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ON THE CARTESIAN CLOSEDNESS OF [0,1]-CAT AND SOME OF
ITS SUBCATEGORIES

HONGLIANG LAI AND QINGZHU LUO

Abstract. We describe all left continuous triangular norms for which the category
[0, 1]-Cat of real-enriched categories and functors is cartesian closed. We furthermore
show that the cartesian closedness of [0, 1]-Cat is equivalent to the cartesian closedness of
either (and thus all) of the following subcategories: the full subcategory of Cauchy com-
plete [0, 1]-categories; the subcategory of Yoneda complete [0, 1]-categories and Yoneda
continuous [0, 1]-functors; the full subcategory of Smyth complete [0, 1]-categories; and
the full subcategory of finite [0, 1]-categories.

1. Introduction

In 1973 [16], it is pointed out by Lawvere that categories enriched over a monoidal closed
category can be viewed as “ordered sets” whose truth-values are taken in that closed
category. This viewpoint has led to the quantitative domain theory, of which the core
objects are categories enriched over a quantale, see e.g., [2, 7, 9, 10, 22].

Compared with the category Ord consisting of all ordered sets, failure to be cartesian
closed in general is one of the main defects of the category Q-Cat consisting of categories
enriched over a quantale Q. For instance, if the quantale is Q = ([0, 1],&, 1), that is,
the binary operation & is a left continuous triangular norm on [0, 1], then categories
enriched over Q are called real-enriched categories [24], which are of particular interests
in quantitative domain theory. However, if the left continuous triangular norm & is also
continuous, then all real-enriched categories form a cartesian closed category if and only
if & = ∧ [13].

The purpose of this paper is to show that dropping the continuity condition of the
triangular norm &, then there are non-trivial left continuous triangular norms different
from the operation ∧ such that all real-enriched categories constitute a cartesian closed
category. In fact, due to the well-ordering and density of the unit interval, we describe
explicitly all such left continuous triangular norms. Moreover, we show that, all real-
enriched categories form a cartesian closed category if and only if all Cauchy complete
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real-enriched categories form a cartesian closed full subcategory, if and only if all Yoneda
complete real-enriched categories and Yoneda continuous functors form a cartesian closed
subcategory, if and only if all Smyth complete real-enriched categories also form a cartesian
closed full subcategory.

The content is arranged as follows: Section 2, recall some basis about quantale-enriched
categories and the cartesian closedness of the category Q-Cat; Section 3, characterize the
left continuous triangular norms such that [0, 1]-Cat is cartesian closed; Section 4 and
5, we show that certain subcategories of [0, 1]-Cat are also cartesian closed, including
whose objects are Cauchy complete, Yoneda complete and Smyth complete real-enriched
categories.

2. Quantale-enriched categories

A quantale Q = (Q,&, k) is a complete lattice Q equipped with a monoidal structure
whose binary operation & preserves all suprema in each place, that is,

x&(
∨
i∈I

yi) =
∨
i∈I

(x&yi), (
∨
i∈I

yi)&x =
∨
i∈I

yi&x

for all x, yi ∈ Q. The &-neutral element is denoted by k. Except in the trivial case, we
always have that k is not the bottom element. The quantale Q = (Q,&, k) is integral if
k = ⊤, where ⊤ is the top element of Q.

Let Q = (Q,&, k) be a quantale. A Q-category (X, r) consists of a set (its “objects”)
X and a Q-relation (its “hom-functor”) r : X ×X −→ Q, such that

k ≤ r(x, x), r(y, z)&r(x, y) ≤ r(x, z)

for all x, y and z in X.
A map f : (X, r) −→ (Y, s) between Q-categories is a Q-functor if it satisfies

r(x, y) ≤ s(f(x), f(y))

for all x and y in X.
All the Q-categories and Q-functors constitute a category

Q-Cat.

Let (X, r) and (Y, s) be two Q-categories. The product of (X, r) and (Y, s) has the
underlying set X × Y and the Q-relation r × s given by

r × s((x1, y1), (x2, y2)) = r(x1, x2) ∧ s(y1, y2)

for (x1, y1), (x2, y2) ∈ X × Y . The terminal object T in Q-Cat consists of a singleton set
{⋆} and a Q-relation e with e(⋆, ⋆) = ⊤.
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Recall from [1] that a categoryA is cartesian closed provided that it has finite products
and for each object A the functor A× (−) : A −→ A has a right adjoint (−)A : A −→ A.
The object BA is called the power of A and B. The category Q-Cat is cartesian closed if
and only if each morphism t : (X, r) −→ T is exponentiable in the sense of [3, 6]. In this
case, we also say that the Q-category (X, r) is exponentiable for short.

Notice that the category Q-Cat is concrete over the category Set, and its terminal object
is discrete. If Q-Cat is cartesian closed, then it has function spaces (see Proposition 27.18
in [1]). That is, for Q-categories (X, r), (Y, s), we can choose the power object (Y, s)(X,r)

with the underlying set consisting of all Q-functors from (X, r) to (Y, s), denoted by
[(X, r), (Y, s)], and the evaluation morphism

ev : X × [(X, r), (Y, s)] −→ Y, ev(x, f) = f(x).

In [5, 20], necessary and sufficient conditions are established for quantaloid-enriched
categories to be exponentiable, resp. the category of quantaloid-enriched categories and
functors to be cartesian closed. Below we formulate these conditions in the simpler case
where we enrich over a quantale (viewed as a quantaloid with a single object).

2.1. Proposition. ([5]) A Q-category (X, r) is exponentiable if and only if the following
two conditions hold:

(1) for all {qi | i ∈ I} ⊆ Q and all x, y ∈ X, (
∨

i∈I qi) ∧ r(x, y) =
∨

i∈I(qi ∧ r(x, y)),

(2) for all p, q ∈ Q and all x, z ∈ X, (p&q) ∧ r(x, z) =
∨

y∈X(p ∧ r(y, z))&(q ∧ r(x, y)).

2.2. Proposition. ([20]) The category Q-Cat is cartesian closed if and only if the fol-
lowing two conditions hold:

(1) the complete lattice Q is a frame,

(2) for all p, q, u ∈ Q, (p&q) ∧ u = ((p ∧ u)&(q ∧ k)) ∨ ((p ∧ k)&(q ∧ u)).

2.3. Proposition. Let Q be a quantale with the underlying complete lattice Q = [0, 1]. If
Q-Cat is cartesian closed, then k = 1, that is, the quantale is integral, and p&p&p = p&p
for all p ∈ [0, 1].

Proof. Firstly, for all p < k, by the condition (2) in Proposition 2.2, we have that

(p&1) ∧ k = ((p ∧ k)&(1 ∧ k)) ∨ ((p ∧ k)&(1 ∧ k)) = (p&k) = p.

Thus, p&1 = p since p < k. Consequently, we see that

1 = k&1 = (sup
p<k

p)&1 = sup
p<k

(p&1) = k.

Therefore, the top element 1 = k, hence the quantale is integral.
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Secondly, by the condition (2) in Proposition 2.2 again, for each p ∈ [0, 1], it holds
that

p&p = (p&p) ∧ (p&p)

= ((p ∧ (p&p))&(p ∧ k)) ∨ ((p ∧ k)&(p ∧ (p&p)))

= ((p&p)&p) ∨ (p&(p&p))

= (p&p)&p.

2.4. Remark. In fact, it is shown in [20] that p&p&p = p&p for all p ∈ Q holds in any
integral quantale Q = (Q,&, k) satisfying the condition (2) in Proposition 2.2.

2.5. Example. Let Q = {0, k, 1} with 0 < k < 1. Define a binary operation & on Q by

p&q =

{
0 p = 0 or q = 0,

p ∨ q otherwise.

Then Q = (Q,&, k) is a commutative quantale with k being the unit. Clearly, it satisfies
the conditions in Proposition 2.2. Thus, the category Q-Cat is cartesian closed but Q is
not integral.

Given Q-categories (X, r) and (Y, s), we always choose

[(X, r), (Y, s)] = Q-Cat((X, r), (Y, s))

as the underlying set of the power object (Y, s)(X,r). When Q is integral, the Q-categorical
hom-functor on [(X, r), (Y, s)] is given in the below (see [3, 4]):

d(f, g) =
∨

{q ∈ Q | q ∧ r(x, y) ≤ s(f(x), g(y)) for all x, y ∈ X}. (2.1)

The hom-functor d on function spaces will appear frequently in the rest of this paper.

3. Real-enriched categories

From now on, we always consider a commutative and integral quantale with the under-
lying complete lattice [0, 1]. In this case, the binary operation & on [0, 1] is called a left
continuous triangular norm (t-norm for short) [11].

A Q-category is called a real-enriched category (or [0, 1]-category), a Q-functor is called
a [0, 1]-functor [24]. All real-enriched categories and [0, 1]-functors constitute a category

[0, 1]-Cat.

Clearly, the complete lattice [0, 1] is a frame, thus, it satisfies the first condition in
Proposition 2.2. But the second condition need not hold for a left continuous t-norm
& on [0, 1] in general. In the below, we give equivalent formulations of condition (2) in
Proposition 2.2, specifically for left continuous t-norms, which will be required later on.
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3.1. Proposition. Let & be a left continuous t-norm on [0, 1]. The following statements
are equivalent:

(1) For all p, q and u in [0, 1],

(p&q) ∧ u = ((p ∧ u)&q) ∨ (p&(q ∧ u)); (3.1)

(2) For all p, u ∈ [0, 1],
u ≤ p&p =⇒ u&p = u; (3.2)

(3) There is a (countable) family of pairwise disjoint closed intervals {[ai, bi] ⊆ [0, 1) |
i ∈ I} such that for all p, q ∈ [0, 1],

p&q =

{
ai p, q ∈ [ai, bi] for some i ∈ I,

p ∧ q otherwise.
(3.3)

Proof. (1)=⇒(2): Given p and u in [0, 1], if u ≤ p&p, then it holds that

u = (p&p) ∧ u = ((p ∧ u)&p) ∨ (p&(p ∧ u)) = (u&p) ∨ (p&u) = p&u.

(2)=⇒(3): Collect all idempotent elements of & in [0, 1], we obtain a subset Idm of
[0, 1], which is closed under all suprema. For each a ∈ Idm, let

â = sup{x ∈ [0, 1] | x&x = a},

then â is the largest element in [0, 1] such that â&â = a since & is left continuous. Collect
all the idempotent elements a with a < â, then one obtains a subset S ⊆ Idm.

For all a, b ∈ S with a < b, one can see that â < b. Otherwise, if b ≤ â, then
b = b&b ≤ â&â = a, that is a contradiction. Thus, it follows that [a, â] ∩ [b, b̂] = ∅. That
is, the family {[a, â] | a ∈ S} is pairwise disjoint, therefore necessarily countable, and each
interval [a, â] ⊆ [0, 1).

Given p and q in [0, 1] with p ≤ q, we calculate the value of p&q in two cases:

(i) There is some a ∈ S such that a ≤ p ≤ q ≤ â. Clearly, it holds that

a = a&a ≤ p&q ≤ â&â = a.

Thus, a = p&q.

(ii) For each a ∈ S, either p ̸∈ [a, â] or q ̸∈ [a, â]. In fact, we have q&q&q = q&q since
q&q ≤ q&q, hence q&q is idempotent. Let a = q&q, then it follows that p ≤ a.
Otherwise, if a < p ≤ q ≤ â, then a ∈ S, which means that both p and q are in the
same interval [a, â] with some a ∈ S, a contradiction. Thus, one obtains that

p&q = p = p ∧ q.
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Therefore, in both cases, it is shown that

p&q =

{
a, p, q ∈ [a, â] for some a ∈ S,

p ∧ q, otherwise,

as desired.
(3) =⇒ (1): Given p, q, u ∈ [0, 1], it holds that

((p ∧ u)&q) ∨ (p&(q ∧ u)) = ((p&q) ∧ (u&q)) ∨ ((p&q) ∧ (p&u))

= (p&q) ∧ ((u&q) ∨ (p&u))

= (p&q) ∧ (u&(p ∨ q)).

We check the equality
(p&q) ∧ (u&(p ∨ q)) = (p&q) ∧ u

in three cases:

(i) If p ∨ q ≤ u, then both p ≤ u and q ≤ u hold. We have that p&q ≤ u&(p ∨ q) ≤ u.
Thus, it follows that

(p&q) ∧ (u&(p ∨ q)) = p&q = (p&q) ∧ u.

(ii) If u < p ∨ q and there is some i ∈ I such that ai ≤ u < p ∨ q ≤ bi, then we have
that p&q ≤ bi&bi = ai and u&(p ∨ q) = ai. Thus, it follows that

(p&q) ∧ (u&(p ∨ q)) = p&q = (p&q) ∧ u.

(iii) If u < p ∨ q but no [ai, bi] contains u and p ∨ q simultaneously, then it holds that

(p&q) ∧ (u&(p ∨ q)) = (p&q) ∧ (u ∧ (p ∨ q)) = (p&q) ∧ u.

Therefore, we have checked that the equality holds as desired.

3.2. Proposition. Let & be a left continuous t-norm satisfying condition (3) in Propo-
sition 3.1. We have

1 = sup{p < 1 | p&p = p}.

Proof. Denote this family of pairwise disjoint closed intervals by {[ai, bi] ⊆ [0, 1) | i ∈ I}.
Let b = supi∈I bi. If b < 1, then each p ∈ (b, 1) is idempotent since p&p = p ∧ p; If b = 1,
since each ai is idempotent and bi−1 < ai < bi < 1, then supi∈I ai = 1.
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A [0, 1]-category (X, r) is finite if its underlying set X is finite. All finite [0, 1]-
categories form a full subcategory of [0, 1]-Cat, denoted by

[0, 1]-Catfin.

It is closed under finite products.

3.3. Lemma. Let (X, r) be a finite [0, 1]-category. If (X, r) × (−) : [0, 1]-Catfin −→
[0, 1]-Catfin has a right adjoint, that is, the power (Y, s)(X,r) exists for every finite [0, 1]-
category (Y, s), then it is given by (Y, s)(X,r) = ([(X, r), (Y, s)], d) where d is the hom-
functor from equation (2.1).

Proof. Let (X, r), (Y, s) be finite [0, 1]-categories. Firstly, the power (Y, s)(X,r) has un-
derlying set [(X, r), (Y, s)] since

[0, 1]-Catfin((X, r)× T, (Y, s)) ∼= [0, 1]-Catfin(T, (Y, s)
(X,r)).

So the power (Y, s)(X,r) is the [0, 1]-category ([(X, r), (Y, s)], d′) for a suitable hom-functor
d′.

Secondly, on one hand, consider the counit on (Y, s):

ev : (X, r)× ([(X, r), (Y, s)], d′) −→ (Y, s),

it follows that for every x, y ∈ X and f, g ∈ [(X, r), (Y, s)], r(x, y)∧d′(f, g) ≤ s(f(x), g(y)),
that is, d′(f, g) ≤ d(f, g) for all f, g ∈ [(X, r), (Y, s)]. One the other hand, let f, g ∈
[(X, r), (Y, s)] and p = d(f, g). We may assume that f ̸= g, then consider a finite [0, 1]-
category (Z, t) with underlying set {f, g} and t(f, f) = t(g, g) = 1, t(f, g) = p, t(g, f) = 0.
Since r(x, y) ∧ p ≤ s(f(x), g(y)) for all x, y ∈ X, the map

h : (X, r)× (Z, t) −→ (Y, s), h(x, f) = f(x), h(x, g) = g(x)

is indeed a [0, 1]-functor, then its transpose

ĥ : (Z, t) −→ ([(X, r), (Y, s)], d′)

is also a [0, 1]-functor, hence d(f, g) = p = t(f, g) ≤ d′(ĥ(f), ĥ(g)) = d′(f, g).
Thus,

d′(f, g) = d(f, g) =
∨

{q ∈ Q | q ∧ r(x, y) ≤ s(f(x), g(y)) for all x, y ∈ X}

for all f, g ∈ [(X, r), (Y, s)].
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3.4. Theorem. Let & be a left continuous t-norm on [0, 1]. Then the following statements
are equivalent:

(1) The category [0, 1]-Cat is cartesian closed;

(2) The category [0, 1]-Catfin is cartesian closed;

(3) Any one of the three equivalent conditions in Proposition 3.1 holds.

Proof. (1)=⇒(2): This follows from the facts that the terminal object T, the products
(X, r)× (Y, s) and the power objects (Y, s)(X,r) are all finite for all finite [0, 1]-categories
(X, r) and (Y, s).

(2)=⇒(3): Let X = {x, y} with x ̸= y. For a given element u ∈ [0, 1], let r(x, x) =
r(y, y) = 1, r(x, y) = u and r(y, x) = 0. Then (X, r) is a [0, 1]-category.

For given p, q ∈ [0, 1], consider the following three maps from X to [0, 1]:

f(z) = r(x, z), g(z) = p ∧ r(x, z), h(z) = (p&(q ∧ r(x, z))) ∨ ((p ∧ u)&(q ∧ r(y, z))).

For all x, y ∈ [0, 1], let

dL(x, y) = sup{z ∈ [0, 1] | x&z ≤ y},

then ([0, 1], dL) is a [0, 1]-category. Moreover, the maps f , g and h are all [0, 1]-functors
from (X, r) to ([0, 1], dL).

Let Y = f(X) ∪ g(X) ∪ h(X) and equip it with the substructure of ([0, 1], dL), then
we obtain a [0, 1]-category (Y, s) with finite underlying set. It is easy to check that f, g
and h are indeed [0, 1]-functors from (X, r) to (Y, s).

Moreover, consider the power object (Y, s)(X,r) = ([(X, r), (Y, s)], d) in [0, 1]-Catfin.
Then it holds that p ≤ d(f, g) since for all a, b ∈ X,

r(x, a)&(p ∧ r(a, b)) ≤ p ∧ r(x, b) =⇒ p ∧ r(a, b) ≤ dL(f(a), g(b)) = s(f(a), g(b)).

Similarly, we can check that q ≤ d(g, h).
Since the power (Y, s)(X,r) is a [0, 1]-category, we have

(p&q) ∧ u = (p&q) ∧ r(x, y)

≤ (d(f, g)&d(g, h)) ∧ r(x, y)

≤ d(f, h) ∧ r(x, y)

≤ dL(f(x), h(y))

= h(y).

Notice that h(y) = (p&(q ∧ u)) ∨ ((p ∧ u)&q), it follows that

(p&q) ∧ u ≤ (p&(q ∧ u)) ∨ ((p ∧ u)&q).
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Moreover, we always have that p&(q ∧ u) ≤ p&q, p&(q ∧ u) ≤ u, (p ∧ u)&q ≤ p&q and
(p ∧ u)&q ≤ u. Thus we can see that

(p&(q ∧ u)) ∨ ((p ∧ u)&q)) ≤ (p&q) ∧ u.

Therefore, we have shown that

(p&q) ∧ u = ((p ∧ u)&q) ∨ (p&(q ∧ u))

for all p, q, u in [0, 1], that is the first condition in Proposition 3.1.
(3)=⇒(1): By Proposition 2.2 straightforwardly.

4. Cauchy complete real-enriched categories

In 1973 [16], Lawvere proposed that metric spaces could be seen as categories enriched
over the quantale ([0,∞]op,+, 0). Within this framework, Lawvere introduced a general
concept of Cauchy completeness for enriched categories (via adjoint distributors). He then
proved a remarkable theorem: for metric spaces viewed as enriched categories, this ab-
stract categorical notion of Cauchy completeness is equivalent to the traditional, analytic
completeness defined via Cauchy sequences. Further research of Cauchy completeness
involves the categories enriched over a general quantale or even a quantaloid (see e.g.,
[8, 19]).

For real-enriched categories, Cauchy completeness is equivalent to the bicompleteness
of Cauchy nets [24].

An element a in X is a bilimit of a net {xλ}λ∈D in a [0, 1]-category (X, r) if for all
x ∈ X,

r(a, x) = sup
λ∈D

inf
λ≤µ

r(xµ, x) and r(x, a) = sup
λ∈D

inf
λ≤µ

r(x, xµ).

It is clear that a net has at most one bilimit up to isomorphism. Some equivalent char-
acterizations of bilimits of nets are given in [24], even though in which real-enriched
categories are based on a continuous t-norm, the following cited results are still valid for
left-continuous t-norms.

4.1. Lemma. ([24]) Let {xλ}λ∈D be a net in a [0, 1]-category (X, r) and a be an element
in X. Then the following statements are equivalent:

(1) a is a bilimit of {xλ}λ∈D.

(2) supλ∈D infλ≤µ r(a, xµ) = supλ∈D infλ≤µ r(xµ, a) = 1.

(3) for all ε < 1, there is some λ ∈ D such that for all µ ≥ λ, ε < r(a, xµ) and
ε < r(xµ, a).



298 HONGLIANG LAI AND QINGZHU LUO

A net {xλ}λ∈D in a [0, 1]-category (X, r) is Cauchy if

sup
λ∈D

inf
λ≤µ,γ

r(xµ, xγ) = 1,

or equivalently,
∀ε < 1, ∃λ ∈ D,∀µ, ν ≥ λ, ε < r(xµ, xν).

A [0, 1]-category (X, r) is Cauchy complete if every Cauchy net has a bilimit. All
Cauchy complete [0, 1]-categories and [0, 1]-functors constitute a full subcategory of [0, 1]-Cat
that we denote as

[0, 1]-Catcau.

4.2. Example.

1. Every finite [0, 1]-category is trivially Cauchy complete, i.e. [0, 1]-Catfin is a full sub
category of [0, 1]-Catcau.

2. Let (X,≤) be a preordered set. The associated [0, 1]-category (X, r≤) is given by

r≤(x, y) =

{
0, x ≰ y,

1, x ≤ y.

A net {xλ}λ∈D in (X, r≤) is Cauchy if and only if it is eventually valued in isomorphic
elements, that is, there is some λ ∈ D such that xµ ≈ xν for all λ ≤ µ, ν. Thus,
(X, r≤) is always Cauchy complete.

3. The [0, 1]-category ([0, 1], dL) is Cauchy complete [22].

4.3. Lemma. ([24]) (1) If a net {xλ}λ∈D in a [0, 1]-category (X, r) has a bilimit, then
{xλ}λ∈D is a Cauchy net.

(2) Each [0, 1]-functor f : (X, r) −→ (Y, s) preserves bilimits of Cauchy nets.

4.4. Proposition. The category [0, 1]-Catcau has finite products.

Proof. Let (X, r) and (Y, s) be Cauchy complete [0, 1]-categories, it suffices to show that
the product (X × Y, r × s) of (X, r) and (Y, s) is Cauchy complete.

Suppose {(xλ, yλ)}λ∈D is a Cauchy net in (X × Y, r × s), then {xλ}λ∈D and {yλ}λ∈D
are Cauchy in (X, r) and (Y, s) respectively. Let a ∈ X and b ∈ Y denote the bilimit of
{xλ}λ∈D and {yλ}λ∈D. We claim that (a, b) is the bilimit of {(xλ, yλ)}λ∈D in (X×Y, r×s).

Since supλ∈D infλ≤µ r(a, xµ) = supλ∈D infλ≤µ s(b, yµ) = 1, it follows that

sup
λ∈D

inf
λ≤µ

r × s((a, b), (xµ, yµ)) = sup
λ∈D

inf
λ≤µ

(r(a, xµ) ∧ s(b, yµ))

=
(
sup
λ∈D

inf
λ≤µ

r(a, xµ)
)
∧
(
sup
λ∈D

inf
λ≤µ

s(b, yµ)
)

= 1.

Similarly, supλ∈D infλ≤µ r × s((xµ, yµ), (a, b)) = 1. By Lemma 4.1, (a, b) is the bilimit of
{(xλ, yλ)}λ∈D.
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4.5. Theorem. Let & be a left continuous t-norm. Then the category [0, 1]-Catcau is
cartesian closed if and only if & satisfies any one of the three equivalent conditions in
Proposition 3.1.

Proof. Necessity: Notice that the category [0, 1]-Catfin is a full subcategory of [0, 1]-Catcau
and is closed under finite products and power objects. Hence, the category [0, 1]-Catfin is
cartesian closed. Therefore, the necessity follows from Theorem 2.2.

Sufficiency: Since the category [0, 1]-Cat is cartesian closed, it suffices to show that
the power (Y, s)(X,r) = ([(X, r), (Y, s)], d) in [0, 1]-Cat is Cauchy complete for all Cauchy
complete [0, 1]-categories (X, r) and (Y, s).

Let {fλ}λ∈D be a Cauchy net in (Y, s)(X,r), then for any given p < 1, there is some
λ ∈ D such that

p < d(fµ, fν)

for all µ ≥ λ and ν ≥ λ. Thus, by equation (2.1), we have that

p ∧ r(x, y) ≤ s(fµ(x), fν(y))

for all x, y ∈ X. Particularly, let x = y, we obtain that

p ≤ s(fµ(x), fν(x))

for all x ∈ X. Thus, {fλ(x)}λ∈D is a Cauchy net in (Y, s) and it has a bilimit, say f(x).
We claim that

f : (X, r) −→ (Y, s), x 7→ f(x)

is a [0, 1]-functor. In fact, for all x, y ∈ X,

s(f(x), f(y)) = sup
λ∈D

inf
λ≤µ

s(fµ(x), f(y))

= sup
λ∈D

inf
λ≤µ

sup
λ′∈D

inf
λ′≤µ′

s(fµ(x), fµ′(y))

≥ sup
λ∈D

inf
λ≤µ

sup
λ′∈D

inf
λ′≤µ′

d(fµ, fµ′) ∧ r(x, y)

= sup
λ∈D

inf
λ≤µ,ν

d(fµ, fν) ∧ r(x, y)

= r(x, y).

So, f is a [0, 1]-functor as claimed.
Furthermore, we claim that f is a bilimit of the Cauchy net {fλ}λ∈D in the power

(Y, s)(X,r). By Proposition 3.2, the set E = {p ∈ [0, 1) | p&p = p} satisfies that supE = 1.
We check that for all q ∈ E, there is some λq ∈ D such that for all µ ≥ λq,

q ≤ d(fµ, f).

Since f(x) is a bilimit of {fλ(x)}λ∈D in (Y, s) for each x ∈ X, we have

sup
λ∈D

inf
λ≤µ

s(fλ(x), f(x)) = 1.
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That is, for each p ∈ E, there is some λp ∈ D such that p < s(fλ(x), f(x)) for all µ ≥ λp.
In this case, for every x, y ∈ X, since p is idempotent,

p ∧ r(x, y) = p&r(x, y)

≤ s(fµ(x), f(x))&s(f(x), f(y))

≤ s(fµ(x), f(y)),

hence p ≤ d(fµ, f) for all µ ≥ λp. By supE = 1, we obtain that

sup
λ∈D

inf
λ≤µ

d(fµ, f) = 1.

Similarly, we have that
sup
λ∈D

inf
λ≤µ

d(f, fµ) = 1.

By Lemma 4.1, f is the bilimit of {fλ}λ∈D in (Y, s)(X,r) as desired.

5. Yoneda complete and Smyth complete real-enriched categories

A net {xλ}λ∈D in a [0, 1]-category (X, r) is forward Cauchy [21, 22] if

sup
λ∈D

inf
λ≤µ≤γ

r(xµ, xγ) = 1.

The difference with Cauchy nets lies thus in the ordering imposed on the indices of this
supinf.

An element a in X is a Yoneda limit of a forward Cauchy net {xλ}λ∈D if

r(a, x) = sup
λ∈D

inf
λ≤µ

r(xµ, x)

for all x ∈ X. A Yoneda limit of {xλ}λ∈D is denoted as a = limxλ.
A [0, 1]-category (X, r) is Yoneda complete if every forward Cauchy net in (X, r) has a

Yoneda limit. For a [0, 1]-functor f : (X, r) −→ (Y, s) and a forward Cauchy net {xλ}λ∈D
in (X, r), {f(xλ)}λ∈D is clearly a forward Cauchy net in (Y, s), the [0, 1]-functor f is
Yoneda continuous if it preserves the Yoneda limit of all forward Cauchy nets in (X, r),
that is, f(limxλ) = limf(xλ) for all forward Cauchy nets {xλ}λ∈D in (X, r). All Yoneda
complete [0, 1]-categories and Yoneda continuous [0, 1]-functors constitute a category

[0, 1]-Catyon.

5.1. Remark. It is known that if we restrict the values of Yoneda complete [0, 1]-
categories on the two-point set {0, 1}, we obtain a full subcategory of [0, 1]-Catyon, which
is isomorphic to a cartesian closed category DCO consisting of directed complete ordered
sets and Scott continuous maps.
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Clearly, a Cauchy net {xλ}λ∈D in a [0, 1]-category (X, r) is a forward Cauchy net, and
an element a ∈ X is a bilimit of {xλ}λ∈D if and only if it is a Yoneda limit of {xλ}λ∈D.
Thus, a Yoneda complete [0, 1]-category is always Cauchy complete and [0, 1]-Catyon is a
(non-full) subcategory of [0, 1]-Catcau.

Smyth completeness was introduced by Smyth [17, 18] on quasi-uniform spaces, and
it was extended to real-enriched categories [23].

A [0, 1]-category is Smyth complete if every forward Cauchy net has a bilimit. Since
nets having bilimits must be Cauchy nets, a [0, 1]-category is Smyth complete if and only
if it is Cauchy complete and all forward Cauchy nets in it are Cauchy nets.

All Smyth complete [0, 1]-categories and [0, 1]-functors constitute a category

[0, 1]-Catsmy,

which is full in both [0, 1]-Catcau and [0, 1]-Catyon. Now, we obtain a chain of categories:

[0, 1]-Catfin ⊆ [0, 1]-Catsmy ⊆ [0, 1]-Catyon ⊆ [0, 1]-Catcau ⊆ [0, 1]-Cat.

5.2. Proposition. Both [0, 1]-Catyon and [0, 1]-Catsmy are closed under finite products.

Proof. The proof is similar to that in Proposition 4.4.

[0, 1]-Catyon is a concrete category over Set, and the terminal object T is discrete.
Thus, when [0, 1]-Catyon is cartesian closed, it also has function spaces. That is, for all
real-enriched categories (X, r) and (Y, s) in [0, 1]-Catyon, we can choose their power with
[(X, r) → (Y, s)] = [0, 1]-Catyon((X, r), (Y, s)) being underlying set and the evaluation
morphism

ev : X × [(X, r) → (Y, s)] −→ Y, ev(x, f) = f(x).

5.3. Proposition. Let & be a left continuous t-norm which satisfies any one of the
conditions in Proposition 3.1. Suppose (X, r) and (Y, s) are [0, 1]-categories, then

(1) the [0, 1]-category ([(X, r) → (Y, s)], d) is also Yoneda complete if both (X, r) and
(Y, s) are;

(2) the [0, 1]-category ([(X, r), (Y, s)], d) is also Smyth complete if both (X, r) and (Y, s)
are.

Proof. (1) The main technique is quite similar to that in [12], we present the sketch of
the proof here for the convenience of the reader. In this case, since [0, 1]-Cat is cartesian
closed, the pair ([(X, r) → (Y, s)], d) is a subobject of the power of Yoneda complete
[0, 1]-categories (X, r) and (Y, s) in [0, 1]-Cat, hence it is indeed a [0, 1]-category, then it
suffices to show that it is Yoneda complete. Suppose {fλ}λ∈D is a forward Cauchy net in
([(X, r) → (Y, s)], d).

Firstly, for every x ∈ X, {fλ(x)}λ∈D is a forward Cauchy net in (Y, s) hence it has a
Yoneda limit denoted as f(x), one obtains a function f : X −→ Y, x 7→ f(x) = lim fλ(x),
it is also a Yoneda continuous [0, 1]-functor from (X, r) to (Y, s) [14, Theorem 4.2].
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Secondly, for each idempotent element p < 1, p&x = p ∧ x for every x ∈ [0, 1] since
the t-norm & satisfies condition (3) in Proposition 3.1. As shown in [12, Lemma 5.8], for
each x ∈ X, since the nets {fλ}λ∈D and {fλ(x)}λ∈D are eventually p-monotone in that
sense, there is a λ0 ∈ D such that for all µ ≥ λ ≥ λ0,

p ∧ d(fµ, g) ≤ p ∧ d(fλ, g)

and
p ∧ s(fµ(x), g(y)) ≤ p ∧ s(fλ(x), g(y))

for all g ∈ [(X, r) → (Y, s)] and x, y ∈ X. And as calculated similarly in [12, Theorem
5.11], we have

p ∧ d(f, g) = p ∧ sup
λ∈D

inf
λ≤µ

d(fµ, g)

for all g ∈ [(X, r) → (Y, s)].
Finally, since & is left continuous, and the set E = {p is idempotent | p < 1} has

supremum 1. It follows that

d(f, g) = sup
p∈E

(p ∧ d(f, g)) = sup
p∈E

(p ∧ sup
λ∈D

inf
λ≤µ

d(fµ, g)) = sup
λ∈D

inf
λ≤µ

d(fµ, g).

for all g ∈ [(X, r) → (Y, s)].
Hence f is a Yoneda limit of {fλ}λ∈D in ([(X, r) → (Y, s)], d).
(2) For Smyth complete [0, 1]-categories (X, r), (Y, s). Notice that every [0, 1]-functor

f : (X, r) −→ (Y, s) is Yoneda continuous by Lemma 4.3, hence [(X, r), (Y, s)] = [(X, r) →
(Y, s)]. Suppose {fλ}λ∈D is a forward Cauchy net in ([(X, r), (Y, s)], d), denote the bilimit
of {fλ(x)}λ∈D in (Y, s) as f(x) for each x ∈ X, one obtains a pointwise [0, 1]-functor
f ∈ [(X, r), (Y, s)]. Similarly, one has that

d(f, g) = sup
λ∈D

inf
λ≤µ

d(fµ, g)

and
d(g, f) = sup

λ∈D
inf
λ≤µ

d(g, fµ)

for all g ∈ [(X, r), (Y, s)]. That is, f is the bilimit of {fλ}λ∈D in ([(X, r), (Y, s)], d), hence
([(X, r), (Y, s)], d) is a Smyth complete [0, 1]-category.

5.4. Proposition. Let (X, r), (Y, s), (Z, t) be Yoneda complete [0, 1]-categories. A [0, 1]-
functor f : (X, r) × (Y, s) −→ (Z, t) is Yoneda continuous if and only if it is Yoneda
continuous separately.

Proof. The proof is similar to that of [15, Proposition 3.7].
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5.5. Proposition. Let & be a left continuous t-norm which satisfies any one of the con-
ditions in Proposition 3.1. Suppose (X, r) and (Y, s) are Yoneda complete [0, 1]-categories,
then the evaluation map ev : (X, r)× ([(X, r) → (Y, s)], d) −→ (Y, s) is a Yoneda contin-
uous [0, 1]-functor.

Proof. It is clear that ev is a [0, 1]-functor and ev(−, f) : (X, r) −→ (Y, s) is Yoneda
continuous for each f ∈ [(X, r) → (Y, s)]. Given an x ∈ X and a forward Cauchy
net {fλ}λ∈D in ([(X, r) → (Y, s)], d), by Theorem 5.3, the function f : X −→ Y given by
f(x) = lim fλ(x) is a Yoneda limit of {fλ}λ∈D. It follows that ev(x, f) = f(x) = lim fλ(x),
hence ev(x,−) is Yoneda continuous. By Proposition 5.4, ev is Yoneda continuous.

5.6. Proposition. Let & be a left continuous t-norm which satisfies any one of the
conditions in Proposition 3.1. Suppose (X, r), (Y, s) and (Z, t) are all Yoneda complete
[0, 1]-categories and f : (X, r) × (Z, t) −→ (Y, s) is a Yoneda continuous [0, 1]-functor,
then f̂ : (Z, t) −→ ([(X, r) → (Y, s)], d) is also a Yoneda continuous [0, 1]-functor, where
f̂(z) = f(−, z) for each z ∈ Z.

Proof. It is easily verified that f̂ is a [0, 1]-functor. Given a forward Cauchy net {zλ}λ∈D
in (Z, t) whose Yoneda limit denoted by a ∈ Z, then {f(−, zλ)}λ∈D is a forward Cauchy
net in ([(X, r) → (Y, s)], d) with a pointwise Yoneda limit g, which is given by

g(x) = lim f(x, zλ).

Since f is Yoneda continuous, it follows that f̂(a)(x) = f(x, a) = lim f(x, zλ) = g(x) for
all x ∈ X, that is, f̂(a) = g. The [0, 1]-functor f̂ is Yoneda continuous as desired.

Combining the results of Proposition 5.2, Proposition 5.3, Proposition 5.5 and Propo-
sition 5.6, we have the following:

5.7. Proposition. Let & be a left continuous t-norm which satisfies any one of the con-
ditions in Proposition 3.1. Then the categories [0, 1]-Catyon and [0, 1]-Catsmy are cartesian
closed.

5.8. Theorem. Let & be a left continuous t-norm. The following statements are equiv-
alent:

(1) The category [0, 1]-Catsmy is cartesian closed;

(2) The category [0, 1]-Catyon is cartesian closed.

(3) & satisfies any one of the three equivalent conditions in Proposition 3.1.

Proof. It suffices to show that [0, 1]-Catfin is cartesian closed, this follows from finite
[0, 1]-categories are trivially Yoneda complete and Smyth complete, and [0, 1]-Catfin is
closed under finite products and power objects.
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6. Conclusion

Real-enriched categories are often treated as quantitative ordered sets in Lawvere’s sense.
It is known that if & is a continuous t-norm on [0, 1], the category Q-Cat is catesian closed
if and only if the quantale ([0, 1],&, 1) is locally cartesian closed, that is, & = ∧. Dropping
the continuity of the binary operation &, we describe all left continuous operation & such
that Q-Cat is cartesian closed. In fact, we show that all statements in the below are
equivalent:

(1) The left continuous t-norm & satisfies any one of the three equivalent conditions in
Proposition 3.1;

(2) [0, 1]-Cat, consisting of all [0, 1]-categories and [0, 1]-functors, is cartesian closed;

(3) [0, 1]-Catfin, consisting of all finite [0, 1]-categories and [0, 1]-functors, is cartesian
closed;

(4) [0, 1]-Catcau, consisting of all Cauchy complete [0, 1]-categories and [0, 1]-functors, is
cartesian closed;

(5) [0, 1]-Catyon, consisting of all Yoneda complete [0, 1]-categories and Yoneda continu-
ous [0, 1]-functors, is cartesian closed;

(6) [0, 1]-Catsmy, consisting of all Smyth complete [0, 1]-categories and [0, 1]-functors, is
cartesian closed.
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Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be
Christina Vasilakopoulou, National Technical University of Athens: cvasilak@math.ntua.gr


	Introduction
	Quantale-enriched categories
	Real-enriched categories
	Cauchy complete real-enriched categories
	Yoneda complete and Smyth complete real-enriched categories
	Conclusion

