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THE COHOMOLOGY OBJECTS OF A
SEMI-ABELIAN VARIETY ARE SMALL

SÉBASTIEN MATTENET, TIM VAN DER LINDEN, AND RAPHAËL JUNGERS

Abstract. A well-known, but often ignored issue in Yoneda-style de�nitions of co-
homology objects via collections of n-step extensions (i.e., equivalence classes of exact
sequences of a given length n between two given objects, usually subject to further
criteria, and equipped with some algebraic structure) is, whether such a collection of
extensions forms a set. We explain that in the context of a semi-abelian variety of al-
gebras, the answer to this question is, essentially, yes: for the collection of all n-step
extensions between any two objects, a set of representing extensions can be chosen, so
that the collection of extensions is �small� in the sense that a bijection to a set exists.

We further consider some variations on this result, involving double extensions and
crossed extensions (in the context of a semi-abelian variety), and Schreier extensions (in
the category of monoids).

1. Introduction

Yoneda's classical approach to cohomology in abelian categories [48] involves groups whose
elements are equivalence classes (here called n-step extensions) of exact sequences

0 Ñ K Ñ Xn Ñ � � � Ñ X1 Ñ QÑ 0

of a �xed length n ¥ 1 between two given objects K and Q. A priori, it is not clear that
these groups are legitimate: in question is, whether they have underlying (small) sets.
Indeed, already in the case of one-step extensions, so isomorphism classes of short exact
sequences

0 Ñ K Ñ X1 Ñ QÑ 0

where the objects K and Q are �xed, there seems to be no reason in general for the
collection of all such to form a set.

(Actually, strictly speaking, this must be false, because for any given one-step exten-
sion of abelian groups, the short exact sequences it consists of form a proper class, which
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would be in contradiction with the fact1 that the elements of a set are always sets them-
selves. On the other hand, it may be shown�see below�that the collection of one-step
extensions is in bijection with a small set, namely a chosen set of representative short
exact sequences, so it is �small� in this sense.)

In the context of an abelian category, powerful homotopical-algebraic techniques have
been developed over the past decades to fully address this question, each at its own
level of generality. These include the theories of model categories [36], encompassing
localisation at a chosen class of morphisms [13], derived categories [45, 46], and categories
of fractions [16].

This article aims to investigate the problem in the non-additive setting of semi-abelian
categories [26]. One way to address this size issue�both here and in related cohomology
theories that classify exact sequences�is to reinterpret the cohomology objects. This can
be done, for instance, via derived functors, showing that these objects are isomorphic to
well-de�ned groups with underlying sets. Often, a cohomology group is constructed as a
subquotient of a hom-set that naturally inherits a group structure from one of the objects.
This is the approach of [28, 47] in the abelian case; see Example 4.9 and Section 6 for
concrete non-additive illustrations.

But what if no such interpretation is known? In his book �Homology�, using slightly
di�erent terminology, Mac Lane deals with the problem as follows [28, end of Section IX.1]:

�To keep the foundations in order we wish the collection of all subobjects of
an object A and the collection of all extensions of A by C both to be sets and
not classes. Hence, for an additive category we assume two additional axioms:

Sets of sub- and quotient objects. For each object A there is a set of morphisms
x, each monic with range A, which contains a representative of every subobject
of A and dually, for quotient objects of A.

Set of extensions. For each pair of objects C, A and each n ¥ 1 there is a
set of n-fold exact sequences from A to C containing a representative of every
congruence class of such sequences (with �congruence� de�ned as in III.5).

Both axioms hold in all the relevant examples.�

�Relevant� here means of course, those examples treated in Mac Lane's book. Can we
show that in the semi-abelian setting, the second axiom always holds, using the same
techniques as in the abelian context, perhaps?

Certain successful concrete applications notwithstanding, it appears the context of
semi-abelian categories is remarkably resilient against the use of standard techniques of
homotopical algebra such as the ones cited above. Is it, for example, not at all clear
whether the chain complexes in a semi-abelian category admit a suitable Quillen model
structure. As explained in detail in [12], homotopy of chain maps crucially depends on
additivity of the category; while it is possible to de�ne chain homotopies in semi-abelian

1We reason in the standard context of (ZFC) with a chosen Grothendieck universe. Details are recalled
in Section 2 below.
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categories, it is currently unknown whether these can be characterised by means of a model
structure. And even though simplicial objects in a semi-abelian category do always form
a model category [44], any connection with n-step extensions which might be there is still
to be understood. Likewise, the formalism of derived categories is intrinsically additive.
While neither categories of fractions nor localisations are, it is however not clear precisely
how they would apply to the problem at hand. It seems to us that such an approach cannot
be based too much on ideas that work for abelian categories, since in our experience this
tends to fail. For this reason, we have to resort to an ad-hoc argument. The approach of
Dwyer, Hirschhorn, Kan & Smith outlined in the book [13] suggests that a comparison
with the very general language of homotopical categories would be worthwhile. We plan
to return to this in future work.

In this article we prove that, if a variety of algebras is semi-abelian, then the collection
of all n-step extensions between any two objects in it is indeed always small. This includes
categories of modules over a ring as additive examples, and the categories of groups,
rings, algebras over a ring, all varieties of Ω-groups in the sense of Higgins [21], Heyting
semilattices and loops, for instance, as non-additive ones. Often, in practice, the collection
of all extensions between two given objects is then further restricted (e.g., in order to
enforce compatibility with a given action).

This result is a simple consequence of Bourn & Janelidze's characterisation [8] of semi-
abelian varieties by means of operations and identities (here Theorem 4.2), which allows
us to obtain a bound on the collection of one-step extensions between any two given
objects (Corollary 4.6 and the ensuing Theorem 4.8). For extensions of greater length
n ¥ 2, the result (Theorem 5.2) follows by a reduction (by means of a standard syzygy
argument) to the case n � 1.

In Section 6, we outline a variation on this: we consider double (central) extensions
and the closely related crossed extensions.

Our method also works outside the semi-abelian context, though any such results
need to be checked on a case-by-case basis. In Section 7, we treat the example of Schreier
extensions of monoids. This motivates us to provide an overview of the basic de�nitions
in a context which is as wide as possible: this is the subject of Section 3. First, however,
we comment on the set-theoretical foundations we shall be adopting.

2. Set-theoretical preliminaries

In this article, we work in a standard set-theoretical environment�(ZFC) with a chosen
Grothendieck universe [1, II. Appendice: Univers]�making essential use of the Axiom
of Choice. For the sake of completeness, we here recall the very basics of this approach,
closely following its presentation in [20].

We assume the axioms of (ZFC), so the Zermelo�Fraenkel axioms together with the
Axiom of Choice, but instead of calling the objects that satisfy them sets, we call them
conglomerates. We have, for instance, the empty conglomerate ∅, the conglomerate of
natural numbers N, or the power-conglomerate PpAq when A is a conglomerate.
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The other Zermelo�Fraenkel axioms are, in essence: two conglomerates are equal if
and only if they have the same elements; selecting elements in a given conglomerate A by
means of a predicate P determines the sub-conglomerate tx P A | P pxqu of A; the union of
all the elements of a conglomerate forms again a conglomerate; given two conglomerates
A, B, the pair tA,Bu is a conglomerate; and any collection of conglomerates which is in
one-one correspondence with a given conglomerate is again a conglomerate.

Choice means that any epimorphism of conglomerates admits a section: whenever
q : X Ñ Q is a surjection, there exists s : QÑ X such that qs � 1Q.

2.1. Definition. A universe is a conglomerate U satisfying the following axioms:

(U 1) N P U ;

(U 2) A P U ñ
�
A P U ;

(U 3) A P U ñ PpAq P U ;

(U 4) if I P U and f : I Ñ U is a function, then fpIq P U ;

(U 5) a P A P U ñ a P U .

The elements of the conglomerate U are called U -sets, and the subconglomerates of U
are called U -classes.

The idea is that we can carry out all of the usual operations of set theory on the
elements of a universe and still the result will be an element of that universe. In fact, it
is easy to see that the U -sets again satisfy the axioms of (ZFC).

We assume that a universe exists and �x a universe U once and for all. We then call
the U -sets simply sets and we call the U -classes classes. By (U 5), any set is a class.
A class is proper when it is not a set, and small when it is. A conglomerate is small
when it admits a bijection to a set, and proper when it is not a class.

All of the mathematical objects we consider are now de�ned in terms of these sets and
classes, unless otherwise mentioned. (Sometimes we shall consider proper conglomerates.)
In particular, a category is assumed to have classes of objects and arrows, is locally small
when the arrows between any two objects form a set, and is small when the class of arrows
is a set. For instance, the locally small category Set has the universe U for its class of
objects.

2.2. Remark. Note that by (U 5), the elements of any set are again sets. The elements
of a class are sets by de�nition of a class. So no set and no class can have a proper class
as an element. On the other hand, the class of all singletons is proper, because otherwise
by (U 4), the class of all sets would itself be a set.
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3. Extensions in pointed categories

We start by recalling some fundamental de�nitions, mainly following the approach of [35],
leading to the notion of extension in the context of a category with kernels and cokernels.

A category is pointed when it admits a zero object, which is an object that is both
initial and terminal. In a pointed category, for any two objects A and B we have the zero
morphism AÑ 0 Ñ B from A to B.

The kernel kerpfq : Kpfq Ñ A of a morphism f : A Ñ B is the equaliser of f and 0,
while the cokernel cokerpfq : B Ñ Qpfq is their coequaliser. (Here we abuse terminology
slightly, since (co)kernels are unique up to isomorphism only. We call the (co)kernel any
chosen morphism satisfying the universal property.)

A category with kernels and cokernels (called a z-exact category in [35]) is a
pointed category in which each morphism admits a kernel and a cokernel.

In a category with kernels and cokernels, a normal monomorphism is a morphism k
for which a morphism f exists such that k � kerpfq, and a normal epimorphism is
a morphism q for which a morphism f exists such that q � cokerpfq. It is not hard to
see that a morphism k is a normal monomorphism if and only if k � kerpcokerpkqq, while
a morphism q is a normal epimorphism if and only if q � cokerpkerpqqq. Hence we may
de�ne a short exact sequence

0 // K k // X
q
// Q // 0

as a pair pk, qq where, equivalently,

(i) k � kerpqq and q � cokerpkq;

(ii) k is a normal monomorphism and q � cokerpkq;

(iii) k � kerpqq and q is a normal epimorphism.

It is easy to see that if f � me withm a monomorphism, then kerpfq � kerpeq. Dually,
if e is an epimorphism, then cokerpfq � cokerpmq. It follows that when a morphism
f : A Ñ B admits a factorisation f � me where e : A Ñ I is a normal epimorphism
and m : I Ñ B is a normal monomorphism, this factorisation is unique up to a unique
isomorphism. Hence in a category with kernels and cokernels, it makes sense to say that
a morphism f is normal when it admits such a so-called normal image factorisation.
If a normal morphism f factors as f � me where m is a monomorphism and e is an
epimorphism, then m is a normal monomorphism, and e a normal epimorphism.

Given n ¥ 1, an exact sequence of length n is a sequence of maps

0 Ñ K Ñ Xn Ñ � � � Ñ X1 Ñ QÑ 0

which may be obtained from n short exact sequences pmi�1, eiq spliced together as in
Figure 1. In other words, all of the morphisms fn�1, . . . , f1 are normal, and if fi �
miei denote their normal image factorisations, then each pair pmi�1, eiq is a short exact
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In mn
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� � � // X1
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II
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Figure 1: Spicing results in exact sequence of length n

sequence. Note that an exact sequence of length 1 is just a short exact sequence (where
X1 � X in the above).

A morphism of exact sequences of length n is a tuple pαn, . . . , α1q such that the
diagram

0 // K

��

fn�1
// Xn

αn

��

fn
// Xn�1

αn�1

��

// � � � // X2
f2
//

α2

��

X1
f1
//

α1

��

Q

��

// 0

0 // L gn�1

// Yn gn
// Yn�1

// � � � // Y2 g2
// Y1 g1

// R // 0

commutes, in which the dashed arrows are uniquely induced by taking kernels and coker-
nels. Identities and composition of morphisms are pointwise. One could de�ne a category
of exact sequences of length n, but we are only interested in morphisms which keep the
objects at the ends �xed, so that the dashed arrows are 1K and 1Q, respectively. The
resulting category is denoted ExtnpQ,Kq; its objects are called exact sequences of length n
from K to Q.

3.1. Remarks.

1. Note this category is, in general, not small. Indeed, even in the case of abelian
groups, Ext1p0, 0q has a proper class of objects, all of which are isomorphic. The
reason is that each singleton set tXu admits a (unique) abelian group structure,
making 0 Ñ tXu Ñ 0 a short exact sequence, and any two such are isomorphic.
Each set X induces a short exact sequence of that kind.

2. Since the category Ext1p0, 0q is connected, this further provides an example of a
situation where the connected components of a category ExtnpQ,Kq are proper
classes.

The connected components of a category ExtnpQ,Kq are called n-step extensions
(under K and over Q). These form a conglomerate denoted

ExtnpQ,Kq� π0pExt
npQ,Kqq.



THE COHOMOLOGY OBJECTS OF A SEMI-ABELIAN VARIETY ARE SMALL 649

Two exact sequences of length n from K to Q represent the same n-step extension if and
only if there exists a zigzag of morphisms between them. Since, as explained above in
the case of abelian groups (Remarks 3.1), it is likely that the elements of ExtnpQ,Kq are
proper classes, this conglomerate is seldom a set or even a class (Remark 2.2). However,
such a proper conglomerate may still be �small� in the sense that a bijection to a set
exists; more precisely, we may often choose a set of representing short exact sequences.
For instance, in the above example, Ext1p0, 0q is a small conglomerate, since it is in
bijection with any singleton set.

As explained in the Introduction, the aim of this article is to provide su�cient con-
ditions on the surrounding category for these collections to be small. Even though this
question makes sense in any category with kernels and cokernels, so far we can only provide
a general answer in the context of semi-abelian varieties. The next section recalls what
these are, and treats the case of one-step extensions. We do not have a comprehensive
understanding of when Ext1pQ,Kq is small outside the context of semi-abelian varieties,
but can still say a few things when the problem is considered for monoids, provided the
classes are restricted to so-called Schreier extensions�see Section 7.

4. One-step extensions in semi-abelian varieties

By de�nition, a category is semi-abelian in the sense of Janelidze, Márki & Tholen [26]
when it is pointed, Barr exact [3] and Bourn protomodular [6] with �nite coproducts. Since
it may be shown that a semi-abelian category is always �nitely (co)complete, kernels and
cokernels always exist, so that the approach to n-step extensions of the previous section
applies.

Let us recall thatBarr exactnessmeans that �nite limits exist, as well as coequalisers
of kernel pairs, that regular epimorphisms are pullback-stable, and that each internal
equivalence relation is a kernel pair. All abelian categories are Barr exact, as is any
(elementary) topos, and any variety of algebras in the sense of universal algebra. The
protomodularity condition says that the Split Short Five Lemma holds, or equivalently,
that when given a split epimorphism q with section s and kernel k as in

K
k // X

q
// Q,

s
oo

the middle object X is �covered� or �generated� by the outer objects K and Q in the
sense that the monomorphisms k and s are jointly extremally epimorphic, which means
that they do not both factor through a proper subobject of X. Further details are given
in [26, 4] and [35], for instance.

4.1. Examples. Examples include any abelian category, the category of groups, and
more generally any variety of Ω-groups [21], of which by de�nition the signature admits
a group operation and a unique constant, which means that each algebra contains the
one-element algebra as a subalgebra�such as any variety of Lie algebras over a ring or,
more generally, any variety of non-associative algebras over a ring. Examples of a di�erent
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kind include the dual of the category of pointed sets, the category of loops [5, 15], and
the category of cocommutative Hopf algebras over a �eld [17].

In the case of a variety of universal algebras, Bourn & Janelidze found the following
characterisation of semi-abelianness in terms of operations and identities [8]:

4.2. Theorem. Let V be a variety of algebras. V is semi-abelian if and only if the
free algebra over the empty set is a singleton (in other words, there is a unique nullary
operation, a constant denoted 0), and there exist

� an integer ℓ ¥ 1,

� ℓ binary operations αi such that αipx, xq � 0 for all i � 1, . . . , ℓ, and

� an pℓ� 1q-ary operation β such that βpα1px, yq, . . . , αℓpx, yq, yq � x.

4.3. Remark. These identities imply the identity βp0, . . . , 0, yq � y, which will be used
in what follows. Indeed, βp0, . . . , 0, yq � βpα1py, yq, . . . , αℓpy, yq, yq � y.

4.4. Examples.

1. For a variety of Ω-groups, we may choose ℓ � 1 and use the group operation to
de�ne α1px, yq � xy�1 and βpz, tq � zt.

2. The variety of loops is semi-abelian, since we may put α1px, yq � x{y and βpz, tq �
z � t; see [5, 15] for details.

3. The semi-abelian variety of Heyting semilattices is special [27], since necessarily
here, ℓ ¥ 2.

Turning to extensions in semi-abelian categories, a �rst important result we should
recall is the Short Five Lemma, whose validity implies that the equivalence classes the
conglomerate Ext1pQ,Kq consists of, are isomorphism classes:

4.5. Theorem. [Short Five Lemma [6]] In a semi-abelian category, consider a morphism
of short exact sequences.

0 K X Q 0

0 K 1 X 1 Q1 0

k

κ

q

ξ η

k1 q1

If κ and η are isomorphisms, then so is ξ.
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So in this context, for a given one-step extension over K and under Q, the middle
objects in its representing short exact sequences are all isomorphic. Those middle objects
�extend� the kernel object.

Next, we restrict ourselves to the varietal setting, on the way to proving the key
Theorem 4.8. This crucially depends on the next result, borrowed from [35]. It is a
strengthening of Proposition 3.3 in [11], which in turn was based on work of Inyangala [24]
and Gray & Martins-Ferreira [19].

4.6. Corollary. Let V be a semi-abelian variety of algebras and ℓ an integer as in
Theorem 4.2. Then any short exact sequence

0 // K k // X
q
// Q // 0

is a retract over Q of the short exact sequence

0 // Kℓ
p1

Kℓ ,0q
// Kℓ �Q

πQ
// Q // 0

in the category of pointed sets.

Proof.Without any loss of generality we may treat the kernel k as a subalgebra inclusion
and thus view the elements of K as special elements of X. Choose a section s : Q Ñ X
of q, and de�ne the functions

ϕ : Kℓ �QÑ X : pk1, . . . , kℓ, yq ÞÑ βpk1, . . . , kℓ, spyqq

ψ : X Ñ Kℓ �Q : x ÞÑ pα1px, sqpxqq, . . . , αℓpx, sqpxqq, qpxqq

Here we use the identities satis�ed by the αi. The equality ϕpψpxqq � x follows immedi-
ately from the identity involving β.

We further note that πQψ � q and

qpϕpk1, . . . , kℓ, yqq � qpβpk1, . . . , kℓ, spyqqq � βpqpk1q, . . . , qpkℓq, qpspyqqq

� βp0, . . . , 0, yq � y � πQpk1, . . . , kℓ, yq

so that qϕ � πQ. This already proves our claim in the category of sets.
Let us now consider compatibility with the canonical base-points (induced by the

constant in the theory of V ). It turns out that this depends on the section s preserving 0.
Of course, it is always possible to choose such an s.

For y P Q, we have

ψpspyqq � pα1pspyq, sqspyqq, . . . , αℓpspyq, sqspyqq, qspyqq

� pα1pspyq, spyqq, . . . , αℓpspyq, spyqq, yq � p0, . . . , 0, yq

so that ψs � p0, . . . , 0, 1Qq. Likewise, ϕp0, . . . , 0, yq � βp0, . . . , 0, spyqq � spyq and so
s � ϕp0, . . . , 0, 1Qq. This proves that the canonical section of πQ is compatible with the
section s of q. In particular, taking y � 0 we see that ϕ and ψ preserve the base-point as
soon as so does s.



652 SÉBASTIEN MATTENET, TIM VAN DER LINDEN, AND RAPHAËL JUNGERS

4.7. Remark. Note that since neither the section s, nor the number ℓ in the character-
isation of a semiabelian variety is unique, the algebra X can have several presentations
as a retract of Kℓ �Q, one for each ℓ and each chosen section s.

From this we deduce:

4.8. Theorem. For any two algebras K, Q in a semi-abelian variety V , the conglomerate
Ext1pQ,Kq is small.

Proof.Once and for all, we �x a number ℓ as in Corollary 4.6. We denote by NMpQ,K, ℓq
the set of all normal monomorphisms k : K Ñ X in V where the underlying set of the
codomain X is a subset of Kℓ � Q. This conglomerate is indeed a set, because (1)
there is only a set of subsets of Kℓ � Q; (2) on any set, there is only a set of V -algebra
structures; and (3) between any two algebras there is only a set of morphisms. To each
one-step extension under K and over Q, we now associate a representative short exact
sequence pk, qq from K to Q whose normal monomorphism k belongs to NMpQ,K, ℓq and
whose normal epimorphism q is a restriction of the projection πQ. Since any such short
exact sequence uniquely determines the extension to which it belongs, the conglomerate
of extensions is then in bijection with a set.

We put a well-order ¤ on the set NMpQ,K, ℓq. Given a one-step extension under K
and over Q now, we consider the minimum for the order ¤ of all short exact sequences
pk, qq from K to Q in this extension, where k belongs to NMpQ,K, ℓq and where the
normal epimorphism q is the restriction of πQ to X. Provided a short exact sequence of
that kind always exists, so that the subset of the well-order pNMpQ,K, ℓq,¤q we take a
minimum of is non-empty, the extension and the thus chosen representative do indeed
determine each other.

It is here that we apply Corollary 4.6. Take any element pk, qq of the given extension.
Take a base-point�preserving section s of q. The corollary provides us with a monomorph-
ism ψ : X Ñ Kℓ � Q over Q in the category of pointed sets. It determines subset X 1 of
Kℓ �Q onto which the algebra structure of X may be transported via ψ. It is clear that
the induced normal epimorphism q1 : X 1 Ñ Q is a restriction of πQ. Together with the
kernel k1 � ψk : K Ñ X 1, we �nd the needed representing short exact sequence pk1, q1q.

4.9. Example. [Central extensions] As explained in [18], we may consider the sub-
conglomerate CExt1pQ,Kq of Ext1pQ,Kq consisting of those extensions which are cent-
ral. One way of de�ning these, is by saying that for any representative short exact
sequence 0 Ñ K Ñ X Ñ Q Ñ 0, the commutator rK,Xs must vanish. In particular
then, K is an abelian object. In the article [18], the conglomerate CExt1pQ,Kq is impli-
citly shown to be small, since it admits an interpretation as a cohomology group. Now
we may view this result as a simple consequence of Theorem 4.8.
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5. The syzygy argument

Let C be a category with kernels and cokernels. An object P of C is normal-projective
if for every normal epimorphism X Y and for every morphism P Ñ Y there exists a
morphism P Ñ X making the diagram

X

P Y

D

@

commute. The category C has enough normal-projectives when for every object Q
of C there exists a normal-projective object P and a normal epimorphism p : P Ñ Q.
This p is weakly universal amongst normal epimorphisms with codomain Q, in the
sense that for any normal epimorphism q : X Ñ Q, a morphism x : P Ñ X exists such
that qx � p.

Semi-abelian varieties of algebras do always have enough normal-projectives, because
the free objects are projective with respect to the regular epimorphisms (= surjective
algebra morphisms), and all regular epimorphisms are normal. In the context of an
abelian category, all epimorphisms are normal, so we regain the usual de�nition of a
projective object.

A syzygy of an object Q is a short exact sequence

0 // ΩpQq w // P
p
// Q // 0

where the middle object P is normal-projective. We sometimes refer to just the object
ΩpQq as a syzygy of Q. We then write ΩpQq � Ω1pQq for any chosen syzygy, and
recursively de�ne Ωn�1pQq� ΩpΩnpQqq.

5.1. Theorem. [Syzygy Theorem] In a category with kernels and cokernels, with pullback-
stable normal epimorphisms and with enough normal-projectives, for each n ¥ 1 and any
objects Q and K, there are surjections

Ext1pΩnpQq, Kq � � � ExtnpΩpQq, Kq Extn�1pQ,Kq.

Proof. We explain why there is a surjection

w : ExtnpΩpQq, Kq Extn�1pQ,Kq

for any natural number n ¥ 1. The rest of the claim then follows by induction. Note that
here we are not assuming that these conglomerates are small.

The function w takes an exact sequence

0 Ñ K Ñ Xn Ñ � � � Ñ X1 Ñ ΩpQq Ñ 0
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0 // ΩpQq

w
��

α1

��

// 0

0 // K // Yn

αn

gn
// Yn�1

αn�1

// � � � // Y2

α3

g2
//

e3

((

Y1

α2

��

g1

77

P
p
//

α1

��

Q // 0

I3

m3

��

l2

HH

0 // K // Xn�1 fn�1

// Xn
// � � � // X3

e3

66

f3
// X2

f2
//

e2
**

X1 f1
// Q // 0

I2
m2

EE

Figure 2: Syzygy and pullback

of length n and splices it on top of the syzygy

0 Ñ ΩpQq Ñ P Ñ QÑ 0

so that we obtain the exact sequence

0 Ñ K Ñ Xn Ñ � � � Ñ X1 Ñ P Ñ QÑ 0.

This function is well de�ned: it is obvious that it preserves the equivalence relation, since
any zigzag between exact sequences of length n induces a zigzag between exact sequences
of length n� 1.

We show that w is surjective: it is here that we use that normal epimorphisms are
pullback-stable. Indeed, then any exact sequence of length n� 1 from K to Q pulls back
to an exact sequence of length n from K to ΩpQq as in Figure 2. This then proves that w
is surjective, because when this sequence is spliced on top of the chosen syzygy, the result
is connected to the given sequence.

We explain the details. Since p is a weakly universal normal epimorphism, we may
choose α1 : P Ñ X1 so that f1α1 � p; restricting it to the kernels w of p and m2 of f1,
we �nd α1 : ΩpQq Ñ I2 such that m2α1 � α1w. The construction of an exact sequence of
length n from K to ΩpQq starts here and depends on this choice of a morphism α1.

Pull back the normal epimorphism e2 to a normal epimorphism g1 as in the �gure.
This also provides us with a morphism α2 : Y1 Ñ X2. By construction, the commutative
square α1g1 � e2α2 is a pullback, so that the kernels of e2 and g1 coincide. More precisely,
the kernel m3 : I3 Ñ X2 of e2 lifts over α2 to a morphism l2 : I3 Ñ Y1 where g1l2 � 0
and which is easily seen to be a kernel of g1. Because of this, we can put Yi � Xi�1 and
gi�1 � fi�2 for all i ¥ 2 and g2 � l2e3 : Y2 Ñ Y1.

Together with Theorem 4.8, this gives us our main result:

5.2. Theorem. If, in a category with kernels and cokernels, with pullback-stable normal
epimorphisms and with enough normal-projectives, Ext1pQ,Kq is small for all objects Q
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and K, then so is ExtnpQ,Kq for each n ¥ 1. This is the case, for instance, in any
semi-abelian variety of algebras.

Proof. It su�ces to prove that Extn�1pQ,Kq is small if so is ExtnpΩpQq, Kq. Since
the w in the proof of Theorem 5.1 is a surjection, its �bres form a partition of the
conglomerate ExtnpΩpQq, Kq. That conglomerate is bijective to a set, to which the given
partition is transported. Any choice of representatives for this latter partition�which
must exist under the Axiom of Choice�forms a set which is bijective to the conglomerate
Extn�1pQ,Kq.

5.3. Remark. The dual procedure, involving normal-injectives, gives the same result
under dual conditions. Our use of projectives instead has to do with the properties of the
examples we study: projectives are more natural in the context of varieties of algebras,
since the existence of enough normal-projectives comes for free in all semi-abelian varieties,
and while normal epimorphisms are pullback-stable here, normal monomorphisms are not
pushout-stable in general.

5.4. Remark. Theorem 5.2 implies, for instance, that for each objectK of a semi-abelian
variety V and every n ¥ 1, we have a functor Extnp�, Kq : V op Ñ Set. Here, for any
morphism η : QÑ Q1, a function

Extnpη,Kq : ExtnpQ1, Kq Ñ ExtnpQ,Kq

is obtained by pulling back exact sequences along η. The contravariance explains why we
let Q be the �rst variable in ExtnpQ,Kq. Functoriality in the second variable K is not
automatic.

5.5. Remark. The argument that make Theorem 5.1 work, can be extended to any
pullback-stable class of normal epimorphisms E , provided a weakly universal normal epi-
morphism p : P Ñ Q exists in E for each object Q. Its kernel ΩE pQq appears in the
surjection

wE : Ext
n
E pΩE pQq, Kq Extn�1

E pQ,Kq

existing for all n ¥ 1. Here ExtiE pQ,Kq is de�ned as ExtipQ,Kq, but for exact sequences
whose cokernel parts are in E .

6. A variation on the theme: double extensions and crossed extensions

We adapt the theory developed above to a slightly di�erent situation: double extensions
and crossed extensions instead of two-step extensions. This section is not entirely self-
contained; for the sake of a more compact presentation, we take de�nitions and results
from the literature for granted, rather than explaining them in full detail.

In the article [43], the Barr�Beck derived functors [2] of Homp�, Aq : V op Ñ Ab,
where Ab is the category of abelian groups and A is an abelian object in a semi-abelian
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0

��

0

��

0

��

0 // K //

��

X 1
2

��

// I 12

��

// 0

0 // X2
//

��

Y //

��

X 1
1

��

// 0

0 // I2 //

��

X1
//

��

Q

��

// 0

0 0 0

Figure 3: A p3� 3q-diagram: rows and columns are short exact sequences

variety V , are characterised in terms of so-called higher central extensions. This gen-
eralises the well-known classi�cation of central extensions via cohomology, hinted at in
Example 4.9, to higher cohomology degrees. At the same time, it extends Yoneda's theory
to a non-abelian setting�see [34] for more on this point of view.

We here consider the case of double central extensions, which are equivalence classes
of particular p3� 3q-diagrams such as occur for instance in the statement of the classical
p3 � 3q-Lemma: see Figure 3. Morphisms of such diagrams are the obvious natural
transformations. Just like for n-step extensions, zigzags of those morphisms that keep
the endpoints K and Q �xed determine equivalence classes of p3 � 3q-diagrams. These
are called double extensions under K and over Q or from K to Q and form a
conglomerate which we here denote 2-ExtpQ,Kq. A double extension is central when its
representing p3 � 3q-diagrams satisfy a further condition which in the present context of
a semi-abelian variety may be expressed as a commutator condition�see [14, 41, 43, 42]
for further details.

Again we may ask the question, whether the conglomerate 2-ExtpQ,Kq is small: the
answer is yes�see Theorem 6.1 below�by a variation on Theorem 5.1. Note that when
we restrict to the subconglomerate 2-CExtpQ,Kq determined by the double central exten-
sions, then this is known, and follows from the interpretation of this conglomerate in terms
of derived functors of [43], as soon as the category V satis�es an additional commutator
condition, called the Smith is Huq condition in [32]. A straightforward adaptation of the
proof of Theorem 5.1 gives us:

6.1. Theorem. In a semi-abelian variety V , the conglomerate 2-ExtpQ,Kq of all double
extensions between any two objects K and Q is small.

Proof sketch. A p3� 3q-diagram as in Figure 3 is completely determined by two types
of data: the pullback square on the left below, and the induced short exact sequence on
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the right.

X1 �Q X
1
1

//

��

X 1
1

��

X1
// Q

0 // K // Y // X1 �Q X
1
1

// 0

The main reason for this is, that the bottom right square in Figure 3 is a so-called regular
pushout [7, 9], which means that the universal comparison Y Ñ X1 �Q X

1
1 is a regular

epimorphism.
Once and for all, we �x two weakly universal normal epimorphisms with codomain Q,

and use their pullback
P �Q P

1 //

��

P 1

��

P // Q

as a kind of �double syzygy� of Q. Mimicking the proof of Theorem 5.1, we may see that
for any p3 � 3q-diagram as in Figure 3, there is a morphism from this �double syzygy�
to the pullback associated with the p3 � 3q-diagram. Then the associated short exact
sequence pulls back to a short exact sequence from K to P �Q P

1. This eventually leads
to a proof that, since the conglomerate Ext1pP �Q P

1, Kq is small, so is 2-ExtpQ,Kq.

An immediate consequence of this is, that the conglomerate 2-CExtpQ,Kq is small,
independently of any additional conditions on the semi-abelian variety V . This solves
a problem remarked upon in [41, Remark 4.2]. Via the classi�cation (obtained in The-
orem 5.3 of [41]) of double central extensions in terms of the second cohomology group
de�ned in [39, 40], this in turn implies that that latter cohomology group is small as well.

Restricting ourselves to the context of Moore categories [38], the analysis of [39, 40]
explains that the two-fold crossed extensions in any strongly semi-abelian variety form a
small set. Let us explain what this means in the special case of the variety of groups.

Recall that a crossed extension (of groups) [22, 23] is an exact sequence of groups
of length 2

0 // K k // X2
f2
// X1

q
// Q // 0

together with an action of X1 on X2 making f into a crossed module. Morphisms of
crossed extensions are morphisms of exact sequences, compatible with the action. From
the above, it follows that zigzags of those morphisms that keep the endpoints K and Q
�xed determine equivalence classes which from a small conglomerate. This argument is
actually valid in all strongly semi-abelian varieties (where now crossed modules are as
de�ned in [25] and actions correspond to split short exact sequences by [8]).

Using the ideas of Section 5, these results generalise to n-fold crossed extensions�as
in [39, 40], extending the de�nitions of [22, 23] to Moore categories�for arbitrary n ¥ 2.
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Indeed, a simple adaptation of the proof of Theorem 6.1 to n-cubes makes it work for
n-fold extensions (in the sense of [43]) of arbitrary degree. Rather than working this out
in detail, we chose, however, to end our article with an example of a slightly di�erent
nature.

7. Schreier extensions of monoids

The category of monoids is not semi-abelian, so the above does not apply as such. Nev-
ertheless we may obtain a result, similar to Theorem 4.8, if only we suitably restrict the
collection of short exact sequences we consider.

By de�nition [37], a Schreier extension of monoids is a pair pk, qq of monoid morph-
isms

K
k // X

q
// Q

where q is a surjection and k is a kernel of q, such that for each v P Q there exists an
xv P q

�1pvq such that for each x P q�1pvq there is a unique u P K satisfying x � kpuq � xv.
Note that here the monoid operation is denoted additively. We may, and will, always
assume that x0 � 0 P X.

As explained in [31], it is easy to see that then q is a cokernel of k, so that a Schreier
extension is always a short exact sequence. In other words, �being a Schreier extension�
is a property a short exact sequences of monoids may or may not satisfy. We let S be
the class of normal epimorphisms of monoids underlying a Schreier extension.

We follow the slightly alternative view of [29] (which was later published as [30]),
where it is stated that a Schreier extension may be de�ned as a short exact sequence
pk, qq of monoids as in

0 // K
k // X
p
oo

q
// Q

s
oo // 0

for which there exist functions s : QÑ X and p : X Ñ K such that

qs � 1Q

kp� sq � 1X

ppkpuq � spvqq � u, for u P K, v P Q.

Furthermore, s may be chosen in such a way that sp0q � 0.
The two viewpoints are indeed equivalent; let us explain one of the implications. For

the de�nition of s, simply choose spvq amongst those xv that satisfy the requirements of
the de�nition. Then p sends x P X to the unique u P K for which x � kpuq � xv. The
conditions on s and p are readily veri�ed.

Schreier extensions being special short exact sequences, for each n ¥ 1, we may restrict
the construction of the conglomerate ExtnpQ,Kq to Schreier exact sequences, as explained
in Remark 5.5, and thus de�ne a conglomerate ExtnS pQ,Kq. The question then arises,
whether these conglomerates are small. When n � 1, the answer is in essence the same
as for extensions in semi-abelian varieties, since we may prove the following variation on
Corollary 4.6:
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7.1. Proposition. Any Schreier extension

0 // K
k // X

q
// Q // 0

is a retract over Q of the short exact sequence of monoids

0 // K
p1K ,0q

// K �Q
πQ

// Q // 0

in the category of pointed sets.

Proof. We treat the kernel k as a submonoid inclusion, which we may do without any
loss of generality. We choose functions s and p as in the de�nition of a Schreier extension
and de�ne functions

ϕ : K �QÑ X : pu, vq ÞÑ kpuq � spvq

ψ : X Ñ K �Q : x ÞÑ pppxq, qpxqq.

For any x P X, we have ϕpψpxqq � ϕpppxq, qpxqq � kpppxqq�spqpxqq � x, so that ϕψ � 1X .
Furthermore, πQψ � q, while qϕ � πQ because qpϕpu, vqq � qpkpuq � spvqq � qpspvqq � v.
Finally, ϕ preserves 0 because so do k and s, and ψ preserves 0 because q and p do. In
the case of p, it su�ces to note that 0 � kp0q � sp0q.

We may then essentially copy the proof of Theorem 4.8 to �nd

7.2. Theorem. For any monoids K, Q, the conglomerate Ext1S pQ,Kq is small.

In view of the results of Section 5, with in particular Remark 5.5 and the fact (easy
to check by hand) that Schreier extensions are stable under pulling back, an interesting
question seems to be, whether for each monoid Q, a weakly universal Schreier extension
exists. If so, then also all of the ExtnS pQ,Kq where n ¥ 1 are small.

This issue is closely related to the question, whether Schreier extensions are re�ective
amongst surjective monoid morphisms. Note that, though it solves a similar problem, the
result in [33] does not imply this. More suitable is the article [10], where it is conjectured
that this should indeed be the case for Schreier split extensions and split epimorphisms
of monoids. We hope to study this problem in subsequent work.
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