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SIFTED COLIMITS, STRONGLY FINITARY MONADS AND
CONTINUOUS ALGEBRAS

JIŘÍ ADÁMEK, MATĚJ DOSTÁL, AND JIŘÍ VELEBIL

Abstract. We characterize strongly finitary monads on categories Pos, CPO and
DCPO as precisely those preserving sifted colimits. Or, equivalently, enriched finitary
monads preserving reflexive coinserters. We study sifted colimits in general enriched
categories.

For CPO and DCPO we characterize varieties of continuous algebras as precisely the
monadic categories for strongly finitary monads.

1. Introduction

Sifted colimits in ordinary categories, which are essentially combinations of filtered col-
imits and reflexive coequalizers, play a fundamental role in categorical algebra as demon-
strated in [7]. For example, varieties of finitary algebras are precisely the free completions
of duals of algebraic theories under sifted colimits. For ordered algebras varieties, consid-
ered as enriched categories over Pos (the cartesian closed category of posets) are precisely
the free completions of duals of enriched algebraic theories under enriched sifted theo-
ries [6].

In the present paper we study sifted colimits in general enriched categories. A weight
W is called sifted if colimits of diagrams in the base category weighted by W commute
with finite products. Example: if the base category is cartesian closed, filtered colimits
are sifted. We characterize the free completion SindK of an enriched category K under
sifted colimits. For example: if the base category is Pos, then we prove

SindK = Ind(RciK )

where RciK is the free completion under reflexive coinserters, and Ind denotes, as usual,
the free completion under filtered colimits (Theorem 4.17).

We apply our results, besides Pos, to the categories DCPO of directed-complete posets
(where directed subsets have joins, and morphisms are ∆-continuous maps: monotone
maps preserving directed joins) and CPO of ω-complete posets (where ω-chains have joins
and morphisms, called continuous maps, preserve ω-joins). For all these cartesian closed
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base-categories V we prove that an enriched functor between cocomplete V -categories
preserves sifted colimits iff it is strongly finitary. (This concept, introduced by Kelly and
Lack [25], means that the functor in question is an enriched left Kan extension of its
restriction to finite sets.) See Example 5.4 and Propositions 5.5 and 5.6.

We study varieties of continuous algebras, which are complete posets endowed with
continuous operations of a given signature. They play an important role in the semantics
of programs. Varieties, i.e. equational classes, were studied intensively since 1970’s, see
e.g. [20], [31] or [3]. Equational presentations use extended terms : besides variables and
composite terms t = σ(t0, . . . , tn−1) for n-ary symbols σ (and terms ti) we also admit
formal joins of terms. A variety of continuous algebras is a class presented by a set of
equations between extended terms. We study two variants: varieties over CPO and over
DCPO. We call algebras over CPO continuous and those over DCPO ∆-continuous.

Every variety V of continuous algebras has free algebras, thus it generates a free-algebra
monadTV on CPO. Moreover, V is isomorphic to the category CPOTV of monadic algebras
for TV . A question arises: which monads are of the form TV? We prove that each monad
TV is strongly finitary (Theorem 6.25) and, conversely, every strongly finitary monad on
CPO is proved to be the free-algebra monad of a variety (Theorem 8.4). We conclude
that varieties of continuous algebras and strongly finitary monads on CPO bijectively
correspond. More precisely: the category of varieties is dually equivalent to the category of
strongly finitary monads (Corollary 8.8). Analogously, varieties of ∆-continuous algebras
bijectively correspond to strongly finitary monads on DCPO.

Related Work. Sifted colimits in ordinary categories were introduced by Lair [28]
(who called them ‘tamisante’) and studied intensively e.g. in [5], [8], [16], and [23]. In
enriched categories they were introduced by the unpublished preprint [18], and for the
special case of the base category Cat (small categories) they were studied by Bourke [14].
Properties of sifted colimits, and their relationship to strongly finitary functors, have not
been investigated in the enriched context so far, but a number of these properties are
special cases of ‘colimits of some class’ investigated in an excellent paper by Kelly and
Schmitt [26].

Our results on continuous algebras are closely related to a number of results charac-
terizing monads on a category C corresponding to varieties of algebras in C :

1. For C = Set this is a classical result due to Linton [29]: varieties correspond to
finitary monads on Set, see e.g. [30], Theorem VI.8.1. Moreover, a set functor is finitary
iff it is strongly finitary, i.e. a left Kan extension of its restriction to finite sets.

2. For C = Pos it was Kurz and Velebil [27] who proved that varieties of ordered
algebras (classes presented by inequations) correspond to strongly finitary monads. We
have presented a simplified proof in [1].

3. The idea of using extended terms (Definition 6.7) stems from [3]. There Birkhoff’s
Variety Theorem was proved: varieties are precisely the HSP classes. However, the terms
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used in op. cit. are a bit more general than those we introduce below: in order to form a
term t =

∨
k∈N tk, we request that the number of variables in all the terms tk be finite.

4. Strongly finitary monads on CPO are also studied by Jǐŕı Rosický [32]. He proves
a bijective correspondence to varieties of algebras, but his syntax is different from ours.

5. Since CPO is a locally ℵ1-presentable category, another bijective correspondence to
varieties is presented by Bourke and Garner [15].

Acknowledgement. The authors are grateful to Jǐŕı Rosický for interesting discus-
sions, and to the referee for suggestions that have improved our presentation.

2. Ordinary sifted colimits

We present a short summary of results on sifted colimits in ordinary categories (for com-
parison with the weighted sifted colimits studied in later sections). These colimits were
called ‘tamisante’ by Lair [28], the name ‘sifted’ stems from [5].

2.1. Definition. A small category D is called sifted if colimits of diagrams over it in
Set commute with finite products.

2.2. Example. ([5]) Every small category with finite coproducts is sifted.

2.3. Proposition. ([19] or [5], Theorem 2.15) A small category D is sifted iff D ̸= ∅
and the diagonal ∆ : D → D × D is a final functor.

2.4. Definition. A sifted colimit in a category is a colimit of a diagram with a sifted
domain.

2.5. Examples.

1. Filtered colimits are sifted. Indeed, analogously to Definition 2.1, a possible defi-
nition of a filtered category D is that colimits of diagrams over D in Set commute with
finite limits.

2. Reflexive coequalizers are sifted colimits. Recall that a parallel pair is called reflexive
if it consists of split epimorphisms with a joint splitting. A reflexive coequalizer is a colimit
of a diagram whose domain is ∆op

1 for the following truncation ∆1 of ∆ (the category of
positive finite ordinals n = {0, . . . , n− 1} and monotone maps):

1

0

0

δ1

δ0

σ
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2.6. Remark. We can state (cum grano solis) that

sifted colimits = filtered colimits + reflexive coequalizers.

For example, if K is a category with finite coproducts, then the following are equivalent:

1. K has filtered colimits and reflexive coequalizers.

2. K has sifted colimits.

3. K is cocomplete.

Indeed (1) implies that K has coproducts (using filtered colimits). Thus (3) follows: the
famous construction of colimits via coproducts and coequalizers uses, in fact, reflexive
coequalizers. A more important support of the above slogan is the following

2.7. Theorem. ([8], Theorem 2.1) Let K and L be cocomplete categories. A functor F :
K → L preserves sifted colimits iff it preserves filtered colimits and reflexive coequalizers.

2.8. Notation.

1. SindK denotes the free completion of a category K under sifted colimits. (Anal-
ogous to the free completion IndK under filtered colimits.)

2. RecK denotes the free completion of K under reflexive coequalizers.

2.9. Theorem. ([5], Corollary 2.7 and 2.8) SindK is the category of all presheaves that
are sifted colimits of representables in [K op , Set]. If K has finite coproducts, then SindK
is the category of all presheaves preserving finite products.

2.10. Corollary. ([5], Theorem 3.10) Varieties of finitary algebras are, up to equiva-
lence, precisely the categories SindK , where K is a small category with finite coproducts.

One of the most important supports of the slogan in Remark 2.6 is the following

2.11. Theorem. If a category K has either pullbacks or finite coproducts, then

SindK = Ind(RecK ).

The case of pullbacks was proved by Chen [16], Theorem 9.1, for finite coproducts
see [5], Corollary 2.8.
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2.12. Example.

1. For the category Setf of finite sets we have

SindSetf = IndSetf = Set.

Analogously let Vec be the category of vector spaces over a given field and Vecf the full
subcategory of finite-dimensional spaces. Then

SindVecf = IndVecf = Vec.

2. For the category Ab of abelian groups if Abfg denotes the subcategory of free finitely
generated groups, then

SindAbfg = Ab.

In contrast, IndAbfg is the subcategory of all free abelian groups.

3. Sifted weighted colimits

A natural generalization of sifted colimits to V -categories, where V is a symmetric
monoidal closed category, was presented by [18]. Here we show that under certain assump-
tions sifted colimits are just a combination of filtered colimits and reflexive coinserters.

3.1. Assumption. In this section V = (Vo,⊗, I) denotes a symmetric monoidal closed
category with finite conical products.

Let us recall the concept of a weighted colimit in a V -category K [13]. Given a
diagram D : D → K and a weight W : Dop → V , both V -functors, a weighted colimit
is an object

C = colimWD

together with isomorphisms

φX : K (C,X)
∼−→ [Dop ,V ](W,K (D−, X))

natural in X ∈ K . The unit of the colimit is the natural transformation

u = φC(idC) : W → K (D−, C).

3.2. Examples. We concentrate on four categories V . They are all cartesian closed.

1. Pos: posets and monotone maps. A Pos-enriched category carries partial orders on
hom-sets making composition monotone. A Pos-enriched functor F : K → L is locally
monotone: f ⊑ g in K (A,B) implies Ff ⊑ Fg in L (FA, FB).

2. CPO: cpos and continuous maps. See Appendix A.
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3. DCPO: dcpos and ∆-continuous maps. See Appendix A.

4. Cat: small categories and functors. A Cat-enriched category carries a category
structure on hom-sets making composition a functor.

We denote by Posf the full subcategory of finite posets in Pos, analogously for CPOf

and DCPOf .

3.3. Convention. Given a V -category K , whenever we speak about D-colimits in K
(for an ordinary category D), we mean conical colimits with domain D . In particular,
filtered colimits are conical colimits with D filtered. Analogously for conical limits (called
limits).

3.4. Definition.

1. A weight W : Dop → V is sifted if colimits of diagrams in V weighted by W
commute with finite products.

2. Let K be a V -category. A sifted colimit in K is a colimit weighted by a sifted
weight.

3.5. Example. Analogously to Example 2.2, if D has finite coproducts, every weight
preserving finite coproducts is sifted ([25], Lemma 2.3).

3.6. Remark. The following proposition was proved by Peter Johnstone in his PhD
thesis [22]. We provide a short proof for the convenience of the reader.

3.7. Proposition. For a cartesian closed category V filtered colimits are sifted.

Proof.

1. For an arbitrary small V -category D we first observe that given diagrams D1, D2 :
D → V and forming the following diagram

D1 ∗D2 : D × D → V , (x1, x2) 7→ (D1x1)× (D2x2)

then for the conical colimits of D1 and D2 (whenever they exist) we have

colim(D1 ∗D2) = (colimD1)× (colimD2).

Indeed, we have isomorphisms

[Ci, Z] ≃ [1, [Di−, Z]] ≃ [Di−, Z]

natural in Z ∈ V op for i = 1, 2. They yield a natural isomorphism [C1 × C2, Z] ≃
[D1 ∗D2−, Z] as follows

[C1 × C2, Z] ≃ [C1, [C2, Z]]

≃ [D1−, [D2−, Z]]

≃ [D1 ∗D2−, Z].
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2. Let D be a small filtered category. Then ∆ : D → D ×D is final (Proposition 2.3).
Given diagrams D1, D2 : D → V , form D1 ∗ D2 as in (1), so that the triangle below
commutes:

D D × D

V

∆

D1×D2 D1∗D2

From (1) we get, since colimD ∼= colim(D1 ×D2), the desired canonical isomorphism

colim(D1 ×D2) ∼= (colimD1)× (colimD2).

Using an analogous argument, we see that in every cartesian closed category reflexive
coequalizers are sifted colimits. In categories enriched over Pos (or over a basic subcat-
egory, see below) we prove that reflexive coinserters are sifted colimits. We recall the
concept of a coinserter now and show below that it is a weighted colimit:

3.8. Example. In the category Pos consider a parallel pair1 f0, f1 : A → B. Its coinserter
is a universal morphism c : B → C with respect to c · f0 ⊑ c · f1. That is:

1. Every morphism c′ : B → C ′ with c′ · f0 ⊑ c′ · f1 factorizes through c.

2. Given u, v : C → D with u · c ⊑ v · c, it follows that u ⊑ v.

A coinserter can be constructed as follows: consider the category of pre-orders. Every
pre-order (X,⊑) has a posetal reflection: the quotient modulo the equivalence ⊑ ∩ ⊒.
Let ⪯ be the least preorder on the underlying set of B which contains both the order of
B and the relation

{(f0(a), f1(a)) | a ∈ A}.

Then the coinserter c : B → C is the posetal reflecion of (B,⪯).

3.9. Remark. Every poset P is a coinserter of a parallel pair between two sets (= discrete
posets). Indeed, if |P | denotes the underlying set and R ⊆ |P | × |P | the order-relation
with projections π0, π1 : R → |P |, then the following is a coinserter:

R |P | P

π1

π0

id

1We use indices 0 and 1 to indicate that f0 comes first and f1 second. Thus (f0, f1) is an ordered pair;
however f0 ⊑ f1 is not assumed.
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3.10. Example.Consider the following ω-chain of the linearly ordered sets Ck = {0, 1, . . . , k}:

0 ↪→
1

0

↪→
2

1

0

↪→ . . .

Its colimit in Pos is the linearly ordered set N. In contrast, the colimit in CPO is

N⊤ = N ∪ {⊤}

obtained from N by adding a top element ⊤ to it. Thus N⊤ is contained in the closure of
Setf under reflexive coinserters and ω-colimits (using the preceding remark).

3.11. Definition. A subcategory V of Pos, not necessarily full, is basic if it is co-
complete, cartesian closed, closed under limits, contains Posf as a full subcategory, and
contains all morphisms of the form 1 → X for all X ∈ objV .

3.12. Example. CPO and DCPO are basic subcategories of Pos.

3.13. Definition. Let V be a basic subcategory of Pos. Then the coinserter of a parallel
pair f0, f1 : A → B in V is the weighted colimit of the following diagram

a• •b A B

D V

f1

f0φ0

φ1
D

with hom-objects of D discrete, weighted by the following weight W0

1

W0a ∗ W0b

0

W0φ1

W0φ0

(where 0 ⊑ 1). We speak about reflexive coinserters in case the pair f0, f1 is reflexive.

Explicitly, a coinserter in V is given by a morphism c : B → A universal with respect
to c · f0 ⊑ c · f1. Indeed, the unit u : W → [D−, C] of the colimit C = colimWD has
the component ub given by c : B → C and the component ua given by c · f0 and c · f1.
Thus Wφ0 ⊑ Wφ1 yields c · f0 ⊑ c · f1. The universality of c follows from the definition
of weighted colimit.

3.14. Theorem. Reflexive coinserters are sifted colimits in every basic subcategory V of
Pos.
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Proof. It is our task, given coinserters with splittings δ and δ′ as follows:

A B C
f1

f0

c

δ

A′ B′ C
f ′
1

f ′
0

c′

δ′

to prove that c×c′ is a coinserter of f0×f ′
0 and f1×f ′

1. Thus reflexive coinserters commute
with binary products. The statement for the empty product is trivial.

(a) First observe that for every object A the functor A×− preserves coinserters (being
a left adjoint due to cartesian closedness).

(b) Given a morphism d : B ×B′ → D with

d · (f0 × f ′
0) ⊑ d · (f1 × f ′

1) (q1)

we prove that it factorizes through c× c′. Precomposing with δ×A′ we get d · (B× f ′
0) ⊑

d · (B × f ′
1). Therefore, the adjoint transpose d̂ : B′ → [B,D] fulfils

d̂ · f ′
0 ⊑ d̂ · f ′

1 : B
′ → [B,D].

By the universal property of c′, we thus get a morphism g : B ×C ′ → D such that ĝ is a
factorization of d̂ through c′:

B′ C ′

[B,D]

c′

d̂
ĝ

In other words, the following lower triangle commutes:

A×B′ B × C ′

B ×B′ B × C ′

D

A×c′

f1×B′f0×B′ f1×C′f0×C′

B×c′

d
g

(q2)

Now precomposing (q1) with A× δ′ yields (in the square above) that

d · (f0 ×B′) ⊑ d · (f1 ×B′).
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Thus the above diagram proves

g · (f0 × C ′) · (A× c′) ⊑ g · (f1 × C ′) · (A× c′).

From (a) we know that A× c′ is the coinserter of A× f ′
0 and A× f ′

1. Using the universal
property of this coinserter, we get

g · (f0 × C ′) ⊑ g · (f1 × C ′).

From (a) we also know that f0 × C ′ and f1 × C ′ have the coinserter c × C ′, and thus g
factorizes as follows

B × C ′ C × C ′

D

c×C′

g
h

Combining this with the lower triangle in (q2) yields

d = g · (B × c′) = h · (c× c′)

as desired.

(c) Let u, v : C × C ′ → X fulfil

u · (c× c′) ⊑ v · (c× c′).

We prove u ⊑ v. We can rewrite the above inequality as follows

[u · (c×B′)] · (C × c′) ⊑ [v · (c×B′)] · (C × c′).

Denote the adjoint transposes of u · (c × B′) and v · (c × B′) by ũ, ṽ : B′ → [C,X],
respectively. The adjoint transpose of the above inequation yields

ũ · c′ ⊑ ṽ · c′.

The universal property of c′ thus implies ũ ⊑ ṽ, which (by using the inverse to the adjoint
transpose) proves

u · (c×B′) ⊑ v · (c×B′).

Since by (a) the morphism c×B′ is a coinserter, we get u ⊑ v.
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Analogously to Remark 2.6 we can state, for basic subcategories of Pos, that

sifted colimits = filtered colimits + reflexive coinserters.

For example the following proposition supports this. A more important support is pre-
sented in Section 4.

3.15. Proposition. Let V be a basic subcategory of Pos. If K is a V -category with
finite coproducts, then equivalent are:

1. K has filtered colimits and reflexive coinserters.

2. K has sifted colimits.

3. K is cocomplete.

Proof. Due to Theorem 3.14 and Proposition 3.7 we just need to verify that (1) implies
(3).

(a) K has colimits. Indeed, it has coproducts since they are filtered colimits of finite
ones. It also has reflexive coequalizers (Example 2.5): given a reflexive pair u, v : A → B
the pair f0 = [u, v] : A + A → B and f1 = [v, u] : A + A → B is also reflexive,
and a coinserter of f0, f1 is precisely a coequalizer of u and v. Thus, K has colimits:
the construction of colimits via coproducts and coequalizers ([30], Theorem V.2.1) uses
reflexive coequalizers only.

(b) K has tensors: given a poset P , to verify that a tensor P ⊗ X exists for each
X ∈ objV we can restric ourselves to P finite and use the fact that if P = colim

i∈I
Pi is a

filtered colimit in Pos with Pi finite, then P ⊗ X = colim
i∈I

Pi ⊗ X (whenever all tensors

Pi ⊗X exist in V ).

For P finite and discrete, P ⊗ X =
∐

|P | X is a copower. For P non-discrete use
Remark 3.9: we get the tensor P⊗X by forming the reflexive coinserter of π0⊗id , π1⊗id :
R⊗X → |P | ⊗X: since −⊗X preserves weighted colimits, that coinserter has the form
c⊗ id : |P | ⊗X → P ⊗X.

(c) K is cocomplete since Vo is complete and cocomplete: this follows from (the dual
of) [12], Theorem 6.6.14.
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3.16. Examples.

1. For CPO-enriched or DCPO-enriched categories with finite products, the existence
of filtered colimits and reflexive coinserters implies cocompleteness.

2. For the cartesian closed category Cat of small categories and functors, Bourke [14]
studied sifted colimits. The role of reflexive coinserters is played by the colimits weighted
by the embedding

W2 : ∆
op
2 ↪→ Cat.

Here ∆2 is the truncation of ∆ (Example 2.5 (2)) to 0,1,2 and W1 and W2 are the
categories given by the linear order 0 < 1 < 2. Bourke proved e.g. that an enriched
endofunctor of Cat preserves sifted colimits iff it preserves

(a) Filtered colimits.

(b) Codescent objects of strict reflexive data, which means precisely colimits weighted
by W2 ([14], Corollary 8.45).

We shall see similar results for Pos-enriched categories in Section 5.

4. The completion Sind

A free completion of a V -category K under sifted colimits is called SindK . We observe
that it consists of presheaves that are sifted colimits of representables. In case V = Pos,
we also introduce the free completion RciK under reflexive coinserters and prove

SindK = Ind(RciK )

for all enriched categories K with finite coproducts. And we derive that an enriched
functor between cocomplete categories preserves sifted colimits iff it preserves filtered
colimits and reflexive coinserters.

Much of what we do with sifted weights is simply a special case of the work of Kelly
and Schmitt [26] that we shortly recall first.

4.1. Assumption. Throughout this and the next section V = (Vo,⊗, I) denotes a closed
symmetric monoidal category which is complete and cocomplete (has weighted limits and
colimits). Moreover, for the category Setf of finite sets the functor

K : Setf → V , KX =
∐
X

I,

is assumed to be a full embedding.

All the categories Set, Pos, CPO, DCPO and Cat satisfy these assumptions.
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4.2. Notation. ([26]) Let Φ be a class of weights. A V -category is called Φ-cocomplete
if it has colimits of diagrams weighted in Φ. A V -functor is called Φ-cocontinuous if it
preserves colimits weighted in Φ. The V -category of all such functors from K to L is
denoted by

Φ-Cocts(K ,L ).

4.3. Definition. ([26]) A free completion of a V -category K under Φ-colimits is a Φ-
cocomplete V -category K together with a V -functor E : K → K yielding an equivalence
of categories by precomposition:

(−) · E : Φ-Cocts(K ,L )
≃−→ [K ,L ].

It follows from [26], Proposition 4.1 that E is always fully faithful. Thus without
loss of generality we can consider K to contain K as a full subcategory (and E to be
the embedding). Kelly and Schmitt give a characterization, for an arbitrary class Φ of
weights, of free completions under Φ-colimits:

4.4. Proposition. ([26], Proposition 4.3) A V -full embedding

E : K ↪→ K

is a free completion under Φ-colimits iff

1. K is Φ-cocomplete.

2. The enriched hom-functor K (X,−) is Φ-cocontinuous for every X ∈ objK .

3. K is an iterated closure of K under Φ-colimits.

4.5. Remark. The free completion of a V -category of K under filtered (conical) colimits
is usually denoted by IndK . It is well known that IndK can be described as the category
of all presheaves in [K op ,V ] which are filtered colimits of representables. Analogously:

4.6. Notation. The free completion of a V -category K under sifted colimits is denoted
by

SindK .

4.7. Proposition. For every V -category K we can describe SindK as the category of
all presheaves in [K op ,V ] that are sifted colimits of representables.

More detailed: the restricted Yoneda embedding Y of K into the above subcategory
of [K op ,V ] has the universal property. This follows from [9], Proposition 7.3, since the
class Φ of all sifted weights is saturated (aka closed). The saturation of Φ is a consequence
of the fact that Φ is defined via commutation with certain limits: see [26], Proposition 5.4.
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4.8. Corollary. For a small V -category K with finite coproducts we have

SindK = all finite-product preserving presheaves.

Indeed, a presheaf F : K op → V preserves finite products iff it is a sifted colimit of
representables. The ‘if’ direction is clear from the definition of a sifted weight, and the
fact that representables preserve finite products. For the ‘only if’ direction recall that F
is a sifted weight (Example 3.5). Thus, the standard representation of F as the colimit
of Y weighted by F :

F = colimFY

presents F as a sifted colimit of representables.

4.9. Remark.

1. Analogously, for a small V -category K with finite colimits we have

IndK = all finite-limit preserving presheaves.

In fact, these are precisely the presheaves that are filtered colimits of representables.

2. For large categories, we have to work with small presheaves : those that are small
colimits of representables. If a V -category K has finite coproducts (or colimits), then
SindK consists of small presheaves preserving finite products (and IndK of all small
presheaves preserving finite limits).

In the rest of this section we work with poset-enriched categories: V = Pos. We
will prove that in case K has finite conical coproducts, its free completion under reflexive
coinserters is actually a special completion under finite colimits. From that we derive that
functors preserving filtered colimits and reflexive coinserters are finitely cocontinuous.

4.10. Notation. The free completion of a poset-enriched category K under reflexive
coinserters is denoted by

RciK .

4.11. Definition.

1. An object X of V is element-finite, shortly e-finite, if it has finitely many global
elements: Vo(1, X) is a finite set.

2. A weight W : Dop → V is e-finite if objD is finite and all objects

D(d, d′) and Wd (d,d′ ∈ objD)

are e-finite.

3. Colimits weighted by e-finite weights are called e-finite. An e-finitely cocomplete
V -category is one that has e-finite colimits. Functors preserving e-finite colimits are called
e-finitely cocontinuous.
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4.12. Proposition. A V -category has e-finite colimits iff it has finite conical colimits
and tensors with e-finite objects of V .

Proof.

1. Necessity. It is clear that the weights for finite conical colimits are e-finite. Let P
be an e-finite object of V . Tensors P⊗− are precisely colimits weighted by W : I op → V
where I is the terminal V -category and W represents P ([24], Section 1.3). Again, W
is clearly e-finite.

2. Sufficiency. Let K be a V -category satisfying the above condition. Then for every
e-finite weight W : Dop → K and every diagram D : D → K we can form the finite
coproduct ∐

d′,d′′∈D

D(d′, d′′)⊗ (Wd′ ⊗Wd′′).

Moreover, we obtain a canonical pair of morphisms∐
d′,d′′∈D D(d′, d′′)⊗ (Wd′ ⊗Wd′′)

∐
d∈D Wd⊗Wd

whose coequalizer (exists and) yields colimWD: see [24], the dual of (3.08).

4.13. Corollary. A V -functor between e-finitely cocomplete V -categories is e-finitely
cocontinuous iff it preserves finite conical colimits and tensors with e-finite objects.

By an e-finite cocompletion of a V -category K is meant an e-finitely cocomplete
category containing K as a full subcategory. If, moreover, K is closed under finite
coproducts, we call the cocompletion plus-conservative.

4.14. Definition. Let K be a V -category with finite conical coproducts. A plus-conservative
e-finite cocompletion K is free if, given an e-finitely cocomplete category L , the category

A1 : all e-finitely cocontinuous functors in [K ,L ]

is equivalent, via domain-restriction, to the category

A2 : all finite-coproduct preserving functors in [K ,L ].

4.15. Remark.

1. It follows that every functor F : K → L preserving finite coproducts has a unique
e-finitely cocontinuous extension F : K → L .
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2. In case V is a basic subcategory of Pos, conversely, the property in (1) implies that
K is a free plus-conservative e-finite cocompletion. To see this, recall that V contains
all morphisms from 1; thus enriched natural transformations are just the ordinary ones.
What we need to prove is that every natural transformation τ : F → G, which is a
morphism in A2, yields a unique natural transformation τ : F → G between the e-finitely
cocontinuous extensions with τK = τK for all K ∈ K .

Apply the above extension property to the morphism-V -category:

L → = [2,L ] where 2 is a two-chain,

in place of L . To give a functor H : K → L → in A2 means precisely to give τ : F → G
as above. And the unique extension H : K → L → is precisely the desired natural
transformation τ .

4.16. Theorem. Let K be a poset-enriched category with finite coproducts. Then RciK
is a free e-finite plus-conservative cocompletion of K .

Proof. We prove some auxiliary statements first.

1. The initial object 0 of K is initial in RciK . We prove this by structural induction:
to verify that every object A of RciK has a unique morphism from 0, we denote by
A ⊆ RciK the full subcategory on all objects with the desired property. Then we verify
that

(a) A contains K .

(b) A is closed under reflexive coinserters in RciK .

This proves A = RciK , as desired. The statement (a) is obvious. To prove (b), consider
a reflexive pair f0, f1 : A → B in A and its coinserter in RciK :

A B C
f1

f0

c (coins)

This coinserter is preserved by RciK (0,−) by Proposition 4.4. Thus every morphism
in RciK (0, C) factorizes through c. Since B ∈ A , this factorization is unique. Hence,
RciK (0, C) is a singleton set, as required.

2. K is closed under binary coproducts in RciK . Indeed, let a coproduct in K be
given:

K = K1 +K2 with injections v1, v2.

We proceed by structural induction. Let A be the full subcategory of RciK on all objects
X such that (i) for every pair ki : Ki → X there is k : K → X with ki = k · vi and (ii)
given k, l : K → X with k · vi ⊑ l · vi (i = 1, 2), then k ⊑ l.

(2a) K ⊆ A because the coproduct K = K1 +K2 is conical in K .
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(2b) If the above coinserter (coins) fulfils A,B ∈ A , we prove C ∈ A . For that we
use that RciK (Ki,−) preserves that coinserter for i = 1, 2 (Proposition 4.4).

For Item (i), use that RciK (Ki, c) is epic: coinserters in Pos, as described in Example 3.8,
are surjective. Thus there exist morphisms k′

i : Ki → B with ki = c · k′
i (i = 1, 2). Since

B ∈ A , we have a morphism k′ : K → B with k′
i = k′ · vi (i = 1, 2). Then k = c · k′ fulfls

ki = k · vi.
For the proof of (ii) recall that the hom-functors

Fj = RciK (Kj,−) : RciK → Pos (j = 1, 2)

preserve reflexive coinserters. Thus Fjc is the coinserter of Fjf0 and Fjf1. Since reflexive
coinserters in Pos are sifted colimits (Theorem 3.14), F1c×F2c is the coinserter of F1fi ×
F2fi for i = 0, 1. Following the description of coinserters in Pos (Example 3.8), the
morphism F1c×F2c is the posetal reflection of the least pre-order on F1B×F2B containing

(a) the order of F1B × F2B and

(b) the relation of all pairs (u0, u1) given by choosing an element (p1, p2) ∈ F1A×F2A
and forming u0 = (f0 · p1, f0 · p2) and u1 = (f1 · p1, f1 · p2):

K1 K2

A B

p1
p2

f1

f0

As in Item (i), we can find, for our morphisms k, l : K → C, morphisms k′, l′ : K → B
with k = c · k′ and c · l′. Our assumption k · vj ⊑ l · vj means that in F1C × F2C we have

(c · k′ · v1, c · k′ · v2) ⊑ (c · l′ · v1, c · l′ · v2).

In order to prove k ⊑ l, we can thus restrict ourselves to two special cases:

(α) In F1B × F2B we have (k′ · v1, k′ · v2) ⊑ (l′ · v1, l′ · v2).
(β) There is (p1, p2) ∈ F1A× F2A with

k′ · vj = f0 · pj and l′ · vj = f1 · pj (j = 1, 2).

In case (α), we use B ∈ A : since k′ ·vj = l′ ·vj for j = 1, 2, we conclude k′ ⊑ l′. Therefore
k = c · k′ ⊑ c · l′ = l. In case (β) we additionally use A ∈ A : there is p : K → A with
pj = p · vj (j = 1, 2). From B ∈ A and the equalities

k′ · vj = f0 · p · vj (j = 1, 2)

we derive k′ = f0 · p. Analogously l′ = f1 · p. Thus c · k′ ⊑ c · l′; i.e. k ⊑ l as desired. This
proves C ∈ A .
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3. The category RciK has binary coproducts (thus all finite ones, due to Item (1)).
To prove this, we fix an object X of RciK and proceed by structural induction: let A
be the full subcategory on all objects Y with coproduct X + Y in RciK . We first prove
(b), then (a).

(3b) A is closed under reflexive coinserters. Suppose that in the coinserter (coins) we
have A,B ∈ A . We thus can form the (obviously reflexive) coinserter c̃ of id + f0 and
id + f1:

A B C

X + A X +B C̃

X

f1

f0

inr

c

inr u

id+f1

id+f0

c̃

inl
inl

Denote the coproduct injections of X+A (or X+B) by inl and inr. We have c̃·(id+f0) ≤
c̃ · (id + f1) which, precomposed by the coproduct injection inr, yields

(c̃ · inr) · f0 ≤ (c̃ · inr) · f1.

Hence we obtain a unique u making the square above commutative. We claim that in the
underlying ordinary category (RciK )o the desired coproduct is

X + C = C̃ with injections c̃ · inl and u.

Indeed, consider an arbitrary pair of morphisms

k : X → D and h : C → D.

The morphism
l = [k, h · c] : X +B → D

clearly fulfils
l · (id + f0) ≤ l · (id + f1)

and it thus factorizes through c̃:

X + A X +B C̃

D

id+f1

id+f0

c̃

[k,h·c]
l̃
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The morphism l̃ is the desired factorization: we have

l̃ · (c̃ · inl) = k.

Moreover,
l · u = h

since the coinserter c is epic:

(l̃ · u) · c = l̃ · c̃ · inr = [k, h · c] · inr = h · c

The universal property of c implies that the factorization is unique.

We still need to verify that the coproduct X + C = C̃ is conical. Let p, q : C̃ → Y
fulfil

p · c̃ · inl ⊑ q · c̃ · inl and p · u ⊑ q · u,
then we verify p ⊑ q. The inequality p·u ⊑ q ·u precomposed by c yields p·c̃·inr ⊑ q ·c̃·inr.
Since the coproduct X +B is conical, we conclude p · c̃ ⊑ q · c̃, and the universal property
of c̃ implies p ⊑ q.

(3a) A ⊆ K . For every object K ∈ K the full subcategory of all Y with a coproduct
K + Y in RciK contains K by Item (3b). Thus K + Y is a conical coproduct for every
object Y .

4. RciK is e-finitely cocomplete. We use Proposition 4.12. We know from (1) and (3)
that finite coproducts exist. Next, coequalizers exist: given a pair g, h : X → Y in RciK ,
their (conical) coequalizer c is the following reflexive coinserter:

X +X + Y Y C
[h,g,id ]

[g,h,id ]

c

Consequently, RciK has finite colimits, and since in Pos the concepts finite and e-finite
coincide, it remains to prove that P ⊗ − exist for every finite poset P . We use the
canonical reflexive coinserter in Remark 3.9. For every object X of RciK we have, due
to (3) above, the finite coproducts

R⊗X =
∐
R

X and |P | ⊗X =
∐
|P |

X

in RciK , and we form the corresponding reflexive coinserter c in RciK :

R⊗X |P | ⊗X C

Y

π1⊗X

π0⊗X

c

[fp]
f
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We prove that
C = P ⊗X.

Indeed, to give a morphism f : C → Y in RciK means to give morphisms fp : X → Y
for all p ∈ |P | such that [fp] · (π0 ⊗X) ≤ [fp] · (π1 ⊗X). Equivalently: whenever p0 ≤ p1
holds in P , then fp0 ≤ fp1 in RciK (X, Y ). This is the same as specifying a monotone
function from P to RciK (X, Y ), as claimed.

5. We finally prove that for every e-finitely cocomplete category L and every functor
F : K → L preserving finite coproducts there exists a unique e-finitely cocontinuous
extension F : RciK → L . This concludes the proof by Remark 4.15.

By the universal property of RciK we have a unique extension F : RciK → L
preserving reflexive coinserters. We now prove that it preserves finite coproducts. It
follows that F preserves tensors P ⊗− with P finite: see Item (4). Moreover, F preserves
reflexive coequalizers of f, g : X → Y : they are the coinserters of [f, g], [g, f ] : X+X → Y .
Therefore F preserves finite colimits, thus by Corollary 4.13, F is e-finitely cocontinuous.

The proof that F preserves, for every object X of RciK , all coproducts X + Y , is by
structural induction. Let A be the full subcategory on all X with F (X+Y ) = FX+FY
holding for every Y ∈ RciK .

(5a) A contains K . Indeed, assuming X ∈ K , we prove the desired property by
structural induction again. Let A ′ be the full subcategory on all Y with F (X + Y ) =
FX+FY . Since F preserves finite coproducts, K ⊆ A ′: for Y ∈ K we have F (X+Y ) =
F (X+Y ) using Item (2), and FX+FY = FX+FY = F (X+Y ). And A ′ is closed under

reflexive coinserters: given a coinserter (coins) with A,B ∈ A ′, we construct X +C = C̃
as in Item (3b) and use that F preserves both reflexive coinserters and the coproducts

X + A and X +B to conclude that FX + FC = FC̃. Thus A ′ = RciK .

(5b) A is closed under reflexive coinserters. This follows from F preserving reflexive
coinserters and the construction of finite coproducts in Item (3b).

4.17. Theorem. Let K be a poset-enriched category with finite coproducts. Then

SindK = Ind(RciK ).

Proof.

1. Let K be small. By Theorem 4.16 the category RciK has finite colimits, thus,
Ind(RciK ) is the category of all presheaves H on RciK preserving finite limits (Re-
mark 4.9). That is, all presheaves such that

Hop : RciK → Posop
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preserves finite colimits. Such presheaves are, using that theorem again, precisely the
extensions of functors F : K → Posop preserving finite coproducts. By Corollary 4.8
this means that F op : K op → Pos lies in SindK . We obtain an equivalence of categories
Ind(RciK ) and SindK by assigning to H the unique functor F op such that Hop extends
F .

2. Let K be large. Form the collection Ki ⊆ K (i ∈ I) of all essentially small full
subcategories closed under finite coproducts in K . Order I by inclusion, then Ki is closed
under finite coproducts in Kj for all i ≤ j in I. Theorem 4.16 implies that RciKi is closed
under finite colimits in RciKj. Since Ind(RciK ) is formed by small presheaves on RciK
preserving finite limits (Remark 4.9]) and for each such presheaf H : (RciK )op → Pos the
codomain restrictions to (RciKi)

op preserve finite limits, too, we conclude that Ind(RciK )
is the colimit of the diagram of all Ind(RciKi) indexed by the ordered class I.

Analogously, SindKi is closed under finite coproducts in SindKj for all i ≤ j in I. Since
SindK is formed by small presheaves preserving finite products (by Remark 4.9 again),
we conclude that SindK is the colimit of the diagram of all SindKi for the ordered class
I. Thus the theorem follows from (1) above.

4.18. Open problem.

1. Does the above theorem hold for poset-enriched categories with pullbacks? (Com-
pare Theorem 2.11.)

2. Does that theorem generalize to V -categories for basic subcategories V of Pos?

4.19. Theorem. A poset-enriched functor between cocomplete categories preserves sifted
colimits iff it preserves

(a) Filtered colimits;

(b) Reflexive coinserters.

Proof. Let K and L be cocomplete poset-enriched categories. Given an enriched
functor F : K → L preserving filtered colimits and reflexive coinserters, we prove that
it preserves sifted colimits.

1. Every small full subcategory C : C ↪→ K closed under finite coproducts has the
following property. Denote by (−)∗ the extension of functors from C to SindC preserving
sifted colimits, then the triangle below commutes:

SindC

K L

C∗
(F ·C)∗

F
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To verify this, observe that both F · C∗ and (F · C)∗ preserve filtered colimits. Thus, to
prove they coincide, it is sufficient to verify the equality

F · C∗ · I = (F · C)∗ · I : RciC → L

for the embedding I : RciC ↪→ Ind(RciC ) = SindC (Theorem 4.17). The functor I pre-
serves finite weighted colimits ([26], Proposition 5.6 applied to Φ =finite limits). Therefore
both sides of the last equation preserve reflexive coinserters. Thus, the equation holds
because both functors are extensions of F · C : C → L .

2. We are ready to prove that F preserves colimWD for every small diagram D : D →
K and every sifted weight W : Dop → V . Let C : C ↪→ K denote the full subcategory
which is the closure of D[D ] under finite coproducts. Since C is essentially small, we can
apply (1) to it. We have a factorization D = C ·D′, and obtain a commutatitve diagram
as follows:

C SindC

D K L

C

E

C∗
(FC)∗

D′

D F

We thus get the following canonical isomorphisms

F (colimWD) = F (colimWC∗ · E ·D′)
∼= F · C∗(colimWE ·D′) W sifted

= (F · C)∗(colimWE ·D′) by (1)
∼= colimW ((F · C)∗ · E ·D′) W sifted

= colimW (F ·D).

5. Strongly finitary endofunctors

The concept of strong finitarity was introduced by Kelly and Lack [25], see below. For all
the categories V we consider in our paper an endofunctor on V is strongly finitary iff it
preserves sifted colimits. In the subsequent sections we prove that strongly finitary monads
on CPO or DCPO bijectively correspond to varieties of continuous (or ∆-continuous)
algebras.

The assumptions 4.1 are still assumed throughout this section.

5.1. Definition. ([25]) An endofunctor T on V is strongly finitary if it is the left Kan
extension of its restriction T ·K to finite sets:

T = LanK(T ·K)
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5.2. Remark.

1. Recall that LanK : [Setf ,V ] → [V ,V ] is the left adjoint of the functor (−) · K :
[V ,V ] → [Setf ,V ].

2. In case V is the free completion of Setf under sifted colimits (via K : Setf → V )
we simply write

V = SindSetf .

Using Proposition 4.4, this is equivalent to V being the iterated closure of K[Setf ] under
sifted colimits. Indeed, the item (1) in that proposition is our assumption, and (2) is
automatic since sifted colimits commute with finite powers. Moreover, V (KX,−) ∼= (−)n

for every set X of n elements.

5.3. Proposition. Suppose V = SindSetf . Then an endofunctor on V is strongly fini-
tary iff it preserves sifted colimits.

Proof. According to [24], Theorem 5.29 the condition T = LanK(T ·K) is equivalent to
T preserving K-absolute colimits. This means colimits weighted by such weights W that
V (KX,−) preserves colimits weighted by W for each X ∈ Setf . If X is an n-element set,
then V (KX,−) is naturally isomorphic to (−)n. Thus

K-absolute = sifted.

(Indeed, for n > 0 sifted colimits commute with n-th powers, for n = 0 the functor
V (KX,−) is constant with value 0, the initial object.)

5.4. Examples.

1. For endofunctors on V = Set, finitary and strongly finitary are equivalent condi-
tions. Indeed, Set = IndSetf .

2. An enriched endofunctor on Pos is strongly finitary iff it is finitary and preserves
reflexive coinserters. This follows from Theorem 4.19 and Proposition 5.3, using Re-
mark 5.2 (2). Indeed, we have

Pos = SindSetf ,

as Pos is the closure of finite posets under filtered colimits, and finite posets form, by
Remark 3.9, the closure of K[Setf ] under reflexive coinserters.

3. As mentioned in Example 3.16, an endofunctor on Cat is strongly finitary iff it is
finitary and preserves codescent objects of strict reflexive data.

5.5. Proposition. CPO = SindSetf , and an enriched endofunctor on CPO is strongly
finitary iff it is finitary and preserves reflexive coinserters.
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Proof. Recall the weight W0 for reflexive coinserters (Definition 3.13). We are going to
prove that CPO is the closure of Setf (finite discrete posets) under filtered colimits and
reflexive coinserters. Then CPO = SindSetf follows from Proposition 4.4 applied to

Φ = conical filtered weights plus W0,

using that CPO is cocomplete (Appendix A). Indeed, once we know that CPO is the
free completion of Φ-colimits, it is a free completion under sifted ones. Consequently, an
enriched endofunctor F of CPO preserving filtered colimits and reflexive coinserters is the
unique Φ-cocontinuous extension of F ·K. The unique strongly finitary extension of F ·K
to SindSetf is also Φ-cocontinuous, thus, this is the functor F .

Let us denote by C the closure of Setf under filtered colimits and reflexive coinserters
in CPO. We prove C = CPO in several steps.

1. C contains all finite posets by Remark 3.9.

2. C contains the cpo N⊤ (Example 3.10). Analogously, the copower r • N⊤ (r < ω)
lies in C : it is the colimit of the ω-chain of r • Ck (k < ω), the coproduct of r copies of
Ck, with inclusions as connecting maps.

3. Basic cpos. Let us call a cpo P basic if we can obtain it as a reflexive coinserter of
the following form

r′ • N⊤ r • N⊤ P

f1

f0

p

for r, r′ ∈ N. We also call such coinserters basic. C is of course closed under basic
coinserters. Observe that a coproduct of two basic coinserters is basic, too.

4. To finish the proof we verify that every cpo X is a directed colimit of basic ones.
Denote by D the directed diagram of all sub-cpos P ⊆ X that are basic (and all inclusion
morphisms between them). The fact that D is directed follows from Items (2) and (3).
The embeddings iP : P ↪→ X of all basic sub-cpos form a cocone of D. We prove that
every other cocone sP : P → S of D uniquely factorizes through (iP ).

First observe that D contains {x} for every x ∈ X: consider the basic coinserter

2 • N⊤ N⊤ {x}

f1

f0

p

where f0 and f1 are id on the first copy of N⊤, and on the second one f0 is id and f1
is constant with value 0. Next observe that given P ∈ D containing {x}, it follows that
sP (x) = s{x}(x). (In other words, the value sP (x) is independent of P .) Indeed, the
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embedding {x} ↪→ P is a connecting morphism of D, thus for the cocone (sP ) we see that
s{x} is a restriction of sP . We can thus define a map

s : X → S by s(x) = sP (x)

for any P ∈ D containing x. This map is monotone. Indeed, given x ⊑ y in X, then D
contains {x, y}. To see this, consider the basic coinserter

2 • N⊤ N⊤ {x, y}

f1

f0

p

where f0 and f1 are id on the first copy of N⊤, and on the second one f0 is id and f1 is
constant with value 1 except for f1(0) = 0. Then p(0) = x and else p is constant with
value y. Since s{x,y} is monotone, we get

s(x) = s{x,y}(x) ⊑ s{x,y}(y) = s(y).

Analogously, s is continuous: let x =
⊔

k∈N xk be a join of a strictly increasing ω-chain in
X. Consider the basic coinserter

N⊤ N⊤ {xk}k∈N ∪ {x}
id

id

p

where p(k) = xk and p(⊤) = x.

By the definition of s we have s · iP = sP for very P ∈ D. The map s is obviously
unique with this property.

5.6. Proposition. DCPO = SindSetf , and an enriched endofunctor of DCPO is strongly
finitary iff it is finitary and preserves reflexive coinserters.

Proof. Analogously to the proof of Proposition 5.5, we need to prove that

C = DCPO,

where C is the closure of finite discrete posets under filtered colimits and reflexive coin-
serters.

1. For every ordinal α consider the linearly ordered dcpo α+ 1 of all ordinals smaller
or equal to α. We prove that if α is infinite, then α + 1 is a colimit of a chain of dcpos
β + 1 lying in C . We proceed by transfinite induction on α.



SIFTED COLIMITS, STRONGLY FINITARY MONADS AND CONTINUOUS ALGEBRAS 109

First step α = ω. Since α + 1 ∼= N⊤, see Example 3.10.

Isolated step Suppose α+1 is a colimit of some γ-chain D having objects Di = βi+1
for i < γ. We observe that α + 2 is a colimit of the following γ-chain D′: for each i < γ
put

D′i = βi + 2 (having top element βi + 1).

The connecting maps dij : Di → Dj of D are extended to the connecting maps d′ij :
D′i → D′j by preserving the top elements: d′ij(βi +1) = βj +1. Then the colimit of D′ is
obtained from α+ 1 = colimD by adding a new top element. That is, α+ 2 = colimD′.

Limit step Given a limit ordinal α with β + 1 ∈ C for all β < α, then α + 1 ∈ C
because the colimit of the α-chain of all β + 1 (and inclusion maps as the connecting
maps) is α + 1.

2. We next prove that C contains all finite coproducts of the above linearly ordered
cpos Cα = α + 1 with α an infinite ordinal. We provide the detailed proof for binary
coproducts

Cα + Cβ.

Without loss of generality assume α ≤ β. We prove by transfinite induction on β that
Cα + Cβ is a colimit of a chain of dcpos Cα + Cδ for ordinals δ < β.

Initial step β = ω. Thus α = ω, too, and Cα = Cβ
∼= N⊤ (Example 3.10). We have

N⊤ + N⊤ = colim
k<ω

(Ck + Ck) in DCPO.

Isolated step Suppose that Cα + Cβ is a colimit of some γ-chain D having objects
Di = Cα+Cβi

for i < γ. Form the γ-chain D′ with objects Cα+Cβi+1 and with connecting
morphisms extending those of D by preserving the top element βi + 1 of Cβi+1. Then
Cα + Cβ+1 = colimD′ in DCPO.

Limit step Let β be a limit ordinal such that C contains Cα + Cδ for all infinite
δ < β. These coproducts form a δ-chain (with connecting maps given by the inclusion
maps) having the colimit Cα + Cβ.

3. Basic dcpos. Let C0 ⊆ C denote the full subcategory of DCPO which is the closure
of the class {Cα | α an infinite ordinal} under finite coproducts. A basic dcpo is a dcpo
P for which there exists a reflexive coequalizer p : Cα1 + · · ·+ Cαr → P of a parallel pair
in C0. Obviously, C contains all basic dcpos.

4. Every dcpo X is a directed colimit of basic ones. The proof is completely analogous
to that of Item (4) in Proposition 5.5. In the last argument, showing that s is continuous,
we just verify that s preserves the join x =

⊔
k<α xk of every α-chain, where α is an

infinite cardinal. (This follows from a coinserter of id , id : Cα → Cα as in loc. cit.) Then
s preserves joins of increasing chains, which proves that it preserves directed joins ([4],
Corollary 1.7).
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5.7. Remark.

1. In Pos all coinserters are surjective. This is not true in CPO: let |N| be the under-
lying discrete CPO and R be the order of N (a discrete CPO). Let π0, π1 : R → |N| be the
projections onto the underlying set. Their coinserter is |N| ↪→ N⊤.

2. On the other hand, all coinserters used in the proof of Proposition 5.5 are surjective.
In step (1) this was idP . In step (3) the map p is surjective because its image is closed
under ω-joins in P . Indeed, that image is the union of p[{i} × N⊤] for i = 1, . . . , r. Let
(xn) be a strictly increasing ω-chain in that image. Since the above union is finite, some
p[{i} × N⊤] contains a cofinal subchain (xn(k))k∈N of the chain (xn). Thus we have a
strictly increasing chain (jk)k∈N in N with xn(k) = p(i, jk) for all k ∈ N. We conclude that⊔

n<ω xn lies in the image of p:⊔
n<ω

xn =
⊔
k<ω

xn(k) =
⊔
k<ω

p(i, jk).

The last join equals p(i,⊤) since p is continuous and
⊔

k<ω(i, jk) = (i,⊤) in {i} × N⊤.

3. Analogously, all coinserters used in the proof of Proposition 5.6 are surjective. We
thus obtain the following

5.8. Corollary. Strongly finitary endofunctors on Pos, CPO or DCPO are precisely
those preserving directed colimits and reflexive, surjective coinserters.

5.9. Example. Let the base category V be Pos, CPO or DCPO.

1. The endofunctor (−)n is strongly finitary (n ∈ N). This follows, in view of the
above Corollary, from Proposition 3.7 and Theorem 4.16.

2. A coproduct of strongly finitary endofunctors is strongly finitary.

6. Varieties of continuous algebras

We now introduce varieties of continuous algebras: the base category is CPO (see Ap-
pendix for details on it). In the next section the analogous results about varieties of ∆-
continuous algebras (base category DCPO) are presented. A variety is a class of continuous
algebras presented by equations between extended terms (Definition 6.11). These terms
use, besides the usual formation of composite terms, formal joins of ω-chains t =

∨
k∈N tk

for countable sets of terms. We use the symbol
⊔

for joins in a concrete poset and
∨

for
formal joins. The underlying set of a cpo P is denoted by |P |.

In the present section we prove that every variety of continuous algebras has the form
CPOT (the Eilenberg-Moore category) for a strongly finitary monad. The converse is
proved in Section 8: every strongly finitary monad yields a variety.

Throughout this section ‘category’ means a CPO-enriched category, and ‘functor’
means a CPO-enriched functor (i.e., a locally continuous one, see Appendix). Analogously
for ‘adjunction’ and ‘monad’.
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6.1. Assumption. For the rest of the paper Σ denotes a finitary signature: every symbol
σ ∈ Σ is assigned an arity (which is a natural number). We assume that a countably
infinite set

V = {xk | k ∈ N}
of variables is specified.

The following definition stems essentially from the work of the ADJ group in the
1970s [20].

6.2. Definition.A continuous algebra is an algebra acting on a cpo A with all operations
continuous. That is, for every n-ary symbol σ ∈ Σ, we are given a map σA : An → A
continuous w.r.t. the coordinate-wise order on An.

We denote by Σ-CPO the category of continuous algebras and continuous homomor-
phisms.

6.3. Example. (Free algebras) The description of a free algebra TΣP on a given cpo P
is analogous to that in (non-ordered) universal algebra. The elements of TΣP are classical
terms (we stress ’classical’ since below we use more general terms). That is, the underlying
set |TΣP | is the smallest set such that

1. Every variable, i.e. an element of |P |, is a classical term.

2. For every n-ary symbol σ ∈ Σ and every n-tuple (ti)i<n of classical terms we get a
composite term σ(ti)i<n.

Composition of terms defines the operations on |TΣP |.
Let us call two classical terms similar iff either both are variables from P or both

have, for some n-ary symbol σ, the form σ(ti)i<n and σ(t′i)i<n, resp., such that ti is similar
to t′i for all i < n. The order ⊑ of TΣP is as follows: only pairs of similar classical terms
are comparable. For variables, x ⊑ x′ holds in TΣP iff this holds in P . And for similar
composite terms we put

σ(ti) ⊑ σ(t′i) iff ti ⊑ t′i for each i < n.

6.4. Remark.

1. It is easy to see that two terms t and t′ are similar iff we can obtain t′ from t by
changing some variables (in |P |) by other variables. And that t ⊑ t′ holds iff we can
obtain t′ by changing some variables x in t by variables x′ with x ⊑ x′ in P .

2. Consequently, TΣP is a coproduct of powers P r, one for each similarity class of
terms on r variables. Moreover, these classes are independent of the choice of P . We thus
obtain the free-algebra functor TΣ : CPO → Σ-CPO as a coproduct

TΣ =
∐

Id r

ranging over similarity classes of terms (on r variables).
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6.5. Definition. A monad is strongly finitary if its underlying functor has this property.

6.6. Proposition. The monad TΣ of free Σ-algebras on CPO is strongly finitary.

This follows from the previous remark and Example 5.9.
We are going to define varieties of continuous algebras as classes presentable by equa-

tions between terms. The following definition extends the above concept of classical terms
by allowing terms t =

∨
k∈N tk for every collection (tk)k∈N of terms on finitely many vari-

ables. Our definition is very similar to that in [3] where, however, the restriction to
collections with finitely many variables was not required.

6.7. Definition. For the set V of variables we define the set TΣV of (extended) terms
as the smallest set such that

1. Every variable in V is a term.

2. Every n-ary symbol σ and every n-tuple (ti)i<n of terms yields a composite term
σ(ti)i<n.

3. Every countable collection tk (k ∈ N) of terms, which together contain only finitely
many variables, yields a term

t =
∨
k∈N

tk.

6.8. Notation. We denote by TΣVn the subset of TΣV of extended terms using only
variables from Vn = {x0, . . . , xn−1}. By the above definition we have

TΣV =
⋃
n<ω

TΣVn.

6.9. Example.

1. Let Σ consist of a unary operation σ. Then we have the following term∨
k∈N

σk(x).

To interpret this in an algebra A, we need not only to have a continuous operation
σA : A → A, but also must know that for every interpretation x 7→ a of the variable the
sequence σk

A(a) in A is an ω-chain. This indicates that interpretation of terms will be a
partial map.

2. For the above signature and our set V = {xk | k ∈ N} of variables the expression∨
k∈N

σ(xk)

is not a term: it contains infinitely many variables.
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6.10. Definition. Let A be a continuous algebra. Given an interpretation f : V → A of
variables, we define the interpretation of extended terms as the following partial function

f ♯ : TΣV ⇀ A :

1. f ♯(x) = f(x) for each variable x ∈ V .

2. f ♯ is defined in σ(ti)i<n iff each f ♯(ti) is defined. Then f ♯(σ(ti)i<n) = σA(f
♯(ti))i<n.

3. f ♯ is defined in
∨

k∈N tk iff each f ♯(tk) is defined and fulfils f ♯(tk) ⊑ f ♯(tk+1). Then
f ♯(t) =

⊔
k∈N f

♯(tk).

6.11. Definition. A variety of continuous algebras is a full subcategory V of Σ-CPO
presented by a set of equations t = t′ between extended terms (t, t′ ∈ TΣV ).

That is, an algebra A lies in V iff for each of the given equations t = t′ and each
interpretation f : V → A both f ♯(t) and f ♯(t′) are defined and are equal.

6.12. Example.

1. Let Σ consist of a unary symbol σ and a nullary one ⊤. A continuous algebra is a
cpo A together with a continuous self-map σA and an element ⊤A. The equation∨

k∈N

σn(x) = ⊤

is satisfied iff every element a ∈ A fulfils a ⊑ σA(a) (thus, σ
k
A(a) is an ω-chain) and the

join
⊔

k∈N σ
k(a) is always ⊤A.

2. Continuous monoids are given by the signature Σ = {·, e} and the usual equations
(associativity of · and e being a unit). Thus a continuous monoid is a monoid acting on
a cpo so that for all ω-chains (ak), (bk) we have

(
⊔
k∈N

ak)(
⊔
k∈N

bk) =
⊔
k∈N

akbk.

Notice that the last equality simply expresses that the multiplication is continuous. (We
do not have to specify the equation (

∨
xk)(

∨
yk) =

∨
(xkyk). Indeed, this is not an

equation in our sense at all because it contains infinitely many variables.)

3. Continuous monoids satisfying ∨
k∈N

xk = e.

These are monoids with a ⊑ a2 for every element a, and the top element e.
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6.13. Remark.

1. Instead of equations we can also use formal inequations t ⊑ t′ between terms. This
is equivalent: given terms t, t′, define a term

s =
∨
k∈N

sk with s0 = t and sk = t′ (k ≥ 1).

Then the equation t = s expresses precisely that t ⊑ t′.

2. Another possibility, instead of equations, is using definability of terms. Let us say
that a term t is definable in a continuous algebra A iff f ♯(t) is defined for all interpretations
f : V → A. This is the case iff A satisfies the equation t = t. Conversely, given terms
t, t′, an algebra A satisfies t = t′ iff the term s in item (1) is definable in A.

6.14. Lemma. ([3], Proposition 3.5) Every continuous homomorphism f : A → B pre-
serves definability of terms t ∈ TΣV : given an interpretation h : V → A with h♯(t) defined
in A, then (fh)♯(t) is defined in B, and is equal to f(h♯(t)).

The proof in [3] uses more general terms: it is not required that only finitely many
variables are involved. But it applies with no modifications to our situation.

6.15. Remark. The factorization system of Lemma A.6 lifts to Σ-CPO: let f : A → B
be a continuous homomorphism. Form the closure B0 of f [A] under ω-joins as in the proof
of that lemma. It is sufficient to verify that f [A] is closed under all operations σ ∈ Σ.
Let σ be n-ary. We prove that the set X ⊆ Bn

0 of all n-tuples that σB maps to B0 is
all of Bn

0 . Since f [A] is ω-dense in B0 (Definition A.5), we know that (f [A])n is ω-dense
in Bn

0 (Lemma A.8). The set X is closed under ω-joins in Bn
0 because σB is continuous.

Thus, we only need to observe that (f [A])n ⊆ X. Indeed, given an n-tuple bi = f(ai),
then σB(bi) = f(σ(ai)) ∈ f [A].

6.16. Remark. In classical universal algebra varieties are precisely the classes closed
under homomorphic images, subalgebras, and products (HSP classes). We have these
constructions for continuous algebras, too:

1. A product (P) of continuous algebras Ai (i ∈ I) is their cartesian product
∏

i∈I Ai

with order and operations defined coordinate-wise.

2. LetA be a continuous algebra. A subalgebra (S) is a subobject in Σ-CPO represented
by an embedding m : B ↪→ A of a sub-cpo of A closed under the operations.

3. A homomorphic image (H) of A is an algebra B with a surjective morphism e :
A → B in Σ-CPO.

6.17. Proposition. Every variety is an HSP class, i.e. closed in Σ-CPO under products,
subalgebras, and homomorphic images.

Proof. By Remark 6.13 we need to verify that given an extended term t ∈ TΣV the
class of all algebras in which t is definable is an HSP class. The proof presented in [3]
(pp. 339–340) works without changes in our (more restricting) setting.
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6.18. Corollary. Every variety V of continuous algebras has free algebras: the forgetful
functor UV : V → CPO has a left adjoint FV : CPO → V.

Proof. This is true for V = Σ-CPO by Remark 6.4. Thus it is sufficient to prove that
for every variety V the embedding V ↪→ Σ-CPO has a left adjoint, i.e., V is reflective. We
use the factorization system of Remark 6.15: we know that V is closed under products
and M-subobjects (Proposition 6.17) and that Σ-CPO is E-cowellpowered since CPO is
(Lemma A.9). Thus the ordinary category Vo is reflective (in (Σ-CPO)o) with reflections
in E by [2], Theorem 16.8. It follows easily that the enriched category V is reflective in
Σ-CPO: the reflection rA : A → RA of a Σ-algebra in V yields, for every algebra X in
Σ-CPO a continuous map (−) · rA : V(RA,X) → Σ-CPO(A,X).

6.19. Lemma. Consider a commutative triangle

A

B1 B2

h2h1

p

where hi are morphisms of Σ-CPO and p is a continuous map. If the image of h1 is
ω-dense, then p is also a morphism in Σ-CPO.

Proof. Since h1 and p · h1 are homomorphisms, for every n-ary symbol σ the upper
square and the outward rectangle in the following diagram

An A

Bn
1 B1

Bn
2 B2

σA

hn
1 h1

σB1

pn p

σB2

both commute. The image of hn
1 is ω-dense by Lemma A.8. Since hn

1 merges the two
paths of the lower square (which are continuous maps), it follows that the lower square
commutes, as desired.

We now prove that the forgetful functor UΣ : Σ-CPO → CPO creates filtered colimits.
That is: given a directed diagram D : D → Σ-CPO with a colimit of UΣD given by
cd : UΣDd → C, there is a unique structure A of a continuous algebra with UΣA = C
turning all the maps cd into homomorphisms. Moreover, A = colimD w.r.t. the cocone
(cd), and this colimit is conical.
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6.20. Theorem. The forgetful functor UΣ : Σ-CPO → CPO creates filtered colimits.

Proof. To simplify notation, we work with directed colimits only. (By [4], Corollary 1.5,
this does not lose generality.) Let σ ∈ Σ be an n-ary operation symbol. From Propo-
sition 3.7 we know that Dn has the colimit cnd : UΣ(Dd)n → Cn. All the composites
cd · σDd : UΣ(Dd)n → C form a cocone of D. Indeed, every morphism δ : d1 → d2 of D
yields a homomorphism Dδ : Dd1 → Dd2, thus the square below commutes:

UΣ(Dd1)
n UΣ(Dd2)

n

UΣDd1 UΣDd2

C

UΣ(Dδ)n

σDd1
σDd2

UΣDδ

cd1

cd2

Therefore there exists a unique morphism σA : Cn → C making the following squares
commutative for each d ∈ objD :

UΣDd UΣDd2

Cn C

UΣDd

cnd cd

σA

In other words, a unique algebra structure A on the cpo C is given making each cd a
homomorphism.

To prove that the cocone (cd) is also a colimit in Σ-CPO, let B be an algebra, and
bd : Dd → B a cocone of D in Σ-CPO. Then (UΣbd) is a cocone of UΣD, thus there is a
unique continuous map

p : C → UΣB with p · UΣcd = UΣbd (d ∈ objD).

It remains to verify that p : A → B is a homomorphism. For that consider the following
triangle ∐

d∈objD Dd

A B

[cd] [bd]

p
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We apply Lemma 6.19: both [cd] and [bd] are continuous homomorphisms. Since (cd) is a
colimit cocone, the image of [cd] is ω-dense (Lemma A.7 (2)). Thus p is a homomorphism.

Finally, the colimit cocone (cd) is conical because UΣ is locally continuous, and CPO
has conical colimits (Corollary A.4).

6.21. Proposition. Every variety is closed under filtered colimits in Σ-CPO.

Proof. Using Theorem 6.20 we just need to show that the underlying ordinary category
is closed under filtered colimits in (Σ-CPO)o. We again work with directed colimits in
place of the filtered ones. This does note lose generality, see [4], Corollary 1.5. For every
term t we prove that the class of all algebras in which t is definable is closed under directed
colimits. This proves the proposition by Remark 6.13 (2). Let a directed colimit in Σ-CPO
be given:

as : As → A for s ∈ S.

Assuming that a term t is definable in each As, we prove that it is definable in A. We
proceed by structural induction: the statement is true (a) for variables in V , (b) for terms
t = σ(ti)i<n whenever it holds for each ti, and (c) for terms t =

∨
k∈N tk whenever it holds

for each tk.

(a) This is obvious: variables are everywhere definable.

(b) Let f : V → A be an interpretation. We have f ♯(ti) defined for all i, thus by
definition of f ♯ we also have

f ♯(t) = σA(f
♯(ti))i<n.

(c) By assumption on TΣV there is a finite set V0 of variables containing all variables
in tk for k ∈ N. Let f : V0 → A be an interpretation. The union of images

X =
⋃
s∈S

as[As]

is ω-dense in A (Lemma A.7). Hence in the finite power [V0, A] of the cpo A the set [V0, X]
is ω-dense (Lemma A.8). We prove that f ♯(t) is defined by structural induction: we need
to verify that (i) this is true for all f : V0 → X, and (ii) if (fn) is an ω-chain in [V0, X]
with all f ♯

n(t) defined, then f ♯(t) is defined for f =
⊔

n∈N fn.

(i) Since V0 is finite and X is a directed union, there exists s ∈ S such that f : V0 → X
factorizes through as:

f = as · g for some g : V0 → As.

By assumption, t is definable in As, thus g
♯(t) is defined. We can apply Lemma 6.14 to

the continuous homomorphism as to conclude f ♯(t) = as(g
♯(t)).

(ii) For f =
⊔

n∈N fn, we prove f ♯(t) =
⊔

n∈N f
♯
n(t) by structural induction over TΣV .

We define a chain of subsets T j
ΣV ⊆ TΣV for ordinals j by transfinite recursion as follows:
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(a) T 0
Σ V = V .

(b) T j+1
Σ V consists of all terms in T j

ΣV , all terms σ(ti)i<n with each ti in T j
ΣV , and

all terms
∨

k∈N tk with each tk in T j
ΣV .

(c) T j
ΣV =

⋃
i<j T i

ΣV for limit ordinals j.

It is easy to see that for the first uncountable ordinal ω1 we have

TΣV = T ω1
Σ V.

We prove that for every term t ∈ T j
Σ definable in all As we have

f ♯
n(t) ⊑ f ♯

n+1(t) for n ∈ N and f ♯(t) =
⊔
n∈N

f ♯
n(t). (∗)

We use transfinite induction on j. This statement is obvious if t is a variable, and for limit
ordinals j there is nothing to prove. Our task is thus to prove (∗) for every t ∈ T j+1

Σ V ,
provided that it holds for all terms in T j

ΣV . In case t = σ(ti)i<n with all ti in T j
ΣV , we

have f ♯
n(ti) ⊑ f ♯

n+1(ti) for all n ∈ N and i < n, thus

f ♯
n(t) = σA(f

♯
n(ti)) ⊑ σA(f

♯
n+1(ti)) = f ♯

n+1(t)

because σA is monotone. The proof of f ♯(t) =
⊔

n∈N f
♯
n(t) is as follows.

f ♯(t) = f ♯(σ(ti))

= σA(f
♯(ti)) def. of f ♯

= σA(
⊔
n∈N

f ♯
n(ti)) induction hyp.

=
⊔
n∈N

σA(f
♯
n(ti)) σA continuous

=
⊔
n∈N

f ♯
n(t) def. of f ♯

n.

In case t =
∨

k∈N tk with all tk in T j
ΣV we have

f ♯
n(t) =

⊔
k∈N

f ♯
n(tk) ⊑

⊔
k∈N

f ♯
n+1(tk) = f ♯

n+1(t).

Moreover, for every k we know that f ♯
n(tk) ⊑ f ♯

n(tk+1) because f ♯
n(t) is defined (by induc-

tion hypothesis). It follows that for each k

f ♯(tk) =
⊔
n∈N

f ♯
n(tk) ⊑

⊔
n∈N

f ♯
n(tk+1) = f ♯(tk+1).
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This concludes the proof:

f ♯(t) =
⊔
k∈N

f ♯(tk) def. of f ♯

=
⊔
k∈N

⊔
n∈N

f ♯
n(tk)

=
⊔
n∈N

⊔
k∈N

f ♯
n(tk)

=
⊔
n∈N

f ♯
n(t) def. of f ♯

n(t).

6.22. Remark. Analogously, UΣ creates reflexive coinserters: given a reflexive pair
f0, f1 : B → B′ in Σ-CPO with a coinserter c : UΣB

′ → C in CPO, there exists a unique
Σ-algebra A on C making c : B′ → C a homomorphism. Moreover, this is the coinserter
of f0, f1 in Σ-CPO. The proof is completely analogous, using that the endofunctor (−)n

of CPO preserves reflexive coinserters (Theorem 4.16).

6.23. Notation. For every variety V of continuous algebras we denote by TV the monad
of the adjunction FV ⊣ UV (Corollary 6.18).

6.24. Examples.

1. For V = Σ-CPO this is the strongly finitary monad TΣ assigning to a cpo X the
cpo TΣX of classical terms over |X| (Example 6.3).

2. For the variety V of continuous monoids we have

TVX =
∐
n∈N

Xn,

the monoid of words, with coordinate-wise multiplication and coordinate-wise order on
words of the same lenghth. This endofunctor is also strongly finitary:

6.25. Theorem. The monad TV of free algebras is strongly finitary for every variety V
of continuous algebras.

Proof. We prove that the functor TV = UVFV preserves filtered colimits and reflexive,
surjective coinserters (see Corollary 5.8).

Due to the adjunction FV ⊣ UV the functor FV preserves colimits, thus, we just need to
show that UV preserves directed colimits and reflexive, surjective coinserters (Remark 5.7).
We use the commutative triangle, where E denotes the embedding:

V Σ-CPO

CPO

E

UV
UΣ
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We know that UΣ preserves filtered colimits (Theorem 6.20) and reflexive coinserters
(Remark 6.22). Since V is closed in Σ-CPO under filtered colimits (Proposition 6.21),
UV preserves filtered colimits. Since V is closed under homomorphic images (Proposi-
tion 6.17), it is also closed under reflexive surjective coinserters in Σ-CPO. Hence, UV
preserves those coinserters.

7. Varieties of ∆-continuous algebras

Analogously to the preceding section, we introduce varieties of ∆-continuous algebras,
and prove that they have the form DCPOT for strongly finitary monads T. We again use
the symbol

∨
for formal joins of terms. But here they are also formed for ordinals larger

than ω.
Throughout this section ’category’ means one enriched over DCPO. ’Functor’ means

enriched functor, i.e.. a locally ∆-continuous one (see Appendix). We again assume that
a finitary signature Σ and a countable set V of variables are chosen.

7.1. Definition. A ∆-continuous algebra is an algebra acting on a dcpo A with all
operations ∆-continuous.

We denote by Σ-DCPO the category of ∆-continuous algebras and ∆-continuous ho-
momorphisms.

7.2. Example. (Free algebras) The description of free algebras in Example 6.3 applies
to Σ-DCPO without changes. For every dcpo P we again obtain TΣP as a coproduct of
powers P r (cf. Remark 6.4) which proves that the underlying poset is a dcpo. Therefore
the free-algebra monad TΣ on DCPO is strongly finitary: TΣ is a coproduct of finite-power
functors (−)n.

The main modification we need when switching from CPO to DCPO is the definition
of (extended) terms. We recall here an important reduction of directed joins to joins of
chains in posets P (which are monotone maps from ordinal numbers α = {i ∈ Ord | i < α}
to P ):

7.3. Theorem. ([4], Corollary 1.7) A poset is a dcpo iff it has joins of chains. A function
between dcpos is ∆-continuous iff it preserves joins of chains.

7.4. Notation. For a signature Σ of α operations we put

∥Σ∥ = 2α+ℵ0 .

7.5. Proposition. ([31], Proposition 1) Every ∆-continuous algebra A which is finitely
generated has power at most ∥Σ∥. (Finite generation means that for some finite subset X
the only ∆-continuous subalgebra containing X is all of A.)
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7.6. Definition. The set T ∆
Σ V of (∆-extended) terms is the smallest set such that

1. Every variable in V is a term.

2. Every n-ary symbol σ and every n-tuple (ti)i<n of terms yields a composite term
σ(ti)i<n.

3. Given an ordinal α ≤ ∥Σ∥, every collection tk (k < α) of terms, which together
contain only finitely many variables, yields a term

t =
∨
k<α

tk.

The definition of interpretation of terms in an algebra A is completely analogous to
Definition 6.10: in item (3) f ♯ is defined in t =

∨
k<α tk iff each f ♯(tk) is defined and for

all k ≤ l < α we have f ♯(k) ≤ f ♯(l). Then f ♯(t) =
⊔

k<α f
♯(tk).

7.7. Remark. There exist at most ∥Σ∥ terms. Indeed, since each term contains only
finitely many variables, it is easy to see that T ∆

Σ V =
⋃

i<∥Σ∥Wi where (a) W0 = V , (b)

Wi+1 is the closure of Wi under composite terms and formal joins
∨

k<α tk for α ≤ ∥Σ∥,
and (c) for limit ordinals i we put Wi =

⋃
j<iWj. Moreover, an easy transfinite induction

on i shows cardWi ≤ ∥Σ∥ for each i. Thus cardT ∆
Σ V ≤ ∥Σ∥2 = ∥Σ∥.

7.8. Definition. A variety of ∆-continuous algebras is a full subcategory V of Σ-DCPO
presented by a set of equations t = t′ between terms.

That is, an algebra A lies in V iff for each of those equations and each interpretation
f : V → A both f ♯(t) and f ♯(t′) are defined and are equal.

7.9. Remark. The concepts of product, homomorphic image and subalgebra are defined
for ∆-continuous algebras precisely as in Remark 6.16.

7.10. Proposition. Every variety of ∆-continuous algebras is closed under homomor-
phic images, subalgebras, products, and directed colimits in Σ-DCPO.

Proof. For the first three closure properties we can, analogously to Proposition 6.17,
use the proof in [3]. The proof for directed colimits is a modification of that of Propo-
sition 6.21. Whereas in that proof we used structural induction on t =

∨
k∈N tk, we now

need to use it on t =
∨

k<α tk for an arbitrary ordinal α ≤ ∥Σ∥. Since all tk lie in T ∆
Σ V0 for

a finite set V0 ⊆ V , the proof proceeds completely analogously to that of Proposition 6.21.
The transfinite induction for subsets (T ∆

Σ )j ⊆ T ∆
Σ V is analogous to that in item (ii). In

our case it does not end in ω1 steps, but in ∥Σ∥+ steps.
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7.11. Theorem. The forgetful functor of Σ-DCPO creates filtered colimits and reflexive
coinserters.

This is proved precisely as Theorem 6.20 and Remark 6.22.

7.12. Theorem. Every variety V of ∆-continuous algebras has free algebras and is con-
cretely isomorphic to DCPOTV for the corresponding monad TV on DCPO.

The proof is analogous to that of Corollary 6.18 and Proposition 8.6, using the fac-
torization system of Remark A.10 (1).

7.13. Theorem. For every variety V of ∆-continuous algebras the monad TV is strongly
finitary.

Proof.We first observe that Lemma 6.19 works in Σ-DCPO equally well as in Σ-CPO. As
in Theorem 6.20 and Remark 6.22 we deduce that the forgetful functor UΣ : Σ-DCPO →
DCPO creates filtered colimits and reflexive coinserters. We derive the same for UV : V →
DCPO, and apply Proposition 5.6 to TV = UV · FV .

8. From strongly finitary monads to varieties

Here the main result is proved for CPO and DCPO: varieties of continuous algebras
correspond bijectively to strongly finitary monads. We begin with CPO. We again assume
that a countable set V of variables {xk | k ∈ N} is given. We denote Vn = {xk | k ≤ n}
and consider it as a discrete cpo. The underlying set of a cpo P is denoted by |P |. Recall
that joins in a concrete poset are denoted by

⊔
, and formal joins (defining extended

terms) by
∨
.

Given a monad T = (T, µ, η) we denote, for f : X → TY , by f ∗ : TX → TY the
corresponding homomorphism of the free algebras for T:

f ∗ = µY · Tf.

For every morphism g : Y → Z we then have a commutative triangle

X TY

TZ

f

(g∗·f)∗
g∗

8.1. Notation. Every n-ary operation symbol σ is identified with the term σ(xi)i<n.
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8.2. Definition. Let T = (T, µ, η) be a strongly finitary monad on CPO. The associated
signature has as n-ary symbols the elements of TVn:

Σn = |TVn| (n ∈ N).

The associated variety VT is presented by the following equations, where n and m range
over N:

1. σ =
∨

k∈N σk for every ω-chain (σk)k<ω in TVn with σ =
⊔

k∈N σk.

2. u∗(σ) = σ(u(xi))i<n for every σ ∈ |TVn| and all maps u : Vn → |TVm|.

3. ηVn(xi) = xi for all i < n.

8.3. Remark. Every algebra
α : TA → A

in CPOT defines a Σ-algebra as follows: given σ ∈ Σn and an n-tuple (ai) in A, represented
by a map a : Vn → A (taking xi to ai), we put

σA(ai)i<n = α · Ta(σ).

Every homomorphism h : (A,α) → (B, β) in CPOT defines a homomorphism between the
associated Σ-algebras. Indeed, given σ ∈ TVn and a : Vn → A, the equality h(σA(ai)) =
σB(h(ai)) follows from h · α = β · Th:

h(σA(ai)) = h · α · Ta(σ)
= β · T (h · a)(σ)
= σB(h(ai)).

8.4. Theorem. Every strongly finitary monad on CPO is the free-algebra monad of its
associated variety.

Proof. Let T = (T, µ, η) be a strongly finitary monad, and let TV be the free-algebra
monad of its associated variety V . Then TV is also strongly finitary by Theorem 6.25. We
prove below that for every finite discrete cpo P the Σ-algebra associated with (TP, µP )
(the free algebra on P for T) is free on ηP : P → TP in V . From this it follows that the
same statement holds for all cpos P . Indeed, we have seen in the proof of Proposition 5.5
that all cpos are obtained from Setf by (iterated) directed colimits and reflexive coinserters.
Since both T and TV preserve directed colimits and reflexive coinserters, the free algebras
for T and TV coincide for all cpos P . Moreover, the forgetful functors of both V and CPOT

are strictly monadic (Proposition 8.6). We conclude that V and CPOT are concretely
isomorphic, thus T is the free-algebra monad of V .

Consider a finite discrete cpo P . Without loss of generality, P = Vn for some n ∈ N.
Given an algebra A in VT and a map f : Vn → A, we prove that there exists a unique
continuous Σ-homomorphism f : TVn → A with f = f · ηVn .
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Existence Define f(σ) = σA(f(xi))i<n for every σ ∈ TVn. The equality f = f ·
ηVn follows since A satisfies the equations (3) in Definition 8.2, thus the operation of A
corresponding to ηVn(xi) is the i-th projection. The map f is continuous: given σ =⊔

k∈N σk in TVn, the algebra A satisfies σ =
∨

k∈N σk. Therefore, given an n-tuple f :
Vn → A, we have

f(σ) = σA(f(xi)) =
⊔
k∈N

(σk)A(f(xi)) =
⊔
k∈N

f(σk).

To prove that f is a Σ-homomorphism, take an m-ary operation symbol τ ∈ TVm. We
prove f · τVm = τA · fm

. This means that every k : Vm → TVn fulfils

f · τVm(k(xj))j<m = τA · fm
(k(xj))j<m.

The definition of f yields that the right-hand side is τA(k(xj)A(f(xi))). Due to equation
(2) in Definition 8.2, with τ in place of σ, this is k∗(τ)A(f(xi)). The left-hand side yields
the same result since

f
m
(k(xj)) = (k(xj))A(f(xi)).

Uniqueness Let f be a continuous Σ-homomorphism with f = f · ηVn . In TVn the
operation σ asigns to ηVn(xi) the value σ. (Indeed, for every a : n → |TVn| we have
σTVn(ai) = a∗(σ) = µVn · Ta(σ). Thus σTVn(ηVn(xi)) = µVn · TηVn(σ) = σ.) Since f is a
homomorphism, we conclude

f(σ) = σA(f · ηVn(xi)) = σA(f(xi))

which is the above formula.

Recall that a concrete category over CPO is a category A endowed with a faithful
functor U : A → CPO. Given another concrete category (A ′, U ′), a concrete functor is a
functor H : A → A ′ with U = U ′H.

8.5. Example. For every variety V (considered as a concrete category in the obvious
sense) the comparison functor

K : V → CPOTV

is concrete. Recall that K assigns to an algebra A the following algebra for TV on UA:

UαA : (UF )UA → UA

where αA : FUA → A is the unique homomorphism extending idA. And to a homomor-
phism f : A → B it assigns Uf : (UA,UαA) → (UB,UαB).

8.6. Proposition. Every variety V of continuous algebras is strictly monadic: the com-
parison functor KV : V → CPOTV is an isomorphism.
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Proof.

1. For V = Σ-CPO (no equations) the proof is completely analogous to the classical
(non-ordered) algebras, see Theorem VI.8.1 in [30].

2. For a general variety we use Beck’s theorem (in strict form), see [30], Theorem VI.7.1:
we just need to prove that the forgetful functor UV : V → CPO creates coequalizers of
UV-split parallel pairs. Since UV is a right adjoint, it then follows that K is an isomor-
phism. Thus our task is, given a parallel pair d, d′ : X → Y in V , to prove the following:
Let morphisms e, t and s in CPO as follows

UVX UVY C
Ud′

Ud e

t

s

satisfy the equations

e · Ud = e · Ud′

e · s = idC

Ud · t = id

Ud′ · t = s · e

Then there exists a unique algebra Z of V with C = UVZ making e a homomorphism
e : Y → Z. Moreover, e is the coequalizer of d and d′ in V .

By item (1) the above condition holds for UΣ: there is a unique continuous algebra
Z with C = UΣZ making e a homomorphism which is the coequalizer of d and d′ in
Σ-CPO. Since e · s = idC , the homomorphism e is surjective, thus Y ∈ V implies Z ∈ V
(Proposition 6.17). It follows that e is a coequalizer of d, d′ in V , too.

8.7. Remark. Every monad morphism α : T → S for monads on CPO induces a concrete
functor from CPOS to CPOT: it assigns to a : SA → A the algebra a · αA : TA → A.
Moreover, this defines a bijection between monad morphismsT → S and concrete functors
CPOS → CPOT ([10], Theorem 3.6.3).

From Proposition 8.6 and Theorems 6.25 and 8.4 we conclude the promised bijection
between strongly finitary monads and varieties. In fact, a stronger statement holds:

8.8. Corollary. The following categories are dually equivalent:

1. Strongly finitary monads on CPO and monad morphisms.

2. Varieties of continuous algebras and concrete functors.
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Let Monsf denote the category of strongly finitary monads and Var that of varieties.
We define a functor

R : Varop → Monsf

on objects by R(V) = TV (see Theorem 6.25). Given a concrete functor F : V → W
between varieties, the composite KW · F ·K−1

V : CPOTV → CPOTW (see Proposition 8.6)
is also concrete. Thus there is a unique monad morphism α : TW → TV inducing it. We
define R(F ) = α. It is easy to see that R is a full and faithful functor. It is an equivalence
functor since every object of Monsf is isomorphic to some R(V) by Theorem 8.4.

We now turn to ∆-continuous algebras. Recall ∥Σ∥ and Proposition 7.5.

8.9. Definition. Let T = (T, µ, η) be a strongly finitary monad on DCPO. For the
signature Σ with Σn = |TVn| for all n ∈ N we define the associated variety by the following
equations, where n and m range over N:

1. σ =
∨

k<α σk for every ordinal α ≤ ∥Σ∥ and every α-chain (σk)k<α in TVn with
σ =

⊔
k<α σk.

2. u∗(σ) = σ(u(xi)) for every σ ∈ |TVn| and all maps u : Vn → |TVm|.

3. ηVn(xi) = xi for all i < n.

8.10. Theorem. Every strongly finitary monad on DCPO is the free-algebra monad of
its associated variety.

Proof. This is analogous to the proof of Theorem 8.4. In the ’Existence’ part, the proof
that f is ∆-continuous uses the fact that this is equivalent to preserving joins of chains
([4], Corollary 1.7). Let α be an ordinal for which a strictly increasing chain σi (i < α)
exists in TVn. Then by Remark 7.7 we have

α ≤ cardTVn ≤ ∥Σ∥.

Thus the given algebra A satisfies σ =
∨

k<α σk. This implies f(σ) =
⊔

k<α f(σk). Since

f preserves joins of increasing chains, it preserves all chain joins. This is the only modi-
fication of the proof of Theorem 8.4 that is needed.

Concrete categories over DCPO are defined analogously to CPO, and the proof of the
following proposition is also analogous to that of Proposition 8.6:

8.11. Proposition. Every variety V of ∆-continuous algebras is strictly monadic.

From the above we get the following

8.12. Corollary. The following categories are dually equivalent:

(i) Strongly finitary monads on DCPO and monad morphisms.

(ii) Varieties of ∆-continuous algebras and concrete functors.
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A. The categories CPO and DCPO

The aim of this appendix is to collect properties of the categories of complete partial
orders needed in our paper.

A subset X of a poset is directed if it is nonempty, and every pair of elements has
an upper bound in X. A dcpo (directed-complete partially ordered set) is a poset with
directed joins. The category

DCPO

of dcpos has as morphisms the ∆-continuous maps : monotone maps preserving directed
joins.

By a cpo we mean a poset with joins of ω-chains. The category

CPO

of cpos has as morphisms continuous maps : monotone maps preserving joins of ω-chains.

A.1. Observation. Both categories CPO and DCPO are cartesian closed. Indeed, if
A and B are cpos, then the poset [A,B] of all continuous maps ordered pointwise has
pointwise joins of ω-chains. Thus [A,B] is a cpo. The functor [A,−] is right adjoint to
A×−.

Analogously for DCPO.

A.2. Remark.

1. A CPO-enriched category has cpo structure on hom-sets making composition con-
tinuous. A CPO-enriched functor F : K → L is an ordinary functor which is locally
continuous : given f =

⊔
n∈N fn in K (X, Y ), then Ff =

⊔
n∈N Ffn in L (FX,FY ).

Enriched natural transformations are just the ordinary ones.

2. Analogously for DCPO: enriched functors F : K → L are locally ∆-continuous:
the map K (X, Y ) → L (FX,FY ) preserves directed joins.

A.3. Remark.

1. Recall that for a poset P the free dcpo on P is the dcpo TP of all ideals which are
the nonempty, ↓-closed subsets, closed under directed joins. TP is ordered by inclusion,
and the universal map η : P → TP is given by η(x) =↓. The resulting monad T on Pos
is a KZ-monad ([21], Proposition 3.1) and DCPO ≃ PosT.

2. Analogously, the free cpo on P is the subposet T ′P of TP on all ω-ideals I: this
means that there is an ω-chain in P such that I is the least ideal containing that chain.
Again, T′ is is a KZ-monad with CPO ∼= PosT

′
.

A.4. Corollary. Both subcategories CPO and DCPO are cocomplete and closed under
(weighted) limits in Pos.

Indeed, for both CPO and DCPO the forgetful functor to Pos preserves filtered colimits.
Thus these categories are locally finitely presentable in the enriched sense. For details
see [11], Theorem 6.9.
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A.5. Definition. A sub-cpo of a cpo P is a subposet closed under joins of ω-chains. A
subset X ⊆ P is ω-dense if no proper sub-cpo of P contains it. Analogously, a sub-dcpo
and ∆-density are defined for a dcpo.

A.6. Lemma. The category CPO has a factorization system (E ,M) where E consists of
morphisms with an ω-dense image, and M of monomorphisms representing sub-cpos.

Proof. For every morphism f : A → B let m : B0 ↪→ B be the smallest sub-cpo of B
containing f [A]. The codomain restriction e : A → B0 of f is clearly ω-dense. To verify
the diagonal fill-in, let a commutative square

A A′

B B′

e

u u′d

m

be given with e[A] ω-dense in A′ and m : B → B′ representing a sub-cpo. Without loss
of generality assume B ⊆ B′ and m is the inclusion map. Then u′[A′] ⊆ B. Indeed,
A′ is the iterated closure of e[A] under ω-joins, so we just need to observe that (i) for
x ∈ e[A] we have u′(x) ∈ B and (ii) given an ω-chain (xn) in A′ with u′(xn) ∈ B for
all n, then u′(

⊔
n<ω xn) ∈ B. Now (i) follows from the square above: given x = e(y),

we have u′(x) = m · u(y) ∈ B. And (ii) follows from the continuity of u′: we have
u′(

⊔
n<ω xn) =

⊔
n<ω u

′(xn) ∈ B. The desired diagonal d : A′ → B is the codomain
restriction of u′: since u′ is continuous, so is d.

Recall the concept of a coinserter (Definition 3.13).

A.7. Lemma.

1. Every coinserter in CPO has an ω-dense image.

2. For every directed colimit ci : Ai → C (i ∈ I) in CPO the union of images
⋃

i∈I ci[Ai]
is ω-dense.

Proof.

1. Let c : B → C be a coinserter of f0, f1 : A → B. Given a sub-cpo m : C0 → C
containing c[B], we prove that m is invertible. Let e : B → C0 be the codomain restriction
of c. It is continuous because f = m · e is. And it fulfils e · f0 ⊑ e · f1 because m · (e · f0) ⊑
m · (e · f1), and m is an embedding. Thus e factorizes through c; we have e = h · c:

A B C

C0

f1

f0

c

e hm
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Then h = m−1. Indeed, from the above diagram we get

(m · h) · c = m · e = c,

thus the universality of c yields m · h = idC . Since m is monic, this yields h = m−1.

2. The proof for directed colimits is completely analogous.

A.8. Lemma. If a cpo C has an ω-dense subset X, then Xn is ω-dense in Cn for every
n ∈ N.

Proof. Define a transfinite sequence Xi (i ∈ Ord) of subsets of C by X0 = X, Xi =⋃
j<iXj for limit ordinals, and Xi+1 being the set of all joins of ω-chains in Xi. The

ω-density of X means precisely that Xλ is all of C for some ordinal λ.
Let Yi be the corresponding sequence in Cn, starting with Y0 = Xn. It is easy to prove

by transfinite induction that Yi = Xn
i for every i. Thus Yλ is all of Cn, proving that Y0 is

ω-dense.

A.9. Lemma. CPO is cowellpowered with respect to epimorphisms with ω-dense images.

Proof. If e : A → B has an ω-dense image, let B0 be the smallest subset of B containing
e[A] and closed under all existing joins of B. Thus B0 = B because e[A] ⊆ B0 and B0 is
closed under joins of ω-chains. On the other hand, if e[A] has cardinality λ, then B0 has
cardinality at most 2λ: take each of the 2λ subsets of e[A] and in case it has a join, put
that join into B0. This makes B0 closed under all existing joins of B.

If A has cardinality κ, then e[A] has cardinality λ ≤ κ, and B = B0 has cardinality at
most 2λ ≤ 2κ. There is only a set of cpos of cardinality at most 2κ (up to isomorphism).
Thus, A has only a set of quotients represented by epimorphisms with ω-dense images.

A.10. Remark. All the above has a complete analogy in DCPO:

1. DCPO has a factorization system (∆-dense, sub-dcpo).

2. Every coinserter in DCPO has a ∆-dense image, and every directed colimit has a
∆-dense union of images.

3. If X is ∆-dense in a dcpo C, then Xn is ∆-dense in Cn for all n ∈ N.

4. DCPO is cowellpowered with respect to epimorphisms with ∆-dense images.

All the proofs are completely analogous to the preceding ones.
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