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A NOTE ON THE RELATIONSHIP BETWEEN ACTION
ACCESSIBLE AND WEAKLY ACTION REPRESENTABLE

CATEGORIES

JAMES RICHARD ANDREW GRAY

Abstract. The main purpose of this paper is to show that the converse of the known
implication weakly action representable implies action accessible is false. In particular we
show that both action accessibility, as well as the (at least formally stronger) condition
requiring the existence of all normalizers do not imply weakly-action-representability
even for varieties. In addition we show that in contrast to both action accessibility and
the condition requiring the existence of all normalizers, weakly-action-representability
is not necessarily inherited by Birkoff subcategories.

1. Introduction

Recall that for a pointed category C, a split extension (of B with kernel X) is a diagram
in C

X
κ // A

α // B
β
oo (1)

where (X, κ) is the kernel of α, and αβ = 1B. A morphism of split extensions is a diagram
in C

X
κ //

u
��

A
α //

v
��

B
β

oo

w
��

X ′ κ′
// A′ α′

// B′
β′
oo

(2)

where the top and bottom rows are split extensions (the domain and codomain respec-
tively), and vκ = κ′u, vβ = β′w and wα = α′v. Let us denote by SplExt(C) the category
of split extensions in C, and by K and P the functors sending a split extension to its
kernel and codomain, respectively. These data together form a span

C SplExt(C)Poo K // C. (3)

Recall also that when C is pointed protomodular [2], for each object X in C, the assign-
ment of each object B to the isomorphism class of split extensions Ξ with K(Ξ) = X
and P (Ξ) = B, determines a functor SplExt(−, X) : Cop → Set which assigns to each
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morphism p : E → B the morphism SplExt(p,X) defined by pulling back along p. The
category C is action representable in the sense of [1] when each of these functors is
representable and is weakly action representable [7] when for each X in C there ex-
ists a weak representation, that is there is a pair (M,µ) where M is an object in C
and µ : SplExt(−, X) → hom(−,M) is a monomorphism. Note that when the functor
SplExt(−, X) is representable the representing object will be written JXK.

Action representability can also be rephrased as requiring that for each X in C the
fiber K−1(X) has a terminal object, and action accessibility [4] can be phrased, by the
weakening of this, to instead require that for each X in C the fiber K−1(X) has enough
sub-terminal objects, that is, each object admits a morphism into a sub-terminal object
(= an object admitting at most one morphism into it from any object). The sub-terminal
objects in K−1(X) are called faithful split extensions.

In [7], G. Janelidze proved for a semi-abelian category (in the sense of Janelidze,
Marki, Tholen [8]) weakly-action-representability implies action accessibility (Theorem
4.6 of [7]). The main purpose of this paper is to show that the converse does not hold.
We show that a Birkoff subcategory of a (weakly) action representable category is not
necessarily weakly action representable. This should be contrasted with the fact that a
Birkoff sub-category of an action accessible category is necessarily action accessible [4],
and the immediate Proposition 2.1 below which shows if C is a category admitting all
normalizers (in the sense of [5] or in the sense of [3]), then every full subcategory of C
closed under sub-objects and finite limits, admits all normalizers. In particular we show
that the category of n-solvable groups (n ≥ 3) is action accessible and has normalizers,
but is not weakly action representable.

2. The results

In this section we prove our main results.
Recall that the normalizer of a monomorphism f : W → X in [5] was defined to be

the universal factorization of f as normal monomorphism followed by a monomorphism

W

f

55
n // N

m // X.

A different definition was given in [3], which in pointed, finitely complete context can be
formulated as a commutative diagram

W

f

��

n
��

κ // R

⟨r1,r2⟩
��

N
⟨0,1⟩ //

m
��

N ×N

X
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where the upper square is a pullback and the morphisms r1, r2 : R → N are the projections
of an equivalence relation, which is universal amongst such commutative diagrams. The
two definitions coincide in the pointed exact protomodular context, where r1, r2 : R → N
is necessarily the kernel pair of its coequalizer, which in turn is necessarily a normal
epimorphism with kernel n.

2.1. Proposition. Let C be a pointed category admitting normalizers (in either sense).
If X is a full sub-category of C closed under subobjects and finite limits, then X admits
normalizers (in the same sense).

Proof. It is easy to check that under the conditions above the normalizer in C of a
monomorphism f in X is also the normalizer of f in X.

Recall that a span of monomorphisms m : S → B and m′ : S → B′ in a category C
can be amalgamated in C if there exist monomorphisms u : B → D and u′ : B′ → D in
C such that um = u′m′.

2.2. Proposition. Let C be an action representable category, and let X be a Birkoff
subcategory of C. The category X is not weakly action representable (and hence not
action representable), if there exist monomorphisms m : S → B and m′ : S → B′ in X,
monomorphisms u : B → D and u′ : B′ → D in C, and X in X with a monomorphism
v : D → JXK in C such that

(i) um = u′m′;

(ii) m and m′ cannot be amalgamated in X;

(iii) the split extensions corresponding to vu and vu′ in C are in X.

Proof. The monomorphisms vu, vu′, and vum = vu′m′ produce the span of faithful split
extensions in X.

X
κ // A

α // B
β

oo

X
λ // R

g
��

f

OO

ρ // S

m′
��

m

OO

σ
oo

X
κ′
// A′ α′

// B′
β′
oo

If X were weakly action representable, then SplExt(−, X) would have weak representation
M and there would (by Corollary 4.3 of [7]) be monomorphisms i : B → M and i′ : B′ →
M in X such that im = i′m′. This is impossible since m and m′ can’t be amalgamated in
X.
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2.3. Example. Let C be the category of groups. Recall that: C is action representable
[1] with JXK = Aut(X) (the automorphism group of X), C admits normalizers (in the
sense of [5] or equivalently – in this context – in the sense of [3]), and amalgamation
holds in C (which according to [9] was first proved in [12]). It is well-known that every
group can be embedded in the automorphism group of an abelian group (to prove this one
can recall that every group can be embedded in the symmetric group on its underlying
set, and the symmetric group on a set W can be embedded in Aut(ZW

2 )). Now let X
be the sub-variety of n-solvable groups (n ≥ 3). Neumann showed [11] that there exists
an abelian group S, a 2-nilpontent group B and two monomorphisms m : S → B and
m′ : S → B which can’t be amalgamated as a solvable group. Since n-nilpotent implies
n-solvable, and split extensions with kernel abelian and codomain 2-solvable are at most
3-solvable it follows by the previous proposition that X is not weakly action representable
(one may take D any group with u : B → D and u′ : B′ → D monomorphisms such that
um = u′m′ and then take X = ZD

2 ). It seems worth pointing out that a finite such D does
exist (see e.g. Corollary 15.2 of [10]). Action accessibility of X follows from Proposition
2.3 of [4] together with action accessibility of C (which in turn follows immediately from C
being action representable). Note that X also has normalizers by Proposition 2.1. Action
accessibility of X can then also be obtained from Proposition 4.5 of [3] (see also [6] where
it is proved that action accessibility is equivalent to the existence of certain normalizers).

2.4. Remark. A further interesting application of Proposition 2.2 was suggested by the
anonymous referee, and I hope that the referee will consider publishing this finding.
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