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PROPERTIES AND CHARACTERISATIONS OF COFREE
CARTESIAN DIFFERENTIAL CATEGORIES

JEAN-SIMON PACAUD LEMAY

ABSTRACT. Cartesian differential categories come equipped with a differential opera-
tor which formalises the total derivative from multivariable calculus. Cofree Cartesian
differential categories always exist over a specified base category, where the general con-
struction is based on Faa di Bruno’s formula. A natural question to ask is, when given an
arbitrary Cartesian differential category, how can one check if it is cofree without know-
ing the base category? In this paper, we provide characterisations of cofree Cartesian
differential categories without specifying a base category. The key to these charac-
terisations is, surprisingly, maps whose derivatives are zero, which we call differential
constants. One characterisation is in terms of the homsets being complete ultrametric
spaces, where the ultrametric is induced by differential constants, which is similar to
the metric for power series. Another characterisation is as algebras of a monad. In
either characterisation, the base category is the category of differential constants. We
also discuss other basic properties of cofree Cartesian differential categories, such as the
linear maps, and explain how many well-known Cartesian differential categories (such
as polynomial or smooth functions) are not cofree.
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1. Introduction

Cartesian differential categories, introduced by Blute, Cockett, and Seely in [3], are one of
the cornerstones in the theory of differential categories, which, as the name suggests, uses
category theory to provide and study the foundations and applications of differentiation in
a variety of contexts. Briefly, a Cartesian differential category (Definition 2.5) is a category
with finite products such that each hom-set is a k-module, for some fixed commutative
unital semiring k, which allows for zero maps and sums of maps (Definition 2.1 & 2.2), and
also comes equipped with a differential combinator D, which for every map f: A— B
produces its derivative D[f] : A x A—— B. The differential combinator satisfies seven
axioms, known as [CD.1] to [CD.7], which formalise the basic identities of the total
derivative from multivariable differential calculus such as the chain rule, linearity in vector
argument, symmetry of partial derivatives, etc. Cartesian differential categories have been
able to formalise various concepts of differential calculus and have also found applications
related to computer science, such as for the categorical semantics of the differential -
calculus [5].

There are many interesting examples of Cartesian differential categories, with the
two primary examples relating to differentiating polynomials and differentiating smooth
functions (Example 2.7.(i) & (ii)). The central notion of study in this paper are cofree
Cartesian differential categories (Definition 3.1) which satisfy a couniversal property over
a base category amongst Cartesian differential categories. It is worth mentioning that
Cartesian differential categories are essentially algebraic, and so it follows from standard
results that free Cartesian differential categories exist: they can be given by the term
logic for Cartesian differential categories [3, Section 4]. On the other hand, the fact that
cofree Cartesian differential categories always exist does not follow from any standard
theory. This is an interesting similarity that the theory of differential categories shares
with the theory of differential algebras, in the sense that cofree differential algebras also
exist, which are called Hurwitz series rings [10].

The original construction of cofree Cartesian differential categories is called the Faa di
Bruno construction (Definition 3.5), as first introduced by Cockett and Seely in [7]. The
name comes from the fact that composition in a cofree Cartesian differential category is
given by a generalisation of Faa di Bruno’s formula for higher order derivatives [9, Lemma
3.4]. Maps in the Faa di Bruno construction are called Faa di Bruno sequences (Definition
3.4), which are sequences ( fo, f1, fo, - - .) of maps of the base category where the n-th term
is interpreted as the n-th higher order derivative of the 0-th term (Definition 2.10). The
Faa di Bruno construction was then used by Garner and the author in [9] to prove two
fundamental results for Cartesian differential categories. The first was characterising
Cartesian differential categories as skew-enriched categories [9, Theorem 6.4], while the
second was proving that every Cartesian differential category embeds into the coKleisli
category of a differential category [9, Theorem 8.7].

Properties and applications of the Faa di Bruno construction have not yet been ex-
plored much. This is most likely due to the fact that composition and differentiation in the
Faa di Bruno construction are somewhat complicated, making it somewhat challenging to
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work directly inside the Faa di Bruno construction. This is unsurprising since, famously,
Faa di Bruno’s formula is also quite complex and combinatorial. To simplify working
with the Faa di Bruno construction, Cockett and Seely used term logic and trees in [7],
while Garner and the author used some pragmatic combinatorial notation [7]. However,
in both cases, these techniques are somewhat involved and heavy on notation. Another
construction of cofree Cartesian differential categories was then introduced by the author
in [11], in the hopes that this construction would be easier to work with. Unfortunately,
this is still not quite the case. While differentiation is much simpler and composition is
somewhat easier to work with, the trade-off is that maps in this alternative construction
are much more complicated. Thus, working with either of these constructions of cofree
Cartesian differential categories is not as straightforward as one would hope.

The main objective of this paper is to demonstrate that one does not necessarily need
to understand the internal workings of a cofree Cartesian differential category to study
it. Indeed, simply from knowing that a Cartesian differential category is cofree over a
base category, we may use its couniversal property to derive many interesting properties
and structures. Of course, any cofree Cartesian differential category will be isomorphic to
the Faa di Bruno construction of its base category (Lemma 3.9), so these results may be
derived by working with the Faa di Bruno construction directly. However, since working
in the Faa di Bruno construction directly is somewhat tricky, the goal of this paper is
to do as many proofs using only the couniversal property and avoid working directly
with the Faa di Bruno construction (especially its composition and differentiation) as
much as possible. In Section 4, we show that in a cofree Cartesian differential category,
the differential linear maps (Definition 2.6) correspond to the k-linear maps of the base
category (Proposition 4.1), while the k-linear maps instead correspond to pairs of k-linear
maps of the base category (Proposition 4.3). In Section 5, we explain how every hom-
set of a cofree Cartesian differential category is, in fact, a complete ultrametric space
(Proposition 5.2), where the metric is induced by the functor to the base category and
the higher order derivatives, similar to the metric for power series or Hurwitz series [10].

We also discuss how for certain base categories, a more concrete and familiar descrip-
tion of the cofree Cartesian differential category is possible. In particular, we provide a
very simple description of the cofree Cartesian differential category over a category with
finite biproducts (Proposition 3.15). Another example we discuss, as first shown in [9,
Proposition 4.9], is that for the category of k-modules and arbitrary functions between
them, the cofree Cartesian differential category over it is given by the coKleisli category
of a comonad on the category of k-modules (Example 3.12). In fact, this is an example of
a monoidal differential category [2, Definition 2.4], and in particular, a categorical model
of differential linear logic [8] which was studied by Clift and Murfet in [4, Section 3|. In
the case where k is an algebraically closed field of characteristic zero, such as the com-
plex numbers, the category of (finitely generated) cofree cocommutative k-coalgebras is a
cofree Cartesian k-differential category over the category of (finite-dimensional) k-vector
spaces and arbitrary set functions between them (Example 3.13).

Another main objective of this paper is to provide a base independent characterisation
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of cofree Cartesian differential categories. Indeed, a natural question to ask is, when given
an arbitrary Cartesian differential category, how can one check if it is cofree without
knowing the base category? To do so, we must first understand how to reconstruct
the base category from a cofree Cartesian differential category. The answer is given by
taking the maps whose derivatives are zero, which we call differential constants (Definition
6.1). This is somewhat surprising since differential constants have, up till now, played
no meaningful role in the theory of Cartesian differential categories, while differential
linear maps are usually the more important maps. It is somewhat counter-intuitive that
a Cartesian differential category is completely generated by maps whose derivatives are
zero, yet this is the case for cofree Cartesian differential categories. However, in general,
one cannot simply construct a subcategory of differential constants since, crucially, the
identity map is not a differential constant. As such, in Section 6, we introduce the notion
of a differential constant unit (Definition 6.4), which behaves like an identity map for
differential constants, and if it exists, we can build the category of differential constants as
desired. For a cofree Cartesian differential category, its category of differential constants
is isomorphic to its base category (Proposition 6.8). As a result, we then show that
a Cartesian differential category is cofree if and only if it has a differential constant
unit and is cofree over its category of differential constants (Theorem 6.10). From this
characterisation, we can easily check when a Cartesian differential category is not cofree
by checking if it has a differential constant or not. As such, we can explain why the
Cartesian differential categories of polynomials or smooth functions are both not cofree
(Example 6.13).

To provide a completely internal and base independent characterisation of cofree Carte-
sian differential categories, we also need the ability to describe maps as converging infinite
sums of their higher order derivative. From the point of view of the Faa di Bruno con-
struction, we wish to able to say that a Faa di Bruno sequence is an infinite converging
sum of the form (fy, f1,...) = (f0,0,...)+(0, f1,0,...)+... (Example 7.7.(i)). In Section
7, we explain that this can be done in a Cartesian differential category that has a dif-
ferential constant unit which induces an ultrametric on the homsets, which we call being
differential constant complete (Definition 7.1), and such that the differential constants are
well-behaved enough, which we call having convenient differential constants (Definition
7.3). Therefore a Cartesian differential category is cofree if and only if it has a differential
constant unit, is differential constant complete, and has convenient differential constants
(Theorem 7.5).

In Section 8, we also provide a characterisation of cofree Cartesian differential cat-
egories as the algebras of a monad on the category of Cartesian differential categories.
This monad arises from the Faa di Bruno adjunction [9, Corollary 3.13|, which is the
adjunction where the left adjoint is the forgetful functor and the right adjoint is given by
the Faa di Bruno construction. The comonad of the Faa di Bruno adjunction was first
studied by Cockett and Seely in [7, Theorem 2.2.2], where they showed that the coalge-
bras of this comonad were precisely Cartesian k-differential categories [7, Theorem 3.2.4].
In more categorical terms, this says that the Faa di Bruno adjunction is comonadic. For
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the induced monad of the Faa di Bruno adjunction, we show that a Cartesian differential
category is an algebra of this monad if and only if it is cofree (Theorem 8.3). From this,
it follows that the Faa di Bruno adjunction is also monadic (Proposition 8.7), and that
the Faa di Bruno comonad is of effective descent type [12, Section 2].

The characterisations introduced in this paper should simplify working with cofree
Cartesian differential categories and hopefully lead to interesting new results and appli-
cations for cofree Cartesian differential categories.

2. Cartesian Differential Categories

In this background section, we review the basics of Cartesian differential categories. For
a more in-depth introduction to Cartesian differential categories, we refer the reader to
3, 9]. In this paper, we will work with Cartesian differential categories relative to a fixed
commutative unital semiring k, as was done in [9], so in particular, we do not necessarily
assume that we have negatives. When k = N, the semiring of natural numbers, we obtain
precisely Blute, Cockett, and Seely’s original definition and theory from [3].

The underlying structure of a Cartesian differential category is that of a Cartesian
left k-linear category, which can be described as a category with finite products which
is skew-enriched over the category of k-modules and k-linear maps between them [9].
Essentially, this means that each hom-set is a k-module, so in particular, we have zero
maps and can take the sum of maps, but also allow for maps which do not preserve zeroes
or sums. Maps which do preserve the module structure are called k-linear maps.

2.1. DEFINITION. [9, Section 2.1] A left k-linear category is a category A such that
each hom-set A(A, B) is a k-module with scalar multiplication - : k x A(A, B)—A(A, B),
addition + : A(A, B) x A(A, B)— A(A, B), and zero 0 € A(A, B), and such that for any
map x : A'—A, pre-composition _o x : A(A, B) — A(A’, B) is a k-linear morphism, that
is, for all r,s € k and f,g € A(A, B) the following equality holds':

(r-f+s-gox=r-(fox)+s-(gox) (1)

In a left k-linear category A, a map f : A— B is said to be k-linear if post-composition
fo_:A(AA)— A(A’, B) is a k-linear morphism, that is, for all r,s € k and x,y €
A(A") A) the following equality holds:

folr-zts-y)=r-(for)+s-(foy) (2)

For a left k-linear category A, let k-lin [A] be the subcategory of k-linear maps of A and
Zy : k-lin[A] — A be the inclusion functor. A k-linear category is a left k-linear
category A such that every map in A is k-linear, so k-lin[A] = A.

n an arbitrary category, we use the classical notation for composition o as opposed to diagrammatic
order which was used in other papers on Cartesian differential categories, such as in [3, 11] for example.
We denote identity maps as 14 : A— A.
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A list of basic properties of k-linear maps can be found in [3, Proposition 1.1.2], such
as the fact they are closed under composition and k-linear structure. Also, note that a
k-linear category is precisely a category enriched over k-modules. It is worth mentioning
that a category can be a left k-linear category in possibly different ways. So being a left
k-linear category is a structure rather than a property.

We now add finite products to the story and require that the projections be k-linear.
For a category with finite products, we denote the terminal object as *, the product by
Ap x ... x A, with projections m; : Ag x ... x A,—A;, and denote the tupling operation

by (—, —, ..., —).

2.2. DEFINITION. [9, Section 2.1] A Cartesian left k-linear category is a left k-linear
category A such that A has finite products and all projections m; : Ag x ... x A, — A,
are k-linear maps.

As mentioned above, Cartesian left N-linear categories are precisely Cartesian left
additive categories [3, Definition 1.2.1], and in this case, the N-linear maps are precisely
additive maps [3, Definition 1.1.1]. Conversely, every Cartesian left k-linear category is a
Cartesian left additive category, and every k-linear map is an additive map. Properties of
Cartesian left k-linear categories can be found in [3, Section 1.2], while a list of examples
can be found in [9, Example 2.3]. Again, also note that while products are unique up
to isomorphism, a category can possibly have multiple k-linear structures, which makes
it into a Cartesian left k-linear category. That said, we will only refer to Cartesian left
k-linear categories by their underlying category since, in this paper, there should be no
confusion.

In a Cartesian left k-linear category, since not every map is k-linear or additive, the
product X is not a coproduct and, therefore, not a biproduct. That said, for any Cartesian
left k-linear category A, its subcategory of k-linear maps k-lin [A] is a k-linear category
with finite biproducts. Conversely, a k-linear category with finite biproducts is precisely
a Cartesian left k-linear category where every map is k-linear [9, Example 2.3.(ii)].

A key concept for the story of this paper is the notion of functors between Cartesian left
k-linear categories that preserve both the k-linear structure and finite products strictly. Of
course, one could instead consider functors that preserve the products up to isomorphism.
However, since this approach only adds little to the story of characterising cofree Cartesian
differential categories, we will do as in [9, 11] and work with strict structure preserving
functors. Furthermore, it follows that these functors also preserve k-linear maps.

2.3. DEFINITION. [11, Section 3] A Cartesian k-linear functor between Cartesian
left k-linear categories A and A’ is a functor F : A — A" which preserves the product
structure strictly, that is, F(Ag X ... x A,) = F(Ag) X ... X F(Ay) and F(r;) = m;, and
also preserves the k-linear structure strictly, that is, F(r- f+s-g)=r-F(f)+s-F(g)
for all parallel maps f,g € A and r,;s € k.

2.4. LEMMA. [3, Lemma 1.3.2] Let F : A—— A’ be a Cartesian k-linear functor. Then
if fis a k-linear map in A, F(f) is a k-linear map in A’. Therefore, there is a Carte-
sian k-linear functor k-lin [F] : k-lin[A] — k-lin[A'], defined on objects and maps as
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k-lin [F] (=) = F(—), and such that the following diagram commutes:

k-lin

elin [A] — 1 ki (A7

| |z

A = A’

Observe of course that Z, : k-lin [A] — A is trivially a Cartesian k-linear functor.

Cartesian differential categories are Cartesian left k-linear categories that also come
equipped with a differential combinator, which is an operator that sends maps to their
derivative. The axioms of a differential combinator are analogues of the basic properties of
the total derivative from multivariable differential calculus. There are various equivalent
ways of expressing the axioms of a Cartesian differential category. Here, we have chosen
the one found in [9, Section 2.2]. Terminology-wise, in [9] we used the term Cartesian
k-linear differential category, but for brevity, here we will use the term Cartesian k-
differential category. It is also essential to notice that in this paper, unlike in [3, 7] and
other early works on Cartesian differential categories, we incorporate the convention used
in more recent works where the linear argument of the derivative is its second argument
rather than its first argument.

2.5. DEFINITION. [9, Section 2.2] A differential combinator D on a Cartesian left
k-linear category X is a family of functions between the hom-sets:

f: X—Y
DIf] : X x X —Y

D:X(X,Y)—X(X x X,Y)

where D[f] is called the derivative of f, and such that the following seven axioms hold:
[CD.1] D[r- f+s-g]=r-D[f]+s-Dlg] forallr,s € k

[CD.2] D[f]o{(z,r-y+s-2)=r-(D[f]o{x,y)) +s-(D[f]o{x,z)) for all r,s € k and
suitable maps x, y, and z

[CD.3] D[lyx] =m and D[r;] = 7, 0 71 = Tpyiia

[CD.4] D[(fo,---, fu)l = (Dlfo],- .-, D[fu])

[CD.5] Dlgo f] = Dlg] o (f om0, D[f])

[CD.6] D[D[f]] o (z,y,0,z) = D[f] o (z, 2) for all suitable maps =z, y, and =
[CD.7] DD[f]] o (x,y,20) =D [D[f]] o (x, 2,y,0) for all suitable maps z, y, and =

A Cartesian k-differential category is a pair (X,D) consisting of a Cartesian left
k-linear category X and differential combinator D on X.
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The convention of denoting Cartesian differential categories as pairs is not necessarily
the norm in previous papers on the subject. We adopt this notation for two reasons: (1)
to easily distinguish between Cartesian left k-linear categories and Cartesian k-differential
categories, and (2) later we will encounter cases of Cartesian left k-linear categories that
have more than one possible differential combinator. That said, we will often abuse
notation and write D for all differential combinators. We only use different notations for
differential combinators when we wish to emphasize that there is more than one possible
differential combinator of interest.

Briefly, the intuition for axioms of a differential combinator are that: [CD.1] the differ-
ential combinator is a k-linear morphism, [CD.2] derivatives are k-linear in their second
argument, [CD.3] what the derivative of identity maps and projections are, [CD.4] the
derivative of a tuple is the tuple of the derivatives, [CD.5] the chain rule for the derivative
of composition, [CD.6] derivatives are differential linear in their second argument, and
lastly [CD.7] is the symmetry of the partial derivatives. Again, we mention that when
k = N, a Cartesian N-differential category is precisely a Cartesian differential category in
the original sense of Blute, Cockett, and Seely [3, Definition 2.1.1], and conversely, every
Cartesian k-differential category is a Cartesian differential category in the original sense.
It is also worth mentioning that there is a sound and complete term logic for Cartesian
differential categories [3, Section 4].

An important class of maps in a Cartesian differential category is the class of differ-
ential linear maps [3, Definition 2.2.1]. In this paper, we borrow the terminology from [9]
and will instead call them D-linear maps, to better distinguish them from k-linear maps.

2.6. DEFINITION. [9, Definition 2.7] In a Cartesian k-differential category (X,D), a map
f: X —Y is differential linear, or simply D-linear for short, if D[f] = fom. Let
D-lin [X] to be the subcategory of D-linear maps of X and let Jxp : D-lin [X] — X the
inclusion functor.

Properties of differential linear maps can be found in [6, Lemma 2.6], such as the fact
that they are closed under composition, k-linear structure, and product structure. In
particular, every differential linear map is also k-linear [6, Lemma 2.6.i], and as result,
it follows that for Cartesian k-differential category (X,D), its subcategory of D-linear
maps D-lin [X] will be a k-linear category with finite biproducts [3, Corollary 2.2.3]. Tt is
important to note that although k-linear maps and differential linear maps often coincide
in many examples, in an arbitrary Cartesian differential category, not every k-linear map
is necessarily differential linear.

2.7. EXAMPLE. Here are some well-known main examples of Cartesian differential cate-
gories. See [6, 9] for lists of other examples of Cartesian differential categories.

(i) Let k-POLY be the category whose objects are n € N and where a map P : n—m
is a m-tuple of polynomials in n variables, that is, P = (pi(¥),...,pn (%)) with
pi(Z) € kl[z1,...,2,]. Then k-POLY is a Cartesian k-differential category where
on objects the product is given by addition, n x m = n + m, and the differential



(i)

(iii)
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combinator is given by the standard differentiation of polynomials, that is, for P =
(p1(Z), ..., pm(Z)) : n—m, its derivative D[P] : 2n—m (where recall that n xn =
2n) is the tuple of the sum of the partial derivatives of the polynomials p;(Z):

(P25 — (Z 81;1;?) Ui Z 3}&(?%)

=1 =1

", Jp;(7)
where 1:21 a—xz

and only if it is a tuple of homogenous polynomials of degree 1, so of the form

vi € klr1,...,%n,y1, ..., Yn]. A map P : n—m is D-linear if

pi(Z) = Z a;x;. As such if P:n——m is D-linear, then it corresponds to a k-linear
=1

morphlsm k"™ — k™, and so D-lin[k-POLY] is equivalent to the category of finite-
dimensional free k-modules and k-linear morphisms between them. However, there
could be polynomials that are k-linear but not D-linear. For example, if k = Z,
then 22 is Zsy-linear but not D-linear.

Let R be the set of real numbers. Define SMOOTH as the category whose objects
are the Euclidean spaces R™ and whose maps are smooth functions between them.
SMOOTH is a Cartesian R-differential category where the differential combinator
is defined as the total derivative of a smooth function. For a smooth function
F :R"— R™, which is in fact an m-tuple F' = (fi,..., f,n) of smooth functions
fi : R*— R, the derivative D[F] : R* x R® — R™ is defined as:

DIFI(2. 7 ::< CTLT Wil >

Note that R-POLY is a sub-Cartesian differential category of SMOOTH. A smooth
function F': R” — R™ is D-linear if and only if it is R-linear in the classical sense.
Therefore, D-lin[SMOOTH] is equivalent to the category of finite-dimensional real
vector spaces and R-linear morphisms between them.

Any k-linear category B with finite biproduct is a Cartesian k-differential category
where the differential combinator D™ is defined by precomposing with the second
projection map: D'""[f] = f o m;. Therefore, every map is D'"linear by definition
and so D'"-lin[B] = B. As an explicit example, let k-MOD be the category of
k-modules and k-linear morphisms between them. Then k-MOD is a Cartesian k-
differential category where for a k-linear morphism f : M — N, its derivative
Din[f] : M x M — N is defined as D'"[f](m,n) = f(n). In fact, a Cartesian k-
differential category in which every map is differential linear is a k-linear category
with finite biproducts. That said, as we will see later, it is possible to equip certain
k-linear categories with finite biproducts with other differential combinators D such
that not every map is D-linear.
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(iv) An important source of examples of Cartesian differential categories are those which
arise as the coKleisli category of a differential category [2]. We will discuss a partic-
ular example of this in Example 3.12.

We now turn our attention to functors between Cartesian differential categories, which
are Cartesian k-linear functors that also commute with the differential combinator. It
immediately follows that such functors also preserve differential linear maps.

2.8. DEFINITION. [11, Section 4] For Cartesian k-differential categories (X,D) and (X'D),
a Cartesian k-differential functor F:(X,D)— (X', D) between them is a Cartesian
k-linear functor F : X— X' such that F (D[f]) = D [F(f)].

2.9. LEMMA. Let F : (X,D)— (X', D) be a Cartesian k-differential functor. Then if f is
a differential linear map in (X, D), F(f) is a differential linear map in (X', D). Therefore,
there is a Cartesian k-linear functor D-lin [F] : D-lin [X] — D-lin [X'], defined on objects
and maps as D-lin [F] (=) = F(—), and such that the following diagram commutes:

D-lin[F]

D-lin [X] D-lin [X']
f(x,ml lj (x,D)
X = X’

Per Example 2.7.(iii), for any Cartesian k-differential category (X, D), (D-lin [X], D'm)
is a Cartesian k-differential category and, moreover, Jixp) : (D-lin [X],D") — (X, D) is
a Cartesian k-differential functor.

We conclude this section by discussing higher-order derivatives in a Cartesian dif-
ferential category. There are two kinds: the total higher derivative and the partial
higher derivative. The difference is that the former is simply successive applications
of the differential combinator, while the latter is successive partial derivations of the
non-linear argument. Indeed, in a Cartesian k-differential category (X,D), we can de-
fine the partial derivatives by inputting zeroes in the total derivative. So for a map
f:Xox...x X,—Y, its j-th partial derivative [9, Definition 2.7] in the argument
X; is the map D;[f] : Xo X ... x X,, x X; —Y defined as:

D;[f] = D[f] o (mo, 1, ..., T, 0,...,0,Tp41,0,...,0) (3)

where 7,11 is in the n+j-th spot. We also say that amap f : Xyx...xX,—Y is D-linear
in its j-th argument [9, Definition 2.6] if D,[f] = fo(mo, M1, .., Tj—1, Tpa1s W1, - - - Tn)-
As mentioned above, [CD.6] is equivalent to the statement that derivatives are differential
linear in their second argument, that is, Dy [D[f]] = D[f] o (mo, m2).

Now for n € N, we denote X™ as a shorthand for the product of n-copies of X. Then
for an arbitrary map f : X — Y, applying the differential combinator n-times results in
a map of type D*[f] : X?" — Y called the n-th total derivative. However, as explained
in [9, Section 3.1], it follows from [CD.6] that there is a lot of redundant information
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in D"[f], since it has many differential linear arguments. On the other hand, we can
differentiate f once to get D[f] : X x X —Y, and then take the partial derivative in the
non-differential linear argument to get a map of type Dy [D[f]] : X x X x X — Y, and
so on. This gives the higher-order partial derivatives of f.

2.10. DEFINITION. [9, Definition 3.1] In a Cartesian k-differential category (X,D), for

amap [: X—Y andn € N, the n-th derivative of f is the map O"[f] : X x X"—Y

defined as O"[f] = Dgo[Dy|. .. Dolf]...]], where by convention &°[f] = f and 0'[f] = D[f].
———

n times

2.11. ExXAMPLE. To highlight the difference between D" and 9", let us work out a basic
example. Consider the polynomial function p(x) = z?. Then D will differentiate all
variables, while 0 will only differentiate the first variable:

D[pl(z) = a? 8lp](x) = a2
D'[p](x,y) = 2zy 0'[p)(x,y) = 2xy
D?[p](z,y, z,w) = 2yz + 2zw O*[p(z,y,2) = 2yz
D3[p] (x,y,z,w,a,b,c,d) = 2zb+ 2yc + 2wa + 2xd 83[p](x, y,z,w) =0

In general, on polynomials, D will never “stop”, while 0 will eventually hit zero.

The higher order total derivative D" and the higher order partial derivative 9" can
actually be defined from one another [9, Lemma 3.2]. Indeed, 0"[f] can be defined by
inputting zeroes in the appropriate arguments of D™[f], while D"[f] can be expressed as a
sum of the 9*[f], for 1 < k < mn. While they are “interchangeable”, we will tell the story
of this paper using the higher order partial derivatives 0", for reasons we explain below.

Here are now some useful identities for higher-order partial derivatives. [HD.1] to
[HD.7] are the higher-order versions of [CD.1] to [CD.7], while [HD.8] tells us what
the derivative of a higher-order partial derivative is. In particular, [HD.5] is Faa di
Bruno’s Formula, which expresses the higher-order chain rule. To help write down Faa
di Bruno’s Formula, let’s introduce some notation. For every n € N, let [0] = () and let
n+1] ={1 < ... <n+ 1}. Now for every subset [ = {i; < ... <i,} C [n+ 1], define
7 X" — X™ to be m = (m;,,...,m,, ). We denote a non-empty partition of [n + 1] as
n+1] = Ay|...|A, and let |A;| be the cardinality of A;. Then Faa di Bruno’s Formula
9, Lemma 3.14] for the n + 1-th derivative is expressed as a sum over the non-empty
partitions of [n + 1].

2.12. LEMMA. [9, Section 3] In a Cartesian k-differential category (X, D),
[HD.1] 0"[r-f+s-g]=1r-0"[f]+s-0"[g] for allr,s € k

[HD.2] For all1<j<mn,rs¢€k and suitable maps xo, 1, ..., T, and Tj:

an[f]o<x0axl7"'7r'xj+3‘$;,...,xn>

=7r-(0"[flo(zo,21,...,2j,...,2n)) + 5" (8”[f]o<x0,x1,...,x9,...,xn>)
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[HD.3] If f is D-linear then °[f] = f, 0'[f] = f o m1, and O"*2[f] =0
[HD.4] 0"[(fo.- ., fu)] = (O"[fo], ..., " [fu])

[HD.5] The following equality holds:

d"[go f]= Z 0*lg] o (f o mo, 8 f] 0 (mo,ma,), ..., [f] o (mo,ma,))

(n]=Aq|...| Ax
[HD.6] 0"[f] : X x X" —Y is D-linear in each of its last n-arguments.

[HD.7] For all permutations o : {1,...,n} 5 {1,...,n}, and all suitable maps xy, ...,
and x,,, the following equality holds:

8n[f] o} <£C0,£C1, R ,:Cn> = 8n[f] e} <£C0,33(,(1), c. ,xo(n))
[HD.8] The following equalities hold:

D[an[f“ = an [D[f]] o <7T07 Tn+41, Ty T2y « -+ 5 T,y 7T2n+1>
= anJFl[f] © <7T0’ Ty .- 77TTL77TTL+1>
+ Z an[f] ¢} <7T0,7T1, e ,7Tj,1, 7Tn+j+177rj+17 e ,7Tn>.
7j=1

3. Cofree Cartesian Differential Categories

A Cartesian k-differential category is cofree if it satisfies a couniversal property amongst
Cartesian k-differential categories over a base Cartesian left k-linear category.

3.1. DEFINITION. A cofree Cartesian k-differential category over a Cartesian left
k-linear category A is a pair (X,D), &) consisting of a Cartesian k-differential category
(X, D) and a Cartesian k-linear functor £ : X—A which satisfies the following couniversal
property: for any Cartesian k-differential category (Y,D) and Cartesian k-linear functor
F :Y—A, there exists a unique Cartesian k-differential functor F° : Y — X such that
the following diagram commutes:

A Cartesian k-differential category (X,D) is said to be cofree if there exists a Carte-
sian left k-linear category A and a Cartesian left k-linear functor £ : X — A such that
((X,D),€&) is a cofree Cartesian k-differential category over A.

In [7], Cockett and Seely provided a general construction of a cofree Cartesian k-
differential category over any Cartesian left k-linear category, which they called the Faa
di Bruno construction. Therefore, we may state that:
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3.2. PROPOSITION. For every Cartesian left k-linear category, there exists a cofree Carte-
sian k-differential category over it.

As such, the Faa di Bruno construction induces a right adjoint to the forgetful functor
between the category of Cartesian k-differential categories and the category of Cartesian
left k-linear categories [9, Corollary 3.13|. Before reviewing the Faa di Bruno construc-
tion, let us mention some basic yet important properties of cofree Cartesian differential
categories. While these are of course immediate consequences of the couniversal property,
or equivalently simply standard results about adjunctions, we take the pain of recording
them here since we will make use of them frequently in proofs throughout the paper.

3.3. LEMMA. Let ((X,D), ) be a cofree Cartesian k-differential category over a Cartesian
left k-linear category A.

(i) If (Y,D) is a Cartesian k-differential category, then for any Cartesian k-differential
functors F : (Y,D)— (X,D) and G : (Y,D)— (X,D), F = G if and only if the
following diagram commutes:

Y —F X
gl lg
X— A

(i) If (X',D), &) is also a cofree Cartesian k-differential categories over A, then there
exists a unique Cartesian k-differential isomorphism F : (X,D) — (X', D), so X =
X', such that the following diagram commutes:

(iii) If (X,D),€&) is a cofree Cartesian k-differential category over A and there ezists
a Cartesian k-differential isomorphism F : (X,D) — (X/,D), so X = X', then
(X',D), & o F71) is a cofree Cartesian k-differential category over A.

(iv) If ((X,D),€) is a cofree Cartesian k-differential category over A and there exists a
Cartesian k-linear isomorphism A : A— A’, so A = A’ then ((X,D), A0 &) is a
cofree Cartesian k-differential category over A’.

Later in Corollary 6.9, we will explain how the base categories are also unique up to
isomorphism (which is not necessarily true for arbitrary adjunctions).

Let us now review Cockett and Seely’s Faa di Bruno construction, as first introduced
in [7]. For a complete detailed account of the Faa di Bruno construction over Cartesian
left k-linear categories, we refer the reader to [7, 9]. It is also worth mentioning the slight
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differences in presentation in those references. In [7], Cockett and Seely use the term
calculus for Cartesian differential categories [3, Section 4], while in [9], Garner and the
author use basic combinatorial and categorical notation. The objects of the Faa di Bruno
construction are the same as the objects of the base category. The maps in the Faa di
Bruno construction consist of Faa di Bruno sequences, which are sequences that generalise
sequences of the form (f, D[f], 9?[f], D*[f],...) in a Cartesian k-differential category. The
basic underlying property of a Faa di Bruno sequence is that the maps are multilinear
and symmetric.

3.4. DEFINITION. [9, Section 3.1] In a Cartesian left k-linear category A, a map of type
f:Ax A" — B is said to be:

(i) k-multilinear in its last n-arguments if for all 1 < 7 < n, r,s € k, and suitable
maps o, X1 ...,T, and x;-, the following equality holds:

folxo, . ..,r -y +s-al,. .. x,)

=r-(fo(vo,T1,...,Tj,...,n))+ - (fo(xo,xl,...,x;,...,xn»

(ii) symmetric in its last n-arguments if for all permutations o:{1,... n} ={1,... n},
and all suitable maps xg,x1 ..., x,, the following equality holds:

fO <x07$17"'7xn> = fO <x07$0(1)7"'7xo‘(n)>

For objects A and B in A, an A-Faa di Bruno sequence from A to B, denoted
fo : A— B, is a sequence of maps in A, fo = (fn)nen = (fo, f1, f2,...) where fo : A—B
1s an arbitrary map and f,41 1 A X A" — B is a map which is k-multilinear and symmet-
ric in its last n-arguments. For A-Faa di Bruno sequences fo : A— B and go : A— B,
we say that fo = ge if for alln € N, f, = g,.

The rest of the Cartesian differential structure of the Faa di Bruno construction is given
by generalising the properties of the higher-order partial derivatives from Lemma 2.12. In
particular, composition is given by Faa di Bruno’s formula [HD.5], while the differential
combinator is given by [HD.8]. The functor from the Faa di Bruno construction back
down to the base category is defined as the identity on objects, while mapping a Faa di
Bruno sequence to its 0-th term.

3.5. DEFINITION. [9, Definition 3.6] For a Cartesian left k-linear category A, the Faa
di Bruno construction over A is the Cartesian k-differential category (F[A], D) where:

(i) The objects of F[A] are the same as the objects of A;

(ii) A map from A to B in F[A] is an A-Faa di Bruno sequence fo: A— B;
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(iii) Composition of A-Faa di Bruno sequences fo : A— B and g, : B—C' is the A-Fuaa
di Bruno sequence fq 0 go : A— C' defined as:

fOOQOI Z gko<fo7T07f\A1|o<7T077TA1>7-"7f|Ak|O<7T077TAk>>

[n]J=A1]...|Ag neN

(iv) The identity maps are the A-Faa di Bruno sequences 144 : A— A defined as 14, =
<1A7 1, 07 07 .. '))'

(v) The terminal object and the product of objects are the same as in A;

(vi) The projections are the A-Faad di Bruno sequences m;, : Ag X ... x A, — A; defined
as mj, = (7, Tptjt1,0,0,...), while the tuple of A-Faa di Bruno sequences is defined
pOintWise, <f007 R fmo> = (<f0n7 R an>)neN}.

(vii) The k-module structure of A-Faa di Bruno sequences is defined pointwise, so addition
i85 fo + 9o = (fa + 9n)pen, scalar multiplication is v - fo = (7 - fu)nen, and zero is

0. = (0,0,...);

(viii) The differential combinator D sends an A-Faa di Bruno sequence fo : A— B to the
A-Faa di Bruno sequence D[f,] : A x A— B defined as follows:

D[f.] = (fn+1 o (o, -+, Tpy1) + an o (o, .. y Tj—15 T4 15 Tj41, - - - 77Tn>>
j=1

neN

Let &y : F[A] — A be the functor defined on objects as Ex(A) = A and on maps as
En(fe) = Jo-

For the couniversal property of the Faa di Bruno construction [9, Section 3.4], in
order to construct the necessary unique Cartesian k-differential functors, we require the
following two results: (1) that the higher order partial derivatives do indeed form a Faa di
Bruno sequence (which is [HD.2] and [HD.7]), and (2) that Cartesian k-linear functors
preserve Faa di Bruno sequences.

3.6. LEMMA. [9, Lemma 3.2.(i)] In a Cartesian k-differential category (X,D), for any
map f: X—Y, the sequence 0°[f] : X—Y, defined as 0°[f] = (0"[f])nen, is an X-Faa
di Bruno sequence.

3.7. LEMMA. [9, Section 4] Let F : A— A’ be a Cartesian k-linear functor. If a map
f:Agx A x...xA,—B in A is k-multilinear and/or symmetric in its last n-arguments,
then F(f) : F(Ag) x F(A1) X ... x F(A,) — F(B) is k-multilinear and/or symmetric
in its last n-arguments. Therefore, if fo : A— B is an A-Faa di Bruno sequence, the
sequence F(fo) : F(A)— F(B), defined as F(fo) = (F(fn))nen, is an A'-Faa di Bruno
sequence.

We may now properly state the couniversal property of the Faa di Bruno construction.
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3.8. PROPOSITION. [9, Theorem 3.12] For any Cartesian left k-linear category A, the
triple ((F[A],D),&4) is a cofree Cartesian k-differential category over A, where in par-
ticular for any Cartesian k-differential category (Y,D) and Cartesian k-linear functor
F:Y—A, the unique Cartesian k-differential functor F> : (Y,D) — (F[A],D) such
that the following diagram commutes:

is defined on objects as F'(Y) = F(Y) and on maps as F°(f) = F(0*[f]). Furthermore
for every A-Faa di Bruno sequence fo, we have that E(0™[f.]) = 0™[fe]o =

It is worth mentioning that the functoriality of 7> : (Y, D) — (F[A], D) follows from
Faa di Bruno’s formula.

Since cofree Cartesian k-differential categories are unique up to isomorphism, a Carte-
sian k-differential category is cofree if and only if it is isomorphic to a Faa di Bruno
construction. This provides our first (yet obvious) characterisation of cofree Cartesian
differential categories. Again, this follows from standard facts about adjunctions, though
we record it here for future use.

3.9. LEMMA. Let A be a Cartesian left k-linear category, X a Cartesian k-differential
category, and £ : X—A a Cartesian k-linear functor. Then ((X,D), &) a cofree Cartesian
k-differential category over A if and only if the unique Cartesian k-differential functor
& : (X,D)— (F[A], D) which makes the following diagram commute:

is an isomorphism. Therefore, a Cartesian k-differential category (X,D) is cofree if and
only if there exists a Cartesian left k-linear category A for which there exists a Cartesian
k-differential isomorphism (F[A],D) = (X, D).

An immediate consequence of this fact is that cofree Cartesian differential categories

have essentially the same objects as their base category.

3.10. COROLLARY. Let ((X,D),€) be a cofree Cartesian k-differential category over a
Cartesian left k-linear category A. Then & is bijective on objects.

PROOF. By Lemma 3.9, & : X — F[A] is an isomorphism, and so bijective on objects.
While £, : F[A] — A is clearly bijective on objects as well. Thus since & = &£, o £, we
get that £ is also bijective on objects. n



PROP. AND CHAR. OF COFREE CDC 4T

There is another general construction of cofree Cartesian differential categories given
in [11]. In this construction, the maps are instead given by D-sequences [11, Definition
4.2], which instead generalise sequences of the form (f,D[f], D?[f],...). As discussed in
[9, Section 3.4], there is a bijective correspondence between D-sequences and Faa di Bruno
sequences, given precisely by the same formulas relating D" and 9". The advantage of
Faa di Bruno sequences is that they are simpler since there are no connections between
the maps of a Faa di Bruno sequence, and Faa di Bruno sequences often provide a more
understandable story. The disadvantage of Faa di Bruno sequences is that they are some-
times difficult to work with since composition and the differential combinator are given
by somewhat complex formulas. On the other hand, the advantage of D-sequences is
that they are easier to work with since composition is given by a simpler formula and the
differential combinator is defined by shifting the sequence to the left. The disadvantage
of D-sequences is that the components of a D-sequence are related to one another, and
it is more difficult to check if a sequence is a D-sequence. Since in this paper we will
not need to work with the composition or differentiation of Faa di Bruno sequences di-
rectly, we have elected to work with them instead since they provide a simpler story to
tell. That said, we record the fact that cofree Cartesian differential categories can also be
characterised as being isomorphic to the D-sequences construction.

3.11. PROPOSITION. A Cartesian k-differential category (X,D) is cofree if and only if
there exists a Cartesian left k-linear category A for which there exists a Cartesian k-
differential isomorphism (D[A],D) = (X, D), where (D[A], D) is the Cartesian k-differen-
tial category of D-sequences of A as defined in [11, Definition 4.7].

Here are now some examples of cofree Cartesian k-differential categories that can be
described more concretely. Our first such examples was discussed in [9, Section 4.3], which
provides a connection between cofree Cartesian k-differential category and differential
linear logic [§].

3.12. EXAMPLE. Let k-MOD® be the category whose objects are k-modules and whose
maps are arbitrary set functions between them. Then k-MOD® is a Cartesian left k-
linear category [9, Example 2.3.(i)] where the finite product structure is given by the
standard product of k-modules (which is not a biproduct in k-MOD®), and where the
k-linear structure is given pointwise. The k-linear maps in the Cartesian left k-linear
category sense are precisely the k-linear morphisms between k-modules, in other words
k-lin(k-MOD®) = k-MOD. The cofree Cartesian k-differential category over k~-MOD® can
be described as the coKleisli category of a certain comonad Q on k-MOD which is defined
in [9, Definition 4.8]. For a k-module M, let S(M) be the free symmetric k-algebra over
M, S(M) = @ S,.(M), where S,,(M) is the n-th symmetric power of M. Then define

neN
Q(M) as the coproduct indexed by the elements of M of copies of S(M):

QM) = P S(M)

xeM
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Following [4, Definition 2.14], for zg, x1, ..., 2, € M, we denote |xy, ..., Z,),, to represent
the pure symmetrized tensor 771 ®*...®°x,, € S,(M) in the xp-component copy of S(M) in
Q(M), and |1),, for the multiplicative unit of S(M) in the xy -component. Furthermore,
Q is in fact a differential modality [9, Section 4.2] and therefore comes equipped with
a deriving transformation dy; : Q(M) ®x M — Q(M), whose axioms are analogues
of the basic algebraic properties of differentiation. This makes k-MOD into a monoidal
differential category [2, Definition 2.4], and in particular a categorical model of differential
linear logic [4, Section 3]. In general, the coKleisli category of a differential modality is a
Cartesian k-differential category [3, Proposition 3.2.1]. Therefore, the coKleisli category
k-MOD?® is indeed a Cartesian k-differential category and also a categorical model of the
differential A-calculus [5]. Recall that a map between k-modules M and M’ in k-MOD®
is a k-linear morphism f : Q(M)—— M’. Then its derivative is the k-linear morphism
D[f] : Q(M x M)— M’ defined as in [4, Definition 5.11], which is worked out on pure
symmetrized tensors to be:

D[f] (|1>(1‘07y0)) = f(|y0>a:0)
D[f] (|(I1,y1), SR} ("L‘nvyn»(l‘o,yo)) = f (|ZL‘1,ZL‘2, cee axn7y0>wo)

+Zf(|$1,:1:2,...,yj,...,a:n)xo)
j=1

The functor £g : k-MOD® — k-MOD*® is the identity on objects, Eo(M) = M, and
sends a k-linear morphism f : Q(M)— M’ to the function Eg(f) : M — M’ defined
as Eo(f)(x) = f(|1).). As explained in [9, Proposition 4.9], ((k-MOD?,D),£9) is a
cofree Cartesian k-differential category over k-MOD®. We can restrict this example to
the finite-dimensional case and rewrite this example in terms of polynomials since S(k) =
klxyi,...,2z,]. It is also worth mentioning that for any Cartesian left k-linear category
A, its Faa di Bruno construction F[A] can be embedded into the coKleisli category of a
generalisation of the comonad Q on the category of k&-MOD valued presheaves of A |9,
Section 4.4]. This result was then used to show that a Cartesian k-differential category
embeds into the coKleisli category of the differential modality of a monoidal differential
category [9, Theorem 8.7].

3.13. ExaMPLE. When k is an algebraically closed field of characteristic zero, Q(V) is
the cofree cocommutative k-coalgebra over a k-vector space V' [4, Proposition 2.11]. In
particular, this makes Q a free exponential modality, and the resulting categorical models
of differential linear logic and the differential A-calculus were studied by Clift and Murfet
in [4, Section 3 & 5]. In this case, the coKleisli category of Q is equivalent to the category
of cofree cocommutative k-coalgebras. Therefore, the category of (finitely generated)
cofree cocommutative k-coalgebras is a cofree Cartesian k-differential category over the
category of (finite-dimensional) k-vector spaces and arbitrary set functions between them.

We conclude this section by describing cofree Cartesian k-differential categories over
k-linear categories with finite biproducts, which is a novel result. To do so, we must first
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define a new construction of a Cartesian k-differential category over any Cartesian left
k-linear category. We will also make use of this construction to help characterise the
k-linear maps of a cofree Cartesian k-differential category and in the proof of Proposition
6.8. It is important to note that the differential combinator in the following definition
does indeed copy the second map.

3.14. LEMMA. Let A be a Cartesian left k-linear category. Then (A®,D?) is a Cartesian
k-differential category where:

(i) The objects of A® are the same as A;

(i) The maps in A> are pairs (f,g) : A— B where f : A— B is an arbitrary map
and g : A— B is a k-linear map in A, so A®(A, B) = A(A, B) x k-lin[A] (A, B);

Composition is defined point-wise, (f1,91) © (f2,92) = (f1 0 fa2, g1 0 g2);

)

(iv) The identity of A is the pair (14,14).
) The terminal object and the product of objects are the same as in A;
)

The projections are the pairs (w;,m;) : Ag X ... x A,— A, and where the tupling is
deﬁned pomt-wise, <(f07 90)7 EIR) (fna gn)> = (<f07 s 7fn>a <gO7 s 7gn>);

(vii) The k-module structure is defined point-wise, so the addition is (fi1, 1) + (f2, 92) =
(fi + f2, 91 + g2), the scalar multiplication is r- (f,g) = (r- f,r-g), and the zero is
the pair (0,0);

(viii) The differential combinator D is defined as D*[(f,g)] = (go w1, gom).

Furthermore, the functor Py : A® —— A defined on objects as Py(A) = A and on maps as
Palf,9) = f, is a Cartesian k-linear functor.

PROOF. It is clear that A® is indeed a Cartesian left k-linear category, in fact, it is a
sub-Cartesian left k-linear category of A x k-lin [A]. For the differential combinator, since
the second map is k-linear and the differential combinator involves the second projection,
which gets rid of the first argument terms, it is straightforward to check that D? satisfies
the seven axioms [CD.1] to [CD.7]. So we leave this an exercise for the reader. Therefore,
we conclude that (A%, D) is indeed a Cartesian k-differential category. =

If B is a k-linear category with finite biproducts, recall that k-lin [B] = B. Therefore,
maps in B2 are simply pairs of parallel maps in B, so BA(4, B) = B(A, B) x B(A, B).
In particular, this means that B® will also be a k-linear category with finite biproducts.
As such, another way of proving that (B2, D) is a Cartesian k-differential category is by
using [3, Corollary 2.3.2], which states that for a k-linear category with finite biproducts,
to give a differential combinator is precisely to give Cartesian k-linear endofunctor which
is the identity on objects and idempotent. For D?, its associated functor is the one that
sends maps (f,g) to (g,9). Furthermore, it is important to note that the differential
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combinator D is different from the canonical differential combinator for biproducts D"
as defined in Example 2.7.(iii). Indeed, D?[(f, g)] = (g o 71, g o m1), which gets rid of the
first map, while D'"[(f, )] = (f o 71, g o 71), which keeps the first map.

We will now prove that (B®,D?) is a cofree Cartesian k-differential category over B.
This may be somewhat surprising since the maps in the Faa di Bruno construction were
infinite sequences, while the maps in B are simply pairs. The reason for this collapse is
that in any k-linear category with finite biproducts, the only k-multilinear maps in their
last n + 2 arguments are zero maps. Therefore, a Faa di Bruno sequence must be of the
form (fo, f1,0,0,...). Moreover in this case, the couniversal property can be described
using the induced linearization combinator L [6, Definition 3.1], which is an operator
that makes any map differential linear. Indeed, in a Cartesian k-differential category
(X, D), for any map f : X — Y, define L[f] : A— A, called the linearization of f, as
L[f] = D[f] 0 (0,1x). Then L[f] is D-linear, and furthermore, f is D-linear if and only if
f =L[f] [6, Lemma 2.8].

3.15. PROPOSITION. Let B be a k-linear category with finite biproducts. Then the triple
((IB%A, DA), 73153) 1s a cofree Cartesian k-differential category over B, where in particular for
any Cartesian k-differential category (Y,D) and Cartesian k-linear functor F : Y — B,
the unique Cartesian k-differential functor F° : Y — B such that the following diagram
commutes:

is defined on objects as F°(Y) = F(Y) and on maps as F°(f) = (F(f), F (L[f])).

PRrROOF. We must first prove that F is a functor. Since identity maps are always differ-
ential linear by [CD.3], we have that L[1] = 1. Therefore, it follows that > preserves
identities. To show that F” also preserves composition, first note that for all maps f
of Y, using [CD.2] and that all maps in B are k-linear, we can compute that for any
appropriate map x,y in B:

F(O[f]) e (z,y) = FOO[f]) o (
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So F(D[f]) is independent of its first variable, so F°(D[f]) o (z,y) = F’(D[f]) o (0, ).
Now using this and [CD.5], we can compute that:

F'(go f) =

N N N N /N /N /N /N /N o/

So F’ is indeed a functor. The linearizing combinator L satisfies six axioms [L.1] to
[L.6] [6, Definition 3.1] which are analogues of the first six axioms [CD.1] to [CD.6] of
the differential combinator. Since F is a Cartesian k-linear functor and the linearizing
combinator L preserves the k-linear structure and projections, it follows that F* is also
a Cartesian k-linear functor. To show that F” also preserves the differential combinator,
first observe that by [CD.6] and [CD.7] it follows that the linearization of a derivative
is LID[f]] = D[f] o (0, 7). Also, since F(D[f]) is independent of its first variable, we have
that 7°(D[f]) = F°(D[f]) o (0, 71). So we compute:

F(D[f]) = (F(DLf]), F (L[DIfI))
= (F(DI[f1]) o (0,m), F (D[f] 0 (0,m)))
(F (D[f]) ©(0,1) o my, F(D[f]) © (0, 1) o m)
= (F(Dlf] e (0,1)) oy, F(D[f] 0 (0, 1)) o m)
= (F (L)) om, F(LIf]) om)
= DR {(F (), F (L))

So F’ is a Cartesian k-differential functor. By definition, we also have that Pg o F’ = F,
as desired. For uniqueness, suppose there was another Cartesian k-differential functor
G, such that Pg o G = F. This implies that on objects we have that G(Y) = F*(Y)
and on maps we have that G(f) = (F(f), f’) for some map f’. Note we have that
fom =Pg(D?[G(f)]). Since G also preserves the differential combinator, we compute:

f/: f’o7‘r10<0,1>
= Pe(D[G(/)]) 2 (0,1)
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= Pe(G(D[f1)) 2 (0, 1)

= F(Dlf)e(0,1)

= F(D[f]0(0,1))

= F (L)
Thus G(f) = (F(f), F(L[f])) = F°(f). So G = F’ and therefore F’ is unique. So we
conclude that ((B%,D?),Pg) is a cofree Cartesian k-differential category over B. =

4. Linear Maps in Cofree Cartesian Differential Categories

In this section, we describe the k-linear maps and differential linear maps in a cofree
Cartesian k-differential category. We will show that the differential linear maps corre-
spond precisely to the k-linear maps in the base category, while the k-linear maps instead
correspond to pairs of k-linear maps in the base category. More precisely, we will show
that the subcategory of differential linear maps is isomorphic to the subcategory of k-
linear maps of the base category, while the subcategory of k-linear maps is isomorphic
to the cofree Cartesian k-differential category of the subcategory of k-linear maps of the
base category.

4.1. PROPOSITION. Let ((X,D),E&) be a cofree Cartesian k-differential category over a
Cartesian left k-linear category A. Then the functor E, : D-lin [X] — k-lin [A] defined on
objects and maps as Ein(—) = E(—), is a Cartesian k-linear isomorphism, so D-lin [X] =
k-lin[A], and it is the unique Cartesian k-linear isomorphism such that the following

diagram commutes:

D-lin [X] - = =" klin [A]

J(X,D)l lIA

X A

In other words, for every D-linear map f in X, E(f) is k-linear in A, and conversely, for
every k-linear map f in A, there exists a unique D-linear map f* in X such that E(f*) = f.

PROOF. As explained in Section 2, k-lin [A] and D-lin [X] are k-linear categories with finite
biproducts, and thus are also Cartesian left k-linear categories. Now let us explain why
&in is well-defined. On objects, this is clear. On maps, recall that if f is D-linear, then
f is also k-linear, and therefore by Lemma 2.4, £(f) is k-linear in A. Therefore, &;,
is well-defined, and since £ is a Cartesian k-linear functor, &, is also. Furthermore,
by definition we also have that Z, o &, = & o J(xp), and since 7, is monic, &, is the
unique such functor. To define the inverse of &;,, we use the fact that (k-lin[A],D"")
is a Cartesian k-differential category, as defined in Example 2.7.(iii). Therefore, by the
couniversal property of ((X,D), &), there exists a unique Cartesian k-differential functor
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75 : (k-lin[A], D'"") — (X, D) which makes the following diagram commute:

Then define &' : k-lin[A] — D-lin [X] on objects and maps as & '(—) = Z;(—). On
objects &' is well-defined, while on maps, since every map f in k-lin [A] is D'"-linear by
definition, by Lemma 2.9, Z, (f) will also be D-linear in X. Therefore, &; ! is well-defined,
and since T, is a Cartesian k-linear functor, & ! is as well. Since £ o Z} = T, it follows
that & o &, = lping. For the other direction, recall that (D-lin [X],D'") is also a
Cartesian k-differential category, and note that both Ig o &lin and Jx p) are Cartesian
k-differential functors of type (D-lin [X],D'"") — (X, D). Then, by Lemma 3.3.(i), since
the diagram on the left commutes, the diagram on the right commutes:

' i .
D-lin [X] — " klin[A] ———— X D-lin [X] —3"— k-lin [A]
Lem.3.3.(1)
J(X,D)l \ J/é' —— \ lIK
Iy Jx,p)
X A X

£

Then it follows from the diagram on the right that & ! o &, = Li-tinja). So we conclude

lin
that &, is a Cartesian k-linear isomorphism, and so D-lin [X] = k-lin [A]. "
To prove the desired result for k-linear maps, we first need to discuss the derivative of
k-linear maps. It turns out that the derivative of a k-linear map is also a k-linear map.
Therefore, the subcategory of k-linear maps is a Cartesian k-differential category.

4.2. LEMMA. [3, Proposition 2.5.1] Let (X, D) be a Cartesian k-differential category. If f
is a k-linear map in X, then D[f] is also a k-linear map in X. Therefore, (k-lin [X],D) is
a Cartesian k-differential category and the inclusion functor Ix : (k-lin[X],D) — (X, D)
1s a Cartesian k-differential category.

Using Proposition 3.15, we may show that k-linear maps in a cofree Cartesian k-
differential category correspond to pairs of k-linear maps in the base category.

4.3. PROPOSITION. Let ((X,D),E&) be a cofree Cartesian k-differential category over a
Cartesian left k-linear category A. Since (k-lin[X],D) is a Cartesian k-differential cate-
gory as defined in Lemma 4.2, consider the induced unique Cartesian k-differential functor
& (k-in[X],D) — (k-lin [A]®, D2) that makes the following diagram commute:

b

eelin [X] — — =5 ke lin [A]A

7)k—lin A

Je-lin [A]
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as defined in Proposition 3.15. Explicitly, &} .. is defined on objects as &} ;. (X) = E(X)
and on maps as E . (f) = (E(f), € (L[f])). Then Exiin is a Cartesian k-differential iso-
morphism, so k-lin [X] = k-lin[A]®, and it is the unique Cartesian k-differential isomor-
phism such that the following diagram commutes:

b
kelin [X] = — — 5" | klin [A]2

lpklin[A]

Ix k-lin [A]
J=
X 5 A

In other words, for every k-linear map f in X, E(f) and € (L[f]) are k-linear maps in A,
and conversely for every pair of parallel k-linear maps f and g in A, there exists a unique
k-linear map (f, g)* in X such that E((f,9)*) = f and € (D[(f,9)"]) = g o m.

PROOF. First observe that by definition and Lemma 2.4, it follows that Ty oPj_jin[a] oEZ_ -

lin =
& o Iy as desired. Since Z, is monic and by Lemma 3.3.(i), we also have that &£, is the

unique such Cartesian k-differential functor. To construct the inverse of & ., consider
the unique Cartesian k-differential functor R : (k-lin [A]®,D?) — (X, D) such that the
following diagram commutes:

k-lin[A] - - PR s X

Pk—lin[A\]l £

k-lin[A] —— A
Za
Now recall that every map in k-lin [A]® is k-linear, therefore k-lin [k:—lin [A]A} = k-lin [A]".

Therefore we have that Ry, : k-lin [A]* — k-lin [X]. We will now show that Ry, and
& ., are inverses of each other. First note that by definition of R, we have that on objects
E(R(A)) = A and on maps E(R(f,g)) = f. Since R also commutes with the differential

combinator, we compute that:

£ (D[R(/, g)]) E(R(D*[(f.9)])) =E(R(gom,gom))

(R(g.9)) 0 E(R(m1,m)) = gom

So E(D[R(f,g)]) = g om and therefore it follows that £ (L [R(f, g)]) = g. Therefore, on
object & 4, (Riin(A)) = A, while on maps we compute:

EZ—Iin (sz—lin(fa g)) = (g (R(fu g)) ’g (L [R<f7 g)])) = (f7 g)
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S0 &7 i 0 Rctin = 1) jinaja - For the other direction, note that Zx and Ro&} ., are Cartesian
k-differential functors of type (k-lin [X], D) — (X, D). Then, by Lemma 3.3.(i), since the
diagram on the left commutes, the diagram on the right commutes:

b
eelin [X] — 5 lin[A]* — R X

Pk-lin[A]J{ k-lin [X]

Lem.3.3.(1)
2 felin [ e = \ x
X
\ X
Iy
X A

&

Then it follows that R o & i, = lpiing. Thus we conclude that & . is a Cartesian

differential isomorphism and so k-lin [X] 2 k-lin [A]*. "

lin

4.4. REMARK. Proposition 4.3 also implies that the subcategory of k-linear maps of a
cofree Cartesian k-differential category is a cofree Cartesian k-differential category over
the subcategory of k-linear maps of the base category.

We have shown that differential linear maps correspond to k-linear maps in the base.
But since every differential linear map is also a k-linear map, it also corresponds to a pair
of k-linear maps in the base category. The following corollary explains that for differential
linear maps, its associated pair is given by two copies of the same k-linear map in the
base category.

4.5. COROLLARY. Let ((X,D),€) be a cofree Cartesian k-differential category over a
Cartesian left k-linear category A. Then the following diagram commutes:

&b
D-lin [X] ——="—— k-lin [A]
j(X,D)nnl ll?c-lin[A]
k-lin [X] ———— k-lin [A]®
lin

where 12-Iin[A} . k-lin[A] —k-lin[A]® is defined on objects as 1bk_“n[A] (A) = A and on maps
as 1i_linw(f) = (f, f), and where Jxp), : D-lin [X] — k-lin [X] is the inclusion functor.

PROOF. Recall that if f is a D-linear map in X then L[f] = f. Therefore, it follows that
the diagram commutes. [

4.6. EXAMPLE. Here are the differential linear maps and k-linear maps in our examples
of cofree Cartesian k-differential categories.

(i) For a Cartesian left k-linear category A, in its Faa di Bruno construction, the k-
linear maps are the A-Faa di Bruno sequences of the form (f,gomy,0,0,...), for any
parallel k-linear maps f and ¢ in A, while the differential linear maps are the A-Faa
di Bruno sequences of the form (f, f om,0,0,...), for any k-linear map f in A.
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(ii) For a k-linear category B with finite biproducts, in B2, all maps (f, g) are k-linear
maps, while the D?-linear maps are those of the form (f, f).

(iii) In k-MOD®, the k-linear maps correspond to the maps f : Q(M)— M’ in k-MOD
such that Eo(f): M— M’ is a k-linear morphism, that is, f(|1),.41s4) = 7 f(|1)2)+
s+ f(|1),), and also for pure symmetrized tensors of degree n > 1, the following
equalities hold (note that in the first case, the index changes to zero on the right):

0 ifn>1

flz1, s xn)a) = {

The differential linear maps are the k-linear maps such that f(|1).) = f(|z)o)-

5. Complete Ultrametric

In this section, we show that each hom-set of a cofree Cartesian differential category is
canonically a complete ultrametric space, where the ultrametric is similar to the canonical
ultrametric for formal power series or Hurwitz series [10, Theorem 1.1]. In Section 7 we
will use this ultrametric to show that every map in a cofree Cartesian differential category
can be decomposed into a converging infinite sum of its higher order derivatives.

The key to this ultrametric is that maps in a cofree Cartesian differential category are
completely determined by the image of their higher-order derivatives in the base category.

5.1. LEMMA. Let ((X,D), &) be a cofree Cartesian k-differential category over a Cartesian
left k-linear category A. Then for two parallel maps f: X —Y and g : X —Y in X
the following are equivalent:

(i) f=g;
(ii) For alln € N, E(0"[f]) = € (0"[g]);
(iii) For alln € N, £(D"[f]) = &£ (D"[g])-

Proor. We will prove that (i) = (iii) = (ii) = (i). Obviously, (i) = (i) is auto-
matic. For (iii) = (i7), recall that, as discussed in Section 2, the n-th derivative 0"[f] can
be obtained by inserting zeroes into the appropriate arguments of the total n-th deriva-
tive D™[f]. A bit more explicitly, for a map f : X — Y, 0"[f] = D"[f] o z,, where
2yt X x X" — X% is the “injection” as defined in [9, Lemma 3.2.(iii)], and so is a tuple
of the projections 7; and zeroes 0 in the appropriate order. Note that z, can be defined
for any object in any Cartesian left k-linear category. As such, since £ is a Cartesian
k-linear functor, we have that £(z,) = z,, and thus &€ (0"[f]) = € (D"[f]) o z,. Therefore,
if for all n € N, £ (D"[f]) = £ (D"[g]), then for all n € N, £ (0™[f]) = £ (0™[g]).

For (i1) = (i), we will need to do some more work. For each hom-set X(X,Y"), define
the equivalence relation ~¢ as follows: for f,g € X(X,Y), f ~g¢ ¢ if and only if for
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all n € N, £(9"[f]) = £(9"[g]). The equivalence relation ~¢ is compatible with the
Cartesian k-differential structure by the properties of the higher-order partial derivative
(Lemma 2.12) in the following sense:

(1) Faa di Bruno’s formula [HD.5] tells us that 0"[g o f] is a sum involving all the
lower or equal degree derivatives 0™[g] and OP[f], where 0 < m,p < n, and some
projections. Since &£ preserves sums and projections, it follows that if f; ~¢ ¢g; and

fa ~¢ g2, then fi1 0 fo ~¢ g1 0 go.

(i7) By [HD.1] and that € preserves the k-linear structure, it follows that if f; ~¢ ¢;
and fo ~¢ go, then we have that r- fi +s- fo ~e 791+ 5 9o.

(i7i) By [HD.4] and that € preserves tuplings, it follows that if fo ~¢ go, ..., and f,, ~¢ gn,
then <f07 SRR fn) ~e <90 R >gn>

(iv) Note that 8° [D[f]] = 9'[f] and that [HD.8] tells us that 9" [D[f]] is the sum
of 9""2[f] and copies of "*1[f], as well of some appropriate projections. Since &
preserves sums and projections, it follows that if f ~¢ g, then D[f] ~¢ D[g].

Now define the Cartesian k-differential category (X/~g,D) whose objects are the
same as X and where maps are equivalence classes [f] of maps f of X, so the hom-
sets are the quotient sets X/ ~¢ (X,Y) = X(X,Y)/ ~¢. Composition, identities, the
k-linear structure, the product structure, and the differential combinator are defined on
representatives as in X, which is all well-defined since ~¢ is compatible with the Cartesian
k-differential structure as described above. We have a Cartesian k-differential functor
Q.. : (X,D) — (X/~g,D) which is defined on objects as Q..(X) = X and on maps
as Q-.(f) = [f], and we also have a Cartesian k-linear functor €., : X/~g¢ — A which
is defined on objects as £..(X) = £(X) and on maps E([f]) = £(f). This functor is
well-defined since if f ~¢ g, the n = 0 case states that £(f) = £(g). We also have that
the following diagram commutes:

Q

X X/~
\ lél,g
A
Moreover, by the couniversal property of ((X,D),&), there exists a unique Cartesian
k-differential functor &2 : (X/~¢, D) — (X,D) which makes the following diagram
commute:
EIF1S
X/mg———- ==X
£
gNE
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Then, by Lemma 3.3.(i), since the diagram on the left commutes, the diagrams on the
right commutes:

Oy &, Qg
X/ e ——f X

CEE—— X—
Lem.3.3.(i)
\ lg / \ lgzg
A X

Now suppose that for all n € N, £ (0"[f]) = £ (0"[g]). In other words, f ~¢ g, which
implies that Q..(f) = Q-.(g). By the above diagram on the right, Q.. is monic, and
therefore, f = ¢ as desired. [

X

An ultrametric is a special kind of metric where the triangle inequality is replaced with
a stronger inequality. So let R>( be the set of real non-negative numbers. An ultrametric
on a set M is a function d : M x M — R5( such that for all z,y,z € M the following
axioms hold:

(i) Symmetry: d(z,y) = d(y, ©);
(i7) Non-Distinguishable: d(z,y) = 0 if and only if z = y;
(111) Strong Triangle Inequality: d(z, z) < max{d(z,y),d(y, 2)}.

An ultrametric space is a pair (M, d) consisting of a set M and an ultrametric d on M. A
complete ultrametric space is an ultrametric space where all Cauchy sequences converge.
It is also useful to note that in an ultrametric space (M,d), a sequence (x,)nen is Cauchy
if and only if h_r)n d(xy, ny1) = 0. In the proof below, we will also need to consider the

completion of an ultrametric space. For an ultrametric space (M, d), define C[(M, d)] to be
the set of all Cauchy sequences (x,,)nen in (M, d). Then define an equivalence relation ~ on
C[(M,d)] as follows: (2, )nen ~ (Yn)nen if and only if h_r)n d(@n, yn) = 0. Then define the

completion of (M,d) as the quotient set M := C[(M,d)]/ ~, which comes equipped with

an ultrametric d : M x M — Rsq defined as d ([(z)nen], [(Yn)nen]) = h_I>I1 d(@pn, Yn)-
Then (M, d) is a complete ultrametric space.

5.2. PROPOSITION. Let ((X,D),€) be a cofree Cartesian k-differential category over a
Cartesian left k-linear category A. For each hom-set of X, define the function:

de : X(X,Y) x X(X,Y)— R
27" where n € N is the smallest natural number

de(f.q) = such that € (O"[f]) # € (0"]g])

0 if alln €N, E(9"[f]) = £(0"[g])

Then (X(X,Y),dg) is a complete ultrametric space, and furthermore:
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(i) Composition is non-expansive:
de (910 f1,92 0 f2) < max{de(g1, 92),de(f1, f2)}
(ii) Pairing is an isometry:
de ((fo, -+, fu), (g0 - -+, gn)) = max{de(fo,90),---,de(fns gn)}
(i) Addition and scalar multiplication is non-expansiveL

de(r- fi+s-g1,7 fa+s-g2) <max{de(f1, f2),de(91, 92)}

(iv) For the differential combinator, the following equality holds:

27" where n € N is the smallest natural number

de (D[], Dlg]) = such that £ (0"1[f]) # € (9"[g])

0 if dlln €N, £(0"[f]) = £(0"[g])

In particular, if dg(f,g) = 0 then dg (D[f],D[g]) = 0, and if de(f,g) = 2=V then
de (D[/f], Dg]) = 27"

(v) A sequence (fp)nen in (X(X,Y),dg) is Cauchy if and only if for all m € N, there
exists a Ny, € N such that for all n > Np,, de(fn, fas1) < 27™, or equivalently,
E(P[fa]) = E(P[fas]) for all0 < j <m.

PRrROOF. We first explain why dg¢ is an ultrametric. Symmetry is automatic. The non-
distinguishable axiom is precisely Lemma 5.1. For the strong triangle inequality, consider
de(f,9). If de(f,g) = 0 then by definition for any map h, 0 < max{dg(f,h),de(h,g)}.
If de(f,g) = 27", consider another map h. If dg(f,h) = 0 or dg(h,g) = 0, then f = h
or h = g, so in either case we have max{dg(f, h),de(h,g)} = de(f,g). So suppose that
de(f,h) = 27™ and d(h,g) = 27P. If max{27™,27P} < 27", then n < min{m,p} which
would imply that € (0"[f]) = £ (0"[h]) and & (0"[h]) = € (0™[g]). But this is a contra-
diction since dg(f,g) = 27" means that € (0"[f]) # £ (0"]g]). So we must have that
27" < max{27",277} as desired. So (X(X,Y),d¢) is an ultrametric space. Next, let’s
prove that the ultrametric is compatible with the Cartesian k-differential structure by
using the identities of the higher-order partial derivative from Lemma 2.12.

(i) By Faa di Bruno’s formula [HD.5], we have that 0"[g o f] is a sum involving all
the lower or equal degree derivatives 0™[g] and 0P[f], where 0 < m,p < n, and some
projections. Clearly if dg (g1 0 f1,920 f2) = 0, then by definition we have that 0 <
max{ds (g1, 92),de(f1, f2)}. So suppose that d (g o f1,g92 0 fo) = 27", which means that
E(O"[gro f1]) # E(0™[g20 fo]). If de(g1,92) = O, then g; = go, and therefore we have
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that max{de(g1,92),de(f1, f2)} = de(fi, f2). Since E(I"[gi0 f1]) # E€(I"[gr0 fo]), it
must be the case that £ (9™[f1]) # £ (9™[fs]) for some m < n. This implies that
27" <27 < de(f1, f2) = max{de(g1,92),de(f1, f2)}. Similarly if de(fy, f2) = 0, then
27" < de(g1,92) = max{de(g1,92),de(f1, f2)}. Now suppose that de(g1,g92) = 277 and
de(f1, fo) = 27™. If max{27™,277} < 27" then n < min{m, p} which would imply that
for all 0 < j < n, E([q1]) = € ([ge)) and E (0?[f1]) = € (0?[f2]). But then, by Faa
di Bruno’s formula, we would have that £ (0™[g1 o f1]) = £ (0™[g2 © f2]), which is a con-
traction. So we must have that 27" < max{2™™,27P} as desired. So, we conclude that
composition is non-expansive.

(1) For simplicity, let us work with pairings (fy, f1) and (go, g1). If de ((fo, f1), (g0, 91)) =0
then by definition 0 < max{dg(fo, 90),de(f1,91)}- So suppose that de ({fo, f1), (g0, 91)) =
27™. By [HD.4] and that £ preserves pairings, we get that for all 0 < j < m that
(E([fol) € ([A])) = (E(P[g0]), € (&[gn])), and also that (€ (0™ ([fo]), € (O™ [f1])) #
(€(0™[g0]), € (0™[g1])). However, this implies that for both ¢ = 0 and ¢ = 1 that
E([fi]) = € ([g]) for all 0 < j < m, but that € (0™[fo]) # € (0™[go]) or £ (™[f1]) #
E (0™[g1]). This implies that max{dg(fo, g0),de(f1,91)} = 27" as desired. So, we conclude
that pairing is an isometry. Similarly, one can also show that for arbitrary tuplings that

de ((fos -y fu)s {90y - - s gn)) = max{de(fo,90),---,de(fn, gn)}, and so tupling is an isom-
etry as desired.

(i4i) First observe that by the non-distinguishable axiom and that composition is non-
expansive, it follows that for post-composition, we have that dg(go f1,g0 f2) < de(f1, f2).
Next, observe that in any Cartesian left k-linear category that r- f+s-g= (r-m+s-
m) o (f,g). Using this identity, and since both post-composition and tuplings are non-
expansive, it follows that de(r - fi +s-g1,7 - fa+ 5+ g2) < max{de(f1, f2),de(g1,92)}. So,
we conclude that addition and scalar multiplication are non-expansive.

(iv) Recall that 9° [D[—]] = d'[—], and by [HD.8] that 9" [D[—]] is computed out to
be a sum in terms of 9""%[—] and 9""![—], and involving some appropriate projections.
Starting with the case that if all n € N, £ (0"[f]) = £ (0"]g]), then dg(f,g) = 0, which
implies f = g. Then D[f] = Dl[g], and thus d¢ (D[f], D[g]) = 0. On the other hand, if n is
the smallest natural number such that £ (0"*1[f]) # £ (0"[g]), then for all 0 < 7 < n
we have that £ (8?[f]) = € (#’[g]). Then by [HD.8], since £ preserves sums and projec-
tions, for all 0 < j < n we have that £ (07 [D[f]]) = € (" [D[g]]) but that & (9" [D[f]]) #
& (0™ [D[g]]), since 9" [D[—]] involves 9" [—]. Therefore, dg (D[f],D[g]) = 27"

(v) Note that dg (f, g) < 27™ means precisely that for all 0 < j < m, £ (07[f]) = &€ (#[g]).
Now for the = direction, since (f,,)nen is Cauchy, for every m € N, there exists a smallest
natural number N, such that for all n > N,,, dg (fn, fur1) < 27™ as desired. For the <
direction, let £ > 0 be an arbitrary non-negative real number and let m be the smallest nat-
ural number such that 27 < e. Then by assumption for all n > N,,, de (fo, foi1) < 27™.
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As such, since we are working in an ultrametric space, we conclude that ( f,,),en is Cauchy.

In order to prove that the hom-sets are also complete ultrametric spaces, let us define
a new Cartesian k-differential category whose hom-sets are the completion of the hom-
sets of X. So define the Cartesian k-differential category (X, D) to be the category whose
objects are the same as X and whose hom-sets are X(X,Y). So a map from X to Y in
X is an equivalence class of a Cauchy sequence [(f,)nen] in (X(X,Y),dg). Composition,
identities, the k-linear structure, and the product structure are defined on representatives
component-wise as in X and the differential combinator D is defined similarly, that is, if
D [[(fn)nen]] = [(D[fn]),en]- We need to explain why this all is well-defined.

Since non-expansive maps and isometries preserve Cauchy sequences and the equiva-
lence relation ~, it follows that composition, tupling, addition, and scalar multiplication
are all well-defined, so X is indeed a Cartesian left k-linear category. It remains to explain
why the differential combinator is well-defined, that is, why the differential combinator of
X preserves Cauchy sequences and ~. First observe that by (iii), if dg(f, g) < 2=+ then
de (D[f],Dlg]) < 27™. Now let (f,,)nen be a Cauchy sequence in (X(X,Y),dg) and m € N.
Then by (v), we have an N,,;1 € N such that for all n > Ny, d(fn, fop1) < 27D,
Therefore for all n > N,,41, de (D[f,], D[fns1]) < 27 and so by (iv) we conclude that
(D[fn])pen is a Cauchy sequence in (X(X x X,Y),d¢). Using a similar argument, we can
also show D preserves ~, that is, (fn)nen ~ (gn)nen then (D[f],),cn ~ (D[g]n),en- There-
fore, the differential combinator is well-defined, and thus (X, D) is indeed a Cartesian
k-differential category.

Now observe that by (v), if (f,)nen is a Cauchy sequence in (X(X,Y'),dg), then there
exists a smallest natural number Ny such that for all n < Ny that E(f,) = E(fn,)-
Therefore we obtain a Cartesian k-linear functor € : X—X defined on objects as £(X) and
on maps as & ([(fu)nen]) = E(fn, ), which indeed well-defined. By the couniversal property
of (X, D), ), there exists a unique Cartesian k-differential functor £ _ : (X, D) — (X, D)
which makes the following diagram commute:

We will now show that for a Cauchy sequence (f,,)nen in (X(X,Y),de), it converges to

the image of its equivalence class g ([(fu)nen])- Solet € > 0 be an arbitrary real positive
number and let m be the smallest natural number such that 2™ < e. By (v), there exists
anatural number N such that for all n > N, dg(fn, fas1) < 27D, which implies that for
all 0 < j <m+ 1 that € ([f,]) = € (0 fns1]). Now since (f)nen is Cauchy, (fxin)nen

is also a Cauchy sequence and (fy,)nen ~ (fNin)nen, therefore [(fn)nen] = [(fN+n)nen]-
Then for all n > N and all 0 < j < m + 1, we have that £ (07[f,]) = € (8’[fx]) and since
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& commutes with the derivative operators we compute that:

& (0 [ ((ue)]) = & (9 [ (Uwsndocs)]) = € (8 (@0 [ Fvsdocs)
=& (& [fn]) = £ (P[1.))

Therefore, £ (8j [gb ([(fn)neN])D =& (0[f,]) for all 0 < 7 < m + 1. Thus we have that
de <fn,zb ([(fn)neN])> < 27m+l) < 97m < ¢ So the Cauchy sequence (f,)nen converges
to & ([(fn)nen]) and we conclude that (X(X,Y),d¢) is a complete ultrametric space. m

5.3. REMARK. Complete ultrametric spaces and non-expansive maps between them form
a Cartesian closed category. Proposition 5.2 says that, in fact, a cofree Cartesian k-
differential category is enriched over complete ultrametric spaces as a Cartesian left k-
linear category but not as a Cartesian k-differential category since the differential com-
binator is not a non-expansive map. That said composition, the k-linear structure, the
tupling operation, and the differential combinator are all continuous.

5.4. EXAMPLE. Let us take a look at what the induced ultrametric and limits of Cauchy
sequences are in our examples of cofree Cartesian k-differential categories.

(1) For a Cartesian left k-linear category A, in its Faa di Bruno construction, the dis-
tance between two Faa di Bruno sequences is given by the smallest n € N where the
maps in the sequence are different:

27" where n €N is the smallest natural number such that f,, # g,

d 07.:
&n(fer 9) {o ifall n €N, f, = gn

A sequence (fnq)nen of Faa di Bruno sequences is Cauchy if and only if the terms
eventually stabilise, that is, for every m € N, there exists a smallest natural number
Ny, such that for all n > Ny, and 0 < j <m, f,; = fut1;. Then a Cauchy sequence
(fne)nen converges to the Faa di Bruno sequence fn,, = (fngg, faigs---)-

(ii) For a k-linear category B with finite biproducts, in B2, there are only three possible
distances between maps: none, halfway, and completely apart.

if fi # fo
if fi = fa but g1 # g2
iffl :f2 and g1 = go

dp, ((f1, f2), (91, 92)) =

O = =

A sequence ((fn, gn)),ey is Cauchy if and only if it is eventually constant, that is,
there exists an N € N such that for all n > N, (fu,9n) = (fat1,9ns1). Then a
Cauchy sequence ((fn, gn)),ey converges to the map it eventually repeats.
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(i1i) In k-MOD®<, the distance between f : Q(M)— M’ and g : Q(M)— M’ is given
by the smallest degree on which they differ on pure symmetrized tensors:

27"  where n € N is the smallest natural number such that

flxe, oo xn)a, g(|z1, ..., n)s,) for some z; € M
dea(f,g) = (1 )ao) 7 9|71 )ao) j

0 if f=g

A sequence (f,,)nen of k-linear morphism f,, : Q(M)—M’ is Cauchy if and only if for
every m € N there exists a smallest natural number N,, such that for all n > N,,,
fn and f,11 agree all pure symmetrized tensors of degree 0 < j < m, that is,
Fo( Do) = far1(|1)a) and fr(|z1, ..o 25)2) = fas1(|z1, .., %)) a). Then a Cauchy
sequence (f,)nen converges to the k-linear morphism f : Q(M) — M’ which is
defined on pure symmetrized tensors as f(|1)z,) = [y, (|1)z,) and f(|x1, ..., Zpn)ey) =

an(|ZE17 e ,l’n>x0).

6. Differential Constants

In this section, we discuss differential constants, which are maps whose derivative is zero.
In particular, the main result of this section is that for a cofree Cartesian k-differential
category, the differential constants correspond precisely to the maps of the base cate-
gory. Therefore, we may recapture the base category internally in a cofree Cartesian
k-differential category using its differential constants. This will allow us to provide a base
independent description of cofree Cartesian k-differential categories in Section 7.

6.1. DEFINITION. In a Cartesian k-differential category (X,D), a map f: X —Y isa
differential constant, or D-constant for short, if D[f] = 0.

6.2. EXAMPLE. Here are the differential constants in our main examples of Cartesian
k-differential categories.

(i) In k-POLY, every polynomial of degree zero, so a polynomial which is only a constant
term, is a differential constant. However the converse is not necessarily true, that is,
there could be differential constants that are not constant polynomials. For example,
if k = Zs, then 22 is a differential constant.

(i) In SMOOTH, the only differential constants are the constant functions.

(iii) In a k-linear category B with finite biproducts, the only D'"-constants are the zero
maps.

(iv) For a Cartesian left k-linear category A, in its Faa di Bruno construction, the dif-
ferential constants are the Faa di Bruno sequences of the form (f,0,0,...) for any
map f in A.
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(v) For a k-linear category B with finite biproducts, in B the D®-constants are the
maps of the form (f,0) for any map f in B.

(vi) ITn k-MOD?®, the differential constants are the k-linear morphisms f : Q(M) — M’
such that for all pure symmetrized tensors of degree n > 1, f (|x1,...,%n)s,) = 0.

Here are now some basic properties of differential constants.
6.3. LEMMA. In a Cartesian k-differential category (X, D)
(i) f is D-constant and D-linear if and only if f = 0;

(ii) If f or g is a D-constant, then their composite g o f is a D-constant;

(iii) The zero maps 0 are D-constant, and if f and g are D-constants then for anyr,s € k,
r-f+s-g is a D-constant,

(iv) If fo, ..., fn are D-constants, then the tuple (fo, ..., fn) is a D-constant.

Furthermore, if F : (X,D) — (Y,D) is a Cartesian k-differential functor, if f is a
differential constant in (X, D) then F(f) is a differential constant in (Y, D).

PROOF. These are straightforward to prove, so we leave them as an exercise for the reader.
]

The above lemma says that differential constants are closed under composition, addi-
tion, scalar multiplication, and tupling. Therefore, it is tempting to construct a “subcat-
egory” of differential constants that is also Cartesian k-left linear. However, in general,
this is not possible. Crucially, what is missing is an identity map in this “subcategory”
of differential constants. Indeed, by [CD.3], identity maps are not differential constants,
except for the identity map of the terminal object (since, in this case, it is also a zero
map). To solve this issue, we introduce a new notion called a differential constant unit,
which behaves like an identity map for differential constants.

6.4. DEFINITION. For a Cartesian k-differential category (X,D), a differential con-
stant unit ¢, or D-constant unit for short, is a family of endomorphisms indexed by
objects of X, ¢ = {sx : X — X| X € X} such that <x is a D-constant and for every
D-constant f : X —Y, ¢y o f=f= foqy.

6.5. LEMMA. For a Cartesian k-differential category (X, D), if a D-constant unit exists,
then it is unique. Furthermore, if (X,D) has a D-constant unit <, then:

(i) ¢ : 1x = 1x is a natural transformation, that is, for every map f : X — Y,
syof=focx;

(i) sx is an idempotent, that is, Sx o Sx = Sx;
(iil) sx is k-linear;

(iv) ¢ = 1s and Sxox..xx, = Sxq X -+ X Sx,, -
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PrROOF. We begin by proving uniqueness of differential constant units. So suppose that ¢
and ¢" are both D-constant units for (X, D). Then ¢ and ¢" are both D-constants and so we
have that: ¢ = ¢’ o ¢ = ¢’. Therefore, we conclude that differential constants are unique.
Now suppose that ¢ is a D-constant unit for (X, D). For any map f, by Lemma 6.3.(ii),
¢o f and f og¢ are both D-constants. Then we have that o f =¢o fo¢= foc. So, we
conclude that ¢ is a natural transformation. That ¢x is an idempotent is a consequence
of the fact that ¢y is itself a D-constant and so by definition of being a D-constant unit,
we get that ¢x o ¢x = ¢x. While that ¢x is k-linear follows from naturality of ¢. Lastly,
G = 1, is automatic by definition of a terminal object, while ¢x,x. xx, = Sx, X ... X Sx,,
follows from naturality of ¢ and the universal property of the product. [

Using the differential constant unit we can build a category of differential constants
of a Cartesian k-differential category. However, this will not be a subcategory since
the identity maps do not correspond to the identity maps in the starting Cartesian k-
differential category. So in particular, we do not always have an inclusion functor from
this category of differential constants back to the Cartesian k-differential category.

6.6. LEMMA. Let (X,D) be a Cartesian k-differential category with a D-constant unit s.
Then D-con [X] is a Cartesian left k-linear category where:

(i
(ii

) The objects of D-con [X] are the same as X;

)
(iii) Composition is defined as in X;

)

)

)

The maps in D-con [X] are differential constants in X;

(iv) The identity of X in D-con [X] is the D-constant unit sx : X — X;

(v

(vi

The terminal object and the product of objects are the same as in X;

The projections in D-con [X] are ¢x, om; : Xo X ... x X,,—X; and where the tupling
1 as in X;

(vii) The k-linear structure is defined as in X.

Furthermore, the functor & : X — D-con [X] defined on objects as E(X) = X and on
maps as E(f) =< o f, is a Cartesian k-linear functor.

PrOOF. By definition of being a D-constant unit, ¢ is a well-defined identity map in
D-con [X], and so D-con [X] is indeed a category. The k-linear structure is well-defined by
Lemma 6.3.(iii), and since X is a left k-linear category, so is D-con [X]. By Lemma 6.3.(ii),
the projections are well-defined and since both ¢ and 7; are k-linear, their composite ¢o;
is also k-linear. By Lemma 6.3.(iv) the tupling is well-defined and it easy to see that it
will satisfy the necessary universal property since it does so in X. So we conclude that
D-con [X] is a Cartesian left k-linear category. Lastly, since < is idempotent and natural,
& : X— D-con [X] is indeed a functor, and it is clear that it is Cartesian k-linear. =
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We will now prove that every cofree Cartesian k-differential category has a differential
constant unit and that the base category is isomorphic to its category of differential
constants. To do so we will need the following useful lemma:

6.7. LEMMA. Let ((X,D),€) be a cofree Cartesian k-differential category over a Cartesian
left k-linear category A. If f and g are parallel differential constants in X, then f = g if

and only if E(f) = E(g).

PROOF. The = direction is automatic. For the < direction, suppose that £(f) = £(g).
Since f and g are D-constants, then for all n € N, 9""[f] = 0 = 9""[g]. Then for all
neN, £(0"[f]) = £(0"[g]). Then by Lemma 5.1, f = g. =

6.8. PROPOSITION. Let ((X,D),€) be a cofree Cartesian k-differential category over a
Cartesian left k-linear category A. Then X has a differential constant unit ¢ such that
E(sx) = lex). Furthermore, the functor E. : D-con[X] — A, defined on objects and
maps as E.(—) = E(—), is a Cartesian k-linear isomorphism, so D-con [X] = A, and it is
the unique Cartesian k-linear isomorphism such that the following diagram commutes:

In other words, for every map f in A, there exists a unique D-constant f* in X such that
E(fH=1r

ProOF. Consider the Cartesian k-differential category (XA, DA) and the Cartesian k-
linear functor Px : X® — X as defined in Lemma 3.14. Therefore by the couniver-
sal property of ((X,D),€), there exists a unique Cartesian k-differential functor R :
(X4,D%) — (X, D) such that the following diagram commutes:

Note that on objects, E(R(X)) = £(X). By Corollary 3.10, &€ is bijective on objects, and
therefore R(X) = X. Then define ¢x : 1x — 1x as ¢x := R(lx,0). First, note that by
definition, we easily compute that:

E(sx) = E(R(1x,0)) = E(Px(1x,0)) = E(1x) = lerx)

So £(cx) = lg(x) as desired. Next observe that (1x,0) is a differential constant in X%, and
thus by Lemma 6.3, ¢x is also a differential constant. Now, for any differential constant
f : X —Y in X, note that ¢y o f and f o ¢x are also differential constants. Since
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E(sx) = Lgxy, it follows that E(cy o f) = E(f) = E(f o<x). Then, by Lemma 6.7, we
have that ¢y o f = f = f o¢x. So, we conclude that ¢ is a differential constant unit.

Now &, : D-con [X] — A will be a Cartesian k-linear functor since £ is. On objects,
E(E.(X)) = £(X), while on maps, since E(sx) = lgx), it follows by definition that
E(E(S)) = E(f). Therefore, £ o & = . Uniqueness follows from the fact that if f is
differential constant, then £ (f) = f. To show that &£, is an isomorphism, it is sufficient
to show that it is bijective on objects and maps. By Corollary 3.10, &, is bijective on
objects by definition. On the other hand, we will show that & is injective and surjective
on maps. That &, is injective on maps follows from Lemma 6.7. For surjectivity, let
f: A— B be a map in A. Consider the Cartesian k-differential category (AA, DA) and
the Cartesian k-linear functor Py : A® — A as defined in Lemma 3.14. Therefore by the
couniversal property of ((X,D), &), there exists a unique Cartesian k-differential functor
P2 (AA, DA) — (X, D) such that the following diagram commutes:

Note that (f,0) is a differential constant in A®, and so by Lemma 6.3, P}(f,0) is also
a differential constant in X. So P%(f,0) is a map in D-con [X]. By definition we have
that &, (Pg(f, O)) = f. As such, we have that & is surjective on maps, and thus &,
is bijective on maps. So we get that £. is an isomorphism as desired. Explicitly, the
inverse gg_l : A — D-con [X] is defined on objects as gg_l(A) = P2(A) and on maps as

-1

E.(f) = Pi(f,0). Therefore, we conclude that £ is a Cartesian k-linear isomorphism,

and so D-con [X] = A. =

Note that since differential constant units are unique, the differential constant unit
of a cofree Cartesian k-differential category is independent of the base Cartesian left k-
linear category. As such, it more or less immediately follows that for cofree Cartesian
k-differential categories, base categories are unique up to isomorphism.

6.9. COROLLARY. Let A and A" be Cartesian left k-linear categories, and let (X,D) be a
Cartesian k-differential category. Then if ((X,D),E) is a cofree Cartesian k-differential
category over A and ((X,D), ') is a cofree Cartesian k-differential category over A, then
there exists a unique Cartesian k-linear isomorphism A : A — A’ so A = A’ such that
the following diagram commutes:

PROOF. By Proposition 6.8, we get a chain of unique isomorphisms A’ = D-con [X] = A
which is compatible with £ and £’ in the desired way. ]
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As such, we may now provide another characterisation of cofree Cartesian k-differential
categories as having a differential constant unit and being cofree over their category of
differential constants.

6.10. THEOREM. For a Cartesian k-differential category (X, D), the following are equiv-
alent:

(i) (X,D) is cofree;

(i) (X,D) has a D-constant unit ¢ such that the triple (X, D), &) is a cofree Cartesian
k-differential category over D-con [X];

(iii) (X,D) has a D-constant unit ¢ and the induced unique Cartesian k-differential func-
tor £ : (X,D) — (F [D-con [X]], D) which makes the following diagram commute

X-- 2 _LF [D-con [X]]

X lgo-con [x)

D-con [X]

which is explicitly defined on objects as 52(X) = X and on maps as Eg(f) =
(0 0"[f])nen is an isomorphism, so X = F[D-con [X]].

PROOF. Observe that (ii) < (7i7) is a specific case of Lemma 3.9. Therefore, it suffices to
prove that (i) < (ii). By definition, (i) = (i) is automatic. For (i) = (i), let ((X,D),€&)
be a cofree Cartesian k-differential category over a Cartesian left k-linear category A. By
Proposition 6.8, X has a differential constant unit ¢ and & : D-con [X] — A is a Cartesian
k-linear isomorphism, such that ?:1 o0& = &.. Then by Lemma 3.3.(iv), ((X,D), &) is a
cofree Cartesian k-differential category over D-con [X]. (]

Theorem 6.10.(iii) will be particularly useful in the proofs of Theorem 7.5 and The-
orem 8.3 below, which provide base independent characterisations of cofree Cartesian
k-differential categories. We can also apply the results of Section 4 to describe the dif-
ferential linear and k-linear maps of a cofree Cartesian k-differential category as k-linear
differential constants.

6.11. COROLLARY. Let (X, D) be a Cartesian k-differential category which is cofree. Then
D-lin [X] 2 k-lin [D-con [X]] and k-lin [X] 2 k-lin [D-con [X]]*.

6.12. EXAMPLE. Here are the induced differential constant units in our examples of cofree
Cartesian k-differential categories.

(i) For a Cartesian left k-linear category A, in its Faa di Bruno construction, the differ-
ential constant unit is the Faa di Bruno sequence ¢,y : X——X defined as the identity
map in the first term and zero for the rest of the sequence, ¢, x := (1x,0,0,...).



(i)

(iii)
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For a k-linear category B with finite biproducts, in B® the D”-constant unit is the
pair of an identity map with a zero map, ¢4 := (14,0).

In k-MOD?®, the differential constant unit is the k-linear morphism ¢y : Q(M)— M
defined on pure symmetrized tensors as follows

o (1D @) = 2o o ([1, o Zn)ay) = 0

6.13. EXAMPLE. We may now also explain why the Cartesian k-differential categories
given by differentiating smooth functions, polynomials, and linear maps are not cofree.

(i)

(i)

(iii)

Suppose that k-POLY had a differential constant unit. So in particular we would have
amap ¢ : 1 —1, which is of course a polynomial in one variable ¢(z) = Z?:o a;x’.
Since this is a differential constant, this implies that the derivative of ¢(z) is zero,
so ¢'(x) = 0 which in particular implies that a; = 0. On the other hand, by Lemma
6.5.(iii), ¢(x) is k-linear, so in particular ¢(0) = 0, and so ag = 0. So our polynomial
would have to be of the form ¢(x) = 37", a;2/. Now by Lemma 6.5.(ii), we also
have that ¢(s(z)) = ¢(x). However, since ¢(x) has no degree 0 or 1 terms, ¢(¢(z))
has no degree 2 or degree 3 terms. So from ¢(s(z)) = ¢(x) we get that a; = 0 and
az = 0. So we now have that ¢(z) = 3 7, a;a’. But from this, we see that ¢(¢(z))
would have no degree 4 or degree 5 terms. Then again from ¢(¢(z)) = ¢(z), we get
that ay, = 0 and a5 = 0. So by repeating this argument, we will eventually get that
a; = 0 for all 0 < j < n, and so the differential constant unit would have to be
zero, ¢(x) = 0. Now observe that all r € k gives a differential constant (seen as a
constant polynomial).Then by definition of a being a differential constant unit, we
would have that ¢(r) = r for all r € k. But since we have shown that ¢(z) = 0, this
implies that » = 0 for all r € k, that is, k is trivial. Therefore if k is non-trivial,
k-POLY cannot have a differential constant unit, and hence k-POLY is not cofree.

In SMOOTH, recall that the differential constants were precisely the constant func-
tions. So if SMOOTH had a differential constant unit, then we would have a constant
function ¢g : R—R. By Lemma 6.5.(iii), g would also be R-linear. However, there
is no constant function R — R which is also R-linear. Thus SMOOTH does not
have a differential constant unit, and hence it is not cofree.

Recall that in any k-linear category B with finite biproducts, the only D'""-constants
were the zero maps. As such, trivially 0 is a differential constant unit given by 0, and
so D-con [B] is equivalent to the terminal category *, which has only one object and
one map. However, the Faa di Bruno construction over x is precisely *. Therefore
if B is non-trivial, that is, has at least one non-zero object, then B is not equivalent
to * and therefore cannot be cofree.
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7. Characterisation via Differential Constants

By Theorem 6.10, a Cartesian k-differential category is cofree if and only if it has a dif-
ferential constant unit and is cofree over its category of differential constants. This char-
acterisation still requires one to check the couniversal property, and therefore we have
to work “outside” of the Cartesian k-differential category. In this section, we provide
necessary and sufficient conditions on differential constants to give us the desired couni-
versal property. In particular, this provides a base independent and completely internal
characterisation of cofree Cartesian k-differential categories.

As explained in Section 5, the hom-sets of a cofree Cartesian k-differential categories
have a canonical ultrametric induced by the functor down to the base category. To
provide a base-independent description of the ultrametric, we may re-express it using the
differential constant unit.

7.1. DEFINITION. A Cartesian k-differential category (X, D) with a D-constant unit < is
said to be differential constant complete, or D-constant complete for short, if for
each hom-set the function defined as follows:

de : X(X,Y) x X(X,Y)— Ry
27" where n € N is the smallest natural number
such that ¢y o 0" f] # ¢y 0 0"[g
4 (f.9) = Vool Z ety

0 if alln €N, ¢y 0 O"[f] = ¢y 0 dD"[g]

is an ultrametric on X(X,Y) such that (X(X,Y),d.) is a complete ultrametric space.

We first show that cofree Cartesian k-differential categories are differential constant
complete and that the ultrametric given by the differential constant unit from Definition
7.1 is the same as the ultrametric given by the functor down to its base from Proposition
5.2.

7.2. LEMMA. Let ((X,D), ) be a cofree Cartesian k-differential category over a Cartesian
left k-linear category A, and let ¢ be the induced D-constant unit. Then (X,D) is D-
constant complete and furthermore, d.(—, —) = dg(—, —).

PRrOOF. It suffices to prove that d.(—,—) = dg(—,—). By Proposition 6.8, & is an
isomorphism, so in particular is injective on maps, and also that £. o & = £. Therefore,
we have that:

27"  where n € N is the smallest natural number

de (f.9) such that £ (0"[f]) # &€ (0"[g])

0 if all n € N, £ (0"[f]) = £ (8"[g])
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(2= where n € N is the smallest natural number

such that £ (& (0"[f])) # E. (E.(0™[g)))

L0 if all n € N, & (& (0"[f])) = & (& (9"[g]))
(2= where n € N is the smallest natural number

such that £ (¢ 0 O"[f]) # E. (s 0 0"[g])

0 ifallneN, & (cod"[f]) =& (sod"[g])

(2" where n € N is the smallest natural number
such that ¢y 0 "[f] # ¢y 0 0"[¢]

(0 ifalln €N, ¢y 0d"[f] = ¢y 0 dD"[g]
:dg(fag)

As such, we conclude that (X, D) is D-constant complete. n

We also require the ability to express maps in terms of converging infinite sums based
on their higher-order derivatives, which, in a way, means that maps are formal power
series or Hurwitz series [10].

7.3. DEFINITION. In a Cartesian k-differential category (X, D) with a differential constant
unit g, for every n € N, a differential constant homogeneous map of degree n, or
D-constant homogenous map for short, is a map f: X —Y such that ¢y 0 0™[f] = 0 for
allm # n. A Cartesian k-differential category (X, D) with a differential constant unit ¢ is
said to have convenient differential constants, or convenient D-constants for short,
if for all n € N and every differential constant f : X x X"——Y which is k-multilinear and

symmetric in its last n-arguments, there exists a unique D-constant homogeneous map of
degree n, f*: X —Y, such that ¢y o O"[ff] = f.

7.4. LEMMA. Let (X,D) be a Cartesian k-differential category with a D-constant unit ¢
which is D-constant complete and also has convenient D-constants.

(i) Suppose that fo : X —Y is a D-con [X]-Faa di Bruno sequence, that is, for each
neN, f, : X x X"—Y is a D-constant which k-multilinear and symmetric in
its last n-arguments. For each n € N, consider the unique D-constant homogenous

map f,': X —Y such that ¢y 0 O"[f,}] = fa. Then the series S f,* converges in
n=0

(X(X,Y),d.), and furthermore, for allm € N, ¢y o O™ {Z fnu] = fm.
n=0
(ii) For any map f : X —Y, define fin) : X —Y to be fi) = (v 0 0"[f]), that is,
fn) is the unique map such that ¢y o 0"[fn)) = sy 0 O"[f] and ¢y 0 ™[ fmy] = 0 for
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all m # n. Then f) = sy o f and the series Y fu) converges in (X(X,Y),d.) to
n=0
f, that is, Z f(n) =
n=0

PRroOF. For (i), since (X(X,Y),d.) is a complete metric space, to show that the series

converges it suffices to show that the sequence Z fn ) is Cauchy. Note that in
=0

this case, a sequence (fy,)neny in (X(X,Y),d.) is Cauchy if and only if for all m € N,
there exists a N, € N such that for all n > N,,, dc(fn, far1) < 27™, or equivalently,
sy © [fn] = ¢y 0 &[fny1] for all 0 < 5 < m. Now for any natural number p € N,
for all m > p, by homogeneity and [HD.1], we have that for any 0 < j < p that

Gy 00’ [E fn h] = f7. Therefore, for all m > p, d (Z 15 Z f“) < 27P. Thus it follows

n=0 n=

that (Z fn ) is Cauchy and therefore the series Z fa! converges in (X(X,Y),d.).
0 =0
To show the other desired identity, we first need to explaln why the differential combi-

nator preserves infinite sums. By similar arguments that were done in the proof of Propo-
sition 5.2, we note that if d_(f, g) < 27™+) then d. (D[f], Dlg]) < 27™. Now suppose that

Z fn is a converging series. We must show that D Z fn| is the limit of the sequence
n=0 n=0

(Z D fn]) . So let € > 0 be an arbitrary non-zero positive real number and let p
n=0 meN
be the smallest natural number such that 277 < e. Since ) f, converges, there exists a

n=0

natural number N such that for all m > N, d. (Z frs D0 fn> < 272 S0 we have that
n=0 n=0
o.(0|E 5] 0[S h]) <2 By cp2L 0[S,
n=0 n=0
we have that dc <Z D[f.],D [Z fn]> <27+ <277 < e So Y. DI[f,] =D [z fn}
n=0 n=0 n=0

n=0

= > D|[fa]- Therefore,
=0

Similarly, we can show that 9™ also preserves infinite sums.
As such, we finally have that for all m € N

e [Z fnu] =0 0" [faf] = o(04+0+... 40+ fn+04+0+..) =y 0 fn = fm
n=0 n=0
So gy 0 O™ {Z 3 = fon as desired.
For (ii), note that (¢y o "[f]),cy is a D-con [X]-Faa di Bruno sequence. So by (i)
the series E fn) converges. Next note that for all n € N, by (i) we also have that,

n=0
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Sy o 0" [Z f(n)u] = ¢y 0 0"[f]. But this implies that d. (Z fo', f) = 0. Since d. is an
n=0 n=0
ultrametric, we conclude that > fu) = f. [
n=0

We may now state the main result of this section:

7.5. THEOREM. A Cartesian k-differential category is cofree if and only if it has a dif-
ferential constant unit, is differential constant complete, and has convenient differential
constants.

PROOF. For the = direction, suppose that (X,D) is a Cartesian k-differential category
which is cofree. By Theorem 6.10, this implies that (X, D) has a D-constant unit ¢ and
the unique induced Cartesian k-differential functor £ : (X, D) — (F [D-con [X]], D) is an
isomorphism. By Lemma 7.2, we already have that (X,D) is D-constant complete. So
it suffices to prove that (X, D) also has convenient D-constants. First observe that by
the couniversal property of ((X,D), &), that we have a unique Cartesian k-differential

functor & . (F [D-con [X]],D) — (X, D) which makes the following diagram commute:

F[D-con[X]]- — -~ - =X

ED-con [X] A

Then it follows that on objects 52_1()( ) = X and that for a D-con [X]-Faa di Bruno

sequence ( f,)nen : X—Y, the following equality holds for all n € N, ¢y 082_1 ((fu)nen) =
fo- Now let f: X x X" —Y be a differential constant map which is also k-multilinear
and symmetric in its last n-arguments. Then the sequence (ff )ey defined as ff = f,
and f* = 0 if m # n, is a D-con [X]-Faa di Bruno sequence. So (f#)nen : X — Y is
a map in F[D-con [X]] and therefore 52’71 ((ff)men) : X —Y is a map in X. So define

fi= 8271 ((f£)men). Then we compute:

o 0 0"[f*] = ¢y 0 0" [&b_l ((ffn)meN)} — & 0 & (0" [(fE)men])

fn ifm=n

=" [(f*),, —
So ¢y 0 O"[f] = f and gy 0 O™[f¥] = 0 for all m # n as desired. For uniqueness, suppose
that there is another map h : X — Y such that ¢y 0 9"[h] = f and ¢y 0 0™ [h] = 0 for all
m # n. By definition of £, as given in Theorem 6.10, it follows that E2(h) = (f%)men.
Thus, h = 52—1 ((f%)men), and so f* is unique. Therefore we conclude that (X, D) has
convenient D-constants.

For the < direction, suppose that (X, D) is a Cartesian k-differential category which
has a D-constant unit ¢, and which is D-constant complete and has convenient D-constants.
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Then by Theorem 6.10, to prove that (X, D) is cofree, it suffices to prove that the unique
induced Cartesian k-differential functor &’ : (X,D) — (F [D-con [X]], D) is an isomor-
phism. To do so, it suffices to prove that 52 is bijective on objects and maps, allowing
us to avoid working with the composition in F [D-con[X]]. By construction, £ is bijec-
tive on objects via Corollary 3.10. Then for maps, starting with injectivity, suppose that
EX(f) = &€(g). This implies that for all n € N, ¢ 0 "[f] = ¢ 0 9"[g]. By Lemma 7.4.(ii),
we have that:

F= fm= (s [f)F =D (sodg)" => gm =9

So f = g, and thus &’ is injective on maps. For surjectivity, let (f,)nen be a D-con [X]-Faa

di Bruno sequence. By Lemma 7.4.(i), we have that the series . f7 converges (and is a
n=0
map in X). So we compute that:

Scb <Z fri) = (§Oan [ng]) = (fn)neN

So 52 is surjective. Thus, Si.’ is bijective on maps as well, and we conclude that 52 is an

isomorphism. Explicitly, the inverse £ F [D-con [X]] — X is defined on objects as

6'2—1(X) = X and on maps as Sf_l ((fu)nen) = >_ ff. Therefore, we conclude that X is
n=0

cofree. ]

We now explicitly express the couniversal property of a Cartesian k-differential cat-
egory which has a differential constant unit, is differential constant complete, and has
convenient differential constants.

7.6. COROLLARY. Let (X,D) be a Cartesian k-differential category which has a D-constant
unit ¢, and which is D-constant complete and has convenient D-constants. Then the
triple ((X,D), &) is a cofree Cartesian k-differential category over D-con [X], where in
particular for any Cartesian k-differential category (Y, D) and Cartesian k-linear functor
F :Y— A, the unique Cartesian k-differential functor F° : (Y,D) — (X, D) such that
the following diagram commutes:

is defined on objects as F*(Y) = F(Y) and on maps as F'(f) = i (@"[f])2.

n=0
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7.7. EXAMPLE. Here are the differential constant homogenous maps and infinite sum
decomposition in our examples of cofree Cartesian k-differential categories.

(i) For a Cartesian left k-linear category A, in its Faa di Bruno construction, a Faa
di Bruno sequence f, is differential constant homogenous of degree n if f,, = 0
for all m # n, so fo = (0,0,...,0, f,,0,0,...) for some map f, in A which is k-
multilinear and symmetric in its last n-arguments. For a Faa di Bruno sequence
for oy = (0,0,...,0, £,,0,0,...), and therefore f, = (fo,0,...) + (0, f1,0...) +
(0,0, f2,0,...) + ... as was desired.

(ii) For a k-linear category B with finite biproducts, in B4 there are no D®-constant
homogenous map of degree n > 2 other than (0,0). Those of degree 0 are of the
form (f,0) and those of degree 1 are of the form (0, g), for any maps f and g in B.
Then for an arbitrary map (f, g) in B2, (f, 9y = (f,0) and (f,9)a) = (0,9), and

clearly (f,g) = (f,0) + (0, g).

(iii) In k-MOD®, a k-linear morphism f : Q(M)— M is differential constant homoge-
nous of degree 0 if for all m € N, f(|z1,...,Zms1)s,) = 0, and is of degree n + 1
if f(11)@) = 0and f(Jz1,...,Tm)s) = 0 for all m # n+ 1. Then for a k-
linear morphism f : Q(M)— M, f is defined on pure symmetrized tensors as
fo) (1)) = 0 and fioy (|21, . .., Tm)zy) = 0, while f(,11) is defined on pure sym-
metrized tensors as f(,41) (|1>(10)) =0 and foi1) (|21, ..., Tm)a,) = 0if m # n, and
Finy (21, +»Bnbae) = £ (171, T}ea)-

8. Characterisation as Monad Algebras

In this section, we characterise cofree Cartesian k-differential categories this time as alge-
bras of a monad on the category of Cartesian k-differential categories. This monad arises
from the Faa di Bruno adjunction [9, Corollary 3.13], which is the adjunction between the
category of Cartesian k-differential categories and the category of Cartesian left k-linear
categories where the left adjoint is the forgetful functor and the right adjoint is given by
the Faa di Bruno construction. The resulting comonad was first studied by Cockett and
Seely in [7, Theorem 2.2.2] where they also showed that the coalgebras of this comonad
were precisely Cartesian k-differential categories [7, Theorem 3.2.4]. In other words, the
Faa di Bruno adjunction is comonadic. In this section, we will also explain why the Faa di
Bruno adjunction is also monadic, that is, why the algebras of the induced monad corre-
spond precisely to Cartesian k-left linear categories. As such, the Faa di Bruno comonad
is of effective descent type [12, Section 2].

8.1. REMARK. We note that this entire section can be reformulated in terms of the D-
sequence construction [11], since it also provides a right adjoint to the forgetful functor.
Therefore, cofree Cartesian k-differential categories can also be characterised as algebras
of the monad induced by the D-sequence construction.
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Let CLILC, be the category whose objects are Cartesian left k-linear categories and
whose maps are Cartesian k-linear functors between them. Similarly, let CDC; be the
category whose objects are Cartesian k-differential categories and whose maps are Carte-
sian k-differential functors between them. Let U : CDC, — CLLC, be the forget-
ful functor which sends a Cartesian k-differential category to its underlying Cartesian
k-linear category, $(X,D) = X, and sends a Cartesian k-differential functor to itself
viewed as a Cartesian k-linear functor, $(F) = F. Define the Faa di Bruno functor
3§ : CLLC; — CDCj which sends a Cartesian left k-linear category to its Faa di Bruno
construction, §(A) = (F[A], D), and sends a Cartesian k-linear functor A : A — A’ to
the induced unique Cartesian k-differential functor F[A] : (F[A],D) — (F[A’], D) which

makes the following diagram commute:

FIA] - - S FAY
SAJV lgA/
A . A

so §(A) = F[A]. Explicitly, on objects F[A](A) = A and on maps F[A](f.) = A(f.).

The Faa di Bruno functor § is a right adjoint of the forgetful functor 4 [9, Corollary
3.13], so 4 4 §, which we call the Faa di Bruno adjunction. For a Cartesian left k-linear
category A, the counit of the Faa di Bruno adjunction is precisely &, : F[A] — A. On the
other hand, for a Cartesian k-differential category (X, D), the unit of the Faa di Bruno ad-
junction is the induced unique Cartesian k-differential functor Mx py : (X, D)— (F[X], D)
that makes the following diagram commute:

Explicitly, on objects Nx py(X) = X, while on maps Nxp)(f)* = 0°[f] = (0"[f])nen (as
defined in Lemma 3.6).

The Faa di Bruno adjunction induces a comonad § = {0 § on CLLCy [7, Theorem
2.2.2] whose coalgebras correspond precisely to Cartesian k-differential categories |7, The-
orem 3.2.4]. In other words, the Faa di Bruno adjunction is comonadic [9, Corollary 3.13],
that is, the adjunction’s induced comparison functor [1, Section 2.3] from CDCy to the
coEilenberg-Moore category of § is a an equivalence of categories.

Of course on the other hand, the Faa di Bruno adjunction also induces a monad
T = ol on CDCs. Let us unpack the description of this monad. The functor § :
CDCj——CDC;, is defined on objects as F(X, D) := (F[X], D), completely forgetting about
the differential combinator of the input, and on maps as F(F) = F[F]. For a Cartesian
k-differential category (X, D), the monad unit is Nxp) : (X,D)— (F[X],D), while the
monad multiplication Mxpy : (F[F[X]],D) — (F[X],D) is defined as Mxp) = F[&x],
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that is, the unique Cartesian k-differential functor which makes the following diagram
commute:

FIF[X)) - - =222 5 Fx)
gF[X]l Ex
FIX] - X

Explicitly, on objects M x py(X) = X, while for maps, which is a Faa di Bruno sequence of
Faa di Bruno sequences, it picks out the first term of each sequence, M x p) (( f'u”)neN) =
(fo)nen- Now recall that an F-algebra is a pair ((X, D), X) consisting of a Cartesian k-
differential category (X, D) and a Cartesian k-differential functor X : (F[X],D) — (X, D),
and such that the following diagrams commute:

Nx,p) Mx,p)

x 0y F[F[X]] — 222 Fix)
\ lx F[X}l X
X FIX] gy X

The left diagram implies that that on objects X(X) = X and for any map f of X that
X(f, 0 f],0%f],...) = f. Theright diagram says that for a Fad di Bruno sequence of Fai
di Bruno sequences that X ((X (fon)),cn) = X ((fon)nen)- Later in Corollary 8.5 we will
in fact show that F-algebra structure is unique, which means that being an -algebra is
a property of a Cartesian k-differential category. Of course, from well known facts about
adjunctions we have that for any Cartesian left k-linear category A, ((F[A],D),F[&4]) is
an g-algebra.

Our objective is to show that every F-algebra is also a cofree Cartesian k-differential
category. To help us do so, let us first show that an F-algebra has a differential constant
unit.

8.2. LEMMA. Let ((X,D), X) be an F-algebra. Then (X,D) has a D-constant unit s defined
as sx = X(1x,0,0,...), and we also have that:

(i) The following diagram commutes:

so in particular, for every X-Faa di Bruno sequence fo : X—Y , sy oX (fs) = sy o fo.

(ii) For every map f: X —Y in X, (sy 0 0"[f])nen ts a X-Faa di Bruno sequence and
X ((sy 0 0"[f]nen) = f-
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PROOF. As explained in Example 6.12.(i), ¢ox := (1x,0,0,...) is a D-constant unit in
(F[X],D). Since X is a Cartesian k-differential functor, by Lemma 6.3, ¢x = X (cx) is
also a D-constant. If f : X—Y is a D-constant in X, then since Nx p) is also a Cartesian
k-differential functor, we have that 0°[f] is also a D-constant in (F[X], D). So we compute
that:

fosx =X ([f]) 0 X(sex) = X (O°[f]ocex) = X (O°[f]) = f

and similarly that ¢y o f = f. So we conclude that ¢ is a D-constant unit for (X, D). For
(i), observe that in (F[X], D), by Proposition 6.8, that Ex(c o fo) = fo = Ex(se 0 0°[fo])-
By Lemma 6.3.(ii), ¢ o fo and ¢, 0 0°*[fo] are both D-constants, so by Lemma 6.7, since
Ex(se 0 fo) = Ex(ce 0 D*[f0]), then ¢ o fo = ¢ 0 I*[fo]. Applying X to this equality, we
then obtain ¢ o X' (f,) = ¢ o fo, and the desired diagram commutes by definition. For (ii),
by Lemma 6.5, ¢ is k-linear so (g0 0"[f])nen is indeed an X-Faa di Bruno sequence. Then
using (i), we compute that:

X ((s00"[fDnen) = X ((s0 X (9% [0" f] ) X (X (000" 0" f])) )
=& ( nEN) =

So X ((¢ 0 0"[f])nen) = f as desired. =

We may now prove the main result of this section.

8.3. THEOREM. A Cartesian k-differential category is cofree if and only if it is an F-
algebra.

PROOF. For the = direction, let (X, D) be a cofree Cartesian k-differential category, which
by Theorem 6.10, implies X has a differential constant unit ¢ such that ((X,D), &) is a
cofree Cartesian k-differential category over D-con [X]. Then, using the couniversal prop-
erty of ((X,D),&,), define X : (F[X],D) — (X, D) as the unique Cartesian k-differential
functor which makes the following diagram commute:

That X is an F-algebra structure follows from the fact the diagrams on the left commute,
which by Lemma 3.3.(i) implies that the diagrams on the right commute.

X ——F[X] = X LN g

\X l& Lem.3.3.(1) \ N
X]

X
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F[F[X] % FIX) —X—x
@‘
Ex
M
FI¥] FIX| ———X FFIX)] — =2 F[X]
X
\ g, Lem330) le lx
X
&
F[X] X - FIX] ~ X
X
X 5 D-con [X]

So we conclude that ((X,D), X) is an F-algebra.

For the <« direction, let ((X, D), X) be an F-algebra. By Lemma 8.2, (X, D) has a dif-
ferential constant unit ¢. Then, by Theorem 6.10, to prove that (X, D) is cofree, it suffices
to prove that the induced Cartesian k-differential functor £ : (X, D)— (F [D-con [X]], D)
is an isomorphism. As before, to prove that Eﬁ is an isomorphism, it is sufficient to prove
that it is bijective on objects and maps, which allows us to avoid working with composition
in the Faa di Bruno construction. Recall that Egb was worked out explicitly in Theorem
6.10. Clearly, Eg is bijective on objects. On maps, we will explain why Egb is injective
and surjective. Starting with injectivity, suppose that 52 (f) = 52 (9). This implies that
for all n € N, ¢ 0 0"[f] = ¢ 0 0"[g], so we have an equality of X-Faa di Bruno sequences
(00" [f])pen = (0 0™[g]),,en- Then by Lemma 8.2.(ii), we have that:

f=4 ((§ o an[f])neN) =X ((g © an[gDneN) =g

So f = g, and so &£’ is injective on maps. For surjectivity, let f, be a D-con [X]-Faa di
Bruno sequence. This means that f, is also a X-Faa di Bruno sequence and so X (f,) is
a map in X. Then by Lemma 8.2.(i), that 0"[fs]o = fn, and that ¢ is a D-constant unit,
we have that:

ELX (f0) = (s 00" [X (fo)pew = (s 0 X (" [fu]))en
= (C 0" [f‘]O)neN = (g © fn)nEN = (fn)nEN

S0 E2 (X ((fa)nen)) = (fa)nen, thus € is surjective on maps. Therefore, £ is bijective on
maps, and we conclude that Sﬁ is an isomorphism. Explicitly, the inverse functor Egb -

F [D-con [X]] — X is defined on objects as 52_1()() = X and on maps as 52_1 ((f)nen) =
X ((fn)nen). Therefore, we conclude that (X, D) is cofree. =

We may explicitly write down the couniversal property for F-algebras and explain how
to use the F-algebra structure to construct the induced unique Cartesian k-differential
functors.



780 JEAN-SIMON PACAUD LEMAY

8.4. COROLLARY. Let ((X,D), X) be an F-algebra. Then (X, D) has a differential constant
unit s and ((X, D), &) is a cofree Cartesian k-differential category over D-con [X], where in
particular for any Cartesian k-differential category (Y, D) and Cartesian k-linear functor
F :Y— A, the unique Cartesian k-differential functor F° : (Y,D) — (X, D) such that
the following diagram commutes:

D-con [X]

is defined on objects as F*(Y) = F(Y) and on maps as F°(f) = X (F (0°[f])).

We can now show that a Cartesian k-differential category has at most one possible
S-algebra structure.

8.5. COROLLARY. §-algebra structure on a Cartesian k-differential category, if it exists,
1S UNLQUeE.

PROOF. Let (X, D) be a Cartesian k-differential category with two F-algebra structures
X FX]—X and X’ : F[X] — X. By Lemma 8.2, (X,D) has a D-constant unit ¢. By
Lemma 6.5, since D-constant units are unique, we have that X' (s,) = ¢ = X’(c,). By
Corollary 8.4, ((X,D), &) is a cofree Cartesian k-differential category over D-con [X]. By
Lemma 8.2.(i), we have that the following diagram commutes:

X D-con [X]

and since X and X’ are Cartesian k-differential functors, by Lemma 3.3.(i), it follows that

X=X n

We conclude this section by explaining why the Faa di Bruno adjunction is monadic.
First recall that an §-algebra morphism F : ((X,D), ) — ((X',D), X”) is a Cartesian
k-differential functor F : (X, D) — (X', D) such that the following diagram commutes:

F [X] —— - F[X]
Xl lm
X X’
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Explicitly, this says that for an X-Faa di Bruno sequence, we have that F(X(f,)) =
X'(F(f,)). Let ALG(F) be the category of F-algebras and F-algebra morphisms between
them, and let ¢ : CLLCj,— ALG(g) be the induced comparison functor [1, Section 2.3],
which is defined on objects as €(A) := ((F[A], D), F[€4]) and maps as €(A) = F[F]. Our
goal is now to explain why the comparison functor is in fact an equivalence of categories.

So in order to build a functor of type ALG(F) — CLLCy, we will need the following
lemma.

8.6. LEMMA. Let F : ((X,D),X) — ((X,D),X’) be an F-algebra morphism. Define
the functor D-con [F] : D-con [X] — D-con [X'] on objects and maps as D-con[F|(—) =
F(=). Then D-con[F]| is a Cartesian k-linear functor and the following diagram com-
mutes:

X 4 X!
«| J=
D-con [X] e D-con [X']

PROOF. Since F is Cartesian k-differential functor, by Lemma 6.3 it preserves D-constants
and so D-con [F] is well-defined. Clearly, D-con [F] preserves composition, and so it
remains to show it also preserves identities. To do so, we must show that F preserves
the differential constant unit. Now since JF preserves zeros and identities, we have that
F(Sex) = Ser(x)- Therefore, we have that:

Flox) = F(X(sox)) = X(Flsex)) = X'(sex(x)) = SF(x)

So D-con [F] preserves identities and so is a functor. Since F is Cartesian k-linear then
so is D-con [F]. "

As such, from the above lemma, we obtain a functor © : ALG(§) — CLLCy which
sends an g-algebra to its category of differential constants, so ® ((X, D), X) = D-con [X],
and sends an F-algebra morphism to D(F) = D-con[F], as defined above. Now by
Lemma 6.9, we have that © (€(A)) = D-con[F[A]] = A. On the other hand, it fol-
lows from Theorem 8.3, Lemma 3.3.(ii), and Corollary 8.5 that € (® ((X,D), X)) =
((F [D-con [X]], D), Fl€pconixy]) = ((X,D), X) as well. Thus we get that that ALG(F)
and CLILC,, are equivalent via the Faa di Bruno adjunction’s comparison functor. So, we
conclude this paper with the following statement:

8.7. PROPOSITION. The Faa di Bruno adjunction & 4 § is monadic, so ALG(F) =~
CLLC.
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