushout. The result follows.
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2.4. Remark. Richard Wood points out that the same proof shows that reexive co-
equalizers in Set0 are absolute. In fact, if f1; f2 : A0

!
! A1 is a reexive pair, then the

coequalizer of f1 and f2 is the same as their pushout, so this is a special case of Proposition
2.3.

2.5. Remark. A similar result, which we shall not need in the sequel, is the following:
non-empty intersections are absolute in Set0. Indeed, suppose that A and B are subsets
of C and that A \B 6= ;. Choose c0 2 A \B and de�ne functions f : C ! A by

f(c) =

(
c if c 2 A
c0 otherwise

and g : B ! A \B by

g(b) =

(
b if b 2 A \ B
c0 otherwise.

Then it is easily seen that

A \B B A \B

A C A

-

-

-

-
? ? ?

g

f

commutes. Furthermore, the outside rectangle is an absolute pullback (as the two hori-
zontal arrows are identities) and the middle vertical arrow is an absolute monomorphism
(as it is split). Thus the left square is an absolute pullback.

We see that non-empty pullbacks of monomorphisms in Set0 are absolute for a rela-
tively simple reason. One might say that the pullback square itself is split. This is not
the case for pushouts of epimorphisms in Set0 where an unbounded number (depending
on the size of the sets involved) of functions may be required to express absoluteness
equationally. Pushouts of epimorphisms between in�nite sets need not be absolute either.

3. The structure of contravariant functors

Let F : Setop0 ! Set0 be any functor. Say that (n; a) is minimal for F if a 2 F [n] and is
not equal to any F (�)(b) for � : [n]! [m], b 2 F [m] with m < n.

3.1. Proposition. Let x 2 FX be any element of F . Then:

(1) There is (n; a) minimal for F and f : X ! [n] epic, such that F (f)(a) = x.

(2) If (m; b) and g : X ! [m] also have the same properties, then m = n and there exists
� 2 Sn such that g = �f and F (�)(b) = a.
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Proof. (1) Of all the triples (n; f; a), n 2 N, f : X ! [n], a 2 F [n] with F (f)(a) = x,
choose one with minimal n. (There is at least one such triple, for if we let n be the
cardinality of X, then there will be an isomorphism f : X ! [n] and we can take
a = F (f�1)(x).) Then (n; a) is minimal for F , because if there were � : [n] ! [m] and
b 2 F [m] with F (�)(b) = a and m < n, then F (�f)(b) = F (f)F (�)(b) = F (f)(a) = x,
and n would not have been minimal for x. Also, if f were not epic it would factor as �g
where g : X ! [m] and � : [m] ! [n] with m < n. Then F (g)(F (�)(a)) = F (�g)(a) =
F (f)(a) = x and again, n would not be minimal for x.

(2) Let (m; b) be minimal for F and g : X ! [m] epic such that F (g)(b) = x. Take
the pushout

X [n]

[m] [p]

-

-
? ?

f

�

g �

which is absolute by Proposition 2.3. Thus

F [p] F [n]

F [m] FX

-

-
? ?

is a pullback. As F (f)(a) = x = F (g)(b), there exists c 2 F [p] with F (�)(c) = a and
F (�)(c) = b. As (n; a) is minimal for F , p cannot be less than n, so � is an isomorphism.
Similarly, � is an isomorphism. It follows that n = p = m and if � = ��1� 2 Sn, then
�f = g and F (�)(b) = F (�)F (�)�1(b) = F (�)(c) = a.

Let An be the set of minimal elements in F [n], i.e.

An = fa 2 F [n]j(n; a) is minimal for Fg:

Then the symmetric group Sn acts on the right on An by

(a; �) 7! F (�)(a):

Also, Sn acts on the left on Epi(X; [n]), the set of epimorphisms X ! [n], by

(�; f) 7! �f:

Now the above proposition can be restated as follows.

3.2. Corollary. For each X, the function

1X
n=0

An 
Sn Epi(X; [n])! FX

a
 f 7! F (f)(a)

is a bijection.
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3.3. Proposition. Given �nite Sn-sets, An, for n = 0; 1; 2; : : :, such that A0 6= ; and
A1 6= ;, then

G(X) =
1X
n=0

An 
Sn Epi(X; [n])

can be made into a functor G : Set0
op ! Set0.

Proof. If n > #X, then Epi(X; [n]) = ; so that for any �xed X the in�nite coproduct is
essentially �nite and G(X) is a �nite set. Note that S0 and S1 are both the trivial group,
so that A0 and A1 are just sets. Pick a0 2 A0 and a1 2 A1. Let �Y : Y ! [1] denote the
unique function into the terminal object. It is epi if Y 6= ;.

Let g : Y ! X and (n; a
 f) 2 G(X). De�ne

G(g)(n; a
 f) =

8><
>:

(n; a
 (fg)) if fg is epi
(1; a1 
 �Y ) if fg is not epi and Y 6= ;
(0; a0 
 1) if fg is not epi but Y = ;:

First, G(g) is well-de�ned. Indeed, if a 
 f = a0 
 f 0, then there is � 2 Sn such that
f 0 = �f and a0� = a. Then fg is epi if and only if f 0g is epi and in that case a
 (fg) =
(a0�)
 (fg) = a0 
 (�fg) = a0 
 f 0g.

It is clear from the de�nition that G(1X) = 1G(X). Now let h : Z ! Y . If fgh is epi,
then so is fg and

G(h)G(g)(n; a
 f) = G(h)(n; a
 (fg)) = (n; a
 (fgh)) = G(gh)(n; a
 f):

If fg is epi but fgh is not and Z 6= ;, then

G(h)G(g)(n; a
 f) = G(h)(n; a
 (fg)) = (1; a1 
 �Z) = G(gh)(n; a
 f):

If fg is not epi, then fgh is not either. If Z 6= ;, then

G(h)G(g)(n; a
 f) = G(h)(1; a1 
 �Y ) = (1; a1 
 �Y h) = (1; a1 
 �Z) = G(gh)(n; a
 f):

Finally, if Z = ;, then

G(h)G(g)(n; a
 f) = (0; a0 
 1) = G(gh)(n; a
 f):

3.4. Remark. The above construction is not canonical so we can hardly expect the
bijection of the previous corollary to be natural, although we do have naturality if we
restrict to morphisms that are epic.
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4. Stirling series

The Stirling numbers of the second kind are the numbers S(m;n) of partitions of m into
n pieces. They satisfy the recurrence relations

S(0; n) =

(
1 if n = 0
0 otherwise:

S(m+ 1; n) = S(m;n� 1) + nS(m;n):

A table of values for S(m;n) can be constructed from these relations, just like Pascal's
triangle.

n
m@
@ 0 1 2 3 4 5
0 1 0 0 0 0 0
1 0 1 1 1 1 1
2 0 0 1 3 7 15
3 0 0 0 1 6 25
4 0 0 0 0 1 10
5 0 0 0 0 0 1

One might guess from this table that S(m; 2) = 2m�1 � 1, m � 1, and this is easily seen.
It can also be seen that S(m; 3) = (3m�1 � 2m + 1)=2. For more on Stirling numbers any
basic text on combinatorics can be consulted, e.g. [1].

4.1. Theorem. f : N ! N is a cardinal function if and only if it can be written as a
Stirling series

f(m) =
1X
n=0

anS(m;n)

where the an are natural numbers with the properties
(1) a0 = 0) an = 0 for all n
(2) a1 = 0) an = 0 for all n � 1.

Proof. Assume that f is a cardinal function corresponding to the functor F and let An
be as in Corollary 3.2. As Sn acts freely on Epi(X; [n]),

An 
Sn Epi(X; [n])
�= An � Orbits(Epi(X; [n]));

but an orbit is precisely a quotient of X with n elements. Thus

#(An 
Sn Epi(X; [n])) = #An � S(#X; n):

It then follows by Corollary 3.2 that any cardinal function f can be written as a Stirling
series with an = #An.

If a0 = 0, then F (;), which is A0, is empty. Since there is always a function ; ! X,
we have F (X)! F (;) = ; so that F (X) = ;. Thus all an = 0.
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Similarly, if a1 = 0 then F (1) = A1 = ;, and as there is a function 1 ! X for every
non-empty X, we have F (X) ! F (1) = ; which implies F (X) = ;. We conclude that
an = 0 for all n � 1.

Conversely, given any Stirling series
P1
n=0 anS(m;n) with a0 and a1 non-zero, we can

choose Sn-sets An with cardinalities an (say with trivial action). Then Proposition 3.3 will
give a functor G with the right cardinality, thus

P1
n=0 anS(m;n) is a cardinal function.

The functor F = A0� [�; ;] takes the value A0 at ; and ; elsewhere, which covers the
case where a0 or a1 are 0.

4.2. Example. The hom functor [�; [k]] : Setop0 ! Set0 gives rise to the exponential
function f(m) = km so we should be able to write km as a Stirling series. As km is the
cardinality of the set of functions � : [m] ! [k] and each such � factors uniquely as a
quotient followed by a one-to-one map, we get

km = S(m; 0) + kS(m; 1) + k(k � 1)S(m; 2) + k(k � 1)(k � 2)S(m; 3) + � � �

This is because the number of one-to-one maps from a set with n elements to one with k
is given by the falling power

k#n = k(k � 1)(k � 2) � � � (k � n+ 1) =
k!

n!
:

Thus km =
P1
n=0 k

#nS(m;n).

The additive Abelian group Z[x] is free with basis h1; x; x2; x3; : : :i. But as x#n is a
monic polynomial of degree n, h1; x; x#2; x#3; : : :i also forms a basis. The above equation
shows that the change of bases matrix, changing from the �rst to the second, is given by
the Stirling numbers of the second kind [S(m;n)]. Its inverse, which changes from the
second to the �rst basis, de�nes the Stirling numbers of the �rst kind [s(n;m)]. Thus
x#n =

P
m s(n;m)xm. In particular we have

X
m

s(n;m)S(m; k) (*)=

(
1 if n = k
0 otherwise.

Of course, all this is well-known (see [1]).
Let E : NN ! N

N be the shift operator, (Ef)(n) = f(n + 1), and I the identity
operator. These are used in the calculus of �nite di�erences, where the di�erence operator
� = E � I is the main topic of study.

With these preliminaries we can now prove the following theorem giving the Stirling
coeÆcients of a cardinal function.

4.3. Theorem. Let f(m) =
P1
n=0 anS(m;n). Then an = E#nf(0).

Proof. E#n = E(E � I)(E � 2I) � � � (E � (n� 1)I) =
P
m s(n;m)Em so

E#nf(0) =
P
m s(n;m)Emf(0)

=
P
m s(n;m)f(m)

=
P
m s(n;m)

P
k akS(m; k)

=
P
k

P
m s(n;m)S(m; k)ak

= an (by (*)).
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4.4. Corollary. f : N ! N is a cardinal function if and only if one of the following
holds:

(a) f(n) = 0 for all n � 1

(b) E#nf(0) � 0 for all n and f(0); f(1) 6= 0.

5. Examples

5.1. Example. m2

Asymptotically, S(m;n) � nm

n!
(for �xed n), i.e.

lim
m!1

n!S(m;n)

nm
= 1:

Intuitively, if m � n, a random function � : [m] ! [n] is almost certainly onto, so the
number of quotients will be approximately the number of functions [m]! [n] divided by
the number of permutations on [n]. The reader who is not convinced by this probabilistic
argument can consult [1] p. 140 #10 where some hints are given.

Thus a non-constant polynomial never de�nes a cardinal function, for if it is non-
constant some an 6= 0 (n > 1) and the function nm

n!
grows faster than any polynomial.

5.2. Example.

�
2m
m

�
Note that

E#(n+1)f(m) = (E � nI)E#nf(m) = E#nf(m+ 1)� nE#nf(m)

so we can calculate the values E#nf(m) recursively. We arrange the values in a table with
the values of f(m) in the �rst row, with each new entry being calculated using the two

values above it in the previous row, like for �nite di�erences. Thus for f(m) =
�
2m
m

�
we

get:

n
m@
@ 0 1 2 3 4 5 6
0 1 2 6 20 70 252 924
1 2 6 20 70 252 924
2 4 14 50 182 672
3 6 22 82 308
4 4 16 62
5 0 -2
6 -2

As E#6f(0) = �2, we see that f(m) =
�
2m
m

�
is not a cardinal function. We might have

believed that it was one, as 2m �
�
2m
m

�
� 4m.
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5.3. Example. 2 � 3m � 2m

This is a cardinal function as is easily seen by constructing a table as above. The values
of E#nf(0) turn out to be 1; 4; 10; 12; 0; 0; 0; : : :. But it is easy to construct a functor with
cardinality 2 � 3m � 2m. Let � : [2]! [3] be the inclusion. Then the pushout P in

[�; [2]] [�; [3]]

[�; [3]] P

-

-
? ?

has the right cardinality.

5.4. Example.
(2m)!
2m

5.5. Lemma. For n � m natural numbers we have

E#nf(m� n) = f(m)�
n�1X
i=0

iE#if(m� 1� i):

Proof.
E#nf(m� n) = (E � (n� 1)I)E#(n�1)f(m� n)

= E#(n�1)f(m� n+ 1)� (n� 1)E#(n�1)f(m� n)

= E#(n�2)f(m� n+ 2)� (n� 2)E#(n�2)f(m� n + 1)� (n� 1)E#(n�1)f(m� n)

...

= E#0f(m)� 0E#0f(m� 1)� 1E#1f(m� 2)� � � � � (n� 1)E#(n�1)f(m� n)

= f(m)� (1E#1f(m� 2) + 2E#2f(m� 3) + � � �+ (n� 1)E#(n�1)f(m� n)):

5.6. Proposition. Suppose that neither f(0) nor f(1) is 0 and for every m, f(m+1) �
m(m+1)

2
f(m), then f is a cardinal function.

Proof. We shall prove by induction onm that 0 � E#nf(m�n) � f(m) for all 0 � n � m.
For m = 0, we have only n = 0 and the statement is obvious.

Assume the statement holds for m. Then

E#nf(m+ 1� n) = f(m + 1)�
Pn�1
i=0 iE

#if(m� i)
� f(m + 1)�

Pn�1
i=0 if(m) (by induction hypothesis)

= f(m + 1)� (n�1)n
2

f(m)

� f(m + 1)� m(m+1)
2

f(m) (as n � m + 1)
� 0:

It is also clear that, as E#nf(m+ 1� n) = f(m+ 1)� (non-negative terms),

E#nf(m+ 1� n) � f(m+ 1):

This proves the inductive step.
Then putting n = m we get E#nf(0) � 0 for all n, so f is a cardinal function.
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Consider f(m) = (2m)!
2m

. Its values are natural numbers and

f(m+ 1) =
(2m+ 2)!

2m+1
=

(2m+ 2)(2m+ 1)

2
f(m)

so by our proposition it is a cardinal function.
The smallest function satisfying the conditions of Proposition 5.6 is

f(m) = (m� 1)!m!=2m�1 m � 1,

with f(0) = 1. This is a cardinal function.

As cardinal functions are closed under products, f(m) = (2m)! = 2m � (2m)!
2m

is also
cardinal.

Consider f(m) = m2m.

f(m+ 1) = (m + 1)(2m+2) = (m+ 1)2(m+ 1)2m

> (m + 1)2m2m > (m+1)m
2

f(m):

So m2m is a cardinal function.
We don't know of any naturally arising functor with these cardinalities.

5.7. Example. m!, mm

The m(m+1)
2

in Proposition 5.6 is the best we can do with that kind of condition, as
the following shows.

5.8. Proposition. Let � : N ! N be a function with the property that any f for
which f(m + 1) � �(m)f(m) for all m and f(0); f(1) 6= 0, is a cardinal function. Then

�(m) � m(m+1)
2

.

Proof. For natural numbers, p and q, de�ne a function f by

f(m) =

(
0 if m < p
q
Qm�1
k=p �(k) if m � p

with the convention that an empty product is 1 (so that f(p) = q). Then f(m + 1) =
�(m)f(m) if m 6= p� 1 and f(m+1) = q � 0 = �(m)f(m) if m = p� 1. Thus f satis�es
our conditions, except for f(0); f(1) 6= 0.

Let g(m) =
Qm�1
k=0 (�(k) + 1). Then g(m + 1) = (�(m) + 1)g(m) � �(m)g(m) and

g(0); g(1) 6= 0. So g satis�es all the conditions. It follows that f + g does too, so it is a
cardinal function, by hypothesis, and by Corollary 4.4, E#n(f + g)(0) � 0.

Now, as f(m) = 0 for allm < p, all the di�erences E#nf(m�n) = 0 for 0 � n � m < p.
Then E#nf(p � n) = f(p) �

Pn�1
i=0 iE

#if(p � 1 � i) = f(p) = q for all 0 � n � p.
Consequently,

E#(p+1)f(0) = f(p+ 1)�
Pp
i=1 iE

#if(p� i)
= q�(p)�

Pp
i=1 iq

= q(�(p)� p(p+1)
2

):

Now, E#(p+1)(f +g)(0) = E#(p+1)f(0)+E#(p+1)g(0) = q(�(p)� p(p+1)
2

)+E#(p+1)g(0) which

is � 0 for all q. Thus �(p)� p(p+1)
2

� 0.
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The function f(m) = m! clearly doesn't satisfy the conditions of Proposition 5.6.
Some hand calculations suggest that it might be cardinal, but using Maple, we see that
E#12f(0) = �519; 312, so it isn't.

On the other hand, again using Maple, we see that for f(m) = mm and f(m) =
2mm!; E#nf(0) > 0 for all n � 100, which strongly suggests that they are cardinal func-
tions.
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