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EXTENSION, DEFORMATION AND CATEGORIFICATION OF
ASSDER PAIRS

APURBA DAS AND ASHIS MANDAL

ABSTRACT. In this paper, we consider associative algebras equipped with derivations.
A pair consisting of an associative algebra and a distinguished derivation is called an
AssDer pair. We study central extensions and formal one-parameter deformations of
AssDer pairs in terms of cohomology. Finally, we define 2-derivations on associative
2-algebras and show that the category of associative 2-algebras with 2-derivations is
equivalent to the category of 2-term A,.-algebras with homotopy derivations.
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1. Introduction

Algebraic structures, such as Lie algebras and associative algebras are important in various
areas of mathematics and physics. Algebras are also useful via their derivations. If the
algebra A is a polynomial algebra in n variables, some special types of derivations (locally
nilpotent, locally finite, etc.) are studied extensively in the literature. One can construct
a homotopy Lie algebra out of a graded Lie algebra with a special derivation [26]. In
[7], the authors use noncommuting derivations in an associative algebra to construct
deformation formulas. Derivations are useful in control theory and gauge theories in QFT
[1, 2]. Algebras with derivations are also studied from an operadic point of view [20, 12].
Recently, the authors in [25] considered Lie algebras equipped with derivations (also called
LieDer pairs). More precisely, they study central extensions and deformations of LieDer
pairs from a cohomological point of view.
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In this paper, we consider a pair of an associative algebra A with a distinguished
derivation ¢4. Such a pair (A, ¢4) of an associative algebra with a derivation is called
an AssDer pair. It is also known as a differential algebra in the literature and is itself
a significant object of study in areas such as differential Galois theory [21]. Derivations
on unital, commutative associative algebras are also related to Lie-Rinehart algebras (cf.
Proposition 2.2).

Here we construct a cohomology for an AssDer pair, study their central extensions,
and formal one-parameter deformations. We relate the cohomology of an AssDer pair with
the cohomology of the corresponding commutator LieDer pair. This cohomology might
be a starting point to study cyclic theory for AssDer pairs. Additionally, we define and
study 2-derivations on associative 2-algebras and relate them with homotopy derivations
of 2-term A..-algebras.

In section 2, we study representations and cohomology of AssDer pairs. Let (A, ¢4)
be an AssDer pair. A representation of it consists of an A-bimodule M together with a
linear map ¢); which is compatible with the left and right actions of A on M. It turns
out that any AssDer pair is a representation of itself. Given a representation (M, ¢yy),
the pair (M*, —¢%,) is also a representation, where M* is equipped with the A-bimodule
structure dual to M (cf. Proposition 2.8). Given a representation of an AssDer pair, one
can construct a semidirect product AssDer pair (cf. Proposition 2.9). Next, we study the
cohomology of an AssDer pair with coefficients in a representation. This cohomology is a
follow-up to the Hochschild cohomology of the associative structure and a factor modified
by the fixed derivation. Like Hochschild cohomology, we show that the cohomology of
an AssDer pair with coefficients in itself carries a degree —1 graded Lie bracket (cf.
Proposition 2.12). Next, we construct a functor U : LieDer — AssDer from the category
of LieDer pairs to the category of AssDer pairs.

In Sections 3, we study extensions of an AssDer pair by a trivial AssDer pair, called
central extensions. We show that isomorphism classes of central extensions are classified
by the second cohomology of the AssDer pair with coefficients in the trivial representation
(cf. Theorem 3.4). Next, we study extensions of a pair of derivations in a central extension

of associative algebras. Given a central extension of associative algebras 0 — M = AL
A — 0 and a pair of derivations (¢, ¢p) € Der(A) x Der(M), we associate a second
cohomology class in the Hochschild cohomology of A with trivial representation M (cf.
Proposition 3.7), called the obstruction class. When this cohomology class is null, the
pair of derivations (¢4, ¢ar) is extensible to a derivation ¢ ; € Der(A) which makes the
above sequence into an exact sequence of AssDer pairs (cf. Theorem 3.8).

In Section 4, we study formal one-parameter deformations of AssDer pairs following the
classical approach of Gerstenhaber for associative algebras [16] and Nijenhuis-Richardson
for Lie algebras [22]. For this, we deform both the associative product as well as the
given derivation. Here we will show that the vanishing of the second cohomology of an
AssDer pair with coefficients in itself implies that the AssDer pair is rigid (cf. Theorem
4.7, Remark 4.8). Given a finite order deformation of an AssDer pair, we associate a third
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cohomology class, called the obstruction class of the deformation (cf. Proposition 4.10).
If the class is trivial, then the deformation extends to a deformation of the next order (cf.
Theorem 4.11). We also consider automorphisms of the deformed AssDer pair and their
extensions (cf. Theorem 4.15).

Strongly homotopy associative algebras (As-algebras) were introduced by Stasheff
to recognize loop spaces [24]. In Section 5, we consider homotopy derivations on A..-
algebras whose underlying graded vector space is concentrated in degrees 0 and 1 [20, 12].
We denote the category of 2-term A..-algebras with homotopy derivations by 2AssDer ..
Homotopy derivations on skeletal A.-algebras are characterized by third cocycles of Ass-
Der pairs (cf. Proposition 5.4) and ‘strict’ homotopy derivations on strict A.-algebras
are characterized by crossed modules of AssDer pairs (cf. Proposition 5.8).

In [5], Baez and Crans introduced Lie 2-algebras as the categorification of Lie alge-
bras. They also showed that the category of 2-term L..-algebras and the category of Lie
2-algebras are equivalent. This result has been extended to various other algebraic struc-
tures, including groups, Leibniz algebras and twisted associative algebras [4, 3, 23, 10].
In section 6, we introduce the categorification of AssDer pairs. More precisely, we study
AssDer pair structures on a 2-vector space. We call such an object an AssDer 2-pair. The
category of AssDer 2-pairs and morphisms between them is denoted by AssDer2. Fi-
nally, we show that the categories 2AssDer,, and AssDer2 are equivalent (cf. Theorem
6.5).

In the whole paper, we assume that K is a fixed field of characteristic zero, all the
vector spaces are over the field K and maps are K-linear maps unless otherwise stated. Let
XAlg be any given type of algebraic structure. Then by 2X Alg,,, we denote the category
of 2-term XAlg_-algebras and by XAlg2, we denote the category of XAlg 2-algebras.

2. AssDer pairs

Let A be an associative algebra. An A-bimodule (also called a representation of A) is
a vector space M together with two linear maps | : A® M — M, (a,m) — am and
r:M®A— M, (m,a) — ma satisfying

(abym = a(bm), (am)b=a(mb) and (ma)b= m(ab),

for all a,b € A and m € M. It follows that A is a bimodule over the associative algebra
A itself with the left and right actions given by the algebra multiplication. We call this
the adjoint bimodule (representation).
A derivation on A with values in the A-bimodule M is given by a linear map ¢ : A — M
that satisfies
o(ab) = ¢p(a)b+ ap(b), for a,b e A.

Our main object in this paper is a pair (A, ¢4) in which A is an associative algebra
and ¢4 : A — A is a derivation on A with values in the adjoint representation. Thus, ¢4
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satisfies

galab) = pa(a)b +aga(b), fora,be A
Such a pair (A, ¢4) is called an AssDer pair. Here we give a few examples of AssDer pairs.

2.1. EXAMPLE. (i) The notion of derivation is a generalization of the usual derivative
of functions. For instance, if A = K[xy,...,x,] is the polynomial algebra in n variables,
then for 1 < 1 < n, the partial deriwatives ¢; = % are derivations on A. In fact, the
space of derivations on A is linearly spanned by {$; }1<i<n.

(ii) Any derivation on the space C*°(M) of smooth functions on a manifold M is given
by a vector field. Therefore, (C*(M), X) is an AssDer pair, for any vector field X on
M.

(iii) A (non-commutative) Poisson algebra is an associative algebra P together with
a Lie bracket { , } on it which is a derivation on each entry for the associative product.
It follows that if (P,{, }) is a (noncommutative) Poisson algebra, then for any a € P,
the linear map ¢, = {a, } is a derivation for the associative product. Hence (P, ¢,) is an
AssDer pair.

(iv) Let V' be a vector space and d : V' — V be a linear map. Consider the reduced
tensor algebra T (V) = @51V ®" with the concatenation product. The linear map d induces
a linear map d: T(V) — T(V) by

E(v1®---®vn):Zm@---@dvi@---@vn.

It is easy to verify that d is a derivation on T(V). Hence (T(V),d) is an AssDer pair.
Any derivation on T'(V') arises in this way.

A Lie-Rinehart algebra [18] is a triple (A, L, p) where A is a commutative associative
algebra, (L, [, ]1) is a Lie algebra with L a left A-module and an A-module map p: L —
Der(A) which is a morphism of Lie algebras satisfying the following Leibniz rule

[(X,aY]r, =a[X,Y]L + p(X)(a)Y, for XY € L,a € A.

Let A be a commutative associative algebra and ¢4 be a derivation on A. Then ¢4
induces a Lie bracket on A given by

[a,b]p, == apa(b) — pa(a)b, fora,be A. (1)
We denote this Lie algebra by A, ,. This Lie bracket additionally satisfies the Leibniz rule
[a, fblo, = [fla,blo, + p(a)(f)b,  fora,b, f € A, (2)

where p : (A, [, Jo.) — (Der(A),[, ]) is the A-linear Lie algebra morphism given by
pla) = apa. In other words, the triple (A, Ay,,p) is a Lie-Rinehart algebra. The next
proposition says that any Lie-Rinehart algebra structure on (A, A) arises by a derivation
in this way when A is unital. Thus, to better understand Lie-Rinehart algebra structures
on (A, A), one needs to know derivations on A.
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2.2. PROPOSITION. Let A be an unital, commutative associative algebra. There is a one-
to-one correspondence between derivations on A and Lie-Rinehart algebra structures on

(A, A).

PROOF. Given a derivation ¢4, we have constructed a Lie-Rinehart algebra (A, A, ,, p).
Conversely, let (A, Apie, p) be a Lie-Rinehart algebra. Define ¢4 : A — A by ¢4 = p(1),
where 1 is the unit of A. By definition, ¢, is a derivation on A. Moreover, we have
pla) = ap(l) = ap4. Hence, for a,b € A,

[a, blLie = bla, 1]Lic + p(a)(b) = —pala) + apa(b) = [a,b]y,.

Therefore, the Lie-Rinehart algebra (A, Ap, p) is obtained from the derivation ¢4. Fi-
nally, the above two correspondences are inverses of each other. [

2.3. REMARK. In this remark, we will show that the Witt algebra is obtained from a
derivation in Laurent polynomial algebra. Let A = K[z, z~!] be the Laurent polynomial
algebra. Consider the derivation ¢4 : A — A given by ¢,(2") = —na™ !, for n € Z. Tt
follows from (1) that A = K[z, z7!] carries a Lie algebra structure given by

[z™ 2" = —2™(nz™ ') + (ma™ Ha™ = (m —n)a™ " for 2™ 2" € A,m,n € Z. (3)

Consider the basis {I,, }nez for A, where I, = " n € Z. Then the Lie bracket (3) reads
as [lm, ln] = (m —n) lLyyn, for m;n € Z. This is precisely the Witt algebra structure on

A= span {ln}nGZ-

2.4. DEFINITION. Let (A, ¢4) and (B, ¢p) be two AssDer pairs. A morphism between
them consists of an algebra map f : A — B that commutes with derivations, i.e. fops =
¢pof.

We denote the category of AssDer pairs together with morphisms between them by
AssDer.

Let (V,d) be a vector space together with a linear map. The free AssDer pair over
(V,d) is an AssDer pair (F(V), ¢r)) equipped with a linear map i : V- — F(V) that
satisfies ¢ r1y o4 = i od and the following universal condition holds: for any AssDer pair
(A, ¢4) and a linear map f : V — A satisfying ¢40 f = fod, there exists a unique AssDer
pair morphism f: (F(V),0rw)) = (A, ¢a) such that foz' =/

It follows that the free AssDer pair over (V,d) is well-defined up to a unique isomor-
phism.

2.5. PROPOSITION. Let (V,d) be a vector space with a linear map. Then (T(V),d)

(resp.(T(V),d)) equipped with the inclusion map i is free unital (resp. nonunital) AssDer
pair over (V,d).

2.6. REPRESENTATIONS AND COHOMOLOGY OF ASSDER PAIRS.
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2.7. DEFINITION. Let (A, ¢4) be an AssDer pair. A left module over it consists of a pair
(M, ppr) in which M is a left A-module and ¢p : M — M is a linear map satisfying

o (am) = pala)m + app(m), fora e A,m e M. (4)

Similarly, a right module over (A, ¢4) is a pair (M, ¢)s) in which M is a right A-module
and ¢p; : M — M is a linear map satisfying

dar(ma) = ppr(m)a +moa(a), forae A;me M. (5)

A bimodule (representation) over (A, ¢4) is a pair (M, ¢pr) which is both a left module
and a right module over (A, ¢4) and M is an A-bimodule, i.e. (am)b = a(mb), for all
a,b € Aand m € M. It follows that the AssDer pair (A, ¢4) is a representation of itself
for the adjoint bimodule structure on A.

2.8. PROPOSITION. Let (M, ¢y) be a representation of the AssDer pair (A, ¢a). Then
(M*, —¢%,) is also a representation of (A, ¢a) where the A-bimodule structure on M* is
given by

AR M* — M* M*®A— M*
(af)(m) = f(ma) (fa)(m) = f(am),
forae A, f € M* and m € M.

PROOF. The fact that M* is an A-bimodule is standard [19]. To verify that (M*, —¢%,)
is a representation of the AssDer pair, we observe that

(=¢u(af),m) = (af, =om(m)) = f(=dm(m)a) = f(moa(a)) — f(da(ma)) (by (5))
= (9ala)f,m) — (adr, (f), m).

This shows that —¢},(af) = ¢a(a)f + a(—¢4,(f)). Similarly, we have

(= (fa),m) = (fa,—on(m)) = f(—adnu(m)) = f(¢ala)m) — f(dn(am)) (by (4))
= <f¢A(a)= m> - <¢?\J(f)a7 m>

This shows that —¢%,(fa) = —¢%,(f)a+ foa(a). =

It follows from the above Proposition, (A*, —¢?%) is a representation of the AssDer pair
(A, ¢4). This is called the coadjoint representation of the AssDer pair (A, ¢4).

Given an associative algebra and a bimodule over it, one can construct a semidirect
product associative algebra [19]. The following result generalizes it to AssDer pairs. The
proof is straightforward.
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2.9. PROPOSITION. Let (A, ¢pa) be an AssDer pair and (M, ¢y) be a representation of
it. Then (A® M, @ o) is an AssDer pair where the associative structure on A ® M
18 given by the semi-direct product

(a®m) - (bdn)=(ab® an + mb).

Let A be an associative algebra and M be an A-bimodule. Then the Hochschild
cohomology of A with coefficients in M is given as follows [17]. The n-th cochain group
C™"(A, M) is given by C™"(A, M) := Hom(A®" M) for n > 0 and the coboundary map
Stoeh : C™(A, M) — C™(A, M) is given by

Ottoch (f)(a1; - .-y ang1) = a1 f(ag, ..., ant1) + Z(—Ui flar, . o aion, aiair, - anga)
i=1

(6)

+ (—1)”+1f(a1, ey )Gyt 1 -

The corresponding cohomology groups are called the Hochschild cohomology groups
of A with coefficients in M. It has been observed by Gerstenhaber [15] that the graded
vector space of Hochschild cochains C*(A, A) = @,C"(A, A) carries a degree —1 graded
Lie bracket (called the Gerstenhaber bracket) given by

(9] = fog— (=)™ D0 Vgo f, for f € C™(A,A), g€ C™(A,A), (7)

where (f o g)(ay,...,amin_1) is defined as

m

Z(-l)(i—l)(n_l)f<a1, ey @i, g(CLi7 P 7ai+n—1)7 e 7am+n—1)-

i=1

Let p1 : A®? — A denote the associative multiplication on A. With the above notations,
the Hochschild coboundary map dpoen with coefficients in itself is given by dgoenf =
(_1)n_1[lu7 f]7 for f € Cn<A7 A)

Let (A, ¢4) be an AssDer pair and (M, ¢y) be a representation of it. We aim to
define the cohomology of the AssDer pair (A, ¢4) with coefficients in (M, ¢5s). Define the
space C% e (A, M) of 0-cochains to be 0 and the space Ci .p., (A, M) of 1-cochains to
be Hom(A, M). For n > 2, the space C} o, (A, M) of n-cochains to be defined by

Chgsper(A, M) = C"(A, M) & C" (A, M).
Before we introduce the coboundary operator, we define a new map 6 : C"(A, M) —

C™(A, M) by

Sf=) fo(id®  ®@¢s@ - ®id) — gy o f.

i=1
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When (M, ¢r) = (A, ¢4), the map 6 can be seen in terms of Gerstenhaber bracket as

0f = —loa, fl.
Finally, we define the coboundary map 9 : C}_p.. (A, M) — CyEL. (A, M) by

(8)

Of = (Ouoenf, =0 f), for f € Chyuper(A, M) = Hom(A, M),
a(f,g) = <5Hochf7 5Hochg + (_1)n5f)’ for <f7 g) S CXSSDGI‘(A7 M)

To prove that 9% = 0 we use the following lemma whose proof will be given after Propo-
sition 2.12.

2.10. LEMMA. dHoch © 0 = 0 © OHoch-

2.11. PROPOSITION. The map 0 is a coboundary map, i.e. 0*> = 0.
PROOF. For f € Ciype (4, M), we have

82f = a((SHochfy _5f) = (512-Iochf7 _6H0ch6f + 66Hochf) =0.

For (f,9) € CRupe (4, M), we have

82(f> g) = (512-Iochf7 612-Iochg + (_1>n5Hoch5f + (_1)n+155H0chf> =0.
[ ]

We denote the corresponding cohomology groups by Hi. .. (A4, M), for n > 1. Next,
we will show that the cohomology of an AssDer pair with coefficients in itself carries a
degree —1 graded Lie bracket.

2.12. PROPOSITION. The bracket [, ] : C po(A, A) x C¥ o (A, A) — CHI1(AL A)
gien by

[(f,9), (F",g"] = (LF, F1, (=)™ f. g1+ [9-F'])
is a degree —1 graded Lie bracket on @, Cheper(A; A).

PROOF. First note that, since | , | is a degree —1 graded Lie bracket (Gerstenhaber
bracket), we have

L P = () £+ (D)™ DeD L [ ), (9)
for f € Hom(A®™, A), f" € Hom(A®" A) and f” € Hom(A%?, A). Next for any (f,g) €
CXLssDer(A7 A)’ (f/7g,) € CXssDer(A7 A) and (f”7g//) € CgssDer(/L A)’ we have

[(f,9), ("), (f", 9]
=[(f.9). (1F" £, (D" f 9" + g D]
= (LA N 0™ 2L g T+ (GO L L £+ g, L )
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On the other hand,

[LCf,9), (£, gD (f". g + (1) DC=D[ ), [ 9). (f7. ")

= [(F ), (D)™ f g+ g, £]), (7 g")]

+ (=) DEDI g, (U 7 (D)™ F 6" + Lgs f])]

= (I, £, £ (=0)™((f, £ 9"+ (0™ 1. g1 £+ g, £1. £71)

+ (=D)L (DML g+ (DM g )+ L L )

Hence, the result follows from (9). n

It follows from the above proposition that the shifted graded space €@, CiiL..(A, A)
carries a graded Lie bracket. This result is true for an arbitrary vector space A (not
necessarily an associative algebra) and C%_ p..(A, A) = Hom(A®", A) @ Hom(A®"~ ! A),
for all n. Let A be a vector space, u : A®? — A and ¢, : A — A be two linear maps.
Consider the pair (i, p4) € C% pe(A, A). Then p defines an associative product on A
and ¢, is a derivation for the associative product if and only if (i, 4) € C% pe (A, A)
is a Maurer-Cartan element in the graded Lie algebra (€D, Chdpe (4, A), [, 1), ie.
[(ie, da), (1, ¢4)] = 0. With these notations, the differential (8) of the AssDer pair (A, ¢4)
with coefficients in itself is given by

O(f,9) = (=1)"""[(1, da), (f, 9)], for (f,9) € Chyper(4, A).

As a consequence, we get that the graded space of cohomology @, H=..(A, A) of the
AssDer pair (A, ¢4) with coefficients in itself carries a graded Lie bracket.

PROOF. (of Lemma 2.10) We first prove this result when the coefficient is the AssDer
pair itself. Then, using the semidirect product AssDer pair, we conclude the same for any
coefficients.

When (M, ¢pr) = (A, ¢a), we have dpoen(f) = (=1)" [, f] and 6f = —[¢a, f], for
any f € C"(A, A). Hence

OHoch © 0(f) = —Otoen[@a, f] = (=1)"[u, [, f]]
= (=1)" [l @], f1+ (=1)"[@alp, F1] = 6 0 droen (f)-
For any coefficient (M, ¢5), we consider the semidirect product (A® M, ¢4 P ¢yr) given in
Proposition 2.9. We use the same notation dygeq, to denote the Hochschild cohomology of
A with coefficients in M, as well as the Hochschild cohomology of the semi-direct product

algebra A @ M. Similarly, we use the same notation for the operator . Note that, for
any f € C"(A, M) can be extended to a map f € C"(A® M,A® M) by

}v((a17m1) (am mn)) = (0 f(al’ i an))
The map f can be obtalned from f just by restrlctlng it to A®". Moreover, f = 0 implies
that f = 0. Observe that 5Hoch( f) = Onoen( f) and 6 f f=9 f Hence we have

—_— —~ ~ —_—

5Hoch o 6(f) - 5Hoch(5f) - 5Hoch o 5(f) =do 5Hoch<f) =do 6Hoch(f)~
This implies that dpoen © 0 = 0 © dHoch- n
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2.13. RELATION WITH LIEDER PAIRS. Let (A, ¢4) be an AssDer pair. Consider the Lie
algebra structure on A with the commutator bracket [a, b]. = ab — ba. We denote this Lie
algebra by A.. Then it is easy to see that ¢4 is a derivation for the Lie algebra A.. Thus
we get a functor ( ). : AssDer — LieDer. In the following, we construct a functor left
adjoint to ( ). using the universal enveloping algebra of a Lie algebra.

Let (g, ¢y) be a LieDer pair. Consider the tensor algebra 7'(g) of g. The universal
enveloping algebra U(g) is an associative algebra which is the quotient of T'(g) by the two-
sided ideal generated by the elements of the form z®@y—y®x—|x,y], for z,y € g. Note that
the linear map ¢, : T'(g) — T'(g) (see Example 2.1 (iv)) induces a map ¢y ) : U(g) — U(g)
as

Pz @y —y@x— [2,9])
= Gg(1) @y — y @ dy(x) — [g(x),y] + 7 @ G4(y) — dg(y) @ = — [z, dg(y)].

Moreover, ¢y g is a derivation on U(g). Thus, a LieDer pair (g, ¢,) induces an AssDer
pair (U(g), du(g)) on the universal enveloping algebra U(g).

2.14. PROPOSITION. The functor U : LieDer — AssDer s left adjoint to the functor
( )e : AssDer — LieDer. In other words, there is an isomorphism

HomAssDer(U<g)7 A) = HomLieDer (9, Ac)7

for any AssDer pair (A, ¢a) and any LieDer pair (g, ¢g).

PROOF. For any AssDer pair morphism f : U(g) — A, we consider its restriction to g,
which is a Lie algebra morphism g — A, and commutes with derivations. Hence, it is
a morphism of LieDer pairs. Conversely, for any LieDer pair morphism h : g — A., we
consider the unique extension of h as an associative algebra morphism h : T'(g) — A. This

is indeed a morphism of AssDer pairs. It induces a map of AssDer pairs h U (g) — A as
h is a LieDer pair morphism. Finally, the above two correspondences are inverses to each
other. -

Let (g, ¢4) be a LieDer pair. A module over it [25] consists of a g-module M together
with a linear map ¢ : M — M satisfying

dulz,m] = [pg(x), m] + [z, o (m)], forall x € g,m € M.

2.15. PROPOSITION. Let (g, ¢q) be a LieDer pair. A (g, ¢4)-module is equivalent to a left
(U(9), du(q))-module.

PROOF. It is known that any left U(g)-module is equivalent to a g-module [19]. More
precisely, let M be a left U(g)-module, then the g-module structure on M is given by
[z,m] = am, for x € g and m € M.

Next, take (M, ¢pr) be a left module over the AssDer pair (U(g), ¢u(g)). Then the con-
dition ¢ar(xm) = ¢y (g)(z)m~+xdr(m) is equivalent to garx, m| = [pg(x), m]+[x, drr(m)],
for all x € g and m € M. [
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Let (M, ¢pr) be a representation of the AssDer pair (A, ¢4). Then M can be considered
as an A.module via [ , | : A. x M — M, [a,m] = am — ma. Further (M, ¢y) is a
representation of the LieDer pair (A, ¢4). Before we relate the cohomology of an AssDer
pair with that of the corresponding commutator LieDer pair, we recall the following
standard result [19].

2.16. PROPOSITION. The collection of maps T,, : Hom(A®", M) — Hom(A"A., M), n >
0, defined by
Tn(f)(alv s 7an) = Z (_1)0‘]0(0]0(1)7 s >aa(n))
O’GSn
is a morphism from the Hochschild complex of A with coefficients in the A-bimodule M
to the Chevalley-Filenberg cohomology of the commutator Lie algebra A. with coefficients
in the module M.

In [25], the authors introduced a cohomology for a LieDer pair with coefficients in
a representation. Let (g,¢,) be a LieDer pair and (M, ¢a) be a representation of it.
We denote by dcg : Hom(A™g, M) — Hom(A"" g, M) the coboundary operator for the
Chevalley-Eilenberg cohomology of g with coefficients in M. Define the 0-th cochain group
of the LieDer pair (g, ¢y) with coefficients in (M, ¢ps) to be 0, and the higher cochain
groups are defined by C; p.. (g, M) = Hom(g, M) and C? .. (g, M) = Hom(A"g, M) &
Hom(A" g, M), for n > 2. The coboundary map 9 : CP.p..(g, M) — CPEL (g, M) is
given by

Of = (cnf, ~6f) and O(f,g) = (dcuf, dosg + (—1)"61)

where ¢ : Hom(A"g, M) — Hom(A"g, M) is the map
0f = fo(ild® - @¢y® - @id) —dyo f
i=1

for f € Clipe(g, M) and (f,9) € CPpe(8, M). When one consider the cohomology
of the LieDer pair (g, ¢y) with coefficients in itself, the cochain groups @@, Cticpe: (8, 9)
carries a degree —1 graded Lie bracket [, ] given by

[(f.9), (f, ) = (U, FL. (=)™ F, 1 + g, £,

for (f7 g) € CﬂeDer(gag)v (f,ag/) € CﬁieDer(gag)v where [ ) ] is the Nijenhuis—Richardson
bracket on the space of skew-symmetric multilinear maps on g given by

oS @1 @minc) = 3 (CD S @ty s a)s Tatustys - -+ Eomtn—)

ce€Sh(n,m—1)

— (=1)tm=be=D) Z (1) f (f (o), - - s Tom))s Tome1)s - - - s To(mtn—1))-

oeSh(m,n—1)

If the Lie bracket on g is given by amap w : gx g — g, then (w, ¢y) € Cfiope (8, 9) satisfies
[(w, @g), (w, ¢g)] = 0 and the differential if given by

A(f,9) = (=1)""'[(w, ¢y), (f, 9)]-
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2.17. PROPOSITION. Let (A, ¢a) be an AssDer pair and (M, ¢pr) be a representation over
it. Then the maps

(T,,, T,,—1) : Hom(A®™ M) @ Hom(A®"™ !, M) — Hom(A"A,, M) @ Hom(A" ' A,, M)

defines a morphism from the cohomology of the AssDer pair (A, ¢pa) to the cohomology of
the corresponding LieDer pair (A., ¢a).

3. Central extensions of AssDer pairs

Let (A, ¢4) be an AssDer pair and (M, ¢p) a trivial AssDer pair. That is, the associative
structure on M is trivial.

3.1. DEFINITION. A central extension of (A, pa) by (M, ¢pr) consists of an exact sequence
of AssDer pairs
0= (M, dnr) = (A, 63) B (A, pa) = 0 (10)

satisfying i(m) -a=0=a-i(m), for allm € M and a € A.
We identify M with the corresponding subalgebra of A and with this identification
om = b 4lm-

3.2. DEFINITION. Let (Al,qul) and (Ag,cﬁ/b) be two central extensions of the AssDer
pair (A, ¢4) by (M, ¢nr). These two central extensions are said to be isomorphic if there
exists an AssDer pair isomorphism n : (A17¢A1) — (Ag,gzﬁAg) such that the following
diagram commute

(A1, ¢4, (11)

(A27 ¢AQ)

Let 0 — (M, oun) = (A,¢4) & (A, ¢4) — 0 be a central extension of the AssDer
pair (A, ¢a) by (M, ¢r). A section of it is given by a linear map s : A — A such that
pos=idyu.

Let s be a section. Define two maps v : A®2 — M and xy : A — M by

¥(a,b) = s(a)-s(b) —s(ab),  x(a) = ¢4(s(a)) = s(dala)), fora,be A
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Since the vector space flAis isomorphic to A @ M (via the section s), we may transfer
the AssDer structure of A to A @ M. This will certainly depend on the section s. The
product and the linear map on A @ M are respectively given by

(@adm)-(bon)= ab®yY(a,b) and Paenla®m)= da(a)® ou(m)+ x(a).
With these notations, we have the following.

3.3. PROPOSITION. The pair (A @ M, ¢paan) is an AssDer pair if and only if (¥, x) is
a 2-cocycle in the cohomology of the AssDer pair (A, pa) with coefficients in the trivial
representation (M = (M,1 = 0,r =0), ¢nr).

3.4. THEOREM. Let (A, ¢4) be an AssDer pair and (M, ¢pr) be a trivial AssDer pair.
Then the isomorphism classes of central extensions of (A, ¢a) by (M, ) are classified
by the second cohomology group Hi e (A, M) of the AssDer pair with coefficients in the
trivial representation (M = (M, = 0,r = 0), ¢ur).

PROOF. First, we show that the cohomology class of the 2-cocycle (¢, x) does not depend
on the choice of s. Let s; and sy be two sections of (10). Define a map ¢ : A — M by
¢(a) = s1(a) — sa(a). Then we have

U1(a,b) = si(a) - s1(b) — s1(ab) = (s2(a) + @(a)) - (s2(b) + ¢(b)) — s2(ab) — p(ab)
- 77/)2((1, b) - ¢(ab) (aS ¢(a)7 ¢(b) € M),

x1(a) = d4(s1(a)) — s1(Pa(a)) = ¢ 4(s2(a) + ¢(a)) — s2(Pala)) — d(Pala))
= x2(a) + o (9(a)) — ¢(¢a(a)).

This shows that (¢, x1) = (12, x2) + 0¢. Hence (11, x1) and (19, x2) are representative
of the same cohomology class.

Let (1211, ¢4,) and (Ag, ¢4,) be two isomorphic central extensions as of Definition 3.2,
and the isomorphism is given by n. Let s; : A — A; be a section of the first extension.
Then we have ps o (o s;) = p; o sy = ids. This shows that s, := 10 sy is a section for
the second central extension. Since 7 is a morphism of AssDer pairs, we have 7|y, = id ;.
Thus, we have

Va(a,b) = s3(a) - s2(b) — s2(ab) = n(si(a) - s1(b) — s1(ab)) = ¢ (a,b),
xa(a) = ¢4, (s2(a)) — s2(pala)) = (¢4, (s1(a)) — s1(pala))) = xi(a).

This shows that isomorphic central extensions give rise to same 2-cocycle, hence, corre-
spond to same element in H3_p. (A, M).

Conversely, let (11, x1) and (12, x2) be two cohomologous 2-cocycles. Therefore, there
exists a linear map ¢ : A — M such that (1, x1) — (Y2, x2) = 0¢. Consider the
corresponding AssDer pairs (A & M, ¢l.,,) and (A & M, ¢%.,,) given in Proposition
3.3. They are isomorphic as AssDer pairs via the map n: Ad& M — A& M given by
nla®m) =a®m+ ¢(a). In fact, n defines an isomorphism between central extensions. m



14 APURBA DAS AND ASHIS MANDAL

3.5. EXTENSIONS OF A PAIR OF DERIVATIONS. In this subsection, we study extensions
of a pair of derivations in a central extension of associative algebras.
Let

0 M—=A-"LsA 0 (12)

be a fixed central extension of associative algebras.

3.6. DEFINITION. A pair of derivations (¢, ¢u) € Der(A) x Der(M) is said to be ex-
tensible if there exists a derivation ¢ ; € Der(A) such that

00— (M, ¢pr) — (A, ¢ 4) —= (A, dpa) —=0 (13)

is an exact sequence of AssDer pairs. In other words, (fl,gzﬁA) 1s a central extension of

Let s: A — A be a section of the central extension (12). Define a map ¢ : A®? — M
by

¥(a,b) = s(a) - s(b) — s(ab).

For any pair of derivations (¢4, ¢pr) € Der(A) x Der(M), we define a map Obém,qu) :
A®2 s M by

Obih gy (@:0) = dar(W(a, b)) — &(da(a), b) — t(a, ga(b)).

3.7. PROPOSITION. The map Obé%d,M) : A®2 — M is a 2-cocycle in the Hochschild
cohomology of A with coefficients in the trvial representation M = (M,l = 0,r = 0).
Moreover, the cohomology class [ObéﬁA@M)] € HE ..(A, M) does not depend on the choice
of sections.

PRrOOF. Note that ¢ is a 2-cocycle on A with coefficients in the trivial A-bimodule M,
ie.

w(abv C) - ¢<CL, bC) = 0. (14>
Observe that

(Ott0ch Oy, 61)) (@, b, €) = Ob (6a.0a (@b, ) + OBl 4 (a,be)
= —¢um(¥(ab, c)) + ¥(pa(ab), c) + ¥ (ab, pa(c))
+ om(¥(a, be)) — ¥(dala), be) — d(a, ga(be))
= p(ada(b), c) + ¥(Pala)b, c) + ¢(ab, ¢a(c))
—¥(pa(a),bc) — ¥(a,bda(c)) — ¥(a, @a(b)e) =0 (by (14)).
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This proves the first part. To prove the second part, take sy, so to be two sections of (12).
Define a map ¢ : A — M by ¢ = s; — s3. Then we get

n(a,b) = s1(a) - 51(b) — s1(ab) = (s2(a) + ¢(a)) - (s2(b) + ¢(b)) — s2(ab) — p(ab)
= s2(a) - 52(b) — s2(ab) — @(ab) = a(a, b) — ¢(ab).

If the 2-cocycles corresponding to s; and s are respectively denoted by 1Ob(A¢ o) and
2
Ob (éa.0n), UhED

LObiL, gy (ab) = ch(wl(a b)) — ¢1(dala),b) — ¢i(a, p.a(b))
= Our(t2(0,5)) = H11(6(ab)) = ¥2(04(0), D) + (64(a)b) — ¥ala, 8a(8)) + d(ada (D))
= 20}, 51)(@:5) + Srtocn (62 © ¢ — d 0 Pa)(a,b).

This shows that the 2-cocycles 1Obé) o) and ZObé, 1,60 A€ cohomologous, hence, they

correspond to same cohomology class in HZ (A, M). L]

The cohomology class [Obémm/l)] € HZ .. (A, M) considered above is called the o0b-
struction class to extend the pair of derivations (¢4, dar).
3.8. THEOREM. A pair of derivations (¢, dn) € Der(A) x Der(M) is extensible if and
only if the obstruction class [Obém,dw)] € HE (A, M) is trivial.
PROOF. SuAppose that the pair (¢4, ¢ar) is extensible. That is, there exists a derivation
¢4 € Der(A) such that (13) is an exact sequence of AssDer pairs. Defineamap A : A — M
by Aa) = ¢4(s(a)) — s(¢a(a)). Note that the image of X lies in M as p(¢;(s(a)) —
s(¢a(a))) = 0, which implies that ¢ ;(s(a)) — s(¢a(a)) € ker(p) = im(i).

For any s(a) + m € A, we observe that

64(s(a) +m) = d(s() + bar(m) = 6 4(s(a)) — 5(8a(a)) + 5(84(a)) + dps(m)
— 5(64(a)) + Ma) + éar(m).

Hence, for any s(a) +m, s(b) +n € A, we have
¢4((s(a) +m) - (s(b) +n)) = d;(s(a) - (b)) = ¢ 4(s(ab) + ¥(a, b))
= s(a(ab)) + A(ab) + dur(¥(a, b)) (15)
On the other hand,
¢4(s(a) +m) - (s(b) +n) + (s(a) +m
= (s(9ala)) + Aa) + dar(m)) - (s(b)

(¢
= s(ga(a)) - s(b) + s(a) - s(¢a(b))
(0a(a) - 0) +(Pa(a),b) + s(a- Pa(b)) + ¢(a, P (b)). (16)

)-
+ ) + (s(a) +m) - (s(0a (b)) + A(b) + dar(n))

S
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Since ¢ ; is a derivation, it follows from (15) and (16) that
Om(¥(a,0)) = P(dala), b) = P(a; pa(b)) = —A(ab). (17)

This implies that ObéA,qu) = 0\ is given by a coboundary. Hence [Obéﬁm%{)] is trivial.

Conversely, suppose that the obstruction CO(iycle is a coboundary, say Obé) o) = OA,
for some X\ : A — M. We define a map ¢; on A by

¢4(s(a) +m) = s(dala)) + Ma) + dar(m).
Using (17), we can show that (13) is an exact sequence of AssDer pairs. Hence (¢4, ¢ar)

is extensible. n

As a consequence, we get the following.

3.9. COROLLARY. If H% 4 (A, M) = 0 then any pair of derivations (¢4, dn) € Der(A) x
Der(M) is extensible.

Let A be an associative algebra and M = (M,l = 0,7 = 0) be a trivial bimodule. In
the following, we give conditions on a pair of derivations (¢4, ¢as) € Der(A) x Der(M)

such that it is extensible in every central extension of associative algebras.
Define a map © : Der(A) x Der(M) — gl(HZ, 4, (A, M)) by

O(¢a, o) ([Y]) == [par 0 = p o (P4 ®id) —1p o (id ® Pa)].

3.10. THEOREM. A pair of derivations (¢a,prn) € Der(A) x Der(M) is extensible in
every central extensions of A by M if and only if ©(da, prr) = 0.

PROOF. Let 0 — M S A% A 0be any central extension of A by M. For any section
s: A — A the map ¢ : A®? — M, 9(a,b) = s(a) - s(b) — s(ab) is a 2-cocycle in the
cohomology of A with coefficients in M. If ©(¢4, ¢ar) = 0 then we have

OBy 000)) = B3 00 =10 (64 @id) = ¢ 0 (1d © 62)] = O(ba. da1)([¥]) = 0.

Hence by Theorem 3.8, the pair (¢4, ¢pr) is extensible.
Conversely, suppose that (¢4, ¢ar) is extensible in every central extensions of A by M.
Take any class [¢)] € HZ, (A, M). This induces a central extension of A by M:

och

0—-MB5AeM S A0, (18)

where the associative product on A@ M is given by (a®m)- (b&n) = ab® P (a,b). Since
(¢a, dar) is extensible in the central extension (18), by Theorem 3.8 we have

O(da, o) ([¢]) = [par 0¥ — 0 (pa @id) — ¢ o (Id ® ¢a)] = [ObLEY ] = 0.

This shows that ©(¢a, @) = 0. n
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4. Deformations

Let (A,¢4) be an AssDer pair. We denote the associative multiplication on A by p.
Consider the space A[[t]] of formal power series in ¢ with coefficients from A. Then A[[t]]
is a K[[t]]-module.

A formal (one-parameter) deformation of the AssDer pair (A, ¢4) consists of two
formal power series

He = Ztium pi € Hom(A®?, A) with po = p,

>0

$r= Y t'd;, ¢ €Hom(A A) with ¢y = ¢4

>0

such that the K][[¢t]]-module A[[t]] together with the multiplication p; forms an associative
algebra and ¢, : A[[t]] — A[[t]] is a derivation on it. In other words, A[[t]] with the
associative multiplication j; and the derivation ¢, forms an AssDer pair over K[[t]]. It
is clear from the definition that p, = Y, t'u; defines a deformation of the associative
structure on A in the sense of Gerstenhaber [16].

Let (p, ¢;) defines a deformation of the AssDer pair (A, ¢4). Then we have

pe(pie(a,b), c) = pe(a, pe(b,c))  and  @i(pe(a, b)) = pi(di(a), b) + pila, g(b)),

for all a,b,c € A. Expanding both the equations as power series in ¢ and equating
coefficients of " in both the equations, we get for n > 0,

Z :ui(p“j(a?b)vc) = Z Mi(amuj(b’ C))v (19)

i+j=n 1+j=n
D dilpi(a,b) = Y pi(e(a),b) + mila, 6;(b)). (20)
i+j=n 1+j=n

For n = 0, the identity (19) and (20) both holds automatically. However, for n = 1, we
obtain

p(ab, ¢) + pa(a, b)e = ap (b, ¢) + pu(a, be), (21)

P(pa(a, b)) + ¢1(ab) = d1(a)b + p1(9(a), b) + agi(b) + pa(a, $(b)). (22)
The identity (21) is equivalent dpoen(pt1) = 0 while the identity (22) is equivalent to
OHoch (1) + dpg = 0. Tt follows from (8) that d(u1, 1) = 0. Hence we get the following.

4.1. PROPOSITION. Let (uy, ¢y) be a formal deformation of an AssDer pair (A, ¢4). Then
the linear term (u1, 1) is a 2-cocycle in the cohomology of the AssDer pair (A, ) with
coefficients in itself.

The 2-cocycle (i1, ¢1) is called the infinitesimal of the formal deformation (g, ¢;).
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4.2. DEFINITION. Let (pt,¢:) and (u;, @;) be two formal deformations of an AssDer

pair (A, ¢4). They are said to be equivalent if there exists a formal isomorphism &, =
Doisot' @it A[[t]] = A[[t] with ®g = ida, such that

Diop = ppo(P, @) and Prod = ¢pody.

It follows that the following identities must hold (by equating coefficients of ¢" from
both sides)

Zq)io,uj: Z w;o(®; @ dy) and Z(I)io@: Zqﬁ;ofbj.

i+j=n i+jt+k=n i+j=n i+j=n
For n = 0, both the identities hold as &y = id4. For n = 1, we obtain

i+ Prop=p)+po(®®id)+po(ide@®) and ¢+ Prods = ¢+ paod.
This implies that (u1, ¢1) — (1}, ¢}) = 9(P1). Thus, we have the following.

4.3. THEOREM. The infinitesimals corresponding to equivalent deformations of an Ass-
Der pair (A, ¢pa) are cohomologous. Therefore, they correspond to the same cohomology
class.

To obtain a one-to-one correspondence between the cohomology group H3 p., (4, A)
and equivalence classes of certain type deformations, we use the truncated version of
formal deformations.

4.4. DEFINITION. An infinitesimal deformation of an AssDer pair (A, ¢4) is a deforma-
tion of (A, ¢4) over K[[t]]/(t?) (the local Artinian ring of dual numbers).

Thus, an infinitesimal deformation of (A, ¢4) consists of a pair (i, ¢;) in which p, =
p+tuy and ¢y = ¢4+tey such that (ug, ¢1) is a 2-cocycle in the cohomology of the AssDer

pair (A, ¢4).

4.5. THEOREM. There is a one-to-one correspondence between the space of equivalence

classes of infinitesimal deformations of the AssDer pair (A, ¢4) and the second cohomology
group HissDer(Av A)

PRrROOF. It is already shown that the map
infinitesimal deformations/ ~ — Hj p.. (A, A) given by [(us, ¢1)] = [(111, 61)]

is well-defined. This map is bijective with the inverse given as follows. For any 2-cocycle
(111, $1) € Crgper(A, A), the pair (uy = p + tur, ¢ = ¢pa + td1) defines an infinitesimal
deformation of (A, da). If (1}, ) € C3ipe(A, A) is another 2-cocycle cohomologous to
(p1, ¢1), then we have (uy, ¢1) — (1), @) = Oh, for some h € Hom(A, A) = C} pe (A, A).
In such a case, ®; = id4+th defines an equivalence between the infinitesimal deformations
(e = p+tp, ¢ = da +tdr) and () = p + tuy, @) = da + te)). Therefore, the inverse
map is also well-defined. [
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4.6. DEFINITION. A formal deformation (ug, ¢1) of an AssDer pair (A, ¢4) is said to be
trivial if it is equivalent to (py, = p, ¢, = Pa).

4.7. THEOREM. If H3 p..(A, A) = 0 then every formal deformation of the AssDer pair
(A, pa) is trivial.

PROOF. Let (u, ¢;) be any formal one-parameter deformation of (A, ¢4). It follows from
Proposition 4.1 that the linear term (i1, ¢;1) is a 2-cocycle. From the given hypothesis,
there exists a l-cochain ®; € Ci pe (A, A) = Hom(A, A) such that (u1,¢1) = 9P;.
Setting &, = ids + D1t : A[[t]] — A[[t]] and define

= ®; o0 (B, @ Dy), ¢, =& oo, (23)

Then (u}, ¢;) is equivalent to (u, ¢;). Moreover, it follows from (23) that p; and ¢} are of
the form p) = p+t*uh+--- and ¢, = dpa+t3¢s+--- . In other words, the linear terms
of p; and ¢, vanish. By repeating this argument, one can show that (u, ¢;) is equivalent

to (1, da). =

4.8. REMARK. An AssDer pair (A, ¢4) is said to be rigid if every formal deformation is
equivalent to (i, ¢4). It follows that the vanishing of the second cohomology is a sufficient
condition for the rigidity.

4.9. EXTENSIONS OF FINITE ORDER DEFORMATION. Let (A, ¢4) be an AssDer pair.
Consider the K[[t]]/(t"*!)-module A[[t]]/(¢t""!). A deformation of order n of the AssDer
(A, ¢4) consists of a pair (u;, ¢r) where py = > 0 (t'u; and ¢y = > i t'¢; such that p,
defines an associative product on A[[t]]/(#"™!) and ¢; defines a derivation on it.

Thus, in a deformation of order n, the following identities must hold:

Z :ui(ﬂj(avb)?c) = Z lui(a"u’j(b’c))’

it+j=k it+j=k
> bilpi(a.b) = > pwilei(a),b) + mila, ¢;(b)),
i+j=k it+j=k
for k=0,1,...,n. In other words,
1
Ottoch (k) = 5 > wipgl, and (24)
i+j=F,i,j >0
Ottoch (Gk) + (k) = > [, - (25)
it+j=kirj>0

Let (:un+l> ¢n+l) S CissDer(A7 A) be such that (IU“; = Z?:O tiui+tn+lﬂn+17 ¢; = Z?FO tqul—i_
" ¢,,11) defines a deformation of order n+1. Then the deformation (p; = Y 1 t'pi, ¢r =
oo te;) is said to be extensible. In such a case, two more equations need to be satisfied,
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namely,
1
5H0Ch<lu’n+1) - 5 Z [/1“17 :u]] (: Ob3(a7 b7 C) Sa‘Y)a

itj=n+1,ij>0

5Hoch(¢n+1) + 5<Nn+1) - Z [¢za :U’j] (: ObQ(CL, b) SaY)'

i+j=n+1,i,j>0

4.10. PROPOSITION. The pair (Ob®, Ob?) is a 3-cocycle in the cohomology of the AssDer
pair (A, ¢a) with coefficients in itself.

PROOF. It is known from the finite order deformations of associative algebras [16] that
the obstruction Ob? is a Hochschild 3-cocycle in the cohomology of A, i.e. dpoen(Ob?) = 0.
Moreover, we have

Otocn(Ob?) + (=1)? 3(Ob%) = — [, Ob?] + [p4, O]
=— > (bl ] + [0 [ ) + % D (6 s ] + [y (D, 1511)

i+j=n+1 i+j=n+1
i,j>0 i,j>0
== > (il + B0 ) + D ([das ], 5]
i+j=n+1 i+j=n+1
i,j>0 i,j>0
1 / "
== > ([l i) ] = l[Sas pal, 13]) + 3 > (b lw )] (by (24))
i+j=n+1 i+j'+j5"=n+1
2,7 >0 i,j'.3"">0
== > el = > (ba ) 1) = [[Gas pal, 1))
i+ +j=n+1 i+j=n+1
i',i",5>0 1,j>0

+% Y iyl ] + [y, [0 ) (by (25))

i+5'+j"=n+1

i,5',5"">0
= - Z ([, pin], 5] + Z [[b45 pjr], prgr] = 0.
i/ 44"+ j=n+1 i4j' 5" =n+1
i3 ,5>0 1,55 >0
Thus, d(Ob, Ob*) = (Jtoen (Ob?), Sroen (Ob%) + (—1)3 §(Ob?)) = 0. -

Therefore, (Ob*, Ob?) defines a cohomology class in H3 ., (A, A). If this cohomology
class vanishes, i.e. (Ob®, Ob?) is a coboundary, then we have 9(p11, ¢ns1) = (Ob*, Ob?),
for some (fni1, Pni1) € C%pe(A, A). In such a case (¢ = pr + " i1, ¢f = ¢ +
t"*1p,.1) defines a deformation of order n + 1. Therefore, the deformation (i, ¢;) be-
comes extensible. On the other hand, if (u, ¢:) is extensible, there exists (tni1, dni1) €
C3 .per (A, A) such that (), = gy + " a1, @) = ¢ + "1 d,1 1) is a deformation of order
n + 1. Hence the obstruction (Ob®, Ob?) is given by the coboundary 9(jtn41, dni1). Thus
the corresponding cohomology class is null. Therefore, we obtain the following.
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4.11. THEOREM. Let (u, ¢¢) be a deformation of order n of the AssDer pair (A, ¢4). It
is extensible if and only if the obstruction class [(Ob®, Ob?)] vanishes.

4.12. THEOREM. If H3 .. (A, A) = 0 then every finite order deformation of the AssDer
pair (A, ¢4) extends to a deformation of the next order.

4.13. COROLLARY. If H3 o (A, A) = 0 then every 2-cocycle is the infinitesimal of a
formal deformation of (A, ¢a).

4.14. AUTOMORPHISMS OF THE DEFORMED ASSDER PAIR. Let (A, ¢4) be an AssDer
pair and (i, ¢;) be a deformation of it. Suppose ®; = Y .. t'®; : A[[t]] — A[[t]] is an
automorphism of the deformed AssDer pair (A[[t]], p¢, ¢:). Then we have

Qiop=po(P@P,) and  Po¢ = @0 Dy
This, in particular, implies that
Oy (ab) = D1(a)b+ ady(b) and  DPyopa = pg0Py.

Therefore, the linear term ®; of the automorphism ®; is a derivation on A commuting
with ¢ 4. Thus, one may now ask when a derivation on A which commutes with ¢4 can be
extended to an automorphism of the deformed AssDer pair (A[[t]], f, ¢+). We will consider
a more general situation about extensions of a finite order automorphism of the deformed
AssDer pair.

Let &, = ZZN:1 t'®; be an automorphism of order N. It is said to be extensible if there
exists a map Py : A — A such that ¢) = Zf;’;l t'®; is an automorphism of order N +1.
In other words, the following additional identities must hold:

CLCI)N_H (b) + (I)N+1 (a)b — (I)N—H (ab)
= > dlab) - 3 1i(®;(a), (b)) (= Ob, say),

i+j=N+1,iAN+1 it jrk=N41,j,kAN+1
(26)
—Pyr100a+Pao0o Py
= Z Q0 ¢; — Z ¢io®; (= Obj, say). (27)

i+j=N+1,i#N~+1 i+j=N+1,j#N+1

The pair (Ob}pt, Obét) is called the obstruction to extending the order N automorphism
®,. It has been shown in [14] that Obg, is a Hochschild 2-cocycle. It is also not difficult
to show that (similar to Proposition 4.10)

Sttoch (Obg, ) + 8(Obg,) = 0.

In other words, (Obg,, Ob3,) is a 2-cocycle in the cohomology of the AssDer pair (A4, ¢4).
Hence, from (26) and (27), we get the following.
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4.15. THEOREM. An order N automorphism ®; = Zf\il t'®; of the deformed AssDer pair
is extensible if and only if the obstruction class [(Obg,,Ob3,)] € H3pe(A, A) vanishes.

5. Homotopy derivations on 2-term A..-algebras

In this section, we are interested in 2-term A.-algebras [24] with homotopy derivations.
Note that homotopy derivation on A.-algebras was studied by Loday [20] and further
developed by Doubek-Lada [12]. We classify homotopy derivations on skeletal and strict
Aso-algebras.

5.1. DEFINITION. A 2-term As-algebra consists of a chain compler A = (A 4 Ap)
together with maps pio : A; @ Aj — Aiyy, for 0 <4,j,1+7 <1 and a map p3 : Ay @ Ay ®
Ag — Ay satisfying the followings: for any a,b,c,e € Ag and m,n € Ay,

(a) dpz(a,m) = pz(a,dm),

(b) duz(m,a) = pa(dm, a),

(¢) pa(dm,n) = pz(m, dn),

(d) dys(a,b,c) = pa(pa(a,b), ) — pa(a, pa(b, c)),
(e1) pa(a,b,dm) = ps(p2(a,b),m) — pa(a, pa(b, m)),
(e2) ps(a,dm,c) = pa(pz(a,m), ) — pa(a, pa(m,c)),
(e3) ps(dm,b,c) = po(pa(m, b), ) — pa(m, pa(b, c)),

(f) ps(pa(a,b),c,e)—ps(a, pa(b, ¢), €)+us(a, b, palc, €)) = p2(ps(a, b, ¢), e)+uz(a, ps(b, c,e)).

A 2-term A,-algebra as above may be denoted by (A; N Ay, o, 113)-

5.2. DEFINITION. Let (A 9 A, pa, pi3) and (A} LN A, iy, pih) be 2-term Aoo-algebras. A
morphism between them consists of a chain map f : A — A’ (which consists of linear maps
fo: Ao — Aj and f1 : Ay — A} with food = d' o f1) and a bilinear map fo : Ag® Ay — A)
such that for any a,b,c € Ay and m € Ay, the following conditions hold

(a) d'f>(a;b) = folpa(a, b)) — p5(fola), fo(b)),

(b) fala,dm) = fi(p2(a, m)) — py(fo(a), fr(m)),

(¢) faldm,a) = fi(pa(m, a)) = ps(f1(m), fo(a)),
(b,

(d) falpa(a,b),c) — fala, pa(b, ) — ps(fa(a, ), fo(c)) + pa(fola), f2(b, c))
= fi(us(a,b,¢)) — ps(fola), fo(b), folc)).

We denote the category of 2-term A..-algebras and morphisms between them by 2A .
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5.3. DEFINITION. Let (A4 4 Ao, o, 13) be a 2-term A.-algebra. A homotopy derivation
of degree 0 on it consists of a chain map 0 : A — A (which consists of linear maps
0; - Ay — Ay, fori=0,1 satisfying pod =doby) and 05 : Ay ® Ay — Ay satisfying the
followings: for any a,b,c € Ay and m € Ay,

(a) d(02(a,b)) = p2(0oa,b) + pa(a, 0ob) — Oo(p2(a, b)),
(b) Oz(a,dm) = pa(Ooa, m) + pz(a, ym) — 01 (puz(a, m)),
(¢) Oa(dm, a) = pa(0im, a) + pa(m, boa) — 01 (p2(m, a)),

(d) 01(pz(a, b, c)) = Oa(a, pa(b, c)) — Oa(p2(a,b), c) + pa(a, 02(b, ¢)) — pa(b2(a,b), c)
+ ps(foa, b, c) + ps(a, Oob, ¢) + ps(a, b, bye).

We call a 2-term A,-algebra with a homotopy derivation a 2-term AssDer.-pair. We

denote such a pair by (A; N Ao, po, 13, 00,01, 02). An AssDer.-pair is said to be skeletal
if the underlying 2-term A.-algebra is skeletal, i.e. d = 0.

5.4. PROPOSITION. There is a one-to-one correspondence between the set of all skeletal
AssDer . -pairs and the set of all triples ((A, ¢a), (M, dnr), (0,7)), where (A, ¢a) is an
AssDer pair, (M, ¢pr) is a representation and (0,1) € C3 pe (A, M) is a 3-cocycle in the
cohomology of the AssDer pair with coefficients in (M, ¢pr).

PROOF. Let (A; 9, Ao, 2, pi3, 0o, 01, 02) be a skeletal AssDer.-pair. Then it follows from
Definition 5.3(a) that 6, is a derivation for the associative algebra (Ay, u2). Moreover, the
conditions (b) and (c) say that (A;,6;) is a representation of the AssDer pair (Ag,0p).
Finally, the condition (f) of Definition 5.1 implies that dgoen(t3) = 0 and condition (d) of
Definition 5.3 implies that dgoc6e + Sz = 0. Therefore, (u3, —62) € C3_ p., (Ao, A1) is a
3-cocycle in the cohomology of the AssDer pair with coefficients in (A, 6;).

Conversely, let ((A, ¢a), (M, ¢nr), (0,7)) be such a triple. Then it can be easily verify

that (M RN Ajps = (pa,l,r), 0,04, 001, —1) is a skeletal AssDery-pair. The above
correspondences are inverses of each other. [

5.5. DEFINITION. A 2-term AssDerq.-pair (A; N Ao, 2, pi3, 0o, 61, 02) is called strict if
s =0 and 0y = 0.

5.6. EXAMPLE. Let (A, ¢4) be an AssDer pair. Take Ag = Ay = A, d =id, ps = p (the
associative multiplication on A), 8y = 01 = ¢a. Then (A, 4, Ay, 2, 3 = 0,6q, 01,65 = 0)

1s strict AssDers,-pair.

Next, we introduce crossed modules of AssDer pairs and show that strict AssDer,-
pairs correspond to crossed modules of AssDer pairs.
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5.7. DEFINITION. A crossed module of AssDer pairs is a tuple ((A, ¢a), (B, ¢p),dt, ¢) in
which (A, ¢4), (B, ¢p) are both AssDer pairs, dt : A — B is a morphism of AssDer pairs
and

p:BRA— A ¢p:A® B — A

defines an AssDer pair bimodule on (A, ¢a) satisfying the following conditions: for all
be B and m,n € A,

(i) dt

5.8. PROPOSITION. There is a one-to-one correspondence between strict AssDer,-pairs
and the crossed module of AssDer pairs.

PRrROOF. It is already known that strict A..-algebras are in one-to-one correspondence
with crossed modules of associative algebras [10]. More precisely, (A; L Ag, pia, pz = 0)
is a strict A-algebra if and only if (Ay, Ag,d, p2) is a crossed module of associative
algebras. Note that the associative products on A; and Ay are respectively given by
ta, (m,n) == pa(dm,n) = ps(m,dn) and pa,(a,b) = pa(a,b), for m,n € A; and a,b € Ay.
It follows from (a) and (b) of Definition 5.3 that 6, is a derivation on A; and 6, is a
derivation on Ay. Hence (Aj,0;) and (Ao, 6y) are AssDer pairs. Since 6y o d = d o 0,
we have dt = d : A; — Ap is a morphism of AssDer pairs. The conditions (i), (ii), (iii)
of Definition 5.7 are also held. Finally, the conditions (b) and (c) of Definition 5.3 are
equivalent to the last condition of Definition 5.7. [

The crossed module corresponding to the strict AssDer.-pair of Example 5.6 is given
by the tuple ((A, ¢a), (A, ¢a),id, f1.4).

5.9. DEFINITION. Let (A1 % Ag, pa, 13, 00, 01, 02) and (A} L AL 1ih, 11l 04,6, 65) be two
2-term AssDery,-pair. A morphism between them consists of a morphism (fo, f1, f2) be-
tween the underlying 2-term Ay -algebras together with a map B : Ay — A} such that the
following conditions hold:

(i) 05(fo(a)) — fo(bo(a)) = d'(B(a)),
(ii) 01(fi(m)) — fi(01(m)) = B(dm),
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(iii) f1(02(a,b)) + fa(Ooa,b) + fa(a,0ob) — 01 (f2(a,b)) — 05(fo(a), fo(b))
= py(Ba, fo(b)) + py(fo(a), Bb) — B(la(a, b)).

Let A = (A1 % Ag, po, 113,00, 01,05) and A" = (AL L5 AL, pih, 41, 04,02, 6) be two
2-term AssDer.-pairs and f = (fo, f1, fo, B) be a morphism between them. Let A” =

(A7 LR Al iy, i, 00,07, 05) be another 2-term AssDero-pair and g = (go, 91, g2,C) be a

morphism from A’ to A”. Their composition is a morphism go f : A — A” of AssDer,.-
pairs whose components are given by (go f)o = go o fo, (90 f)1 = ¢1 0 f1, and

(g o f)a(a,b) = ga(fola), fo(b)) + g1(fa(a, b)), D=gioB+Cofy: Ay — Al

For any 2-term AssDer,-pair A, the identity morphism id, is given by the identity
chain map A — A together with (id4)s = 0 and B = 0. The collection of 2-term
AssDer.-pairs and morphisms between them forms a category. We denote this category
by 2AssDer,.

6. Categorification of AssDer pairs

In this section, we study the categorification of AssDer pair, which we call AssDer 2-pair.
We show that the category of AssDer 2-pairs and the category 2AssDer,, are equivalent.

A 2-vector space C' is a category with vector space of objects Cy and the vector space
of arrows () such that all structure maps in the category C' are linear. A morphism
of 2-vector spaces is a functor F' = (Fp, F}) which is linear in the space of objects and
arrows. We denote the category of 2-vector spaces by 2Vect. Given a 2-vector space
C = (Cy = ), we have a 2-term complex ker(s) L C,. A morphism between 2-
vector spaces induces a morphism between 2-term complexes. Conversely, any 2-term
complex A; LN Ap gives rise to a 2-vector space V = (Ay & A; = Ap) in which the set
of objects is Ay and the set of morphisms is Ay & A;. The structure maps are given by
s(a,m) = a, t(a,m) = a + dm and i(a) = (a,0). A morphism between 2-term chain
complexes induces a morphism between the corresponding 2-vector spaces. We denote
the category of 2-term complexes by 2TermCom. There is an equivalence of categories
2TermCom ~ 2Vect.

6.1. DEFINITION. An associative 2-algebra is a 2-vector space C equipped with a bilinear
functor p: C @ C'— C and a trilinear natural isomorphism called the associator

Ag e s (p(€,m), Q) = (&, u(n, Q)
satisfying the following identity represented by the pentagon
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(€ m), ), \)

(€ u(n, ), A) p(p(€;m), p(C, M)
A, u(m ) Agn,u(¢,2)
p(& npn(n, €, )z (& pn; 1l V)
6.2. DEFINITION. A morphism between associative 2-algebras (C, p, A) and (C',p', A')

consists of a functor F' = (Fy, Fy) from the underlying 2-vector space C' to C' and a
bilinear natural transformation

Fy(§,m) = /' (Fo(€), Fo(n)) = Fo(u(€n))

such that the following diagram commutes

Fo(EW F2(&n)

H (Fo FO(C))
Fa(n,C) |F2 (nem.20)
W (Fo ’C))
m %
(& u(n,¢)))

The composition of two associative 2-algebra morphisms is again an associative 2-
algebra morphism. More precisely, let C,C’ and C” be three associative 2-algebras and
F:.:C—C, G:C" — C" be associative 2-algebra morphisms. Then their composition
GoF : C — (" is an associative 2-algebra morphism given by (GoF')y = GyoFy, (GoF); =
G100 Fy and (G o F), is given by the composition

1'(Go 0 Fo(€), Go o Fo()) 28 1 (Fo (&), Fo(m) S5 21 Gl 0 Fo) (i€, m)).-

Finally, for any associative 2-algebra C', the identity morphism ids : C' — C' is given by
the identity functor as its linear functor and the identity natural transformation as (id¢)s.
We denote the category of associative 2-algebras and morphisms between them by Ass2.
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6.3. DEFINITION. Let (C, u, A) be an associative 2-algebra. A 2-derivation on it consists
of a linear functor D : C' — C and a bilinear natural isomorphism, called the derivator

Dy : D(u(a,b)) ~ p(Da,b) + p(a, Db)

+b) - ¢)
/ N

satisfying the following

(@-b)-D(c)+ D(a-b)- D(a-(b-¢))
(a-b)-D(c)+ (a-D(b)+ D(a)-b)-c D(b-c)+ D(a)-(b-c)

Am\ /
0 (b- D)) + 0~ (D

In the above diagram, we use the notation p(a,b) = a -b. We call an associative
2-algebra together with a 2-derivation by an AssDer2-pair.

6.4. DEFINITION. Let (C,u, A, D,D) and (C', 1/, A', D', D") be two AssDer2-pairs. A
morphism between them consists of an associative 2-algebra morphism (F = (Fo, Fy), F3)
and a natural isomorphism ®, : D' o Fy(a) — Fyo D(a) such that the following diagram

commutes
D'(Fy(a)) " Fy(b) 4+ Fo(a) " D'(Fy(b D'(Fy(a-b))
Fo(D((I) g Fo(b —|—F0 D )
-b+a-D(b

Here we use the bifunctors p and u' as - and - respectively. We denote the category
of AssDer2-pairs together with morphisms between them by AssDer2.



28 APURBA DAS AND ASHIS MANDAL

It is known that the categories 2A ., and Ass2 are equivalent. See, for example [10].
A functor T : 2A — Ass2 is given as follows. Let A = (A; 4, Ap, 2, pi3) be a 2-term

As-algebra. The corresponding associative 2-algebra is defined on the 2-vector space
Ao ® Ay = Ap. The bifunctor x4 and the associator A is given by

:U’((a7 m), (b7 n)) = (/Jg(@, b): :u2<a7 n) + MQ(ma b) + N2<dm7 n)),
Aape = ((ab)e, ps(a,b, c)).

For any A..-algebra morphism (fy, f1, f2) from A to A’, the associative 2-algebra morphism
from T'(A) to T'(A’) is given by

Fo = fo, Fi=fi and  Fy(a,b) = (1 (fola), fo(b)), fa(a,b)).

On the other hand, a functor S : Ass2 — 2A is given as follows. Given an associative
2-algebra C' = (C; = Coy, i1, A), the corresponding 2-term A..-algebra is defined on the

d:t‘kers

Complex Al = kers —— C() = Ao. Define JI Az ®AJ — Ai+j and M3 - A0®A0 ®A0 —
Al by

NZ(a? b) = N(a? b)? ILLQ(G/7 m) :M(i<a)7 m)v ILLQ(m7 CL) = :u2<m7 i<a>>7 MZ(ma n) =0,
and :u3<a7 bv C) = Aa,b,c - i(‘S(Aa,b,c))-

For any associative 2-algebra morphism (Fy, Fy, Fy) : C — C', the corresponding A.-
algebra morphism from S(C') to S(C”) is given by

f() = FQ, f1 = F1|kersy fg(d,b) = Fg(d,b) — i(ng(a,b)).

It is well-known that the above two functors provide the equivalence between 2A., and
Ass?2 (see for instance, [10]). This equivalence can be extended to respective categories
equipped with derivations. More precisely, we have the following.

6.5. THEOREM. The categories 2AssDer,, and AssDer2 are equivalent.

PROOF. Given a 2-term AssDer.-pair (A; LN Ay, po, 13, 00,01, 02), consider the corre-
sponding associative 2-algebra T'(A). A functor D : T(A) — T(A) and the derivator D is
given by

D((a,m)) = (6o(a),0:(m)), Doy = (ab,0s(a,b)).

It can be checked that if ( fo, f1, f2, B) is a morphism of AssDer.-pairs, then (Fy, Fy, Fy, @)
is a morphism of corresponding AssDer2-pairs, where ®(a) = B(a).

Conversely, for any AssDer2-pair (C,pu, A, D, D), consider the 2-term A.-algebra
S(C). A homotopy derivation on S(C) is given by 6y = D(i(a)), 61(m) = Dlxers(m)
and 6y(a,b) = Dyyp — i(sp(a,b)). If (Fy, Fi, Fy, @) is a morphism of AssDer2-pairs, then
(fo, f1, f2, B) is a morphism between corresponding 2-term AssDer,-pairs, where B(a) =
P (a).
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Thus, it remains to prove that the composition T o S is naturally isomorphic to the
identity functor 1agpero and S o7 is naturally isomorphic to 1sassper,,- For any AssDer2-
pair (C, u, A, D, D), the AssDer2-pair structure on (7 o S)(C') is defined on the 2-vector
space Ag ® A; = Ap, where Ay = Cy and A; = kers. Define 6 : T o S — 1agssper2 by
Oc : (ToS)(C) — lassper2(C) with (0c)o(a) = a, (0¢)i(a,m)=1i(a)+m. Then O is an
isomorphism of AssDer2-pairs. It is also a natural isomorphism.

For any 2-term AssDer.-pair A = (A; 4, Ao, to, 13, 00,01, 02), the AssDer,-pair

structure on (SoT')(A) is defined on the same complex A, 4y Ay. In fact, we get back the
same 2-term AssDer.-pair. Therefore, the natural isomorphism 9 : S o T — loagsDer,, 1S
given by the identity. [

6.6. EXAMPLE. Let (A, ¢4) be an AssDer pair. Then (A , A g = i3 = 0,00 =60 =
¢a,0y =0) is a strict AssDery.-pair. The corresponding AssDer2-pair is also strict in the
sense that the associator and the derivator are both trivial.

Conclusions.

In this paper, we mainly concentrate on a pair of an associative algebra and a deriva-
tion on it. We call such a pair an AssDer pair. Among other things, we study central
extensions and deformations of an AssDer pair by extending the classical extensions and
deformations of associative algebras. For this, we define a cohomology theory for AssDer
pairs generalizing the cohomology of LieDer pairs introduced in [25].

In [11], the author studies deformations of multiplications in a nonsymmetric operad
which generalizes the deformation of associative algebras. As applications, the author
formulates deformation of various Loday-type (e.g. dendriform, tridendriform, dialgebra,
quadri) algebras. See [11] for explicit cohomology of Loday-type algebras. Given a non-
symmetric operad O with a multiplication m € O(2) (i.e. m satisfies m oy m = m oy m),
an element ¢ € O(1) is called a derivation for m if ¢ satisfies

pom =moy ¢+ moy .

By the method of the present paper, one may study deformations of a pair (m, ¢), where
m is a multiplication on O and ¢ is a derivation for m. Therefore, one may deduce
deformations of Loday-type algebras equipped with derivations. On the other hand,
Balavoine [6] studied deformations of algebras over quadratic operads. Derivations on an
algebra over an operad are studied in [20, 12]. In a subsequent paper, we aim to construct
an explicit cohomology and deformation theory for P-algebras equipped with derivations,
where P is a quadratic operad. The results of the present paper can be dualized to study
deformations of coalgebras with coderivations. Since an A..-algebra can be described by a
square-zero coderivation on the tensor coalgebra of a graded vector space, one can explore
formal deformations of A.-algebras and compare with the results of [13].

In [8] the authors considered deformations of a Lie algebroid A. Such deformations
are governed by a (shifted) graded Lie algebra on the space of multiderivations on A. A
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1-cocycle of the corresponding complex is given by a Lie algebroid derivation on A. A
derivation of the underlying vector bundle A is a Lie algebroid derivation if it is also a
derivation for the Lie bracket on I'A. Lie algebroid derivations are worth interesting as
their flows give rise to Lie algebroid automorphisms. It would be interesting to study
deformations of Lie algebroids equipped with Lie algebroid derivation.
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