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COLAX ADJUNCTIONS AND LAX-IDEMPOTENT
PSEUDOMONADS

MILOSLAV ŠTĚPÁN

Abstract. We prove a generalization of a theorem of Bunge and Gray about forming
colax adjunctions out of relative Kan extensions and apply it to the study of the Kleisli
2-category for a lax-idempotent pseudomonad. For instance, we establish the weak
completeness of the Kleisli 2-category and describe colax change-of-base adjunctions
between Kleisli 2-categories. Our approach covers such examples as the bicategory of
small profunctors and the 2-category of lax triangles in a 2-category. The duals of our
results provide lax analogues of classical results in two-dimensional monad theory: for
instance, establishing the weak cocompleteness of the 2-category of strict algebras and
lax morphisms and the existence of colax change-of-base adjunctions.

1. Introduction

The primary motivation for this paper is to develop lax analogues of classical results
in two-dimensional algebra, in particular two-dimensional monad theory as studied in
[BKP89]. The examples commonly studied in this area include 2-categories of cate-
gories with structure and pseudo morphisms between them – functors that preserve the
structure up to coherent isomorphism. For instance categories equipped with a class of
colimits and colimit-preserving functors, or monoidal categories and monoidal functors.
Such 2-categories can be described as the 2-category T-Alg of T -algebras and pseudo-
T -morphisms for a 2-monad T . Various results have been proven in [BKP89] about
T -algebras and pseudo-T -morphisms, for instance their bicocompleteness or the existence
of change-of-base biadjunctions between 2-categories of algebras and pseudo-morphisms
for two different 2-monads S, T .

On the other hand, there are fewer known results about 2-categories of categories with
structure and lax morphisms between them. These still include interesting examples, for
instance categories equipped with a class of colimits and all functors between them, or
monoidal categories and lax monoidal functors. They can also be described using 2-
monads, this time as the 2-category T-Algl of T -algebras and lax T -algebra morphisms.
While limits in T-Algl have been well-understood ([Lack05], [LS12]), not much has been
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proven about colimits. This was for a good reason: 2-colimits or even bicolimits often do
not exist in those 2-categories. Our task in this paper is to suitably weaken the notion
of a bicolimit and show that 2-categories of lax morphisms are in fact cocomplete in this
weak sense. Another task we have is to establish change-of-base theorems for algebras
and lax morphisms. Again, the notion that works for pseudo-morphisms – biadjunctions
– will have to be replaced by a weaker one – colax adjunctions.

The 2-category T-Alg of algebras and pseudo-morphisms can often be described as
the Kleisli 2-category for a certain pseudo-idempotent 2-comonad. A key observation to
be made is that many statements and proofs about T-Alg in papers [BKP89], [BG13] are
very formal and are in fact true for any pseudo-idempotent 2-comonad on a 2-category.
They also easily dualize to pseudo-idempotent 2-monads. Since we are interested in the
lax world, we are naturally led to the study of Kleisli 2-categories for lax-idempotent
pseudomonads, using the formalism of left Kan pseudomonads [MW12]. The usage of
pseudomonads instead of 2-monads will allow us to consider a wider array of examples
such as the small presheaf pseudomonad, and lets us prove that the bicategory PROF
of locally small categories and small profunctors is weakly complete in the sense of the
previous paragraph.

As mentioned, colax adjunctions are inevitable when working with lax morphisms.
The definition of a (co)lax adjunction is hard to work with because it contains a large
amount of data. Our first main result, Theorem 3.3, shows that a left colax adjoint F to a
pseudofunctor U can be more conveniently given by a collection of 1-cells yA : A→ UFA
satisfying certain “relative U -left Kan extension” conditions. This is an extension of the
work of Bunge and Gray ([Bunge74], [Gray06]) where this has been proven for the case
when U is a 2-functor. A result of this kind is similar to how left Kan pseudomonads
provide a more convenient description of lax-idempotent pseudomonads. We will use
this theorem to obtain results on colax adjunctions involving the Kleisli 2-category for
a lax-idempotent pseudomonad (Theorem 4.19), and the dual of this result will be used
to obtain results on colax adjunctions involving T -algebras and lax T -morphisms for a
2-monad (Theorem 5.10).

The paper is organized as follows. In Section 2 we recall the necessary concepts that
we will need in this paper. With the small exception of left Kan 2-monads, everything
here is well-known.

In Section 3 we prove the generalization of Bunge’s and Gray’s results on colax ad-
junctions to the setting of pseudofunctors: we show that there is a correspondence be-
tween left colax adjoint pseudofunctors to a pseudofunctor U and collections of 1-cells
yA : A → UFA satisfying the aforementioned relative U -left Kan extension conditions
(Theorem 3.5).

In Section 4 we first give (an essentially folklore) characterization of algebras for a
lax-idempotent pseudomonad in terms of the existence of certain adjoints (Proposition
4.12). We then use this characterization and the generalized Bunge’s and Gray’s result
to prove that when given a lax-idempotent pseudomonad D on K, any left biadjoint
K → L that factorizes through the Kleisli 2-category KD gives rise to a colax left adjoint
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KD → L (Theorem 4.19). We list various applications, for instance the weak completeness
of KD (Theorem 4.37) provided that K is bicomplete, or that there is a canonical colax
adjunction between KD and the 2-category of pseudo-D-algebras (Corollary 4.21).

In Section 5 we spell out what these results in particular say about the 2-category
T-Algl of strict algebras and lax morphisms for a 2-monad T . This includes the aforemen-
tioned colax change-of-base theorem (Corollary 5.12) as well as the weak cocompleteness
result for T-Algl (Theorem 5.13).

Prerequisities. We assume the reader is familiar with 2-monads and pseudomonads
and their pseudo and strict algebras. We also assume the familiarity with lax-idempotent
pseudomonads.

Acknowledgements. I want to thank my Ph.D. supervisor John Bourke for his careful
guidance and all the feedback I have received. I also want to thank Nathanael Arkor for
sharing his knowledge with me.

2. Background

2.1. Colax functors and transformations. In this text we will primarily use the
colax versions of concepts such as lax functors, lax transformations. The motivation for
this is that we are building on the work of Bunge [Bunge74] which uses colax structures,
as opposed to lax ones1.

2.2. Definition. Let A,B be 2-categories. A colax functor F : A → B consists of:

• A function F0 : ob A → ob B,

• for every pair A, B of objects of A a functor FA,B : A(A,B) → B(FA, FB),

• for every composable pair (f, g) of morphisms in A a 2-cell (associator)
γf,g : F (g ◦ f) ⇒ Fg ◦ Ff ,

• for every object A ∈ A a 2-cell (unitor) ιA : F1A ⇒ 1FA,

subject to associativity and unit axioms, see [JY21, Definition 4.1.2] or (the dual of)
[Bénabou67, 4.1]. If γ and ι go in the other direction, we obtain the notion of a lax
functor. In case γ, ι are invertible, this is called a pseudofunctor.

For simplicity, we will always use the letters γ, ι for the associator and the unitor of a
colax functor, and always omit the index for any of its components.

1In [Bunge74], colax natural transformations are referred to as lax. In this paper we are following the
modern terminology.
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2.3. Definition. Given 2-categories A,B and two pseudofunctors F,G : A → B, a colax
natural transformation α : F ⇒ G consists of the following data:

• For every A ∈ A a 1-cell αA : FA→ GA,

• For every f : A→ B ∈ A a 2-cell:

FA GA

FB GBαB

αA

Ff Gfαf

These must satisfy certain unit, composition, local naturality conditions, see [JY21, Defi-
nition 4.3.1]. If the 2-cells αf go in the other direction, this is referred to as a lax natural
transformation. If αf is invertible for all morphisms f , α is called a pseudo-natural
transformation. If the αf ’s are the identities, we use the term 2-natural transformation.

2.4. Definition. Given two pseudonatural transformations α, β between pseudofunctors
F,G : K → L, a modification Γ : α → β consists of a 2-cell ΓA : αA ⇒ βA for every
object A ∈ K, subject to the modification axiom for each 1-cell in K, see [JY21, Definition
4.4.1].

2.5. Example. Given an endofunctor T : A → A, any colax natural transformation
c : T ⇒ 1A induces a modification (cc) : c ◦ Tc → c ◦ cT , whose component at A ∈ A is
given by:

(cc)A := ccA : cA ◦ TcA ⇒ cA ◦ cTA.

2.6. Remark. Pseudofunctors preserve colax natural transformations. If H : C → D is a
pseudofunctor and α : F ⇒ G : B → C is colax natural, there is an induced colax natural
transformation Hα whose 1-cell component at A is HαA and whose 2-cell component at
a morphism f : A→ B is the following composite 2-cell that we denote by (Hα)f :

FA GA

FB GB
HαB

HFf

HαA

HGf
Hαf

γ−1

γ

2.7. Colax adjunctions. Lax adjunctions, also called quasi-adjunctions in [Gray06,
I,7.1] are a categorification of adjunctions between functors where the unit and the counit
are replaced by lax natural transformations, and the triangle identities are replaced by
modifications. As in the previous section, we will use the dual notion – colax adjunctions.
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2.8. Definition. A colax adjunction consists of two pseudofunctors U : D → C and
F : C → D, two colax natural transformations η : 1 ⇒ UF and ϵ : FU ⇒ 1 and two
modifications:

F FUF U UFU

F U

Fη

ϵF

ηU

Uϵ

Ψ Φ

Before stating the axioms required, let us fix a convention: we will use the symbol
UΨ to denote the modification obtained from Ψ by not just applying U , but also by pre-
and post-composing it with the associator and the unitor for U so that its domain and
codomain are UϵF ◦UFη, 1UF . Let us use the same convention for FΦ. The axioms are
the swallowtail identities, which assert that the two composite modifications below are the
identities on η and ϵ:

1C UF FU

UF UFUF FUFU FU

UF FU 1D

η

η

UFη

ηUF

ηη

UϵF

FηU

FUϵ

ϵFU

ϵ

ϵ
ϵϵ

UΨ

ΦF

FΦ

ΨU

2.9. Notation. We will denote a colax adjunction as follows and say that F is a left
colax adjoint to U :

(Ψ,Φ) : (ϵ, η) : C D

F

U

⊣⊣

There are several important variations or special cases:

• if ϵ, η are lax natural, Ψ,Φ go in the other directions and an appropriate dual of the
swallowtail identities holds, we will call it a lax adjunction,

• in case that ϵ, η are pseudonatural transformations and Ψ,Φ are isomorphisms, we
will use the term biadjunction.

• if U, F are 2-functors, ϵ, η are 2-natural and Ψ,Φ are the identities, we will call this
a 2-adjunction.

Since the last two cases are the more usual notion, we will use the usual symbol ⊣ instead
of ⊣⊣ for them.
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2.10. Remark. Contrary to the case of biadjunctions, left colax adjoints are not unique
up to an equivalence, not even when U is a 2-functor, η is 2-natural and Ψ, Φ are the
identities. An example will be given in Remark 4.36.

2.11. Lax-idempotent and left Kan pseudomonads.The notion of a lax-idempotent
pseudomonad (see [MW12, Section 2]) contains a large amount of data and axioms. A
major simplification can be achieved if one works with left Kan pseudomonads instead.
In this section we recall all the basic definitions and mention the equivalence of left Kan
pseudomonads and lax-idempotent pseudomonads. We also define a special class of left
Kan pseudomonads that we call left Kan 2-monads – this is the obvious strict version of
the notion.

2.12. Definition. A left Kan pseudomonad ([MW12]) (D, y) on a 2-category K consists
of:

• A function D : ob K → ob K,

• For every A ∈ K a 1-cell yA : A→ DA called its unit,

• For every 1-cell f : A → DB a left Kan extension of f along yB such that the
accompanying 2-cell is invertible:

A DA

DB

fD

yA

f

Df

(1)

These are subject to the axioms:

• For every A ∈ K, the identity 2-cell 1yB on yB exhibits 1DA as a left Kan extension
of yA along yA:

• for every g : B → DC, f : A→ DB, gD preserves the left Kan extension (1).

2.13. Definition. A pseudo-D-algebra consists of an object C ∈ K together with a
mapping that sends every 1-cell f : B → C to the left Kan extension of f along yB such
that the accompanying 2-cell is invertible:

B DB

C

fC

yB

f

Cf

(2)

and such that for every f : A→ DB, gB preserves the left Kan extension (1).
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A D-pseudomorphism h : B → A between pseudo-D-algebras C,X is a 1-cell h : C →
X that preserves the Left Kan extension (2). A pseudo-D-algebra 2-cell α : h ⇒ h′ :
B → A is just a 2-cell in K. All this data assembles into a 2-category that we denote by
Ps-D-Alg.

2.14. Definition. By the Kleisli 2-category KD associated to the left Kan pseudomonad
(D, y) we mean the full sub-2-category of Ps-D-Alg spanned by free D-algebras, that is,
algebras whose underlying object is of form DA for some object A ∈ K and the extension
operation is given by (−)D.

2.15. Proposition. There is a “free-forgetful” biadjunction given as follows:

(Ψ,Φ) : (p, q) : K KD

JD

UD

⊣

• The right biadjoint UD is the forgetful 2-functor sending an algebra to its underlying
object,

• the left biadjoint is a normal pseudofunctor sending:

(f : A→ B) 7→ ((yBf)
D : DA→ DB),

• the counit p : JDUD ⇒ 1 evaluated at the object DA is the following D-pseudomorphism:

pDA := (1DA)
D : D2A→ DA,

With its pseudonaturality square at an algebra morphism h being the canonical iso-
morphism between 1DDBDh and h1DDA, as both are the left Kan extensions of h along
yDA.

• the unit is given by the unit of the left Kan pseudomonad y : 1 ⇒ UDJD, with the
pseudonaturality square at a morphism h : A → B being given by the canonical
isomorphism:

A DA

B DB

Dh

yA

yB

h DyBh

• the components of the modifications are given by the canonical isomorphisms:

Ψ : pJD ◦ JDy ∼= 1JD ,

Φ : 1UD
∼= UDp ◦ yUD.

This biadjunction is moreover lax-idempotent, meaning the following:
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2.16. Proposition. There exist (non-invertible) modifications Γ,Θ that serve as the unit
and the counit of the following adjunctions:

(Φ−1,Γ) : UDp ⊣ yUD,
(Θ,Ψ−1) : JDy ⊣ pJD.

Proof. The 2-cell ΓDA : 1D2A ⇒ yDA ◦ pDA is the unique solution to the following
equation:

D2A D2A

DA DA = DA DA

D2A D2A

yDA

yDA

pDA

yDA

yDA pDA

yDAyDA

ΦDA

∃!

This also proves the first triangle identity. The proof of the second triangle identity
is done by pre-composing by yA and using the appropriate universal properties. By
doctrinal adjunction, the collection of adjunctions (Φ−1

DA,ΓDA) : pDA ⊣ yDA lifts to give
the claimed adjunction of pseudonatural transformations. The other adjunction is proven
in an analogous way.

2.17. Theorem. There is a correspondence between:

• left Kan pseudomonads (D, y) on K,

• lax-idempotent pseudomonads (D,m, y) on K.

Moreover, the left Kan pseudomonad and lax-idempotent pseudomonad corresponding to
one another have biequivalent 2-categories of algebras, and this biequivalence commutes
with the forgetful 2-functors to K.

Proof. For the full proof see [MW12, 4.1, 4.2], here we sketch only the bits relevant for
this paper. Given a left Kan pseudomonad (D, y), the lax-idempotent pseudomonad is
given by a normal pseudofunctor D : K → K with action on 1-cells and 2-cells given by
UD ◦JD from Proposition 2.15. The components of the unit y become pseudonatural with
the pseudonaturality square given by the Kan extension 2-cell:

A DA

B DB

yA

(yBf)
D=:Dff

yB

D

The multiplication at A ∈ K is given by the morphism pDA again as in Proposition 2.15.
On the other hand, given a lax-idempotent pseudomonad (D,m, y), the left Kan extension
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of f : A → DB along yA : A → DA is given by the composite of the pseudonaturality
2-cell yf and the pseudomonad unitor 2-cell:

A DA

DB D2B

DB

yA

f

yDB

Df

mB

yf

∼=

In the rest of the paper we will use the terms “left Kan pseudomonads” and “lax-
idempotent pseudomonads” interchangeably.

2.18. Remark. [Duals] A lax-idempotent pseudomonad T on a 2-category K is equiva-
lently:

• a colax-idempotent pseudomonad T co on Kco,

• a colax-idempotent pseudo-comonad T op on Kop,

• a lax-idempotent pseudo-comonad T coop on Kcoop.

2.19. Remark. We may also define the Kleisli bicategory associated to a left Kan pseu-
domonad (D, y), where objects are the objects in K and a morphism A ⇝ B in KD

corresponds to a morphism A → DB in K. The unit is given by the unit of the pseu-
domonad, while the composition is defined using the extension operation:

A B C 7→ A B
f g gD◦f

For the full definition of the Kleisli bicategory associated to a pseudomonad, see [FGHW18,
Theorem 4.1]. We will denote this bicategory by Kl(D). It is routine to verify that there
is a pseudofunctor N : Kl(D) → KD sending the Kleisli morphism f : A ⇝ B to
fD : DA → DB and that it is a biequivalence of bicategories. In this paper we will for
the most part use the 2-category presentation since it is easier to work with.

2.20. Left Kan 2-monads. There is a class of lax-idempotent pseudomonads that will
play a role: the ones for which the pseudomonad is actually a 2-monad. We will show
that these correspond to what we call left Kan 2-monads.

2.21. Definition. A left Kan pseudomonad (D, y) is a left Kan 2-monad if:

• Df is the identity 2-cell for every 1-cell f : B → DA, meaning that fD ◦ yB = f ,

• gDfD = (gDf)D,

• yDA = 1DA.

Notice that in case of left Kan 2-monads, the biadjunction from Proposition 2.15 becomes
a 2-adjunction. Let us also note the following:
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2.22. Proposition. The correspondence from Theorem 2.17 restricts to the correspon-
dence between left Kan 2-monads (D, y) and lax-idempotent 2-monads (D,m, i).

Proof. “⇒”: Let (D, y) be a left Kan 2-monad. As we outlined in the proof of Theorem
2.17, the pseudofunctor D is defined as this left Kan extension:

A DA

B DB

yA

(yBf)
D=:Dff

yB

If (f : A→ B, g : B → C) is a composable pair of morphisms, we have:

D(gf) = (yCgf)
D = ((yCg)

DyBf)
D = (yCg)

D(yBf)
D = DgDf

Also, D1A = yDA = 1DA so D is a 2-functor. This also makes y a 2-natural transformation
since the pseudo-naturality square is the identity. Next, the pseudo-naturality square for
the multiplication m : D2 ⇒ D is also the identity since both of the triangles below
commute:

D2A DA

D2B DB

D2f

1DDB

1DDA

Df(Df)D

“⇐”: If (D,m, i) is a lax-idempotent 2-monad, the corresponding left Kan extension
in the proof of Theorem 2.17 has the 2-cell component equal to the identity. The other
identities in Definition 2.21 are shown by a straightforward manipulation using the 2-
monad identities.

2.23. Examples.

2.24. Example. Given a locally small category A, denote by PA the full subcategory
of [Aop, Set] spanned by small presheaves, that is, presheaves that are small colimits of
representables. The assignment A 7→ PA defines a left Kan pseudomonad on the (large)
2-category CAT of locally small categories, with the unit yA : A → PA being given
by the Yoneda embedding and the extension operation being given by ordinary left Kan
extension along yA. These are guaranteed to exist because of the cocompleteness of PB;
and since yA is fully faithful, the accompanying 2-cell is invertible):

A PA

PB

yA

LanyAFF
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A pseudo-P -algebra is precisely a cocomplete category, and pseudo-P -morphisms are
cocontinuous functors. The Kleisli 2-category CATP thus has presheaf categories as ob-
jects and cocontinuous functors as morphisms. In fact, it can be seen to be biequiva-
lent to the bicategory Prof whose objects are locally small categories and whose mor-
phisms A ⇝ B are small profunctors H : Bop × A → Set. Here we call a profunctor
H : Bop × A → Set small if for every a ∈ A, the presheaf H(−, a) : Bop → Set is small
(belongs to PB).

Under this identification, the left biadjoint from the Kleisli biadjunction in Proposition
2.15 P : CAT → Prof sends functor f : A → B to the profunctor:

B(−, f−) : Bop ×A → Set.

We remark that alternatively there is also a 2-monad presentation for this pseudomonad
that uses inaccessible cardinals, see [KL00, Chapter 7].

2.25. Example. Let K be a 2-category with comma objects and fix an object C ∈ K.
There is a 2-monad P on K/C that sends a morphism f : A → B to the morphism
πf : Pg → C which is a projection of the following comma object in K:

Pf A

C C

ρf

πf fχ (3)

This 2-monad is known to be colax-idempotent with its algebras being fibrations in K
([Street72c, Proposition 9]). Its Kleisli 2-category can be presented as having the objects
functors with codomain C, while a morphism F ⇝ G is a 1-cell θ : A → Pg making the
triangle below left commute:

A Pg B A B

C C C C

θ

f

ρg

πg g

u

f gχ α

From the definition of the comma object, this corresponds to pairs (u, α) of a 1-cell
u : A→ B and a 2-cell α : gu⇒ f as portrayed above right.
In other words, the Kleisli 2-category for this 2-monad is isomorphic to the colax slice
2-category K//C2. Under this identification, we have a 2-adjunction:

K/C K//C

J

U

⊣

2This 2-category can also be presented as the 2-category of strict coalgebras and lax morphisms for
the 2-comonad (−)× C, see [CN24, Chapter 5].
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The left 2-adjoint is the canonical inclusion, the right 2-adjoint sends an object f :
A → C to the comma object projection πf : Pf → C. The counit p : JU ⇒ 1K//C
evaluated at an object f : A→ C is the colax commutative triangle (ρf , χ) : πf → f from
(3).

In the remainder of this section we recall a class of lax-idempotent 2-comonads that come
from two-dimensional monad theory. Recall the 2-categories T-Algs, T-Alg, T-Algl of
strict algebras and strict, pseudo and lax morphisms for a 2-monad T from [BKP89, 1.2].
Also recall the notions of a codescent object and a lax codescent object from [Lack02, Page
228].

2.26. Definition. Let T be a 2-monad on a 2-category K and let (A, a) be a strict T -
algebra. By its resolution, denoted Res(A, a), we mean the following diagram in T-Algs:

T 3A T 2A TAT iA

Ta

mAmT2A

TmTA

T 2a

2.27. Theorem. Let T be a 2-monad on a 2-category K and assume the 2-category
T-Algs admits lax codescent objects of resolutions of strict algebras. Then the inclusion 2-
functor T-Algs → T-Algl admits a left 2-adjoint. Similarly, assume the 2-category T-Algs
admits codescent objects of resolutions of strict algebras. Then the inclusion 2-functor
T-Algs → T-Alg admits a left 2-adjoint:

T-Algs T-Algl T-Algs T-Alg

J

(−)†

Jp

(−)′
⊣ ⊣

In the first case, the value of a left 2-adjoint at a T -algebra (A, a) is given by the lax
codescent object of the diagram Res(A, a) in T-Algs. In the second case, codescent object
is used.

Proof. See Lemma 3.2 and Theorem 2.6 in [Lack02].

2.28. Remark. The assumptions of Theorem 2.27 are satisfied whenever the base 2-
category K is cocomplete and T is finitary (preserves filtered colimits). This is because
the codescent objects of a resolution of a strict algebra is reflexive, and so is a filtered
colimit by [Lack02, Proposition 4.3].

2.29. Definition.We denote by Ql and Qp the 2-comonads generated by the 2-adjunctions
in the above theorem and call them the lax morphism classifier 2-comonad and the pseudo
morphism classifier 2-comonad.

It is easy to see that T-Algl is isomorphic to (T-Algs)Ql
, the Kleisli 2-category for the

2-comonad Ql. Similarly, T-Alg ∼= (T-Algs)Qp .
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2.30. Proposition. Let T be a 2-monad on a 2-category K such that the left 2-adjoints
to the inclusions T-Algs ↪−→ T-Alg, T-Algs ↪−→ T-Algl exist. Then:

• If K admits oplax limits of arrows, Ql is lax-idempotent.

• If K admits pseudo limits of arrows, Qp is pseudo-idempotent.

Proof. See [LS12, Lemma 2.5].

2.31. Proposition. There is a morphism of 2-comonads Ql → Qp.

Proof. The inclusion 2-functor T-Alg → T-Algl commutes with the inclusions from
T-Algs. By the formal theory of monads [Street72a], this corresponds to a morphism
Ql → Qp.

3. Relative Kan extensions and colax adjunctions

In [Bunge74], Bunge introduced the notion of a relative Kan extension with respect to
a 2-functor U and showed that for a collection yA : A → UFA of 1-cells that admit
these extensions (and satisfy certain coherence conditions), there is an induced left colax
adjoint F to U , where F is a colax functor ([Bunge74, Theorem 4.1]). She also proves
a partial converse to this result ([Bunge74, Theorem 4.3]). Note that at the same time
these results also appeared in Gray’s work ([Gray06, I,7.8.]).

In this section, we generalize these results to the case where U is a pseudofunctor and,
on the other hand, refine it by identifying conditions under which the colax left adjoint
F is actually a pseudofunctor. This enables us to describe, in Theorem 3.5, a symmetric
relationship between U -extensions and colax adjunctions. We will see an application of
these results to the settings of lax-idempotent pseudomonads in Section 4.

3.1. Definition. Let U : C → D be a pseudofunctor, yA : A → UFA, f : A → UB
1-cells of D. The left U-extension of f along yA is a pair (f ′, ψf ) with the property that for
any pair (g, α) pictured below, there is a unique 2-cell θ : f ′ ⇒ g such that the following
2-cells are equal:

A UFA A UFA

=

UB UB

yA

f
Uf ′

Ug

yA

f
Ug

ψf

α

Uθ

3.2. Definition. Let U : C → D be a pseudofunctor. We say that a collection of 1-cells
yA : A→ UFA for each object A ∈ C are coherently closed for U-extensions if:

• for every f : A→ UB we have a choice of a U-extension (fD,Df ),
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• the following composite 2-cell exhibits 1DY ◦(yUY f)D as the left U-extension of f along
yX :

X UFX

UY UFUY

UY

yX

f

yUY

U(yUY f)
D

U1DUY

U(1DUY ◦(yUY f)
D)

DyUY f

D1UY

γ−1
(4)

3.3. Theorem. Let U : C → D be a pseudofunctor and yA : A → UFA a collection of
1-cells coherently closed for U-extensions. Then:

• the mapping A 7→ FA can be extended to a colax functor F : D → C,

• y can be extended to a colax natural transformation 1D ⇒ UF ,

• there exists a colax-natural transformation ϵ : FU ⇒ 1C and a modification
Φ : 1U → Uϵ ◦ yU .
Assume moreover the composition and unit axioms for U-extensions: the diagram
below left is a U-extension of yA along yA, and the diagram below right is the U-
extension of yCgf along yA:

A UFA A UFA

B UFB

UFA C UFC

yA

U(yBf)
Df

g

yC

U(yCg)
D

yA

yA

U1FA
U((yCg)

D(yBf)
D)yB

ι−1

D

D

γ−1
(5)

Then:

• F is a pseudofunctor,

• there is an invertible modification Ψ : ϵF ◦ Fy → 1F and all this data gives a colax
adjunction:

(Ψ,Φ) : (ϵ, y) : F ⊣⊣ U : C → D.
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Proof. Denote by (fD,D) the choice of a U -extension of f : A → UB. Define the colax
functor F : D → C on a morphism f : A→ B as the following U -extension:

A UFA

B UFB

yA

UFf

yB

f D

Define the action of F on a 2-cell α as the unique 2-cell making the following equal:

A UFA A UFA

=

B UFB B UFB

yA

UFf

yB

f UFg f g

yA

yB

UFgD
U(∃!) α

D (6)

The above equation makes y locally natural. The associator γ′ : F (gf) ⇒ Fg◦Ff and
the unitor ι′ : F1A ⇒ 1FA for F are given as the unique 2-cells satisfying these equations:

A UFA A UFA

= B UFB

C UFC C UFC

yA

UFf

yB

f

g

yC

UFg

U(Fg◦Ff)gf

yC

yA

UF (gf)

U(Fg◦Ff) D

D
U(∃!)

D

γ−1
(7)

A UFA A UFA

=

A UFA A UFA

yA

yA

U1FAUF1A U1FA

yA

yA

U(∃!)
D

ι−1 (8)

The colax functor axioms for F follow from those of U and can be readily proven using the
universal property of U -extensions. The above equations also make y into a colax-natural
transformation y : 1 ⇒ UF . Next, define ϵB : FUB → B and ΦB as the U -extension of
the identity on UB along yUB:

UB UFUB

UB

yUB

UϵB

ΦB
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The colax naturality square for ϵ at a 1-cell h : B → C is the unique 2-cell ϵh making
the 2-cells below equal (it is guaranteed to uniquely exist because of the coherence for
U -extensions):

UB UFUB UB UFUB

UC UFUC UC UB

UC UC

yUC

UϵC

Uh

yUB

UFUh

yUB

UϵBUh

Uh

U(h◦ϵB)

U(ϵC◦FUh)

U(h◦ϵB)

D ΦB

ΦC

Uϵhγ−1 γ−1

(9)

This also makes Φ into a modification 1U → Uϵ ◦ yU . Let us now consider the additional
assumptions. It is clear that F will be a pseudofunctor. Define ΨA : ϵFA ◦ FyA ⇒ 1FA as
the unique 2-cell making the two 2-cells below equal:

A UFA A UFA

UFA UFUFA UFA

UFA UFA

yA

yA UFyA

U1FA

U(ϵFA◦FyA)

yA

yA

U1FA

yUFA

UϵFA

U(∃!) ι−1

D

ΦFA

γ−1

(10)

By the assumption, ΨA is invertible. This equality also proves the first swallowtail identity.
What remains to be proved is the following:

• ϵ is colax-natural,

• Φ is a modification,

• the second swallowtail identity.

These are all straightforward computations and we will prove them in the Appendix as
Lemma A.1.

3.4. Theorem. Let (Ψ,Φ) : (ϵ, y) : F ⊣⊣ U : C → D be a colax adjunction between
pseudofunctors in which Ψ is invertible. Then:

• the components of the unit yA : A→ UFA are coherently closed for U-extensions,

• the unit and composition axioms (5) for U-extensions hold.
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Proof. Notice first that we have the following adjunction:

C(FA,B) D(A,UB)

(yA)∗◦U :

(ϵB)∗◦F

⊣

The counit and unit 2-cells evaluated at h : FA → B and g : A → UB are given as
follows:

FA A UFA

FUFA FA UB UFUB

FUB B UB

U(ϵBFg)F (UhyA)

FyA

FUh

ϵB

ϵFA

h

g

yA

UFg

UϵB

yUB

ΨA

ϵh

yg

ΦB

γ−1γ

The triangle identities essentially follow from the swallowtail identities of the colax ad-
junction and we omit the proof for them. Denote by Dg the unit of this adjunction
evaluated at g : A → UB and denote gD := ϵBFg. By definition, the pair (gD,Dg) is the
left U -extension of g along yA. Next, notice that for f : A→ B, the invertible 2-cell:

ℶf := ΨBFf ◦ ϵFBγ−1
f,yB

: ϵFBF (yBf) ⇒ Ff : FA→ FB,

satisfies the following equality (this again follows from a swallowtail identity):

A UFA A UFA

=

B UFB B UFB

U(yBf)
D

f

yA

f

yA

UFf

yB

UFf

yB

Uℶf
Df yf

This proves that (Ff, yf ) is also a U -extension of yBf along yA. Next, notice that for an
object B, the following invertible 2-cell:

ΞB := ϵ1B ◦ ϵBFι−1 : ϵBF1UB ⇒ ϵB,

satisfies this equality:

UB UFUB UB UFUB

=

UB UB

yUB

U1DUB

UϵB

yUB

UϵB
D1UB UΞB ΦB
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This proves that (ϵB,ΦB) is also a U -extension of 1UB along yUB. Using these two
isomorphisms of U -extensions, it is clear that the composite 2-cell (4) in Definition 3.2
is a U -extension if and only if the pair (fD,Df ) is a U -extension - which it is, as we
have proven. We thus have that the collection yA : A → UFA is coherently closed for
U -extensions.

Let us now prove the composition and unit axioms (5). The proof that the pair
(1FA, ι

−1yA) is a U -extension follows immediately from the fact that it is isomorphic to
the U -extension (yDA,DyA) via the modification ΨA (this is the first swallowtail identity):

A UFA A UFA

=

UFA UFA

yA

yA
U1FA

yA

UyDA

yA
U1FA

ι−1 DyA UΨA

Again by using the isomorphism above, the question whether the 2-cell below right is
a U -extension is equivalent to asking whether the 2-cell below left is a U -extension:

A UFA A UFA

B UFB B UFB

C UFC C UFC

yB

f UFf

g UFg

yC

UF (gf)

yA yA

U(yBf)
D

U(yCg)
Dg

yC

f

yB U((yCg)
D(yBf)

D)

yg

γ

yf Df

Dg

γ

But this 2-cell equals ygf and is thus a U -extension by what we have proven above.

3.5. Theorem. Fix a pseudofunctor U : D → C between 2-categories. The following are
equivalent for a collection of 1-cells {yA : A→ UFA} with A ∈ C:

• the collection yA is coherently closed for U-extensions and satisfies composition and
unit axioms (5),

• there is a colax adjunction (Ψ,Φ) : (ϵ, η) : F ⊣⊣ U for which Ψ is invertible, F is a
pseudofunctor and the 1-cell component of the unit at each A ∈ C equals yA.

3.6. Remark. In the above theorem, we do not have a one-to-one correspondence; in-
stead, there is a suitable “equivalence” between these two concepts. Starting with coherent
U -extensions (fD,Df ) of f along yA, producing a colax adjunction and then going back to
U -extensions gives the U -extension (ϵBFf, γ

−1yA◦UϵByf ◦ΦBf), which in general will not
be equal to (fD,Df ) (but will be canonically isomorphic to it). Similarly, starting with left
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colax adjoint F , going to U -extensions and back only gives a pseudofunctor isomorphic
to F .

In our applications to two-dimensional monad theory, we will encounter this very special
case of U -extensions:

3.7. Definition. Let U : C → D be a 2-functor. We will say that a collection of 1-cells
yA : A→ UFA is strictly closed for U-extensions if:

• for every f : A → UB there is a U-extension (fD, 1f ) along yA with the 2-cell
component being the identity,

• yDA = 1FA,

• for f : X → Y , g : Y → Z we have Ff ◦ Fg = F (fg), where we denote Ff :=
(yY ◦ f)D,

• for f : A→ UB we have ϵY ◦ Ff = fD, where we denote ϵY := (1Y )
D.

3.8. Remark. It is clear from the proof of Theorem 3.3 that a collection strictly closed
for U -extension gives rise to a colax adjunction (ϵ, y) : F ⊣⊣ U for which:

• y is a 2-natural transformation,

• F is a 2-functor,

• the modifications Φ,Ψ are the identities.

(This will in general not be a 2-adjunction because ϵ will only be colax natural.)

4. On the Kleisli 2-category for a left Kan pseudomonad

This section is devoted to studying the Kleisli 2-category for a general left Kan pseu-
domonad (D, y) on a 2-category K.

In 4.3 we prove a result characterizing the pseudo-D-algebra structure on an object in
terms of the existence of certain adjoints (Theorem 4.12).

In 4.16 we use this result and Theorem 3.3 to prove that any left biadjoint K → L
that factorizes through the Kleisli 2-category gives rise to a lax left adjoint KD → L.
We list several applications, one of which is the assertion that there is a canonical colax
adjunction between EM and Kleisli 2-categories for left Kan pseudomonads.

Another application is given in 4.26 where we define reflector-limits, the aforemen-
tioned lax analogue of bilimits, and list elementary examples. The main result here
is Theorem 4.37 which asserts that whenever the base 2-category K admits J-indexed
bilimits, the Kleisli 2-category for a left Kan pseudomonad on K will admit them as
reflector-limits.

First, let us recall the following terminology:
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4.1. Definition. Let the following be an adjunction in a 2-category K:

(ϵ, η) : A B

f

u

⊣

• If the counit ϵ is invertible, call f a reflector and u a reflection-inclusion. In this
case f . In case the counit is the identity, f is called a lali (left adjoint-left inverse)
and u a rari (right adjoint-right inverse).

• if the unit η is invertible, call f a coreflection-inclusion and u a coreflector. In case
the unit is the identity, f is called a lari and u a rali.

4.2. Remark. [Duals] A morphism f is a reflector (a lali) in K if and only if:

• it is a reflection-inclusion (a rari) in Kop,

• it is a coreflector (a rali) in Kco,

• it is a coreflection-inclusion (a lari) in Kcoop.

4.3. A characterization of algebras.

4.4. Definition. Let F : K → L be a pseudofunctor. We will call a morphism f : A→ B
in K an F -reflector if Ff is a reflector in the 2-category L. Similarly for the other variants
from Definition 4.1.

4.5. Example. Let P : CAT → Prof be the canonical inclusion pseudofunctor. In
Example 4.15 below we will show that a functor f : A → B between locally small
categories is a P -coreflection-inclusion if and only if it is fully faithful and satisfies a
certain smallness condition.

4.6. Example. Consider the lax morphism classifier 2-comonad Ql associated to a 2-
monad T on a 2-category K. Denote by J : T-Algs → T-Algl the canonical inclusion to
the Kleisli 2-category and by U : T-Algs → K the forgetful 2-functor. Notice that by
virtue of doctrinal adjunction [Kelly72], a strict algebra morphism is a J-reflector if and
only if it is a U -reflector, that is, the underlying morphism in K is a reflector.

4.7. Example. Given a bicategories K,M and a proarrow equipment (−)∗ : K → M
(see [Wood82, Section 1]), a 1-cell in K is a (−)∗-coreflection-inclusion if and only if it is
fully faithful in the sense of Wood [Wood82, Page 10].

4.8. Example. Given a lax-idempotent pseudomonad P on a 2-category K, 1-cells in K
that are P -left adjoints have been studied in the literature ([BF99], [Walker19], [ADLL24])
under the name of P -admissible 1-cells.

The following lemma is the left Kan pseudomonad version of [Paré21, Theorem 3.4]:
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4.9. Lemma. Let (D, y) be a left Kan pseudomonad on K. Denote by D : K → K
the corresponding endo-pseudofunctor and by JD : K → KD the inclusion to the Kleisli
2-category. The following are equivalent for a 1-cell f : B → C:

• f is a D-coreflection-inclusion,

• f is a JD-coreflection-inclusion.

Proof. “(1) ⇒ (2)” follows from [BF99, Proposition 1.3]: namely, the right adjoint to
Df in K is actually a D-pseudomorphism and thus is an adjoint in KD. “(2) ⇒ (1)” is
obvious because we have the forgetful 2-functor UD : KD → K that satisfies D = UDJD.

Recall the terminology of reflections along functors [Borceux94, Definition 3.1.1].

4.10. Lemma. Consider the following categories and functors:

A B C

K

L

I⊣

Denote the unit of the adjunction by η : 1B ⇒ KL. We have:

• If (B, β : C → IB) is the reflection of C along I, then (LB, IηB ◦β) is the reflection
of C along IK.

• If L is fully faithful (the unit is invertible) and if:

(1) (A, 1KA : KA→ KA) is the reflection of KA along K,
(2) (A,α : C → IKA) is the reflection of C along IK,

then (KA,α : C → IKA) is the reflection of C along I.

Proof. The first part follows by composing the following bijections:

A(LB,A) B(B,KA) C(C, IKA)K(−)ηB I(−)β

For the second part, we must prove that for any f : C → IB in C, there is a unique
morphism θ : KA→ B in B such that the diagram below left commutes. First, note that
by (2), there is a unique morphism θ′ : A → LB in A making the diagram below right
commute. Putting θ := η−1

B ◦Kθ′ gives us the existence part of the claim.

C IKA C IKA

IB IB IKLB

α

f
Iθ

α

f IKθ′

IηB
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To prove the uniqueness, let τ : KA → B be a morphism in B making the above left
diagram commute. Consider the composite:

KA B KLBτ ηB

By (1), there is a unique morphism τ ′ : A→ LB in A such that Kτ ′ = ηB ◦τ . Notice that
τ ′ makes the square above right diagram commute – this forces τ ′ = θ′, and in particular
ηB ◦ τ = Kτ ′ = Kθ′. Since ηB is invertible, this proves the uniqueness in the claim.

4.11. Corollary. The following holds in a 2-category K:

• Let f ⊣ u : B → A be an adjunction with unit η and let (D, gD) be the left Kan
extension of g : A′ → C along y : A′ → A. Then the diagram below left exhibits gDu
as the left Kan extension of g along fy:

B C

A A B

A′ C B′ D

y

g

f

gD

u

f

i

k h

hk

η

D α

• In the diagram above right, suppose that the top and outer diagrams are left Kan
extensions. If all left Kan extensions along k exist and have invertible unit, then α
exhibits hk as the left Kan extension of f along i.

Proof. The first part follows from the previous lemma by setting L,K, I to be the
following:

K(B,C) K(A,C) K(A′, C)

f∗

u∗

y∗⊣

The second part follows from the previous lemma by setting L,K, I to be the following:

K(C,D) K(B,D) K(B′, D)

k∗

lank

i∗⊣
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4.12. Proposition. Let (D, y) be a left Kan pseudomonad on a 2-category K. Denote
by JD the inclusion to the Kleisli 2-category and by D the endo-pseudofunctor associated
to the left Kan pseudomonad. The following are equivalent for an object A ∈ K:

1. A admits the structure of a pseudo-D-algebra,

2. for every object B ∈ K, the left Kan extension of a 1-cell B → A along yB : B → DB
exists and has invertible unit. In other words, K(−, A) : Kop → Cat sends each yB
to a coreflector,

3. yA admits a reflector (left adjoint with invertible counit),

4. K(−, A) sends JD-coreflection-inclusions in K to coreflectors in Cat,

5. K(−, A) sends D-coreflection-inclusions in K to coreflectors in Cat.

Proof. The equivalence “(1) ⇔ (3)” is well known, for lax-idempotent pseudomonads
this has been done in [Marmolejo97, Theorem 10.7]. “(1) ⇒ (2)” is obvious.

For “(2) ⇒ (3)”, denote by (a : DA → A,A) the left Kan extension of 1A along yA.
Because the identity 2-cell on DA exibits 1DA as the left Kan extension of yA along yA,
there exists a unique 2-cell η making these 2-cells equal:

DA A

A A DA A DA DAyA

yA a

yA

a yA
ηA

We will now show that (A−1, η) : a ⊣ yA is an adjunction. The triangle identity
yAA−1 ◦ ηyA = 1yA is guaranteed by the above formula – let us prove the other one:

A−1a ◦ aη = 1a.

Because a is the left Kan extension along yA, it suffices to prove that both sides of this
equation become equal after pre-composing them with yA. It then becomes:

A−1ayA ◦ aηyA = A−1ayA ◦ ayAA = A−1ayA ◦ AayA = 1ayA .

“(4) ⇔ (5)” follows from Lemma 4.9 and “(5) ⇒ (2)” is obvious since yB is a D-
coreflection-inclusion.

We will now prove “(2) ⇒ (5)”. Let f : B → C such that there is an adjunction in
KD where the unit η is invertible:

(ϵ, η) : DB DC

Df

r

⊣
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We wish to show that the functor f ∗ : K(C,A) → K(B,A) has a left adjoint with invertible
unit. We will define this left adjoint by the following formula:

L : (g : B → A) 7→ (gA ◦ r ◦ yC : C → A)

Define the component of the unit η̃ at g : B → A as the following composite 2-cell:

C DC

B DB DB A
yB

f

yC

r

gA

Df

g

ηD−1

A

We wish to show that this has the universal property of the unit, in other words,
gA ◦ r ◦ yC is the left Kan extension of g : B → A along f : B → C.

By Corollary 4.11 point 1, gA ◦ r is the left Kan extension of g along Df ◦ yB.
Equivalently it is a left Kan extension of g along yCf with the 2-cell component given
by the composite 2-cell above. Since gAr is a D-morphism, gAr (with the identity 2-cell
component) is the left Kan extension of gAryC along yC . By Corollary 4.11 point 2, for
h := gAr, k := yC , i := f , f := g and α the 2-cell above, the result follows.

4.13. Remark. Using the terminology of [DLLS24, Definition 1.2], in Theorem 4.12, the
equivalence “(1) ⇔ (4)” says that an object A is a pseudo-D-algebra if and only if it is
left Kan injective with respect to the class of 1-cells given by JD-coreflection-inclusions.

Let us also note that a version of “(1) ⇒ (5)” for D-left adjoints in Theorem 4.12 has
already been proven in [BF99, Proposition 1.5].

4.14. Remark. Given a left Kan 2-monad (D, y), a pseudo-D-algebra C will be said
to be normal if the left Kan extension 2-cell Cf in Definition 2.13 is the identity for all
1-cells f . Notice that a variation of Proposition 4.12 may be proven for normal pseudo-
D-algebras, where we replace all invertible 2-cells by identities, for instance replace a
“reflector” by a “lali”.

In the remainder of this section we will demonstrate Proposition 4.12 on the case of the
small presheaf pseudomonad from Example 2.24. An application to the lax morphism
classifier 2-comonads will be described in Section 5.

4.15. Example. Consider the small presheaf pseudomonad P on CAT. Note that in
the virtual double category PROF of locally small categories and all profunctors ([CS10,
Example 2.9]), for any functor f : A → B, the small profunctor Pf = B(−, f−) :
Bop ×A → Set has a right adjoint:

A B

B(−,f−)

B(f−,−)

⊣
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We will call a functor f : A → B small if the right adjoint is also a small profunctor.
Clearly, this happens if and only if Pf has a right adjoint in the bicategory Prof.

Next, note that the unit of the adjunction is a collection of functions for every pair
(a′, a′′) ∈ Aop ×A like this:

A(a′, a′′) →
∫ b∈B

B(fa′, b)× B(b, fa′′),

(θ : a′ → a′′) 7→ [1fa′ , f(θ)].

As is readily seen, the unit is invertible if and only if f is fully faithful. So a functor
f : A → B is a P -coreflection-inclusion if and only if it is fully faithful and small. The
precomposition functor f ∗ : CAT(B, C) → CAT(A, C) is a coreflector if and only if left
Kan extensions along f exist in C. Theorem 4.12 for the small presheaf pseudomonad
now gives a folklore result: a category C is cocomplete if and only if left Kan extensions
along small fully faithful functors exist in C.

4.16. Colax adjunctions out of the Kleisli 2-category.

4.17. Proposition. Let (D, y) be a left Kan pseudomonad on a 2-category K and assume
there are pseudofunctors G,H and a biadjunction as pictured below:

K KD L
JD G

H

⊣

Then for every object L ∈ L, the object HL admits the structure of a pseudo-D-algebra.

Proof. By Proposition 4.12, it suffices to show that K(−, HL) : Kop → Cat sends JD-
coreflection-inclusions to coreflectors. Notice that we have the following pseudo-natural
equivalence:

K(−, HL) ≃ L(GJD−, L) = L(G−, L) ◦ JD.

Now, by definition, JD sends JD-coreflection-inclusions to coreflection-inclusions. Since
L(G−, L) is a (contravariant) pseudofunctor, it sends coreflection-inclusions to coreflec-
tors. We thus obtain the result.

4.18. Remark. Going through the proof of Proposition 4.12 for the case of HL, we see
that the algebra multiplication map hL : DHL → HL (the reflector of the morphism
yHL : HL→ DHL) is given by the following composite:

DHL HGD2HL HGDHL HL
cDHL HGpDHL HsL
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Also, the counit of the adjunction hL ⊣ yHL, an invertible 2-cell ϵL : hLyHL ⇒ 1HL, is
given by the following:

DHL HGD2HL HGDHL

HL HGDHL HL

yHL

cDHL HGpDHL

HsL

cHL

HGDyHL
cyHL (HGΨ)HL

τ−1
L

4.19. Theorem. [The main colax adjunction theorem] Let (D, y) be a left Kan
pseudomonad on a 2-category K. Any biadjunction whose left adjoint factorizes through
the Kleisli 2-category KD induces a colax adjunction pictured below:

K KD L ⇝ KD L
JD G

H

G

JDH

⊣

⊣⊣

Proof. Denote the unit, counit and the modifications of the biadjunction as follows:

s : GJDH ⇒ 1L, σ : sGJD ◦GJDc ∼= 1GJD ,

c : 1K ⇒ HGJD, τ : 1H ∼= Hs ◦ cH.

We will show that the components of the counit sL : GDHL → L are coherently
closed for G-lifts. By (the dual of) Theorem 3.3, there is a right colax adjoint to G. We
will prove that it is isomorphic to JDH.

Let us first prove the following: given a 1-cell l : GDA → L in L, any pair (Dl′, λ)
where l′ : A → HL is a 1-cell and λ is an invertible 2-cell as pictured below exhibits Dl′

as the right G-lift of l along sL:

L GDHL

GDA

GDl′

sL

l

λ

By Theorem 4.17, HL has the structure of a D-algebra. Denoting its multiplication
map by hL as in Remark 4.18, we have the following composite adjunction with invertible
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counit:

K(A,HL) K(A,DHL) KD(DA,DHL)
(yHL)∗

JD

(hL)∗

pDHLJD(−)

UD(−)yA

(−)#

⊣ ≃

:=

∼=

(11)

Notice that there is an isomorphism:

ℶ : sLGJD(−)# ∼= sLG(−) : KD(DA,DHL) → L(GDA,L),

with the component at f : DA→ DHL being given by the 2-cell3:

GD2HL GDHGD2HL GDHGDHL GDHL

GD2A GD2HL GDHL L

GDA

GDA

GDcDHL

sGD2HL

GpDHL sL

GDHGpDHL

sGDHL

GDHsL

sL

Gf

GpDA

GDf

GDyA

(Gp)f

GDhL

sGpDHL
ssL

σDHL

(GΨ)A

(12)

We have the following chain of bijections:

KD(DA,DHL)(f,Dl
′)

(A)∼= K(A,HL)(f#, l′)

(B)∼= L(GDA,L)(sL ◦GDf#, sL ◦GDl′)
(C)∼= L(GDA,L)(sL ◦Gf, sL ◦GDl′)
(D)∼= L(GDA,L)(sL ◦Gf, l)

The bijection (A) follows from the adjunction (11) above. (B) is given by the action on
morphisms of the following functor:

sL ◦GJD(−) : K(A,HL) → L(GDA,L). (13)

3We have not shown it in this diagram, but the 2-cell has to be pre-composed with the associators for
the pseudofunctor GD so that its source really equals sLGDf#.
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This functor is (by assumption) an equivalence – in particular it is fully faithful. (C) is
given by the pre-composition with ℶ−1

f and (D) is given by the post-composition with
λ. To conclude that (Dl′, λ) is a G-lift, it has to be shown that the composite bijection
is given by the assignment α 7→ λ ◦ sLGα. Equivalently, the composite of the first three
bijections is the assignment α 7→ sLGα. We prove this fact in the appendix as Lemma
A.2.

The pair (Dl′, λ) is thus a G-lift. Because the functor (13) is essentially surjective, such
a G-lift is guaranteed to always exist. Make now a choice of a lift for every l : GDA→ L
and denote it by (DlL,L). To prove that our choice is coherently closed for G-lifts, the
following 2-cell needs to be shown to be a G-lift of l : GDA→ L along sL:

L GDHL

GDA GDHGDA

GDA

GD(lsGDA)L

sL

l

sGDA

GD1LA

G(D(lsGDA)L◦D1LA)

L

L

γ

But this follows from the what we have shown at the beginning since this composite 2-cell
is invertible and the 1-cell component of the proposed G-lift is (isomorphic to) Dh for a
1-cell h in K. For the same reasons, the unit and composition axioms in the assumptions
of Theorem 3.3 are satisfied.

We thus have a right colax adjoint to G : KD → L, let us denote it by R : L → KD.
Since the pseudonaturality square of the counit s is a G-lift (this again follows from what
we have proven at the beginning of the proof), for any 1-cell l : L → K there exists a
unique invertible 2-cell δl : Rl ⇒ JDHl making the following diagrams equal:

L GDHL L GDHL

=

K GDHK K GDHK

GDHl

sL

l

sL

GRl l

sK

sL

GRlsl
Gδl

L

It is now routine to verify that this data gives an invertible icon δ : R ⇒ JDH (which is an
isomorphism in Psd[L,KD]), proving that the pseudofunctor JDH is right colax adjoint
to G : KD → L as well.

Our first application will be the following:
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4.20. Corollary. Given a left Kan pseudomonad (D, y) on a 2-category K, the biad-
junction between the base 2-category and the Kleisli 2-category induces a colax adjunction
on the Kleisli 2-category:

K KD ⇝ KD KD

JD

FD JDFD

⊣ ⊣⊣

The following is a categorification of the fact that for an idempotent monad, the Kleisli
and EM-categories are equivalent:

4.21. Corollary. Given a left Kan pseudomonad (D, y), the associated free-forgetful
biadjunction induces a colax adjunction between the Kleisli 2-category and the 2-category
of algebras:

K Ps-D-Alg ⇝ KD Ps-D-Alg

FD

UD JD◦UD

⊣ ⊣⊣
The following is a change-of-base-style theorem:

4.22. Corollary. Let D be a lax-idempotent pseudomonad on a 2-category K and T be
a pseudomonad on a 2-category L. Assume that:

• there is a biadjunction between the base 2-categories:

K L

L

R

⊣

• the left biadjoint admits an extension to the Kleisli 2-categories:

K K

KD LT
L#

L

JD JT

Then there is an induced colax adjunction between the Kleisli 2-categories:

KD LT

L#

⊣⊣
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Proof. Composing the Kleisli biadjunction with the L ⊣ R biadjunction we obtain the
following biadjunction on which we can apply the theorem:

K L LT

KD

L

R

T

FT

JD L#

⊣⊣
4.23. Example. Consider a 2-category K with comma objects and pullbacks and take
for D the fibration 2-monad on K/C and T the fibration 2-monad on K/D. For any 1-cell
k : C → D gives a 2-functor k∗ : K/C → K/D with a right 2-adjoint k∗ given by pulling
back. The 2-functor k∗ clearly extends to the colax slice 2-categories, hence giving rise to
a lax adjunction between the colax slices:

K//C K//D

k∗

D◦FD◦k∗

⊣⊣

4.24. Example. In the next section (Corollary 5.12) we will see how, when given a
morphism of 2-monads θ : S → T , this gives rise to a colax adjunction between T-Algl
and S-Algl.

4.25. Remark. [Left Kan 2-monads]
Assume that (D, y) is a left Kan 2-monad and that we have the same starting biadjunc-

tion as in Theorem 4.19, except now the modifications σ, τ are the identities and the counit
s is 2-natural. Going through the proof, note that sL◦GJD(−) : K(A,HL) → L(GDA,L)
is an isomorphism of categories: for each l : GDA → L there is a unique lL : A → HL
such that sL ◦ GDlL = l. Because JD : K → KD is now a 2-functor and because of the
uniqueness of each lL, the collection sL : GDHL→ L is strictly closed for G-lifts (dual of
Definition 3.7). By Remark 3.8 we obtain a colax adjunction for which the modifications
are the identities and the counit s is 2-natural.

4.26. Reflector-limits.

4.27. Definition. Let K be a 2-category and F : J → K, W : J → Cat 2-functors.
A reflector-limit of F weighted by W is given by an object L ∈ K and a 2-natural trans-
formation λ : W ⇒ K(L, F−) with the property that for every A ∈ K, the canonical
comparison functor

κA : K(A,L) → [J ,Cat](W,K(A,F?)),

κA : (θ : A→ L) 7→ (K(θ, F?) ◦ λ),



COLAX ADJUNCTIONS AND LAX-IDEMPOTENT PSEUDOMONADS 257

is a reflector in Cat. Reflector-colimits in K are defined as reflector-limits in Kop. Anal-
ogously, we say that λ is an X-limit if κA is in class X of functors for every A.

4.28. Remark. Because the maps κA : K(A,L) → [J ,Cat](W,K(A,F?)) together form
a 2-natural transformation κ : K(−, L) ⇒ [J ,Cat](W,K(−, F?)), by [Street72b, Theo-
rem 1] the above definition is equivalent to requiring that κ is a reflector in the 2-category
Lax[K,Cat] (of 2-functors K → Cat, lax natural transformations and modifications).

4.29. Remark. [Enriched weakness] The notion of a reflector-colimit is a special case of
an enriched weak colimit in the sense of [LR12, Section 4]. The enriching category V is
equal to Cat with the class E being functors that are reflectors. In [LR12], the authors
studied coreflector-colimits for which κ is moreover a retract equivalence – meaning that
the unit of the adjunction is the identity and the counit is invertible.

4.30. Remark. Conical (left-adjoint)-limits of 2-functors have first been introduced in
[Gray06, I,7.9.1] under the name quasi-limits4.

4.31. Remark. [Ordinary weakness] Notice that every rali- and lali-limit cone λ is a
weak limit of F weighted by W . What this means is that given a different cone µ : W ⇒
K(A,F−), the left adjoint LA to κA gives a comparison map LAµ : A→ L such that:

µ = K(Lµ, F−) ◦ λ.

This is like the definition of a 2-limit except that there is no uniqueness requirement. It
is not the case that every weak limit is a rali-limit. This is because if the 2-category K is
locally discrete, the notion of rali-limit coincides with an ordinary limit and not a weak
limit.

4.32. Example. An object I in a 2-category K is rali-initial if the unique functor into
the terminal category admits a left adjoint for every object A ∈ K:

K(I, A) ∗

!

⊣

Clearly, this happens if and only if the hom-category K(I, A) has an initial object for
every A ∈ K. For a particular example, consider the 2-category MonCatl of monoidal
categories and lax monoidal functors. The terminal monoidal category ∗ is rali-initial
because for every monoidal category A we have an isomorphism between MonCatl(∗,A)
and the category Mon(A) of monoids in A, and this category has an initial object given
by the monoidal unit of A.

4In fact, the definition in [Gray06] is stronger than ours because it requires the existence of a 2-functor
picking the limits that is right lax adjoint to the constant embedding 2-functor K → KJ .
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4.33. Example. Consider a 2-category K with a zero object 0 ∈ K and with a further
property that the zero morphism 0A,B : A → B is the initial object in K(A,B) for every
pair of objects A,B. Then 0 is a conical lali-colimit of any 2-functor F : J → K. This is
because in the definition of a lali-colimit:

K(0, A) Cocone(A,F )⊣

we have K(0, A) ∼= ∗, and so the question becomes whether the category of cocones of
F with apex A has an initial object. But it does and it is given by the cocone whose
components are the zero morphisms. This for instance applies to the poset-enriched
categories Rel of sets and relations and Par of sets and partial functions.

4.34. Example. Let K be a 2-category with pullbacks and comma objects and consider
the slice 2-category K/C and the colax slice 2-category K//C from Example 2.25. It is
known that the product of two objects f1, f2 in K/C is the diagonal in the pullback square
of f1, f2 in K:

L

A1 A2

C
f1 f2

⌟

One guess would be that this becomes a weak product in K//C after applying the
inclusion 2-functor K/C ↪−→ K//C, but that would be a wrong guess. To calculate the
weak product of f1, f2 in K//C, we first calculate the product of the comma object
projections for f1, f2 (using the notation from Example 2.25) in K/C as pictured below
left:

L L Pfi A1

Pf1 Pf2

C C C

τ1 τ2⌟

τi

l

ρi

πfi fi

πf1 πf2

χi

Denote l := πf1 ◦ τ1. The claim now is that the object l ∈ K//C together with the colax
triangles (ρiτi, χiτi) : l → fi (here χi is the comma object square pictured above right) is
the rali-product of f1, f2 in K//C. We will establish why this is the case after we prove
the main theorem in this section.

4.35. Example. Bilimits are a special case of coreflector-limits where κA is an equiva-
lence for every A ∈ K. In case κA is an isomorphism for every A ∈ K, this is the notion
of an ordinary 2-limit.
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4.36. Remark. [Uniqueness of lali-limits] Lali-limits are not unique up to an equivalence.
It is not even the case that given two lali-limit objects L1, L2, there exists a left (or right)
adjoint 1-cell L1 → L2. For a particular example, consider the poset-enriched category Par
of sets and partial functions. The empty set ∅ is the terminal object in Par, in particular
it is lali-terminal. The singleton set ∗ is lali-terminal: the ordered set Par(A, ∗) has the
greatest element given by the total function !A : A → ∗. Both are also “normalized” in
the sense that 1∅ and 1∗ are terminal objects in the hom ordered sets they belong to.

Since this 2-category is poset-enriched, equivalent objects would be isomorphic, and
an isomorphism in Par has to be a total function. Thus ∗ and ∅ can not be equivalent in
Par. Moreover, it can be seen that there is no left adjoint 1-cell ∗ → ∅.

We may now also give an example of two non-equivalent left colax adjoints that we
have promised in Remark 2.10. It can be seen that given a 2-category K, the 2-functor
∗ → K picking an object L is a colax left adjoint to the unique 2-functor K → ∗ if and
only if L is rali-initial. In this colax adjunction, the modification Ψ is invertible if and
only if the 1-cell 1L is the initial object of K(L,L). Based on the above paragraphs, the
unique 2-functor Parcoop → ∗ has two left colax adjoints that are not equivalent.

4.37. Theorem. Assume K is a 2-category that admits J-weighted bilimits and assume
D is a lax-idempotent pseudomonad on K. Then, the Kleisli 2-category KD admits J-
weighted reflector-limits.

Proof. Let G : P → KD be a 2-functor, write G̃ for the 2-functor DA 7→ KD(DA,G?).
Denoting again by UD the canonical pseudofunctor KD → K, there is a biadjunction
where the right biadjoint sends a weight W to the bilimit of UDG : P → K weighted by
W :

K KD Psd[P ,Cat]op
JD G̃

{−,UDG}

⊤

This is because of the following equivalences that are pseudo-natural with respect to
W ∈ [P ,Cat] and A ∈ K:

K(A, {W,UDG}) ≃ Psd[P ,Cat](W,K(A,UDG−))

≃ Psd[P ,Cat](W,KD(DA,G−))

= Psd[P ,Cat]op(KD(DA,G−),W ).

Transferring the identity across those equivalences, we see that the counit of the
biadjunction is the composite pseudonatural transformation:

W K({W,UDG}, UDG−) KD(D{W,UDG}, G−),
λW (pG−)∗◦JD

where λW is the W -weighted bilimit cone for UDG : P → K. By Theorem 4.19 this
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induces a colax adjunction with the same counit:

KD Psd[P ,Cat]op
G̃

JD{−,UDG}

⊣⊣

Notice that from the beginning of the proof of Theorem 3.4 it can be seen that there
is an adjunction on hom categories described below whose unit is invertible:

KD(B, JD{W,UDG}) Psd[P ,Cat](W,KD(B,G−))

θ 7→KD(θ,G−)◦(pG−)∗◦JD◦λW
⊣

This exhibits the pseudonatural transformation (pG−)∗ ◦ JD ◦ λW as the reflector-limit of
G weighted by W .

4.38. Remark. Given a left Kan 2-monad (D, y), going through the proof of Theorem
4.37 (and considering Remark 4.25) we may now replace Psd[P ,Cat] by [P ,Cat] and the
result can be changed to the claim that KD admits J-indexed lali-limit whenever K admits
them as 2-limits.

4.39. Example. The proof of Theorem 4.37 also gives a concrete way to compute limits.
Consider the colax-idempotent pseudomonad from Example 2.25. We can see that the
process of computing rali-product of two objects (f1 : A1 → C, f2 : A2 → C) in the
colax-slice 2-category K//C agrees with the process described in Example 4.34.

4.40. Example. The bicategory Prof of locally small categories and small profunctors is
reflector-complete by the above theorem. This is because by Example 2.24, it is a Kleisli
bicategory for a left Kan pseudomonad on a complete 2-category CAT.

4.41. Example. A variant of a (left adjoint)-colimit has been studied in [Milius03] (with
F,W 2-functors and Lax[J ,Cat] instead of [J ,Cat]) under the name lax adjoint cooplimit.
In particular it has been shown in [Milius03, Theorem 4.2] that under suitable conditions
on a category C, the 2-category Rel(C) of relations in C admits (left adjoint)-colimits of
ω-chains.

We end the section by introducing the concept of preservation of weak limits:

4.42. Definition.We say that a pseudofunctor H : K → L preserves X-limits (where X
is any of the classes of morphisms in Definition 4.2 for the case of K = Cat) if, whenever
λ : W ⇒ K(L, F−) exhibits L as a X-limit of F : J → K weighted by W : J → Cat, the
composite pictured below is an X-limit of HF weighted by W :

W K(L, F−) L(HL,HF−)λ H
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4.43. Example. In case K,L admit comma objects, their preservation as rari-limits has
been studied in [Weber07b, Definition 7.1] where it has been called preservation of lax
pullbacks up to a right adjoint section. For instance, given a finitely complete 2-category
K, the 2-functor (−)×Z has this property for any Z ∈ K (see [Weber07b, Example 7.3]).
In Weber’s later work [Weber07a, 6.1 Theorem], the class of familial functors have been
shown to preserve comma objects as lari-limits.

5. Applications to two-dimensional monad theory

In Section 5.2 we will prove a theorem characterizing T -algebras for a 2-monad that are
lax-flexible – a lax analogue of the classical notion of flexibility.

In Section 5.9 we prove the existence of various colax adjunctions involving the 2-
category T-Algl of T -algebras and lax morphisms for a 2-monad T . The results proven
here give the lax versions of results in [BKP89, Section 5].

5.1. Definition. Let T be a 2-monad on a 2-category K. We will say that it satisfies
Property L if the inclusion T-Algs ↪−→ T-Algl admits a left 2-adjoint and the correspond-
ing lax-morphism classifier 2-comonad Ql on T-Algs is lax-idempotent.

By Theorem 2.27, Proposition 2.30, a 2-monad T on K will have this property when K
admits oplax limits of an arrow and T-Algs is sufficiently cocomplete (admits lax codescent
objects).

To apply the (appropriate dual of the) results developed in Section 4 to the lax-
idempotent 2-comonad Ql, notice that (with the hint of the lists in Remark 2.18 and
4.2) this amounts to “going” from K to Kcoop. For instance “coreflection-inclusion” gets
replaced by “reflector”.

5.2. Lax flexibility. For this section, recall the notions of semiflexible and flexible
algebras for a 2-monad T from [BKP89, Remark 4.5, page 22]. By [BG13, Proposition
1], a T -algebra (A, a) is semi-flexible if and only if it admits the structure of a pseudo-
Qp-coalgebra. A pie T -algebra was then defined to be a T -algebra that admits a strict
Qp-coalgebra structure. This motivates us to define:

5.3. Definition. Let T be a 2-monad on a 2-category K that satisfies Property L. A
T -algebra (A, a) is said to be:

• lax-semiflexible if it admits a pseudo-Ql-coalgebra structure.

• lax-flexible if it admits a normal pseudo-Ql-coalgebra structure.

• lax-pie if it admits a strict Ql-coalgebra structure.

5.4. Remark. Every lax-Y T -algebra is Y, where Y ∈ {flexible, semiflexible, pie}. This
is because of the fact that by Proposition 2.31 there is an induced 2-functor from pseudo-
Ql-coalgebras to pseudo-Qp-coalgebras that commutes with the 2-functors that forget the
coalgebra structure (and thus keeps the T -algebra structure intact).
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5.5. Example. In Corollary 5.11 we will see that every free T -algebra is lax-flexible; this
is a strengthening of the fact that every free T -algebra is flexible ([BKP89, Corollary 5.6]).

5.6. Example. Fix a category J and consider the 2-monad T on [ob J ,Cat] whose
algebras are weights (2-functors) J → Cat. Weights that index lax limits are precisely
the weights that are cofree-Ql-coalgebras, i.e. those of the form QlW (see [Kelly89,
Chapter 5]). Since a lax limit is in general not a pseudo-limit [BKP89, Remark 5.5], not
every pie algebra is lax-pie.

Following Example 4.6 and Remark 4.14, the application of (the dual of) Proposition
4.12 to the lax-idempotent 2-comonad Ql provides a lax version of [BG13, Theorem 20
a)]. It reads as:

5.7. Theorem. Let T be a 2-monad on a 2-category K satisfying Property L and denote
by U : T-Algs → K the forgetful 2-functor. A T -algebra is lax-semiflexible, semiflexible,
if and only if, respectively:

• T-Algs((A, a),−) : T-Algs → Cat sends U-reflectors to reflectors in Cat.

• T-Algs((A, a),−) : T-Algs → Cat sends U-lalis to lalis in Cat.

5.8. Remark. In a future work we will study lax-pie T -algebras for a 2-monad T . Using
a comonadicity theorem, it can be shown that when T is a 2-monad of form Cat(T ′) for a
cartesian monad T ′ on a category E with pullbacks, lax-pie T -algebras are equivalent to
T ′-multicategories.

5.9. Colax adjunctions and rali-cocompleteness of lax morphisms. Consid-
ering Remark 4.25, the application of Theorem 4.17 and Theorem 4.19 for the 2-comonad
Ql reads as:

5.10. Theorem. Let T be a 2-monad satisfying Property L. Any 2-adjunction below
left induces a colax adjunction below right:

T-Algs T-Algl L ⇝ T-Algl L
J G

H

JH

G⊣

⊣⊣

Moreover, for every L ∈ L, the T -algebra HL is lax-flexible.

5.11. Corollary. The free-forgetful adjunction for a 2-monad T on a 2-category K
satisfying Property L induces a colax adjunction between T-Algl and K. In particular,
every free T -algebra is lax-flexible.

T-Algs T-Algl K ⇝ T-Algl K

FT

U

JFT

J U

⊣⊣

⊣
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5.12. Corollary. Let T, S be two 2-monads on a 2-category K satisfying Property
L and let θ : S → T be a strict monad morphism. Assume that the induced 2-functor
θ∗ : T-Algs → S-Algs admits a left 2-adjoint θ∗ (this is the case when K is complete and
cocomplete and T is finitary, see [BKP89, Theorem 3.9]). Then there is an induced colax
adjunction between T-Algl and S-Algl:

T-Algs S-Algs S-Algl ⇝ T-Algl S-Algl

T-Algl

θ∗

J

θ∗

J

(−)†

θ∗

θ∗

⊣ ⊣ ⊣⊣

The following shows rali-cocompleteness of T-Algl:

5.13. Theorem. Let T be a 2-monad on a 2-category K that admits oplax limits of an
arrow. Assume that T-Algs is cocomplete (in particular T satisfies Property L). Then
T-Algl is rali-cocomplete.

Proof. This follows from (the dual of) Remark 4.38.

5.14. Remark. By Remark 4.31, this in particular shows that T-Algl is weakly cocom-
plete.

5.15. Corollary. The following 2-categories are rali-cocomplete:

1. for a category J , the 2-category Lax[J ,Cat] of 2-functors J → Cat, lax-natural
transformations and modifications,

2. the 2-category of monoidal categories and lax-monoidal functors and its symmet-
ric/braided variants,

3. the 2-category of small 2-categories, lax functors, and icons,

4. for a set Φ of small categories, the 2-category Φ-Coliml of small categories that
admit a choice of J-indexed colimits for J ∈ Φ and all functors between them.

Proof. Each of these is a 2-category of form T-Algl, where K is a complete and cocom-
plete 2-category and T is one of the following 2-monads:

1. the 2-monad T on [ob J ,Cat] given by the left Kan extension along ob J → J
followed by restriction, see [BKP89, 6.6],

2. the 2-monad on Cat for monoidal categories, see [Lack09, 5.5],

3. the 2-category 2-monad T on the 2-category Cat-Gph of Cat-enriched graphs, see
[BG13, 3.3],
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4. the 2-monad T described in [KL00, Theorem 6.1] whose strict T -morphisms are
functors that preserve the choices of Φ-colimits. Lax T -morphisms are all functors
because this 2-monad is lax-idempotent by [KL00, Theorem 6.3].

5.16. Remark. There is also a dual version for the 2-category T-Algc of T -algebras
and colax T -morphisms. If T-Algs is sufficiently cocomplete, there exists an induced
2-comonad Qc (the colax morphism classifier 2-comonad) and if K admits lax limits of
arrows, Qc is colax-idempotent. If T-Algs is cocomplete, T-Algc can be seen to be lali-
cocomplete.

A. Auxiliary lemmas

A.1. Lemma. In the proof of Theorem 3.3:

• ϵ is colax-natural,

• Φ is a modification,

• the second swallowtail identity.

Proof. In this proof, we will reference the defining equations for γ′, ι′, Fα, ϵ,Ψ above the
equals sign. In the unlabeled equations we use the middle-four interchange rule combined
with the pseudofunctor laws.

ϵ is colax-natural: The composition axiom amounts to proving the equality of
the following 2-cells:

FUB FUB FUB B FUB B

FUC C C

FUD FUD FUD D FUD D

ϵB

h

g

FUh

FUg

ϵD

ϵC

F (Ug◦Uh)

FU(gh) FU(gh)

ϵB

h

g

ϵD

ϵh

ϵg

ϵgh
γ′Fγ

It is enough to prove these after applying U(−) ◦ γyUB ◦ UϵDD ◦ΦDU(gh) on both sides.
We then have:

U(LHS) ◦ γ−1yUB ◦ UϵDDyUCU(gh) ◦ ΦDU(gh) =

= U(gϵh ◦ ϵgFUh ◦ ϵDγ′)yUB ◦ γ−1yUB ◦ UϵDUFγyUB ◦ UϵDDyUCU(gh) ◦ ΦDU(gh)

(6)
= U(gϵh ◦ ϵgFUh ◦ ϵDγ′)yUB ◦ γ−1yUB ◦ UϵDDyUCUgUh ◦ ΦDUgUh ◦ γ
= U(gϵh ◦ ϵgFUh)yUB ◦ γ−1yUB ◦ UϵDUγ′yUB ◦ UϵDDyUCUgUh ◦ ΦDUgUh ◦ γ
(7)
= U(gϵh ◦ ϵgFUh)yUB ◦ γ−1yUB ◦ UϵDγ−1yUB ◦ UϵgUFUgDyUCUh◦
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◦ UϵDDyUDUgUh ◦ ΦDUgUh ◦ γ
= U(gϵh)yUB ◦ γ−1yUB ◦ UϵgUFUhyUB ◦ γ−1UFUhyUB ◦ UϵDUFUgDyUCUh◦
◦ UϵDDyUDUgUh ◦ ΦDUgUh ◦ γ

(9)
= U(gϵh)yUB ◦ γ−1yUB ◦ γ−1UFUhyUB ◦ UgUϵBDyUCUh ◦ UgΦBUh ◦ γ
= γ−1yUB ◦ UgUϵhyUB ◦ Ugγ−1yUB ◦ UgUϵBDyUCUh ◦ UgΦBUh ◦ γ
(9)
= γ−1yUB ◦ Ugγ−1yUB ◦ UgUhΦB ◦ γ
= γ−1yUB ◦ γ−1UϵByUB ◦ UgUhΦB ◦ γ
(9)
= U(RHS) ◦ γ−1yUB ◦ UϵDDyUCU(gh) ◦ ΦDU(gh).

The unit axiom for ϵ amounts to showing that:

FUB B

= FUB FUB B

FUB B
FU1B

F1UB

ϵB

ϵB

FU1B

ϵB

ϵ1B
Fι

ι′

It suffices to prove that these 2-cells are equal after applying the 2-cell
U(−) ◦ γ−1yUB ◦ UϵDDyUBU1B ◦ ΦDU1B on both sides. This is done as follows:

UϵBUFU1ByUB U(ϵBFU1B)yUB U(ϵBF1UB)yUB

UϵBUF1ByUB UϵBU1FUByUB UϵByUB

UϵByUBU1B UϵByUB

U1BUϵByUB (9)

U1B UϵByUBU1B UϵBUFU1ByUB U(ϵB ◦ FU1B)yUB

γ−1yUB

UϵBUFιyUB

U(ϵBFι)yUB

U(ϵBι
′)yUB

γ−1yUB

UϵBUι
′yUB

(6)

γ−1yUBUϵBDyUBU1B

UϵByUBι

UϵBDyUB

UϵBι
−1yUB

1

γ−1yUB

ΦBU1B

U1BΦB

ΦBU1B
UϵBDyUBU1B

γ−1yUB

Uϵ1B yUB

(8)

The local naturality for ϵ amounts to showing that the 2-cells below are equal:

FUB FUB B FUB B B

FUC FUC C FUC C C

FUk

ϵB

ϵC

kFUh

ϵB

hFUh

ϵC

k
FUα

ϵh
α

ϵk
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An analogous approach will be done here as well, this time pre-composing with the
2-cell U(−) ◦ γ−1yUB ◦ UϵDDyUCUh ◦ ΦDUh:

Uh UϵCyUCUh UϵCUFUhyUB U(ϵCFUh)yUB

Uk UϵCyUCUk UϵCUFUkyUB U(ϵCFUk)yUB

UϵCyUCUh UhUϵByUB UkUϵByUB

UϵCUFUhyUB U(ϵCFUh) U(hϵB)yUB U(kϵB)yUB

ΦCUh

Uα

ΦDUh
UhΦB

UϵCDyUCUh

UϵCyUCUα

γ−1yUB

UϵCUFUαyUB U(ϵCFUα)yUB

ΦCUk

UkΦB

UϵDDyUCUk
γ−1yUB

(9)

UϵkyUB

UϵDDyUCUh

(9)
UαUϵByUB

γ−1yUB γ−1yUB

γ−1yUB UϵhyUB U(αϵB)yUB

(6)

Ψ is a modification: This amounts to showing that these 2-cells are equal:

FA FUFA FA FA FB FA

FUFB FB FUFB FB

FyA

FUFf

F (yBf)

ϵFA

ϵFB

Ff

F (yBf)

Ff

FyB

ϵFB

Ff

ΨBFyf

γ′

ϵFf

γ′

ΨA

This time we precompose both sides with U(−) ◦ γ−1yUB ◦ UϵFBDyUFByBf ◦ ΦFByBf
to obtain:

U(LHS)yA ◦ γ−1yUB ◦ UϵFBDyUFByBf ◦ ΦFByBf =

= U(FfΨA ◦ ϵFfFyA)yA ◦ γ−1yA ◦ UϵFBUγ′yA ◦ UϵFBUFDyBfyA◦
◦ UϵFBDyUFByBf ◦ ΦFByBf

(6)
= U(FfΨA ◦ ϵFfFyA)yA ◦ γ−1yA ◦ UϵFBUγ′yA ◦ UϵFBDUFfyA◦
◦ UϵFByUFBDyBf ◦ ΦFByBf

(7)
= U(FfΨA ◦ ϵFfFyA)yA ◦ γ−1yA ◦ UϵFBγ−1yA ◦ UϵFBUFUFfDyUFAyA◦
◦ UϵFBUFUFfDyUFBUFfyA ◦ UϵFByUFBDyBf ◦ ΦFByBf

= U(FfΨA)yA ◦ γ−1yA ◦ UϵFfUFyAyA ◦ U(ϵFBFUFf)DyUFAyA◦
◦ γ−1yUFAyA ◦ UϵFBDyUFBUFfyA ◦ ΦFBUFfyA ◦ DyBf

(9)
= U(FfΨA)yA ◦ γ−1yA ◦ γ−1UFyAyA ◦ UFfUϵFADyUFAyA◦
◦ UFfΦAyA ◦ DyBf

= γ−1yA ◦ UFfUΨAyA ◦ UFfγ−1yA ◦ UFfUϵFADyUFAyA◦
◦ UFfΦAyA ◦ DyBf



COLAX ADJUNCTIONS AND LAX-IDEMPOTENT PSEUDOMONADS 267

(10)
= γ−1yA ◦ UFfι−1yA ◦ DyBf

(10)
= γ−1yA ◦ UΨBUFfyA ◦ UϵFBγ−1yA ◦ UϵFBUFyBDyBf◦
◦ UϵFBDyUFByBf ◦ ΦFByBf

= U(ΨBFf)yA ◦ γ−1yA ◦ UϵFBγ−1yA ◦ UϵFBUFyBDyBf◦
◦ UϵFBDyUFByBf ◦ ΦFByBf

(7)
= U(ΨBFf)yA ◦ γ−1yA ◦ UϵFBUγ′yA ◦ UϵFBDyUFByBf ◦ ΦFByBf

= U(RHS)yA ◦ γ−1yUB ◦ UϵFBDyUFByBf ◦ ΦFByBf.

The second swallowtail identity: This amounts to showing the following equality,
which we will again do by an appropriate pre-composition:

FUB

FUFU FUB = ϵBι

FUB B

FyUB

F1UB
F (UϵByUB)

(FΦ)B

γ′ ϵFUB

FUϵB ϵBϵϵB

ϵB

ΨUB

U(LHS)yUB ◦ γ−1yUB ◦ UϵBDyUB
◦ ΦB =

= U(ϵBΨUB ◦ ϵϵBFyUB)yUB ◦ γ−1yUB ◦ UϵBUγ′yUB ◦ UϵBUFΦByUB◦
◦ UϵBDyUB

◦ ΦB

(6)
= U(ϵBΨUB ◦ ϵϵBFyUB)yUB ◦ γ−1yUB ◦ UϵBUγ′yUB ◦ UϵBDyUBUϵByUB

◦
◦ ΦBUϵByUB ◦ ΦB

(7)
= U(ϵBΨUB ◦ ϵϵBFyUB)yUB ◦ γ−1yUB ◦ UϵBγ−1yUB◦
◦ UϵBUFUϵBDyUFUByUB

◦ UϵBDyUBUϵByUB ◦ ΦBUϵByUB ◦ ΦB

= U(ϵBΨUB)yUB ◦ γ−1yUB ◦ UϵϵBUFyUByUB ◦ γ−1UFyUByUB◦
◦ UϵBUFUϵBDyUFUByUB

◦ UϵBDyUBϵByUB ◦ UϵByUBΦB ◦ ΦB

(9)
= U(ϵBΨUB)yUB ◦ γ−1yUB ◦ γ−1UFyUByUB ◦ UϵBUϵFUBD◦
◦ UϵBΦByUB ◦ ΦB

= γ−1yUB ◦ UϵBUΨByUB ◦ UϵBUϵFUBDyUFUByUB
◦ UϵBΦByUB ◦ ΦB

(10)
= γ−1yUB ◦ UϵBι−1yUB ◦ ΦB
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(8)
= γ−1yUB ◦ UϵBUι′yUB ◦ UϵBDyUB

◦ ΦB

= U(RHS)yUB ◦ γ−1yUB ◦ UϵBDyUB
◦ ΦB.

A.2. Lemma. The composite bijection (A)+(B)+(C) in the proof of Theorem 4.19:

KD(DA,DHL)(f,Dl
′) ∼= L(GDA,L)(sL ◦Gf, sL ◦GDl′),

is given by the assignment:
α 7→ sLGα.

Proof. Because of the swallowtail identity for the biadjunction in Proposition 2.15, it
can be seen that the counit of the adjunction (11) evaluated at f : A → HL is equal to
the following (using notation from Remark 4.18):

A DA DHL HL

HL

yA Df hL

f
yHLy−1

f
ϵL

The composite bijection (A)+(B)+(C) is thus the assignment:

α 7→ sL ◦GD(ϵLf ◦ hLy−1
Dl′ ◦ hLαyA) ◦ ℶ

−1
f .

Unwrapping the definitions of variables hL, ϵL,ℶ−1
f , what we need to show that the

composite 2-cell below equals sLGα (note that we use the same convention for the modi-
fications on which a pseudofunctor is applied as in Definition 2.8):

GDA

GD2HL GDHL L

GDA GD2A GD2HL GDHGD2HL GDHGDHL GDHL

GDHL GDHGDHL

GDcDHL

sGD2HL

GpDHL
sL

sGDHL

GDHsL

sL

Gf

GpDA

GDf

GDyA

GD2l′

GDl′

GDyHL
GDHGDyHL

s−1
GpDHL

s−1
sL

GDα

(GDy)l′ (GDc)yHL

(GDHGΨ)HL

(GDτ)−1
L

(GΨ)−1
A

σ−1
DHL

(Gp)−1
f
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The diagram below proves this equality:

sLGf sLGfGpDAGDyA sLGpDHLGDfGDyA

sLGDl
′ sLGDl

′GpDAGDyA sLGpDHLGD
2l′GDyA

sLGDl
′ sLGpDHLGDyHLGDl

′

sLGpDHLGDyHLsGDHLGDcHLGDl
′ sLGpDHLsGD2HLGDcDHLGDyHLGDl

′

sLGDl
′ sLGpDHLsGD2HLGDHGDyHLGDcHLGDl

′

sLGDHsLGDcHLGDl
′ sLsGDHLGDcHLGDl

′ sLsGDHLGDHGpDHLGDHGDyHLGDcHLGDl
′

sLGf(GΨ)−1
A

sL(Gp)
−1
f GDyA

sLGpDHLGDαGDyA

sLGpDHLGDy
−1
l′

sLGpDHLσ
−1
DHLGDyHLGDl

′

sL(GDτ)
−1
L GDl′

sLGαGpDAGDyA

sL(Gp)
−1
DlGDyA

sLGα

sLGDl
′(GΨ)−1

A

sL(GΨ)−1
HLGDl

′

1

1

sLGpDHLsGD2HLGDcyHL
GDl′

sLs
−1
GpDHL

GDHGDyHLGDcHLGDl
′

sLsGDHL(GDHGΨ)HLGDcHLGDl
′

s−1
sL
GDcHLGDl

′

sLσHLGDl
′

sLGpDHLsGDyHL
GDcHLGDl

′

sL(GΨ)HLsGDHLGDcHLGDl
′

sLGpDHLGDyHLσ
−1
HLGDl

′

sL(GΨ)HLGDl
′

sLσ
−1
HLGDl

′

(a)

(b)

(c)
(d)

(∗)

(∗)

(e)

In this diagram:

• (a) is the local naturality of (Gp)−1,

• (b) is the modification axiom for (GΨ)−1

• (c) is the swallowtail identity for (s, c),

• (d) is the equation derived from the local naturality of s,

• (e) is the modification axiom for σ−1,

• (∗)’s are the middle-four-interchange laws.
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Paré, Robert. Three Easy Pieces: Imaginary seminar talks in honour of Bob Rosebrugh.
Theory and Applications of Categories 36.6 (2021): 171-200.

Street, Ross. The formal theory of monads. Journal of Pure and Applied Algebra 2.2
(1972): 149-168.

Street, Ross. Two constructions on lax functors. Cahiers de topologie et géométrie
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