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DIRICHLET SPECIES AND ARITHMETIC ZETA FUNCTIONS

JOHN C. BAEZ

Abstract. Though Joyal’s species are known to categorify generating functions in
enumerative combinatorics, they also categorify zeta functions in algebraic geometry.
The reason is that any scheme X of finite type over the integers gives a ‘zeta species’
ZX , and any species F gives a Dirichlet series F̂ , in such a way that ẐX is the arithmetic
zeta function of X, a well-known Dirichlet series that encodes the number of points of
X over each finite field. Specifically, a ZX -structure on a finite set is a way of making
that set into a semisimple commutative ring, say k, and then choosing a k-point of the
scheme X. This is an elaboration of joint work with James Dolan.

1. Introduction

In combinatorics, structures on finite sets are often counted with the help of formal power
series called generating functions [6, 15]. André Joyal categorified the theory of generating
functions and showed that ‘species’ could be used, not merely to count structures on finite
sets, but also to work with them directly [8, 9]. The business of counting solutions to
polynomial equations over finite fields is often considered a separate topic from enumer-
ative combinatorics, but species have a role to play here too. In algebraic geometry one
counts such solutions using ‘arithmetic zeta functions’, which are not formal power series,
but rather Dirichlet series [13]. However, we show here that any species gives a Dirichlet
series, and all arithmetic zeta functions naturally arise from species in this way.

For an example of an arithmetic zeta function, consider any collection of polynomial
equations with integer coefficients in some finite set of variables. For any commutative
ring k, let X(k) be the set of all solutions of these equations where the variables take
values in k. Any ring homomorphism k → k′ determines a map X(k) → X(k′), and it is
easy to see this defines a functor X : CommRing → Set. Any finite field has cardinality pn

for some prime p, and up to isomorphism there is a unique field of cardinality pn, called
Fpn . The arithmetic zeta function of X is defined to be

ζX(s) =
∏
p∈P

exp

(∑
n≥1

|X(Fpn)|
n

p−ns

)
(1)

where P is the set of prime numbers. Thus, ζX encodes how many solutions the equations
have in each finite field.
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While Equation (1) looks curious at first sight, arithmetic zeta functions are central
to many problems in number theory, from the Weil Conjectures proved by Grothendieck
and Deligne [11], to the still unproved Birch and Swinnerton-Dyer conjectures [14], and
beyond. Even the Riemann Hypothesis can be seen as a question about an arithmetic zeta
function. Indeed, consider the degenerate system of equations with just one solution in
each commutative ring. This gives the terminal object T in the category of functors from
CommRing to Set, and the arithmetic zeta function of T is the Riemann zeta function ζ,
since

ζT (s) =
∏
p∈P

exp

(∑
n≥1

1

n
p−ns

)
=
∏
p∈P

1

1− p−s
=
∑
n≥1

n−s = ζ(s).

How can we obtain an arithmetic zeta function from a species? Intuitively, a species
is a structure one can put on finite sets and transport along bijections: for example, a
coloring, or ordering, or the structure of being the vertices of a graph. Suppose F is some
such structure. If we denote the set of F -structures on a chosen n-element set by F (n),
the exponential generating function of F is defined to be

|F |(x) =
∑
n≥0

|F (n)|
n!

xn.

This is a well-defined formal power series if F (n) is finite for all n. In this case we can
also associate a Dirichlet series to F , namely

F̂ (s) =
∑
n≥1

|F (n)|
n!

n−s.

This is again a formal series: we do not demand that it converges.
Here we show that arithmetic zeta functions are in fact the Dirichlet series of certain

species. Any functor
X : CommRing → Set

gives a species ZX for which a ZX-structure on a finite set is a way of making it into a
semisimple commutative ring, say k, and then picking an element of X(k). In our main
result, Theorem 5.1, we prove that when X preserves products and maps finite fields to
finite sets, we have

ẐX(s) =
∑
n≥1

|ZX(n)|
n!

n−s =
∏
p∈P

exp

(∑
n≥1

|X(Fpn)|
n

p−ns

)
where P is the set of prime numbers. This clarifies the initially ad hoc appearance of
Equation (1).

Furthermore, in Theorem 4.6 we prove that the above equation between Dirichlet
series arises from an isomorphism between species:

ZX
∼=

D∏
p∈P

expD FX,p.
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where:

� FX,p is the species defined in Lemma 4.5, for which an FX,p-structure on a finite set
is a way of making that set into a field of characteristic p, say k, and then choosing
an element of X(k).

� expD is the Dirichlet exponential of a species, defined in Section 3.7.

�

∏D
p∈P is the Euler product of species, defined in Section 3.11.

Thus, our work categorifies a bit of the theory of arithmetic zeta functions, by showing
that some basic equations arise from isomorphisms between species.

2. The Riemann zeta function

Before plunging into the general theory, let us consider the basic example: the Riemann
zeta function. We tackle this in a brute-force way and make only slight progress. Every-
thing becomes easier after we have introduced more technology. Still, this first attempt
is amusing and perhaps instructive.

Define a ‘Z-structure’ on a finite set to be a way of giving it addition and multipli-
cation operations that make it into a semisimple commutative ring. We can count the
Z-structures on an n-element set for a few small values of n. To do this, we start by
recalling two facts:

� By the Artin–Wedderburn theorem, a finite semisimple commutative ring is the
same as a finite product of finite fields [3, Thm. 5.2.4].

� Up to isomorphism there is one field with q elements, denoted Fq, when q is a
positive integer power of a prime number, and none otherwise [3, Thm. 7.8.2].

This lets us classify the semisimple commutative rings with n elements ‘by hand’ for
small values of n. For example:

� There are none when n = 0.

� There is one when n = 1: the ring with one element. (This is the empty product of
finite fields.)

� There is one when n = 2: F2.

� There is one when n = 3: F3.

� There are two when n = 4: F4 and F2 × F2.

� There is one when n = 5: F5.
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� There is one when n = 6: F2 × F3.

� There is one when n = 7: F7.

� There are three when n = 8: F8, F2 × F4 and F2 × F2 × F2.

Next, how many ways are there to make an n-element set into a ring isomorphic to
one on our list? For starters: how many ways are there to make an n-element set into a
ring isomorphic to some fixed n-element ring, say k? Each bijection between the set and
the ring k gives a way to do this, but not all of them give different ways: two bijections
give the same ring structure if and only if they differ by an automorphism of k. So, the
answer is n!/|Aut(k)|.

To go further, we need to understand the automorphisms of finite fields [3, Thm. 7.8.3]:
if q = pm for some prime p, then

Aut(Fq) ∼= Z/m,

namely the cyclic group generated by the Frobenius automorphism

F : Fq → Fq

x 7→ xp .

More generally, given a finite product of finite fields, its automorphisms all come from
automorphisms of the factors together with permutations of like factors. So, for example,
F2 × F4 has 2 automorphisms (coming from automorphisms of the second factor), while
F2 × F2 × F2 has 6 (coming from permutations of the factors), and F2 × F2 × F4 has 4
(coming from permuting the first two factors, and automorphisms of the third).

Using these facts, we can count how many different ways there are to give an n-element
set the structure of a semisimple commutative ring:

� For n = 0 there are 0 ways.

� For n = 1 there is 1!/1 = 1! ways.

� For n = 2 there are 2!/1 = 2! ways.

� For n = 3 there are 3!/1 = 3! ways.

� For n = 4 there are 4!/2 + 4!/2 = 4! ways.

� For n = 5 there are 5!/1 = 5! ways.

� For n = 6 there are 6!/1 = 6! ways.

� For n = 7 there are 7!/1 = 7! ways.

� For n = 8 there are 8!/3 + 8!/2 + 8!/6 = 8! ways.
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From this evidence, we might boldly guess there are always n! ways, except for n = 0
when there are none. Though it is hard to see why from our work so far, we prove in
Theorem 3.15 that this guess is correct. In other words, the Dirichlet function of the
Riemann species is ∑

n≥1

n!

n!
n−s =

∑
n≥1

n−s,

which is the Riemann zeta function ζ(s).

3. Dirichlet species

3.1. The Dirichlet product of species. We call the groupoid of finite sets and
bijections core(FinSet), since it is the groupoid core of the category FinSet, whose objects
are finite sets and whose morphisms are functions. The category of species is the functor
category [core(FinSet), Set]. Any species, say F : core(FinSet) → Set, describes a type of
structure that you can put on a finite set. For any finite set n, F (n) is the collection of
structures of that type that you can put on the set n.

Here we are mainly interested in species where there are only finitely many structures
of that type on any finite set. So, we define the category of tame species to be the
functor category [core(FinSet), FinSet]. Like the category of species itself, the category of
tame species has quite a few interesting symmetric monoidal structures. Two of these
come from coproducts and products in the target category FinSet:

� the coproduct of species, given by

(F +G)(n) = F (n) +G(n)

This is usually called addition.

� the product of species, given by

(F ×G)(n) = F (n)×G(n)

This is often called the Hadamard product.

Two more symmetric monoidal structures arise via Day convolution. Recall that any
symmetric monoidal structure on a category C extends uniquely one on [Cop, Set] such
that the tensor product preserves colimits in each argument [4]. Since this new monoidal
structure is analogous to convolving functions on a group, it is called ‘Day convolution’.
While core(FinSet)op ∼= core(FinSet) does not have coproducts or products, it inherits
symmetric monoidal structures which we call + and × from FinSet, which does. By Day
convolution each of these monoidal structures on core(FinSet) gives a symmetric monoidal
structure on the category of species, which restricts to one on tame species:
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� The symmetric monoidal structure on species arising via Day convolution from the
+ monoidal structure on core(FinSet) is called the Cauchy product and denoted
·C .

� The symmetric monoidal structure on species arising via Day convolution from the×
monoidal structure on core(FinSet) is called the Dirichlet product (or arithmetic
product) and denoted ·D.

To understand the Dirichlet product it is useful to warm up with the more familiar
Cauchy product. The rough idea is that if F and G are two species, an F ·CG-structure on
a finite set S is a way of writing S as a coproduct of two sets and putting an F -structure
on the first set and a G-structure on the second. We can make this precise and avoid
‘overcounting’ the coproduct decompositions as follows:

(F ·C G)(S) =
∑
T⊆S

F (T )×G(S − T ) (2)

where S is a finite set and we take the coproduct over all subsets T ⊆ S.
The Dirichlet product is in some sense dual. Now the idea is that an F ·D G-structure

on a finite set is a way of writing S as a product of two sets and putting an F -structure
on the first set and a G-structure on the second. Maia and Méndez [10] gave a convenient
way to make this precise. They defined a cartesian decomposition of a set S to be an
ordered pair (π1, π2) of equivalence relations on S such that each equivalence class of π1

intersects each equivalence class of π2 in a singleton. If we let Si be the set of equivalence
classes of πi, then the maps sending elements of S to their equivalence classes give a
product cone:

S

S1 S2.

The Dirichlet product of species F and G is then given by

(F ·D G)(S) =
∑

cartesian decompositions (π1,π2) of S

F (S1)×G(S2). (3)

A bijection f : S → S ′ induces a bijection between cartesian decompositions of S and
cartesian decompositions of S ′, and thus between (F ·D G)(S) and (F ·D G)(S ′). Using
this, F ·D G becomes a species.

We can also visualize a cartesian decomposition of a finite set as equivalence class of
ways of organizing its elements into a rectangle, where two ways are equivalent if they
differ by permuting rows and/or columns, for example

1 4 3
2 6 5

∼ 6 5 2
4 3 1.
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Dwyer and Hess [5] rediscovered the Dirichlet product by considering the monoidal struc-
ture on ‘symmetric sequences’, which form a category equivalent to that of species. For
more, see the work of Gambino, Garner and Vasilakopoulou [7].

There are, of course, (
n

k

)
=

n!

k!(n− k)!
.

k-element subsets of the ordinal n. This makes it evident that when we take cardinalities,
the Cauchy product obeys

|(F ·C G)(n)| =
n∑

k=0

(
n

k

)
|F (k)| |G(n− k)|.

The Dirichlet product obeys a similar formula. A cartesian decomposition of an n-element
set into a k-element set and some other set exists if and only k divides n. In this case the
group Sn acts transitively on the set of such cartesian decompositions, and the stabilizer
of any one is Sk × Sn/k, so the number of such cartesian decompositions is{

n

k

}
=

n!

k!(n/k)!
.

The notation here was introduced by Maia and Méndez [10, Sec. 2]. When we take
cardinalities, we thus have

|(F ·D G)(n)| =
∑
k|n

{
n

k

}
|F (k)| |G(n/k)|. (4)

where we sum over natural numbers k that divide n.

3.2. The category of Dirichlet species. The sum in Equation (4) is finite except
when n = 0, since every natural number divides 0. This wrinkle means that the Dirichlet
product of tame species may not be tame! However, the Dirichlet product of two tame
species that vanish on the empty set is tame, and it vanishes on the empty set. This leads
us to the following definition:

3.3. Definition. Define the category of species to be

Sp = [core(FinSet), Set]

and define the category of Dirichlet species, SpD, to be the full subcategory of Sp whose
objects are species F with F (∅) = ∅.

Equivalently, we can think of a Dirichlet species as a functor F : core(FinSet>0) →
Set where FinSet>0 is the category of nonempty finite sets and functions between them.
Indeed, we have

SpD ≃ [core(FinSet>0), Set]
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and this is a useful way to think about the category of Dirichlet species.
To spell this out a bit more, note that the inclusion

i : core(FinSet>0) → core(FinSet)

is symmetric monoidal with respect to the × monoidal structure, so by Day convolution
it gives a symmetric monoidal functor i∗ : Sp → SpD which takes any species and restricts
it to nonempty sets.

3.4. Proposition. The symmetric monoidal functor i∗ : Sp → SpD has a left adjoint
i! : SpD → Sp which extends any Dirichlet species F to a species i!F with (i!F )(∅) = ∅.
This functor i! is also symmetric monoidal, and the unit of the adjunction

η : 1 ⇒ i∗ ◦ i!

is a symmetric monoidal natural isomorphism, so SpD is not only a coreflective subcategory
of Sp, but a ‘coreflective symmetric monoidal subcategory’.

Proof. Given a Dirichlet species F and a species G, any morphism of species i!F → G
restricts to a morphism F → i∗G of Dirichlet species. On the other hand, any morphism
F → i∗G of Dirichlet species extends uniquely to a morphism i!F → G of species, since
(i!F )(∅) is initial. These operations determine a bijection Sp(i!F,G) ∼= SpD(F, i

∗G),
natural in F and G, so i! is left adjoint to i∗. The unit η of this adjunction is the natural
map from a Dirichlet species F to the Dirichlet species formed by first extending F to a
species i!F and then restricting it back to the groupoid of nonempty finite sets; this is
clearly an isomorphism.

While the left adjoint of a symmetric monoidal functor is in general only symmetric
oplax monoidal, it can be seen by direct computation that i! is strong monoidal, and that
the counit and unit of the adjunction between i∗ and i! are symmetric monoidal natural
transformations.

3.5. Dirichlet series.We want to define operations on species that categorify familiar
operations on Dirichlet series. To set these up we need to understand how a tame species
gives a Dirichlet series.

3.6. Definition. Given a tame species F , we define its Dirichlet series by

F̂ (s) =
∑
n≥1

|F (n)|
n!

n−s

where the sum is a formal one.

It is easy to check that if F and G are tame species, then

F̂ +G = F̂ + Ĝ.
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More interestingly, if F and G are tame Dirichlet species, then

F̂ ·D G = F̂ Ĝ.

This was shown by Maia and Méndez [10, Prop. 2.3], but the proof is so quick we give it
here:

F̂ ·D G (s) =
∑
n≥1

|(F ·D G)(n)|
n!

n−s

=
∑
n≥1

∑
k|n

{
n

k

}
|F (k)| |G(n/k)|

n!
n−s

=
∑
n≥1

∑
k|n

|F (k)|
k!

k−s |G(n/k)|
(n/k)!

(n/k)−s

= F̂ (s) Ĝ(s).

where in the second step we use Equation (4).
All of this resembles a more familiar story involving generating functions and the

Cauchy product. Namely, any tame species F has an exponential generating function

|F |(z) =
∑
n≥0

|F (n)|
n!

zn.

It is well known [2, 8] that
|F +G| = |F |+ |G|

and
|F ·C G| = |F | |G|.

The latter follows from a calculation very much like the one given above for the Dirichlet
product, but with binomial coefficients replacing Dirichlet binomials.

In short, Dirichlet series are adapted to the Dirichlet product of species just as expo-
nential generating functions are adapted to the Cauchy product. For Dirichlet species they
present the same information, since the Dirichlet series F̂ is obtained from the generating
function |F | by the replacement

zn 7→

{
n−s n ≥ 1

0 n = 0.

In number theory a closely related map is called the Mellin transform, and this explains
the frequent appearance of Mellin transforms in number theory.

3.7. Dirichlet exponentiation. Any Dirichlet series

f(s) =
∑
n≥1

f(n)

n!
n−s
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has an exponential

exp(f)(s) =
∑
m≥0

1

m!

(∑
n≥1

f(n)

n!
n−s

)m

which is again a well-defined Dirichlet series. Suppose F is a tame Dirichlet species. We
would like to define a tame species expD(F ) such that

̂expD(F ) = exp(F̂ ).

However, this is impossible unless F vanishes on one-element sets. To get a feeling for
this, consider the unit object for the Dirichlet product, I. This Dirichlet species deserves
to be called being a one-element set, since it is defined by

I(S) =

{
1 |S| = 1
∅ otherwise

(5)

where 1 here stands for the ordinal, which is both a natural number and a one-element
set. We have Î(s) = 1 and thus

exp(Î)(s) = e.

This cannot be the Dirichlet series of a tame species, since the only constants that are
Dirichlet series of tame species are natural numbers.

We can, however, find a tame species expD(F ) whose Dirichlet series is exp(F̂ ) when
F vanishes on one-element sets. The rough idea is that a expD(F )-structure on a finite
set is a way of writing that set as an unordered product of finite sets and putting an
F -structure on each factor.

One way to make this idea precise is to consider, for each n ∈ N, the n-fold Dirichlet
product of F with itself, which we call the nth Dirichlet power of F :

F n
D = F ·D F ·D · · · ·D F︸ ︷︷ ︸

n factors

.

(We define F 0
D to be I, the unit object for the Dirichlet product.) Since the Dirichlet

product is symmetric monoidal, the symmetric group Sn acts on F n
D. Since the category

of Dirichlet species is a presheaf category, it has colimits, so we can take the quotient
of F n

D by this Sn action and get a Dirichlet species that we call the symmetrized nth
Dirichlet power and denote as

F n
D/Sn.

Finally, we make the following definition:

3.8. Definition. Given a Dirichlet species F , we define its Dirichlet exponential to
be the coproduct

expD(F ) =
∑
n≥0

F n
D/Sn

in the category of Dirichlet species.
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3.9. Lemma. For any tame Dirichlet species F for which F (1) = ∅, the species expD(F )
is tame and

̂expD(F ) = exp(F̂ ).

Proof. Since for any two Dirichlet species F and G we have

F̂ ·D G = F̂ Ĝ,

it follows by induction that the Dirichlet powers obey

F̂ n
D = (F̂ )n. (6)

Since colimits in a presheaf category are computed pointwise, for any finite set T we have

(F n
D/Sn)(T ) = (F n

D(T ))/Sn.

We can understand the action of Sn on the set F n
D(T ) using the description of the Dirichlet

product in terms of cartesian decompositions in Section 3.1. An element of F n
D(T ) is a

way of writing T as a cartesian product of n sets and choosing an F -structure on each of
these sets. More precisely, it is a way of

� choosing n equivalence relations π1, . . . , πn on T such that if Ti ⊆ T is any equiva-
lence class for πi then T1 ∩ · · · ∩ Tn is a singleton;

� choosing an F -structure xi on the set of equivalence classes of πi for each 1 ≤ i ≤ n.

The group Sn acts on F n
D(T ) by permuting the equivalence relations π1, . . . , πn along

with the corresponding F -structures x1, . . . , xn. This action is free if for each i the set
of equivalence classes of πi has more than one element, since in that case i ̸= j implies
πi ̸= πj. Thus, since F is empty for one-element sets, we have

|(F n
D/Sn)(T )| =

1

n!
|F n

D(T )|. (7)
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We thus have

̂expD(F ) (s) =
∑
n≥0

F̂ n
D/Sn (s) by Definition 3.8

=
∑
n≥0

∑
m≥1

|(F n
D/Sn)(m)|

m!
m−s by Definition 3.6

=
∑
n≥0

∑
m≥1

|F n
D(m)|
n!m!

m−s by Equation (7)

=
∑
n≥0

1

n!
F̂ n
D(s) by Definition 3.6

=
∑
n≥0

1

n!
F̂ (s)n by Equation (6)

= exp(F̂ )(s).

Lemma 3.9 should remind us of a similar result for the ‘usual’ exponential of a species
F , which we should perhaps call the Cauchy exponential expC(F ). This is a species
such that an expC(F )-structure on a finite set is the same as a way of writing that set
as an unordered coproduct of finite sets and putting an F -structure on each summand.
When F is tame and F (∅) = ∅, the Cauchy exponential is tame and

| expC(F )| = exp(|F |) .

When F (∅) is nonempty, the Cauchy exponential is not tame and this equation fails,
for reasons analogous to the problem we saw for the Dirichlet exponential when F (1) is
nonempty. The reason is that ∅ is the unit for the coproduct of finite sets, so we can write
any finite set as a coproduct involving arbitrarily many copies of ∅, just as 1 is the unit
for the product, so we can write any finite set as a product involving arbitrarily many
copies of 1.

Here is an example important for understanding zeta functions:

3.10. Example. Suppose Fp is the species such that Fp(S) is the set of ways of making
the finite set S into a field of characteristic p. There are only finitely many ways to do
this, and none unless |S| = pn for n ≥ 1, so Fp is a tame Dirichlet species. When n ≥ 1
there are pn!/n ways to make a pn-element set into a field of characteristic p, since there
are pn! bijections between the set and Fpn , and this field has n automorphisms. Thus, we
have

F̂p(s) =
∑
j≥1

|Fp(j)|
j!

j−s =
∑
n≥1

|Fp(p
n)|

pn!
p−ns =

∑
n≥1

1

n
p−ns = ln

(
1

1− p−s

)
.
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The Dirichlet exponential expD(Fp) is the species such that expD(Fp)(S) is the set of
ways of making the finite set S into a product of fields of characteristic p. By Lemma 3.9,
the Dirichlet series of this species is

̂expD(Fp) (s) = exp(F̂p(s)) =
1

1− p−s
.

3.11. Euler products. In number theory, an arithmetic function is a function

f : N>0 → C

where N>0 = {1, 2, 3, . . . }. An arithmetic function is said to bemultiplicative if f(1) = 1
and f(mn) = f(m)f(n) whenever m and n are relatively prime. A multiplicative function
is determined by its values on prime powers, so we may think of it as a function of
isomorphism classes of finite fields.

Any arithmetic function f gives a Dirichlet series

F (s) =
∑
n≥1

f(n)n−s

and f is multiplicative if and only if this Dirichlet series has an Euler factorization:

F (s) =
∏
p∈P

(1 + f(p)p−s + f(p2)p−2s + · · · )

where P is the set of all primes. Each factor here is a Dirichlet series in its own right, and
the pth factor is ‘p-local’:

3.12. Definition. A Dirichlet series
∑

n≥1 f(n)n
−s is p-local for some prime p if

f(n) = 0 unless n is a power of p (possibly the zeroth power), and f(1) = 1.

Conversely, suppose for each prime p we have a p-local Dirichlet series Fp. Then we
can define the infinite product

F (s) =
∏
p∈P

Fp(s)

as a Dirichlet series, and if we write

F (s) =
∑
n≥1

f(n)n−s

then f is a multiplicative arithmetic function.
All this is ripe for categorification.
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3.13. Definition. A Dirichlet species A is p-local for some prime p if Â is p-local: that
is, A(S) is empty unless |S| is a power of p, and A(S) has one element if |S| = 1.

Suppose for each prime p we have a p-local Dirichlet species Ap. Then we can take
the Dirichlet product of all the Ap and get a well-defined Dirichlet species. Since this is
an infinite product, its formulation requires some care. Rather than developing a general
theory of infinite Dirichlet products, it seems quicker to leverage what we know about
finite Dirichlet products.

Let pi be the ith prime number. Let A[k] be the Dirichlet product of the species Ap

for the first k primes:
A[k] = A2 ·D A3 ·D A5 ·D · · · ·D Apk .

For any Dirichlet species X there is a unique morphism of Dirichlet species from I to X
where I is the unit for the Dirichlet product described in Equation (5). Tensoring this
with the identity morphism on A[k] gives a morphism

ιk : A[k] → A[k + 1].

We use these morphisms ιk to define the Euler product of the Dirichlet species Ap as
follows: ∏

p∈P

D
Ap = colim

k→∞
A[k].

Since the category of Dirichlet species is cocomplete, this is a well-defined Dirichlet species.

3.14. Lemma. If Ap are tame p-local Dirichlet species, one for each p ∈ P, then their
Euler product

A =
∏
p∈P

D
Ap

is a tame Dirichlet species, with

Â =
∏
p∈P

Âp,

and the arithmetic function n 7→ |A(n)| is multiplicative.

Proof. Suppose S is a finite set. By definition, an element of A[k](S) consists of:

� a list of equivalence relations π1, . . . , πk on S such that if Si is the set of equivalence
classes of πi, the quotient maps πi : S → Si form a product cone expressing S as the
product S1 × · · · × Sk,

together with

� an element xi ∈ Api(Si) for each i = 1, . . . , k.
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Since each species Ap is p-local, Api(Si) = ∅ unless |Si| is a power of pi, and |Api(Si)| = 1
if |Si| = 1. Thus A[k](S) = ∅ whenever any prime factor of |S| is not among the primes
p1, . . . , pk, but whenever k is large enough that all the prime factors of |S| are among
these primes, the map

ιk(S) : A[k](S) → A[k + 1](S)

is a bijection.
It follows that

A(S) ∼= A[k](S) (8)

whenever k is large enough that all the prime factors of |S| are among the first k primes.
Since the sets Ap(S) are finite for each prime p, so is each set A[k](S), and thus so is A[S].
Thus A is tame.

By Equation (8), the first n terms of the Dirichlet series Â and Â[k] are equal when
n ≤ pk. Since

Â[k](s) =
k∏

i=1

Âpi(s)

it follows that
Â(s) =

∏
p∈P

Âp(s).

Furthermore, since the arithmetic function n 7→ |A[k](n)| is multiplicative for any k, and
|A(n)| = |A[k](n)| when n ≤ pk, it follows that n 7→ |A(n)| is multiplicative as well.

We can now finally prove our claim in Section 2, namely that the Riemann zeta
function is the Dirichlet series of the species of semisimple commutative rings.

Recall from Example 3.10 that an expD(Fp)-structure on a finite set S is a way of
making it into a product of fields of characteristic p. There is no way to do this unless |S|
is a power of p, and one way if |S| = 1, since a one-element ring is an empty product of
fields. Thus expD(Fp) is a p-local Dirichlet species. Since each Dirichlet species Fp is tame,
so is expD(Fp). Any finite semisimple commutative ring k can be uniquely expressed as a
product of rings kp, one for each p ∈ P, that are products of finite fields of characteristic
p. Thus if we define the Riemann species to be

Z =
∏
p∈P

D
expD(Fp), (9)

it follows that a Z-structure on a finite set is a way of making it into a semisimple
commutative ring. By Lemma 3.14, Z is a tame Dirichlet species.

We can now show that the Riemann species Z has the Riemann zeta function ζ as its
Dirichlet series.

3.15. Theorem. Ẑ = ζ.
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Proof. In Example 3.10 we saw

̂expD(Fp) (s) =
1

1− p−s

so by Lemma 3.14 we have

Ẑ(s) =
∏
p∈P

̂expD(Fp) (s) =
∏
p∈P

1

1− p−s
= ζ(s).

4. Zeta species

Algebraic geometry is often formulated in terms of schemes, but for the present purposes
we can work with a simpler and more general concept, namely a functor

X : CommRing → Set.

For example:

� We can start with a polynomial equation with integer coefficients, say

x3 + y3 = z3

and let X(k) be the set of solutions where the variables take values in the commu-
tative ring k. Any homomorphism k → k′ gives a map X(k) → X(k′), and it is
easy to check that X is a functor. We call X(k) the set of k-points of X.

� More generally, we can specify a functor X : CommRing → Set by giving a commuta-
tive ring R and lettingX(k) = hom(R, k) be the set of ring homomorphisms f : R →
k. The previous example is the special case where we take R = Z[x, y, z]/⟨x3+ y3 =
z3⟩.

� More generally still, any scheme determines a functor from CommRing to Set, often
called its ‘functor of points’. The previous example is a special case of this: a
so-called ‘affine scheme’.

4.1. Definition. Given a functor X : CommRing → Set, we define its zeta species,
ZX , as follows: a ZX-structure on a finite set is a way to make that set into a semisimple
commutative ring, say k, and then choose an element of X(k).

Note also that the process of getting a zeta species from a functorX : CommRing → Set
is itself functorial. That is, there is a functor

Z : [CommRing, Set] → [core(FinSet), Set]

sending any functor X : CommRing → Set to its zeta species ZX , and any natural trans-
formation between such functors to the evident natural transformation between their zeta
species.
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4.2. Definition. We say a functor X : CommRing → Set is tame if X(k) is finite
whenever k is a finite semisimple commutative ring.

Clearly a functor X : CommRing → Set is tame if and only if its zeta species ZX is
tame. Whenever X is the functor of points of a scheme of finite type defined over the
integers, it is tame [13].

4.3. Definition. A functor X : CommRing → Set is multiplicative if it preserves prod-
ucts.

Whenever X is the functor of points of a scheme, it is multiplicative. This is easiest
to see for an affine scheme, since then X = hom(R,−) and any representable functor
preserves products.

4.4. Lemma. If X : CommRing → Set is multiplicative, its zeta species ZX is an Euler
product

ZX
∼=
∏
p∈P

D
ZX,p

where a ZX,p-structure on a finite set is a way to make that set into a ring kp that is a
product of finite fields of characteristic p and then choose an element of X(kp).

Proof. To put a ZX-structure on a finite set is to make it into a semisimple commutative
ring k and choose an element of X(k). But a finite semisimple commutative ring is the
same as a product over p ∈ P of rings kp where kp is a finite product of finite fields of
characteristic p, and all but finitely many of the kp have just one element. Since X is
multiplicative, to choose an element of X(k) is the same as to choose an element of X(kp)
for each p.

4.5. Lemma. If X : CommRing → Set is multiplicative, each species ZX,p can be written
as the Dirichlet exponential

ZX,p
∼= expD (FX,p)

where an FX,p-structure on a finite set is a way to make that set into a field k of charac-
teristic p and then choose an element of X(k).

Proof. To put a expD(FX,p)-structure on a finite set is to write it as a product of finite
fields of characteristic p, say k = f1 × · · · × fn, and then choose an element of X(fi)
for each i = 1, . . . , n. Since X is multiplicative, this collection of choices is the same as
choosing an element of X(k). Thus expD F (XX,p) is naturally isomorphic to ZX,p.

4.6. Theorem. If X : CommRing → Set is multiplicative, its zeta species is given by

ZX
∼=
∏
p∈P

D
expD (FX,p).

Proof. This follows straight from Lemmas 4.4 and 4.5.
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5. Arithmetic Zeta Functions

We are now ready to prove our main result, Theorem 5.1. This says that we have a way of
‘categorifying’ arithmetic zeta functions: that is, finding species with these zeta functions
as their Dirichlet series. We have seen that any functor X : CommRing → Set gives a
Dirichlet species ZX for which a ZX-structure on a nonempty finite set is a way to make
that set into a semisimple commutative ring, say k, and then choose an element of X(k).
When ZX is tame, it has a Dirichlet series

ẐX(s) =
∑
n≥1

|ZX(n)|
n!

n−s.

We now show that when ZX is also multiplicative, ẐX equals the arithmetic zeta func-
tion of X, a Dirichlet series already familiar to algebraic geometers when X is a scheme
of finite type over the integers [13]. This is given by the right side of the equation below.

5.1. Theorem. Suppose a functor X : CommRing → Set is tame and multiplicative.
Then

ẐX(s) =
∏
p∈P

exp

(∑
n≥1

|X(Fpn)|
n

p−ns

)
.

Proof. By Theorem 4.6 we have an isomorphism of tame Dirichlet species

ZX
∼=
∏
p∈P

D
expD (FX,p)

so taking Dirichlet series and using Lemmas 3.9 and 3.14, we obtain

ẐX(s) =
∏
p

exp

(∑
n≥1

|FX,p(p
n)|

pn!
p−ns

)
.

It thus suffices to show that
|FX,p(p

n)|
pn!

=
|X(Fpn)|

n
.

By definition |FX,p(p
n)| is the number of ways to make an pn-element set into a field, say

k, and choose an element of X(k). But as we have seen, there are pn!/n ways to make a
pn-element set into a field. So, there are pn!

n
|X(Fpn)| ways to make a pn-element set into

a field k and then choose an element of X(k) ∼= X(Fpn). This gives the equation above.

Again, the point is not so much the formula in Theorem 5.1: it is that Theorem 4.6
categorifies this formula, lifting it to an isomorphism of species.
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5.2. Example. Let T be the terminal object in [CommRing, Set]: that is, the functor,
unique up to isomorphism, such that T (k) is a one-element set for every commutative ring
k. A ZT -structure on a finite set is a way of making it into a semisimple commutative
ring k, so ZT is isomorphic to the Riemann species Z as defined in Equation (9). The
functor T is tame and multiplicative, so Theorem 5.1 implies

Ẑ(s) = ẐT (s) =
∏
p∈P

exp

(∑
n≥1

1

n
p−ns

)
=
∏
p∈P

1

1− p−s
= ζ(s),

as we already saw in a slightly different way in Theorem 3.15.

6. Conclusions

There are various directions for further study here. For example, knowing that any tame
species F has a Dirichlet series F̂ , we can study how various monoidal structures on tame
species give operations on Dirichlet series. We have mentioned four monoidal structures,
but another is the substitution product, where an F ◦G structure on a finite set S is a
way of partitioning S into nonempty blocks and then putting a G-structure on each block
and an F -structure on the set of blocks [2, Sec. 1.4]. Is there a multiplicative analogue of
this where we write S as a cartesian product of sets of cardinality > 1, put a G-structure
on each factor and an F -structure on the set of factors? What operation on Dirichlet
series does this give?

Also, Ramachandran has found fascinating relations between arithmetic zeta functions
and the big Witt ring of the integers [12]. Some of his results seem ripe for categorification,
especially since we now know how a way to categorify the big Witt comonad—the comonad
which when applied to a commutative ring gives its big Witt ring [1]. This categorification
is closely related to the substitution product on linear species.
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