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STRICTIFICATION OF ∞-GROUPOIDS IS COMONADIC

KIMBALL STRONG

Abstract. We investigate the universal strictification adjunction from weak infininity-
groupoids (modeled as simplicial sets) to “strict infinity-groupoids”, more commonly
called “omega-groupoids”. Modeling these with simplicial T-complexes, we prove that
any simplicial set can be recovered up to weak homotopy equivalence as the totaliza-
tion of its canonical cosimplicial resolution induced by this adjunction. We explain how
this generalizes the fact due to Bousfield and Kan that the homotopy type of a simply
connected space can be recovered as the totalization of its canonical cosimplicial resolu-
tion induced by the free simplicial abelian group adjunction. Furthermore, we leverage
this result to show that this strictification adjunction induces a comonadic adjunction
between the quasicategories of simplicial sets and omega-groupoids.
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1. Introduction

A basic goal of classical algebraic topology is to construct algebraic invariants of homotopy
types: functors F : Ho(Top) → A where Ho(Top) is the category of topological spaces
localized at the weak equivalences andA is some category of algebraic objects, e.g. groups
or rings. Grothendieck’s Homotopy Hypothesis is the statement that there is a complete
such invariant generalizing the notion of groupoid, which he called an ∞-groupoid. By
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“complete” we mean that there is a notion of “weak equivalence” for ∞-groupoids, and
that there is an equivalence of categories

Ho(Top) ≃ Ho(∞-Groupoid)

The idea of an ∞-groupoid is based on axiomatizing the algebraic structure that the
points, paths, homotopies, homotopies between homotopies, etc. in a topological space
carry. Unfortunately, this information is too unwieldy to work with directly— Grothen-
dieck provided a complete definition, but no one has yet been able to prove or disprove
that it leads to the desired equivalence of categories. Various alternate definitions along
the same lines have been proposed, see for instance [Cisinski, 2006; Henry, 2016].

The enormous success of simplicial methods in homotopy theory led to a solution of
a different sort: taking “∞-groupoid” to mean “Kan complex”. Kan complexes certainly
satisfy the condition of modeling the homotopy theory of spaces. If one is interested
not necessarily in understanding Grothendieck’s algebraic vision of “∞-groupoids” and
is mainly looking for some convenient object with which to do homotopy theory, there
is no reason to seek anything else. However, Kan complexes do not entirely fit the bill
of axiomatizing the algebraic data in a space: they are not particularly algebraic (in
the sense of being equipped with operations satisfying certain relations). One can define
“algebraic Kan complexes”, in which horn filling is an operation (rather than a property);
in Nikolaus [2011] it is shown that these model spaces. This still falls somewhat short of
the original vision— Kan complexes effectively hide much of the complicated nature of
∞-groupoids by relegating it to simplicial combinatorics. For instance: S2 is the “free ∞-
groupoid on a single 2-cell”. Interpreting “free ∞-groupoid on a 2-cell” in Kan complexes
gives a model for the 2-sphere, and while in principle you can compute anything you
like from this, nothing is “intrinsically obvious”. By contrast, in the weak 3-groupoid
model (which one can use to model the homotopy 3-type of S2), you can obtain that
π3(S

2) ∼= Z directly from the axioms: the generator comes from a coherence 3-cell which
expresses homotopy-commutativity of composition of 2-cells (this is an axiomatization of
the Eckmann–Hilton argument). Essentially, more homotopical information is encoded
“by hand” into the axioms of a weak 3-groupoid than in Kan complexes.

Unfortunately, encoding homotopical information directly into axioms for weak n-
groupoids becomes infeasible as n gets larger. Fortunately, one can still retain a significant
amount of information by working with “strict” ∞-groupoids, which we for clarity shall
refer to exclusively as ω-groupoids, which are much easier to define and manipulate:

1.1. Definition. An ω-groupoid is a sequence of sets

X0 X1 X2 · · ·id id

s

t

id

s

t

s

t

such that each diagram
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Xi Xi+k
idk

sk

tk

is equipped with the structure of a groupoid, and such that these are compatible in the
sense that

Xi Xi+k Xi+k+j
idk idj

sk

tk

sj

tj

is a strict 2-groupoid. A map between ω-groupoids is a map of diagrams which preserves
all the groupoidal structure. The resulting category we notate as ωGpd.

One can define a functor Strict : sSet → ωGpd, but it is well known that ω-groupoids
are not a complete invariant for homotopy types (see [Ara, 2013] for an overview of
how much homotopical information they can model; essentially it is a mixture of the
fundamental group and higher homological information). They nonetheless provide a
useful concept while trying to understand the general problem of constructing algebraic
invariants, in particular the problem of giving a convenient definition of ∞-groupoids.
We think of the functor Strict : sSet → ωGpd as giving the “strictification” of an ∞-
groupoid (presented up to homotopy equivalence by a simplicial set). It has a right adjoint
U : ωGpd → sSet.

The main goal of this paper is to examine this strictification functor, and in particular
to prove that it induces a comonadic adjunction of quasicategories. One can think of
these results as providing a complete algebraic model for homotopy types— coalgebras in
ωGpd are a working model for ∞-groupoid. The weak (and somewhat imprecise) form of
what we will prove is:

1.2. Theorem. The homotopy type of a space X is determined by the homotopy type
of its strictification Strict(X), along with a natural coalgebra structure over the comonad
induced by the adjunction Strict ⊣ U .

The stronger form is

1.3. Theorem. The strictification functor is comonadic on the level of quasicategories:
that is, it induces an equivalence of quasicategories between spaces and the quasicategory
of coalgebras for the comonad Strict ◦ U on ωGpd.

These appear more precisely as Theorems 5.1 and 6.1, respectively.
In relation to previous work, this is a generalization of the main result on homotopy

categories in [Blomquist and Harper, 2019], in which the authors prove an analagous result
for simply connected spaces and chain complexes. As simply connected chain complexes
are equivalent to simply connected strict ∞-groupoids, restricting our result to the simply
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connected case recovers their main result.1 Our Theorem 5.1 is a direct generalization
of the fact that the Z-completion (in the sense of Bousfield-Kan) of a nilpotent space
is itself to the non-nilpotent case. Another closely related result is in [Rivera et al.,
2022], where the authors succeed in giving an equivalence of homotopy theories between
localizations of spaces at algebraically closed fields and simplicial coalgebras (with no
simple connectedness assumptions).

In order to arrive at our result we will actually do very little directly with ω-groupoids,
or with topological spaces. Instead, we will work with simplicial models: instead of
topological spaces we will work with simplicial sets, and instead of ω-groupoids we will
work with simplicial T -complexes, which are a certain sort of Kan complex which form a
category equivalent to the category of ω-groupoids.

2. Technical background

2.1. Algebraic Kan complexes. The category of simplicial sets models the homotopy
theory of ∞-groupoids under the model structure in which the fibrant-cofibrant objects
are Kan complexes and weak equivalences are those maps which induce isomorphisms
on all homotopy groups, for any choice of basepoint. As the composition operation in a
Kan complex is a relation rather than a function (that is, compositions are asserted to
exist rather than given as the output of a composition function), it is difficult to work
directly with Kan complexes to provide a “strictification” of their ∞-groupoid structure.
Therefore, we work with the notion of an algebraic Kan complex, due to [Nikolaus,
2011].

2.2. Definition. [[Nikolaus, 2011], definition 3.1] The category AlgKan is defined as
follows:

• The objects are simplicial sets X such that for every diagram

Λn
k X

∆n

ιnk

h

there is a chosen horn filler fillX(h) : ∆
n → X which makes the diagram commute.

In other words, objects are pairs (X, fillX) where fillX is a function from horns of X
to horn fillers. For a horn h : Λn

k → X, we call dk(fillX(h)) the composition of the
horn h. We call the simplices in the image of fillX distinguished fillers.

1One advantage of the approach by the authors there is that they work directly with a simplicially
enriched category of coalgebras, whereas we utilize the Barr-Beck-Lurie theorem, which lets us avoid
explicitly constructing a category of coalgebras.
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• The morphisms are morphisms of underlying simplicial sets which preserve the fill-
ings: a morphism f : (X, fillX) → (Y, fillY ) is a map of simplicial sets f : X → Y
such that for any horn h : Λn

k → X,

f(fillX(h)) = fillY (f ◦ h)

2.3. Example. Denote by | − | and S•(−) the functors for the geometric realization of
a simplicial set and the singular simplicial set of a topological space, respectively. It
is straightforward to functorially equip the singular simplicial set of a topological space
with choices of horn fillers: for each of the horn inclusions Λn

k ↪→ ∆n, fix a retract
Rn

k : |∆n| ↠ |Λn
k |. Then for any topological space X and any diagram

Λn
k S•(X)

∆n

ιnk

f

We have an adjoint diagram

|Λn
k | X

|∆n|

|ιnk |

|f |

And the adjoint of the map |f | ◦ Rn
k gives us the horn filler. This equips each horn with

a choice of horn filler, defining a functor AlgS•, such that we have a factorization

Top sSet

AlgKan

AlgS•

S•

UA

Where UA is the evident forgetful functor. In [Nikolaus, 2011], it is shown that the functor
UA is the right adjoint of a Quillen equivalence, and thus the category AlgKan models
the homotopy theory of ∞-groupoids.

2.4. Simplicial T-complexes. Suppose that we have an algebraic Kan complex (X,
fillX), and two composable simplices f, g ∈ X1. Then the diagram

•

• •

gf

Can be canonically filled to obtain the composition gf . We can then consider the diagram
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•

• •

g

gf

And again use our choice of horn filler to obtain a composition g−1(gf). Now, if we
working in a strict groupoid, we would have that this is equal to f . However, in the
context of a weak ∞-groupoid we can conclude that g−1(gf) is homotopic to f , but not
necessarily equal to it. If we wish to model strict groupoids, therefore, we must impose
some sort of compatibility conditions on our fillers.

Suppose that we have a horn h : Λn
k → X, and its composition filler is fillX(h) : ∆

n →
X. Then, if we are trying to model strict higher groupoids, a reasonable thing to assert
is that fillX(h) is the composition filler all of its horns, not just the kth. In the above
example, this would mean that since we have a filler

•

• •

g

gf

f

The composition filler for g−1(gf) must be the again the same 2-simplex, so that f =
g−1(gf). This motivates the following definition, which appeared originally in [Dakin,
1977].

2.5. Definition. [[Dakin, 1977], Definition 1.1] A Simplicial T-Complex is a sim-
plicial set X equipped with a set of marked simplices, which we refer to as “thin.” These
are not required to form a subcomplex, but must satisfy the following axioms:

1. Every degenerate simplex is thin.

2. For each horn h : Λn
k → X, there is a unique filler C : ∆n → X such that the image

of the nondegenerate n-simplex is thin in X. Given such an extension, we refer to
the kth boundary of this filler as the composition of the horn h.

3. If h : Λn
k → X is a horn with all nondegenerate (n − 1) simplices thin, then the

composition of h is thin as well.

A map of simplicial T -complexes is a map on underlying simplicial sets which sends thin
simplices to thin simplices. We denote the resulting category by sTCom.

Condition 1 imposes that the composition of a simplex with degenerate simplices is
the original simplex. Condition 2 is the compatibility condition we reasoned out above.
Condition 3 is slightly more subtle, and is best illuminated by example: suppose we have
a diagram of three composable 1-simplices:

• •

• •

gf h
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Then we can fill in the horn defined by f and g, and the horn defined by g and h, giving
us:

• •

• •

g

hg

f

gf

h

Then we can furthermore fill in the horn defined by f and hg, giving us

• •

• •

g

hg

f

gf

(hg)f h

At this point, we have a horn Λ3
1 where every face is thin. By axiom 3, the filler is

thin, and therefore, looking at face 1, which we get by filling, we have (hg)f = h(gf).
So condition 3 is a uniqueness condition that ensures a composition is uniquely defined
regardless of the order we choose to do compositions (that is, fill horns) in. Concretely, if
we have already obtained every n− 1-simplex of an n-horn via composition of the n− 2
simplices, then the additional n− 1 simplex we get should also express composition.

Another simpler motivation is this: suppose that we have a map ∂∆n → X where each
face is thin. Then we may look at any of the sub-horns, Λn

k ↪→ ∂∆n ↪→ X, and obtain a
composition of this sub-horn, giving us a thin filler Λn

k ↪→ ∆n → X. Imposing condition
(2) tells us that the composition must be thin, and by uniqueness of thin fillers, we must
have that it is equal to the kth face of our original map ∂∆n → X. This implies that our
thin filler is in fact a filler for every sub-horn of this map ∂∆n → X. In particular, we
get that the simplicial T complex formed by taking the n-skeleton of X and iteratively
throwing in all thin fillers of horns is (n+ 1)-coskeletal, much in the way the nerve of an
ordinary strict 1-category is 2-coskeletal.

Of course, the best motivation for simplicial T -complexes is simply that they are the
correct simplicial analogue of strict∞-groupoids, which is a consequence of [Ashley, 1978]:

2.6. Theorem. There is an equivalence of categories sTCom ⇄ ωGpd.

We will say more about this equivalence in Section 3.

2.7. Crossed complexes. We have already defined the category sTCom of simplicial
T-complexes and the category ωGpd of ω-groupoids. We now define a third category, the
category CrCom of crossed complexes, which are a sort of “nonabelian chain complex” in
a way which we will clarify shortly.
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2.8. Definition. [[Brown et al., 2011], Definition 7.1.9] A crossed complex C is a
sequence of sets

C0 C1 C2 C3 · · ·id

s

t

δ2 δ3

Such that:

1. The diagram

C0 C1
id

s

t

forms a groupoid, which we will abuse notation by referring to simply as C1.

2. Each Ci for i ≥ 2 is a skeletal module over the groupoid C1: that is, a family of
groups of the form

Ci =
∐
c∈C0

Ci(c)

where each Ci(c) is a group, equipped with morphisms

φℓ : Ci(s(ℓ)) → Ci(t(ℓ))

for each ℓ ∈ C1, satisfying that for composable ℓ and p in C1,

φℓ◦p = φℓ ◦ φp

and that φidx = idCi(x). Further, each Ci(c) is abelian for i > 2. From now on we
shall generally suppress the c ∈ C0 from our notation when our meaning is clear,
saying for example “Ci is abelian for i > 2.”

3. For i > 2, the maps δi are families of maps of groups δi : Ci → Ci−1, satisfying
δi−1 ◦ δi = 0.

4. δ2 is a family of maps of groups δ2(c) : C2(c) → Aut(c), where by Aut(c) we mean
the automorphism group of c in the groupoid C1.

5. The action of C1 on Ci is compatible with the δi in the sense that for i > 2, ℓ ∈ C1,
and a ∈ Ci(x)

φℓ ◦ δi = δi−1 ◦ φℓ

6. For any a ∈ C2, δ2(a) acts by conjugation by a on C2 and trivially on Ci for i > 2.

To a crossed complex C, we can associate homology groups:
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2.9. Definition. For C ∈ CrCom and c ∈ C0, define π0, π1, and Hn for n ≥ 2 by the
following:

• π0(C) is π0 of the groupoid C1.

• π1(C, c) is Aut(C1, c)/δ2(C2(c))

• For n ≥ 2, Hn(C, c) is ker(δn)(c)/im(δn+1)(c).

Note that H2 is always abelian although C2 may not be, as the condition that δ(C2) acts
on itself by conjugation means that ker(δ2) commutes with everything in C2.

Our interest in CrCom is motivated by the following theorem, which is the primary
content of [Brown, 1981]:

2.10. Theorem. There is an equivalence of categories CrCom ⇄ ωGpd.

Thus, both sTCom and CrCom can be used to analyze ωGpd, and we will use both
towards proving our main theorem.

3. The Dold-Kan correspondences: abelian and nonabelian

We use sAbGrp to denote the category of simplicial abelian groups and Ch+
Z to denote

the category of nonnegatively graded chain complexes of abelian groups. In this section,
we will recall the adjoint pairs in the following diagram:

sTCom sAbGrp

CrCom Ch+
Z

AbsT

NCrCom

UsT

NZ

AbCr

ΓCrCom

UCr

ΓZ (1)

Here the vertical edges are equivalences of categories, the left facing arrows are left ad-
joints, and the right facing arrows are the corresponding right adjoints. The right edge
is the best known: it is the Dold-Kan correspondence. The left edge is a sort of non-
abelian version, due to [Ashley, 1978]. The functors on the top and bottom edges we
believe are known, with the right adjoint appearing in [Brown et al., 2011],2 but lacking

2Where it is called Θ and defined more generally for chain complexes with a groupoid of operators.
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a comprehensive reference we fully define them here. The top and bottom edges each
form adjunctions, but not equivalences of categories or homotopy theories. However, they
induce equivalences of homotopy theories of 1-connected objects, a fact which will be key
to us. The main result of this section which we will use in proving our main theorem is
the following.

3.1. Theorem. There are adjoint pairs of functors as in Diagram 1 above satisfying:

1. The left and right edges are equivalences.

2. For A ∈ sAbGrp, the underlying simplicial set of UsT(A) is the same as the under-
lying simplicial set of A.

3. For C ∈ CrCom with C 1-reduced (that is, C0 and C1 are singletons), we have that
the natural map C → UCr( ˜AbCr(C)) induces an isomorphism, where ˜AbCr(C) is the
reduced chain complex coming from AbCr(C).

4. The diagram is commutative in the sense that there is a natural isomorphism UsT ◦
ΓZ ∼= ΓCrCom ◦ UCr.

The proof is spread throughout this section.

3.2. The right edge: the Dold-Kan correspondence. For A ∈ sAbGrp, denote
by D(An) the subgroup of An generated by the degenerate simplices.

3.3. Definition. [The functor NZ] The functor NZ : sAbGrp → Ch+Z is defined by
NZ(A)n = An/D(An), with differential the alternating sum of the face maps.

The Dold-Kan correspondence is the following well-known result:

3.4. Theorem. [The Dold-Kan Correspondence] There is an equivalence of categories
NZ : sAbGrp ⇄ Ch+Z : ΓZ, where for C• ∈ Ch+Z ,

ΓZ(C•)n :=
⊕

[n]↠[k]

Ck

For a reference, see [Matthew, 2011]. We will need the following fact about this
adjunction:

3.5. Lemma. For A• ∈ Ch+Z , the n-simplices of ΓZ(A•) are in bijection with chain complex
maps NZ(Z[∆n]) → A•. Under this identification, the subgroup generated by the degenerate
simplices consists of those maps which send the unique nondegenerate n-simplex to 0.

Proof. The bijection follows from a general fact about adjunctions on sSet being defined
by cosimplicial objects. The second fact is less trivial; see the above reference for details.
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3.6. The left edge: the nonabelian Dold-Kan correspondence. In [Ashley,
1978], the following is proved:

3.7. Theorem. There is an equivalence of categories NCrCom : CrCom ⇄ sTCom :
ΓCrCom.

Proof. For a full proof, see [Ashley, 1978]. We describe here just the functor NCrCom :
CrCom → sTCom, as this is the only particular we will make use of: for C ∈ CrCom, the
n-simplices of NCrCom(C) are defined inductively as follows:

• For n = 0, they are simply C0.

• For n = 1, they are simply C1, with boundary maps d0 and d1 defined as the source
and target maps of the groupoid C1.

• For n ≥ 2 they are tuples x = (x0, ..., xn;α) where xi ∈ NCrCom(C)n−1, di(xj) =
dj−1(xi) for i < j, and α ∈ Cn(d1 · · · dn−1(xn)). Further, they must satisfy

δ(α) =


x2x0x

−1
1 if n = 2

φp−1(x0)x2x
−1
1 x−1

3 if n = 3

φp−1(x0)
∑n

i=1(−1)ixi if n ≥ 4

Here p = d2d3 · · · dn−1(xn), and φ is the action of C1 on Cn for n ≥ 2. The boundary
maps are defined as di(x) = xi. The degeneracy maps are defined inductively as
follows: for x = (x0, . . . , xn;α)

si(x) = (si−1x0, ..., si−1xi−1, x, x, si+1xi, ..., sixn; e)

Where e is the identity element of (the appropriate component of) Cn+1.

For a simplex x = (x0, ..., xn;α) ∈ NCrCom(C), we will call α as the automorphism element
of the simplex, and refer to it by aut(x). One can think of the simplices of NCrCom(C)
as being inductively built out of compatible automorphism elements. A simplex is thin
precisely when α is the identity element.

We have now finished verifying item (1) of Theorem 3.1. This equivalence of cat-
egories respects the natural homotopical structures on the categories, in particular the
fundamental algebraic invariants:

3.8. Lemma. For C ∈ CrCom and x ∈ C0, there are natural isomorphisms

π0(C) ∼= π0(NCrCom(C)) π1(C, x) ∼= π1(NCrCom(C), x) Hn(C, x) ∼= πn(NCrCom(C), x)

For n ≥ 2.

Proof. In [Brown and Higgins, 1991] they prove the analogous statement for the the
classifying space of a crossed complex. Since the classifying space of a crossed complex C
is defined to be the geometric realization of NCrCom(C), and geometric realization preserves
homotopy groups, the result follows.
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3.9. The top edge: the adjunction sTCom ⇄ sAbGrp.We first define the inclusion
functor UsT : sAbGrp → sTCom.

3.10. Definition. [The functor UsT] For A a simplicial abelian group, UsT(A) is the
simplicial T -complex whose underlying simplicial set is the underlying simplicial set of
A, and whose thin simplices are the sums of degenerate simplices. In [Ashley, 1978], it
is proven that this gives a simplicial T -complex structure. As maps of simplicial abelian
groups preserve both sums and degenerate simplices, this is functorial.

We now define the left adjoint AbsT : sTCom → sAbGrp. Recall Z[−], the free
simplicial abelian group functor, given by applying the free abelian group functor to
every level of a simplicial set.

3.11. Definition. [The functor AbsT] Let X ∈ sTCom. Let |X| be its underlying sim-
plicial set, and η the natural map of simplicial sets |X| → Z[|X|]. We define

AbsT(X) =
Z[|X|]

⟨fill(η ◦ h)− η ◦ fill(h)|h : Λn
k → |X|⟩

Where fill(h) denotes the unique thin filler of a horn in a simplicial T -complex.

3.12. Theorem. AbsT is the left adjoint to UsT.

Proof. Let f : X → UsT(A) be a map of simplicial T -complexes. This induces a map
Z[|X|] → A, which is a map of simplicial abelian groups and therefore a map of simplicial
T -complexes. In particular, this map preserves thin fillers. It follows by the universal
property of the quotient that this induces a map AbsT(X) → A of simplicial abelian
groups.

Conversely, let g : AbsT(X) → A be a map of simplicial abelian groups. Then we get
a composite map of simplicial T -complexes X → UsT(AbsT(X)) → UsT(A).

We have now verified item (2) of Theorem 3.1.

3.13. The bottom edge: the adjunction CrCom ⇄ Ch+
Z . The adjunction between

crossed complexes and chain complexes will involve the most detail:

3.14. Definition. [The functor UCr] The right adjoint UCr : Ch
+
Z → CrCom is given by

taking a chain complex A• to the crossed complex

|A0| |A0| × |A1|
∐

|A0| A2 ⨿|A0|A3 · · ·id×0

π0

π0+d

where | − | denotes the underlying set of an abelian group. The composition operation on
|A0| × |A1| is given by (a1, ℓ1) ◦ (a2, ℓ2) = (a1, ℓ1 + ℓ2). The action of A0 × A1 is trivial
in the sense that each (p, ℓ) acts as the identity morphism from the a component to the
a+ d(ℓ) component of ⨿a∈|A0|An. In particular, if (a, ℓ) is an automorphism, its action is
trivial.
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3.15. Definition. [The functor AbCr] Let C =

C0 C1 C2 C3 · · ·
s

t
δ δ δ

Be a crossed complex. The action of the elements C1 on Cn for n ≥ 2 lets us define a
certain sort of quotient of this action, which we write as Cn/C1:

Cn/C1 :=
⊕p∈C0Cn(p)

⟨a− φℓ(a)|ℓ ∈ C1⟩

Then we define the chain complex AbCr(C) to be

Z[C0] Z[C1]/ ∼ C2/C1 C3/C1 · · ·
t−s δ δ δ

Here the relation ∼ on Z[C1] is generated by g ◦ f ∼ g+ f for composable g and f in C1.
We note that while C2 is not abelian, C2/C1 must be as δ(C2) ⊂ C1 acts by conjugation
on C2.

3.16. Theorem. The functors AbCr and UCr as described above form an adjoint pair.

Proof. We define a natural bijection between hom sets: let C ∈ CrCom, A• ∈ Ch+
Z .

Given f : AbCr(C) → A•, we define f̄ : C → UCr(A•) by:

• f̄0 : C0 → |A0| is the adjoint of f0 : Z[C0] → A0.

• f̄1 : C1 → |A0| × |A1| is given on the first component by the composition f̄0 ◦ s. On
the second component, it is the adjoint of the composition Z[C1] → Z[C1]/ ∼→ A1.

• For n ≥ 2, recall that each Cn is of the form
∐

p∈C0
Cn(p). The map f̄n : Cn →∐

|A0| An is simply given on each component Cn(p) by the composition Cn(p) ↪→
Cn/C1 → An.

Now, for the other direction: given g : C → UCr(A•), we define the adjoint ḡ : AbCr(C) →
A• as follows:

• ḡ0 : Z[C0] → A0 is given by the adjoint to g0 : C0 → |A0|.

• Take the map h : Z[C1] → A1 adjoint to the second component of C1 → |A0|× |A1|.
Then for composable ℓ and k in C1, we have by the definition of composition in
|A0| × |A1| that h(ℓ ◦ k) = h(ℓ) + h(k). Hence, we can let ḡ1 be the induced map
Z[C1]/ ∼→ A1.

• For n ≥ 2, we need to define a map ḡn : Cn/C1 → An, given a map gn : Cn →∐
|A0| An. By definition of Cn/C1, it suffices to argue that for ℓ ∈ C1 and α ∈ Cn,

gn(α) = gn(φℓ(α)). But this follows as we said the action is trivial.
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We can now conclude the proof of 3.1:

Proof Proof of 3.1, item (3). Let C be a 1-reduced crossed complex. Then AbCr(C)
is the chain complex where AbCr(C)0 = Z, AbCr(C)1 = 0, AbCr(C)n = Cn for n > 1. Then
ÃbCr(C) is 0 in dimensions 0 and 1, and ÃbCr(C)n = Cn for higher dimensions. Then the
map is C → (UCr ◦ ÃbCr)(C) is evidently the identity in dimensions 1 and higher, and in
dimension 0 is the composition {•} → |Z| → |Z/Z|, and so also an isomorphism there.

Proof Proof of 3.1, item (4).We will construct a natural isomorphism η : UsT◦ΓZ ⇒
ΓCrCom ◦ UCr. Let A• ∈ Ch+

Z . We inductively define η as follows:

• Since the 0-simplices of (UsT ◦ΓZ)(A•) and (ΓCrCom ◦UCr)(A•) are both A0, η is the
identity on 0-simplices.

• The 1-simplices of (UsT ◦ ΓZ)(A•) are A0 ⊕A1, with boundary maps d0(a0, a1) = a0
and d1(a0, a1) = a0+d(a1). Since the 1-simplices of (ΓCrCom◦UCr)(A•) are |A0|×|A1|,
we can define η as the identity, and the boundary maps agree.

• Let x ∈ (UsT ◦ΓZ)(A•)n be represented by a map NZ(Z[∆n]) → A, and let α be the
image of the unique nondegenerate n-simplex. Then we let

η(x) = (η(d0(x)), . . . , η(dn(x));α)

We must prove that this is a well-defined map of simplicial T -complexes, and that it is
injective and surjective. This is easier to verify for the 0 and 1-simplices, so we focus on
the inductive step:

• For η to be well-defined we must have that di(η(dj(x))) = dj(η(di(x))) whenever
didj = djdi in ∆, the simplex category. This follows from the inductive definition
of boundaries and that dj(di(x)) = di(dj(x)). Furthermore, we must have that
d(α) =

∑
(−1)iaut(η(di(x))),

3 which follows from the definition of NZ(Z[∆n]).

• For η to be a map of simplicial T -complexes, we must have that it commutes with
the face and degeneracy maps, and that it preserves thin simplices. The former
follows directly from the definitions. The latter follows from the identification of
the thin simplices in Lemma 3.5.

• For injectivity: suppose x, y ∈ (UsT ◦ ΓZ)(A•)n and x ̸= y. We wish to show that
η(x) ̸= η(y). Inductively assume that η is injective on the n − 1 simplices. Since
x ̸= y, their representing maps NZ(Z[∆n]) → A must differ, so they must differ
either in the image of the nondegenerate n-simplex, or for some i we must have that
di(x) ̸= di(y). If the former, they are different as their automorphism elements are
different. If the latter, it follows by our inductive hypothesis.

3Recall that if x = (x0, ..., xn;α), then aut(x) = α
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• For surjectivity: let (x0, ..., xn;α) ∈ (ΓCrCom ◦ UCr)(A). Inductively assume that
η is surjective, then define a map NZ(Z[∆n]) → A by sending the nondegenerate
n-simplex to α, and sending the ith boundary to η−1(xi).

4. The Quillen Adjunction StAlg ⊣ UAlg

4.1. The functor AlgKan → sTCom. We are ready to define our strictification
StAlg : AlgKan → sTCom. We will construct this as an iterated quotient of algebraic Kan
complexes, using the work in [Nikolaus, 2011] on the structure of the category AlgKan.

4.2. Definition. Let X be an algebraic Kan complex. We inductively call a simplex
α : ∆n → X thin if any of the following conditions hold:

1. α is degenerate.

2. α is a distinguished filler of X.

3. α is a composition of thin simplices.

4.3. Definition. Let α : ∆n → X and β : ∆n → X be thin simplices of the algebraic
Kan complex X. We call α and β co-thin if there is a map Λn

k → X such that α and β
make the lifting diagram

Λn
k X

∆n

α,β

commute.

In other words, two thin simplices are co-thin if they share a horn.

4.4. Lemma. Let f : X → Y be a map of algebraic Kan complexes. Then f preserves
thin simplices. In particular, if α and β are co-thin in X, then fα and fβ are co-thin in
Y .

Proof. Since f is a map of simplicial sets, if α and β share a horn, then fα and fβ
will share a horn, so it remains only to show that f preserves thin simplices. We do this
inductively, checking that conditions (1)-(3) in the definition of thinness are preserved by
f :

1. if α is degenerate, so is fα since f is a map of simplicial sets.

2. if α is a distinguished filler, then so is fα, since f is a map of algebraic Kan
complexes.
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3. if α is a composition of the thin simplices α0, ..., αn, then fα is a composition of
fα0, ..., fαn (because f is a map of algebraic Kan complexes) and each of these is
thin by the inductive hypothesis.

We can recast our definition of simplicial T-complexes in terms of thinness:

4.5. Lemma. An algebraic Kan complex is a simplicial T-complex (with thin simplices as
in definition 4.2) if and only if it has no distinct, co-thin simplices.

Proof. This follows directly from the definitions.

4.6. Lemma. The inclusion UAlg : sTCom → AlgKan is fully faithful.

Proof. For X, Y ∈ sTCom, a map X → Y is a map of underlying simplicial sets which
preserves the thin simplices. By 4.4, all maps UAlg(X) → UAlg(Y ) are of this form.

Given this setup, we construct our left adjoint as follows: for X ∈ AlgKan, let X1 be
the colimit of the diagram with X and an object ∆n for every pair of co-thin maps α and
β, with the two maps α, β : ∆n → X. More succinctly, let I be an indexing set for all
pairs (αi, βi) of co-thin simplices in X. Then X1 is the coequalizer (in AlgKan) of the
diagram

∐
i∈I ∆

ni X

∐
I αi

∐
I βi

This gives us an algebraic Kan complex X1 equipped with a map X → X1, with the
following properties:

4.7. Lemma. The assignment X 7→ X1 is functorial. Let α and β be co-thin maps of X1.
If they factor through X, then they are equal.

Proof. Functoriality follows from the fact that maps in AlgKan must preserve distin-
guished fillers by Lemma 4.4, so if we have a map X → Y , this induces maps between
the diagrams which define X1 and Y1. The second claim follows from the definition of the
colimit.

Of course, we are not guaranteed that X1 is a simplicial T -complex, as there may be
many co-thin maps which do not factor through X. So, we simply repeat the process,
and obtain X2 with a map X1 → X2, and a similar property. Continuing on gives us a
sequence

X → X1 → X2 → · · ·
And we define StAlg(X) to be the colimit of this diagram in AlgKan. Overloading notation,
we denote each of the natural maps Xk → StAlg(X) by ι. We then have the following:

4.8. Lemma. A simplex α : ∆n → StAlg(X) is a distinguished filler iff there is some n
and some distinguished filler α̃ : ∆n → Xk such that α = ι ◦ α̃.
Proof. This follows from the construction of filtered colimits given in [Nikolaus, 2011].
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4.9. Lemma. A simplex α : ∆n → StAlg(X) is thin iff there is an k ∈ N and a thin
simplex α̃ : ∆n → Xk such that α = ι ◦ α̃.

Proof. We proceed again by induction.

1. Suppose α is degenerate. Then it is degenerate in some Xk, so this follows.

2. Suppose that α is a distinguished filler. Then this follows from the previous lemma.

3. Suppose that α is a composition of thin simplices. Then we can pull the horn which
α is a composition of back to some Xn in which each face is thin, and therefore the
composition α̃ is thin in Xn.

4.10. Lemma. The mapping X → StAlg(X) defines a functor AlgKan → AlgKan such
that StAlg(X) has no distinct, co-thin simplices. Furthermore, StAlg(X) is initial among
algebraic Kan complexes equipped with a map from X which have no distinct, co-thin
simplices.

Proof. Let α and β be co-thin simplices in StAlg(X). Then by the previous lemma they
factor through some finite stage Xn in which they are co-thin, and by construction are
therefore equal in Xn+1, and therefore StAlg(X). Functoriality follows from functoriality
of the colimit and Lemma 4.7.

4.11. Theorem. The mapping X → StAlg(X) defines a functor AlgKan → sTCom
(where the thin simplices of StAlg(X) are as in Definition 4.2) left adjoint to the forgetful
functor sTCom → AlgKan.

Proof. Any map X → Y where Y is a simplicial T -complex factors uniquely through
StAlg(X), so this defines the left adjoint to the forgetful functor (as it is the inclusion of
a full subcategory).

We would like to take this adjunction and bump it up to the level of Quillen adjunction.
To do this we will need to understand the model structure on the the category of simplicial
T-complexes.

4.12. Model Structure on Simplicial T-Complexes. In [Brown and Golasinski,
1989] it was shown that the category of crossed complexes admits a model structure with
distinguished maps as follows:

• The weak equivalences are those which induce an isomorphism on π0, π1, and Hn

for n ≥ 2.

• The fibrations are those maps f : C → D such that f given a p ∈ C0 and y ∈ Dn

with δn(y) = f(p), there exists a z ∈ Cn with f(z) = y.

• The cofibrations are all those maps which lift on the left of the acyclic fibrations.

From this, we easily obtain
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4.13. Theorem. The category of simplicial T-complexes admits a model structure where

• The weak equivalences are the weak equivalences of underlying simplicial sets.

• The fibrations are the Kan fibrations of underlying simplicial sets.

Proof. The model structure is the one transferred along the equivalence of categories
with the category of crossed complexes. By Proposition 6.2 in [Brown and Higgins, 1991],
the fibrations are the Kan fibrations on underlying simplicial sets. By 3.8, the weak
equivalences are the weak equivalences on underlying simplicial sets.

4.14. Corollary. The adjunction StAlg ⊣ UAlg is a Quillen adjunction.

We recall from earlier that the forgetful functor UA : AlgKan → sSet is the right
adjoint of a Quillen adjunction.

4.15. Definition. The functor FA : sSet → AlgKan is the left adjoint to the forgetful
functor UA : AlgKan → sSet, as defined in [Nikolaus, 2011].

4.16. Definition. We define St : sSet → sTCom as the composition StAlg ◦ FA and
USt : sTCom → sSet as UA ◦ UAlg.

4.17. Corollary. The adjunction St ⊣ USt is a Quillen adjunction.

Proof. In [Nikolaus, 2011] it is proven that FA ⊣ UA is a Quillen adjunction. As a
composition of Quillen adjunctions is a Quillen adjunction, the result follows.

The functor St therefore represents the universal “strictification” of the ∞-groupoid
represented by an arbitrary simplicial set. It is natural to ask how lossy this functor is.
An easy general example is the following:

4.18. Theorem. Let X be an n-skeletal simplicial set. Then St(X) is (n+1)-coskeletal.

Proof. Note that by construction of FA, every simplex of dimension n + 1 or higher is
degenerate, a distinguished filler, or a composition of simplices which are either degenerate
or distinguished fillers. It follows then that in St(X) every simplex of dimension n + 1
or higher is thin. Let B : ∂∆N → X be the inclusion of a boundary, where N ≥ n + 2.
Then note that a filler of any horn must be a filler for the boundary, by axiom (3). Of
course, any filler for the boundary is also a filler for each horn. Hence, by existence and
uniqueness of horn fillers, it must be the case that there is a unique extension of B to
∆N .

4.19. Remark. This generalizes that if X is n-skeletal, then Z[X] is (n+ 1)-coskeletal.

4.20. Corollary. Let X be an n-skeletal simplicial set. The map π•(X) → π•(St(X))
contains in its kernel π≥n+1(X).

This motivates the following definition:
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4.21. Definition. Let X be a simplicial set. The higher homotopy groups of X are the
graded pieces of the kernel of the map π•(FA(X)) → π•(St(X)).

We call these groups the “higher” homotopy groups because their dimension may
exceed the geometric dimension of X; they are generated from lower dimensional data.

4.22. Example. Let X be S1∨S2. Then the higher homotopy groups of X are precisely
πn(X) for n ≥ 3.

4.23. Remark. A natural expectation would be that “strictification” of ∞-groupoids
should be idempotent - after all, if X is an ω-groupoid, sitting inside the category of
weak ∞-groupoids (spaces), the universal ω-groupoid with a map from X is just X
itself. And indeed, the adjunction StAlg ⊣ UAlg is idempotent. However, this adjunction
is “homotopically incorrect:” StAlg does not preserve weak equivalences, and so it is
necessary to take the derived functors in order to get the correct strictification adjunction.
The derived adjunction is not idempotent: for instance, K(Z, 2) “is” a strict ∞-groupoid
(that is, has a model as a simplicial T -complex). However, the strictification is homotopy
equivalent to (the basepoint component of) Z[K(Z, 2)], by Theorem 3.1.

5. The induced coalgebra St(X) detects the homotopy type of X

The adjunction St ⊣ USt induces a free functor FSt : sSet → CoAlg(St), where CoAlg(St)
is the category of coalgebras for the comonad St◦USt induced by the adjunction St ⊣ USt.
The free functor FSt is given on objects by

FSt(X) = (St(X), St(ηX) : St(X) → (St ◦ USt)(St(X)))

where η is the unit of the adjunction St ⊣ USt. We will show in this section that FSt(X)
determines the homotopy type of X. In the following section we will upgrade to an
equivalence of quasicategories. The precise theorem in this section is the following:

5.1. Theorem. For X ∈ sSet, denote by St•(X) the cosimplicial object of sSet whose
nth space is (USt ◦ St)n+1(X) and whose coface and codegeneracy maps are induced by the
coalgebra structure of St(X). The natural map

X → holim (St•(X))

is a weak equivalence.

Bousfield and Kan proved a similar result for nilpotent spaces and simplicial abelian
groups in [Bousfield and Kan, 1987], which we rephrase as follows:

5.2. Theorem. [[Bousfield and Kan, 1987], III.5.4] Let X ∈ sSet be nilpotent. Denote
by Z̃•[X] the cosimplicial simplicial set whose nth space is (Z̃[−])n(X), with coface and
codegeneracy maps given by the coalgebra structure on Z̃[X]. Then there is a natural weak
equivalence

X → holim (Z̃•[X])
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Recall that Z[−] is the functor which takes a simplicial set and applies the free abelian
group functor at each level to produce a simplicial abelian group, and Z̃[−] is the func-
tor which takes a pointed simplicial set and applies Z[−], and then quotients out by the
subgroup generate by the sub-simplicial set consisting of the basepoint (and all its de-
generacies). Our proof will essentially be an extension of the Bousfield-Kan result to the
general case, using the identification between simply connected simplicial T -complexes
and simply connected chain complexes that we established in section 3.

5.3. Remark. While the main result and the majority of the work in this paper is done
unpointed, we will need to use pointed spaces in order to relate St(X) to Z̃[X] and thereby
leverage the Bousfield-Kan completion. The adjunctions St ⊣ USt and NCrCom ⊣ ΓCrCom

naturally extend to pointed versions.

5.4. Lemma. Let X be a simply connected pointed simplicial set. There is a natural weak
equivalence

USt(St(X)) → |Z̃[X]|
Proof. Let A → X be a weak equivalence, with A a 1-reduced pointed simplicial set.
We then have the commutative square

ΓCrCom(St(A)) UCr(ÃbCr(ΓCrCom(St(A))))

ΓCrCom(St(X)) UCr(ÃbCr(ΓCrCom(St(X))))

Where ÃbCr being the reduced version of AbCr. The downwards arrows are weak equiv-
alences by basic model category theory, using that all objects of Ch+

Z and CrCom are
fibrant and all objects of sSet are cofibrant. The top arrow is an isomorphism by The-
orem 3.1. Therefore, the bottom horizontal arrow is a weak equivalence. Finally, the
equivalence between the simplicial and the chain complex models (item (4) of Theorem
3.1) completes the argument.

5.5. Lemma. Let X ∈ sSet be connected. For n ≥ 2 and for any choice of basepoint there
is a natural isomorphism of functors

Hn(X̂) ∼= πn(USt(St(X)))

Where X̂ is the universal cover of X. For n = 0, 1 and x ∈ X there is a natural
isomorphism

πn(X) ∼= πn(USt(St(X)))

Proof. The n = 0 case follows readily from the construction, as adding horn fillers
and quotienting co-thin simplices do not change π0. The n = 1 case follows from 3.8,
and that H1(ΓCrCom(St(X)), x) is by definition π1(X1, x) modulo the boundaries of 2-
simplices. For the n ≥ 2 case, in ([Brown et al., 2011], Section 8.4) it is proven that

Hn(X̂) ∼= Hn(ΓCrCom(St(X))). The identification then follows from Lemma 3.8.
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5.6. Lemma. The map X → USt(St(X)) is 1-connected.

Proof. Note that that we have a factorization X → USt(St(X)) → |Z[X]|, which when
we apply π1 gives us π1(X) → π1(X) → π1(X)ab by 5.5, where the composite is the
abelianization. Let α ∈ π1(X). Considering a map S1 → X representing α and applying
functoriality of the sequence, we obtain the commutative diagram

Z Z

π1(X) π1(USt(St(X)))

Where the top arrow is an isomorphism, as if the composition Z → Z → Z is an isomor-
phism, each map must be. We then see that π1(X) → π1(USt(St(X)) must be the identity
under the natural isomorphism π1(X) ∼= π1(USt(St(X))).

5.7. Lemma. If G is a 1-type (that is, if πi(G) ∼= 0 for i > 1), then the unit G →
USt(St(G)) is a weak equivalence.

Proof. This follows from Lemmas 5.6 and 5.5.

5.8. Definition. By a homotopy fibre sequence we shall mean a sequence of pointed
simplicial sets X → Y → Z, such that

X ∗

Y Z

is a homotopy pullback square.

For our purposes, it will really be sufficient just to know that the property of being a
homotopy fibre sequence is invariant under weak equivalence of diagrams, and that for a
pointed, connected simplicial set X the sequence

X̂ → X → X≤1

where again X̂ is the universal cover, and X≤1 is the 2-coskeleton of X, is a homotopy
fibre sequence.

5.9. Lemma. If Y → X → G is a fibre sequence of pointed, connected simplicial sets
where G is a 1-type and X → G induces an isomorphism on π1, then

USt(St(Y )) → USt(St(X)) → USt(St(G))

is a fibre sequence.
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Proof. The given hypotheses tell us that Y → X → G is weak homotopy equivalent
to the standard homotopy fibre sequence X̂ → X → X≤1. As USt and St preserve weak
equivalences, it suffices to show therefore that

USt(St(X̂)) → USt(St(X)) → USt(St(X≤1))

is a homotopy fibre sequence, which we will do by showing it is equivalent to the standard
homotopy fibre sequence

̂USt(St(X)) → USt(St(X)) → USt(St(X))≤1

By 5.6 and 5.7, the map USt(St(X)) → USt(St(X≤1)) is 1-connected and USt(St(X≤1))
is a 1-type. Hence, it is weak equivalent to USt(St(X))≤1. Further, we can lift our map

USt(St(X̂)) → USt(St(X)) to get the dashed arrow in

̂USt(St(X))

USt(St(X̂)) USt(St(X))

Invoking Lemma 5.5, we obtain that this map is an isomorphism on πn for n > 2 and
therefore is a weak equivalence. Putting this together, we have a weak equivalence of
diagrams

USt(St(X̂)) USt(St(X)) USt(St(X≤1))

̂USt(St(X)) USt(St(X)) USt(St(X))≤1

In which the left vertical map and the right vertical map are the two weak equivalences
we just described, and the middle vertical map is the identity. We therefore have a weak
equivalence of diagrams as desired.

Proof Proof of Theorem 5.1. First consider the case where X is connected, and
pick a basepoint for X. We have a fibre sequence X̂ → X → X≤1, where X≤1 is the 2-

coskeleton of X and X̂ is therefore (up to homotopy) a universal cover of X. We consider
the following diagram:

X̂ holim(St•(X̂)) (USt ◦ St)(X̂) (USt ◦ St)2(X̂) · · ·

X holim(St•(X)) (USt ◦ St)(X) (USt ◦ St)2(X) · · ·

X≤1 holim(St•(X≤1)) (USt ◦ St)(X≤1) (USt ◦ St)2(X≤1) · · ·
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By Lemma 5.9, each of the sequences

(USt ◦ St)n(X̂) (USt ◦ St)n(X) (USt ◦ St)n(X≤1)

is a fibre sequence. Since homotopy limits commute, it follows that

holim(St•(X̂)) holim(St•(X)) holim(St•(X≤1))

is a fibre sequence. By Lemma 5.4, we have a commutative diagram

X̂ holim(St•(X̂))

holim(Z̃•(X̂))

Where the downwards arrows is a weak equivalence. By 5.2, X̂ → holim(Z̃•(X̂)) is a

weak equivalence, so X̂ → holim((USt ◦ St)•(X̂)) is as well. By Lemma 5.7, we get a
commutative diagram

X≤1 holim(St•(X≤1))

X≤1

Where the downwards arrow is a weak equivalence. Therefore, the map

X≤1 → holim(St•(X≤1))

is a weak equivalence. It follows by the five lemma that X → holim(St•(X)) is a weak
equivalence.

Finally, for the general case (where X may not be connected): Both the functors
USt and St commute with coproducts, and therefore the map X → holim(St•(X)) is
the coproduct of the map on each of the connected components, from which the result
follows.

6. The adjunction St ⊣ USt induces a comonadic adjunction of∞-categories

In this section we will do a little more work to achieve our main goal: providing an equiv-
alence of homotopy theories between spaces and coalgebras in sTCom for the comonad
St ◦ USt. We will do this via an application of the Barr–Beck–Lurie theorem. The main
theorem of this section is

6.1. Theorem. Let L : sSet ⇄ sTCom : R be the adjunction of quasicategories induced
by the Quillen adjunction St : sSet ⇄ sTCom : USt. Then L ⊣ R is comonadic: that
is, it induces an equivalence of quasicategories between the quasicategory sSet and the
quasicategory of coalgebras for the comonad L ◦R.
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6.2. The induced functor of quasicategories. In general, a Quillen adjunction of
model categories induces an adjunction of quasicategories. Here, our categories are rather
nice: they are both simplicially enriched. It is therefore reasonable to expect that we
might be able to use this simplicial enrichment to define the ∞-categorical adjunction we
seek. Unfortunately, the functor USt is not simplicial (see [Tonks, 2003]), which compli-
cates using these tools. Therefore, we ignore entirely the underlying simplicial enrichment
and use basic model categorical tools.

In ([Mazel-Gee, 2016], A.3), a general technique for obtaining adjunctions of qua-
sicategories from model categories with functorial (co)fibrant replacement is described.
Fortunately, we are in the simplest possible case: sSet has as its cofibrant replacement
functor the identity functor, and sTCom has as its fibrant replacement functor the identity
functor. Hence, the argument there allows us to conclude the following:

6.3. Theorem. The adjunction St ⊣ USt induces an adjunction of quasicategories L :
sSet ⇄ sTCom : R with unit transformation induced directly by the unit transformation
1sSet → USt ◦ St.

To see this argument more fleshed out, see the appendix.

6.4. Comonadicity. In order to prove our main theorem, we will apply the Barr-Beck-
Lurie Theorem:

6.5. Theorem. [[Lurie, 2009], Theorem 4.7.2.2] A functor F : C → D exhibits C as
comonadic over D if and only if it admits a right adjoint, is conservative, and preserves
all limits of F -split coaugmented cosimplicial objects.

Our aim is to prove that the functor L : sSet → sTCom exhibits sSet as comonadic
over sTCom. Of course, we already have a right adjoint. Conservativity of L is, as it
turns out, a classical fact:

6.6. Lemma. L : sSet → sTCom is conservative.

Proof. We want to prove that for a morphism f : X → Y in sSet, if L(f) is a weak
equivalence, then so is f . If L(f) is a weak equivalence, then it induces isomorphisms on
all the homotopy groups of the underlying simplicial sets of L(X) and L(Y ). Equiva-
lently by Lemma 5.5, it induces an isomorphism on all homology groups of the associated
crossed complexes. By 5.5, this is equivalent to saying that f induces an isomorphisms
on π0(X) → π0(Y ), π1(X) → π1(Y ) for any choice of basepoint, and Hn(X̂) → Hn(Ŷ )
for n ≥ 2. By ([Dieck, 2010], 20.1.8), f is a weak homotopy equivalence.

It therefore remains to verify the last condition about F -split coaugmented cosimplicial
objects. The following lemma simplifies the work to be done:

6.7. Lemma. [[Holmberg-Peroux, 2020], Prop 6.1.4] Given a pair of adjoint functors
L : C ⇄ D : R in quasicategories, such that L is conservative. Then L is comonadic if
and only if the map X → limC

∆(RL•+1X) is an equivalence for all objects X in C.
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Proof Proof of 6.1. By Lemma 6.6 and the above lemma, we only need to prove that
for any X ∈ sSet, the map X → limC

∆(RL•+1X) is an equivalence. However, by our
construction of the quasicategorical adjunction, the cosimplicial object RL•+1X is the
same as the diagram St•X as in Theorem 5.1. Since homotopy limits compute limits in
the associated quasicategory, this then follows directly by Theorem 5.1.

6.8. Remark. We have phrased our main theorem as being about simplicial sets and
simplicial T -complexes, but of course from the equivalence of categories sTCom ⇄ ωGpd
the analagous statement for ω-groupoids immediately follows.

7. Future Work

• The most immediate line of future inquiry is to extend this work to categories, not
just groupoids: that is, construct adjunctions between categories of strict and weak
(∞, n) categories, and determine if these are comonadic. Perhaps the most full
extension along these lines would be to construct for any m ≥ n a strictification
functor from weak (m,n)-categories to strict (m,n)-categories, and of course show
that the resulting diagram of homotopy theories indexed by N2 × [1] commutes.

• One consequence of this work is a globular model for homotopy types: the objects
are strict ∞-groupoids equipped with a coalgebra map for the comonad UStΓCrCom ◦
NCrCom◦St. However,this description strongly relies on simplicial sets as an interme-
diary to describe the comonad. Thus, one goal is to construct a comonad of ωGpd
which is equivalent to the comonad induced by the comonad on sTCom, but which
is more “inherently globular.”

• Although this work proves that ω-groupoids can be used to model weak∞-groupoids,
it does not provide a convenient model category of coalgebras. A strengthening of
this result would be to construct a model structure on the category of coalgebras for
the comonad, along with a Quillen equivalence to the model category of simplicial
sets.

A. The passage to quasicategories

In this section we flesh out in greater detail the passage from the Quillen adjunction
St : sSet ⇄ sTCom : USt to the adjunction of quasicategories L : sSet ⇄ sTCom : R,
in order to fully justify our results. There is nothing original in this section: we simply
flesh out some of the argument in [Mazel-Gee, 2016] as it applies to our particular case of
interest, in order to make it more accessible to the non-expert reader.

In order to obtain a quasicategory from a relative category (in particular, a model
category), we shall pass through complete Segal spaces, which are the fibrant objects in
a certain model structure on bisimplicial sets. We will not exposit much of the theory of
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complete Segal spaces, but direct the interested reader to [Rezk, 1998]. We begin with
our model category, viewed as a relative category (M,W). We then apply the following
two functors:

RelCat ssSet sSet
Nr i∗1

The first functor Nr is called the “Rezk nerve” (originally called the “classifying diagram”
in [Rezk, 1998]). It is given as follows:

A.1. Definition. Given a relative category (M,W), the Rezk nerve Nr(M) is given by
(n,m) 7→ Fun([n],Core(Fun([m],M))).

Here “Core” denotes the subcategory W ⊂ M . Importantly, Nr preserves products,
and so a natural transformation M × I → M is sent to Nr(M)×Nr(I) → Nr(M). Here
I is the standard interval category, equipped with the relative category structure where
only the isomorphisms (the two identity arrows) are weak eqivalences. We wish to obtain
a quasicategory from this. First, we fibrantly replace Nr(M) in the Reedy model structure
to get a bisimplicial set denoted N f

R(M), which is a complete Segal space. We note that
NR(I) is already a complete Segal space, as Nr(C) is a complete Segal space whenever C
is equipped with the minimal relative category structure. Applying this all to our starting
situation of the unit natural transformation of the adjunction St ⊣ USt, we have a map

N f
r (sTCom)×Nr(I) → Nr(sTCom)

whose component at any object of N f
r (sTCom) is precisely the unit mapX → USt(St(X)).

We now apply the functor i∗1 of [Joyal and Tierney, 2006] to obtain a quasicategory.
Conveniently, this functor merely restricts a bisimplicial set X⋆⋆ to its first row X⋆0, and
so we have now a diagram

i∗1
(
N f

r (sSet)
)
×N(I) → i∗1

(
N f

r (sSet)
)

Where N(I) is the ordinary nerve of the category I. We take i∗1
(
N f

r (sSet)
)
as our model

for the quasicategory of simplicial sets sSet (and similarly i∗1
(
N f

r (sTCom)
)
models the

quasicategory of simplicial T -complexes sTCom). This map is a candidate unit map for
the quasicategorical adjunction L : sSet ⇄ sTCom : R in the sense of ([Lurie, 2009],
Definition 5.2.2.7); to show that it truly provides a quasicategorical adjunction it must
be shown that it induces weak equivalences

Map
sTCom

(L(x), y) → Map
sSet

(R(L(x)),R(y)) → Map
sSet

(x,R(y))

For any x and y objects in sSet, where Map
C
is the mapping space between objects in

a quasicategory. This follows from the fact that these mapping spaces are functorially
equivalent to the mapping spaces given by hammock localization, which in turn are equiv-
alent by [Dwyer and Kan, 1980] to mapping spaces calculated via cosimplicial resolutions.
This reduces the problem to checking the weak equivalence on the level of model cate-
gories, where we can apply ([Dwyer and Kan, 1980], Proposition 5.4) to conclude that the



STRICTIFICATION OF ∞-GROUPOIDS IS COMONADIC 303

induced map of mapping spaces is an isomorphism.
We now have that the unit transformation for the adjunction of quasicategories can

be taken to be the unit transformation at the level of categories (more precisely, that
the component at any object X is the arrow X → (USt ◦ St)(X)). Hence the canoni-
cal cosimplicial resolution induced by the adjunction of quasicategories is equivalent to
the canonical cosimplicial resolution induced by the adjunction of model categories, and
therefore addressing the question of whether it is a limit diagram in the quasicategory
sSet reduces to the question of whether it is a homotopy limit diagram in the simplicial
model category sSet, justifying our usage of Theorem 5.1 to prove Theorem 6.1.
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