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CAUCHY COMPLETIONS AND THE RULE OF UNIQUE CHOICE
IN RELATIONAL DOCTRINES

FRANCESCO DAGNINO AND FABIO PASQUALI

Abstract. Lawvere’s generalized the notion of complete metric space to the field of
enriched categories: an enriched category is said to be Cauchy-complete if every left
adjoint bimodule into it is represented by an enriched functor. Looking at this defini-
tion from a logical standpoint, regarding bimodules as an abstraction of relations and
functors as an abstraction of functions, Cauchy-completeness resembles a formulation
of the rule of unique choice. In this paper, we make this analogy precise, using the
language of relational doctrines, a categorical tool that provides a functorial description
of the calculus of relations, in the same way Lawvere’s hyperdoctrines give a functorial
description of predicate logic. Given a relational doctrine, we define Cauchy-complete
objects as those objects of the domain category satisfying the rule of unique choice.
Then, we present a universal construction that completes a relational doctrine with the
rule of unique choice, that is, producing a new relational doctrine where all objects
are Cauchy-complete. We also introduce relational doctrines with singleton objects and
show that these have the minimal structure needed to build the reflector of the full
subcategory of its domain on Cauchy-complete objects. The main result is that this re-
flector exists if and only if the relational doctrine has singleton objects and this happens
if and only if its restriction to Cauchy-complete objects is equivalent to its completion
with the rule of unique choice. We support our results with many examples, also falling
outside the scope of standard doctrines, such as complete metric spaces, Banach spaces
and compact Hausdorff spaces in the general context of monoidal topology, which are
all shown to be Cauchy-complete objects for appropriate relational doctrines.

1. Introduction

Cauchy-completeness is a concept coming from metric spaces: a metric space is said to
be Cauchy-complete if every Cauchy-sequence converges to a limit point. In [24] Lawvere
vastly generalised this notion, bringing it to the realm of enriched categories. Lawvere’s
key observation was that metric spaces are enriched categories over the quantale of ex-
tended non-negative real numbers and Cauchy-sequences in a space X correspond to left
adjoint bimodules from the one point space into X. Hence, he defined an enriched cat-
egory B to be Cauchy-complete when every left adjoint bimodule with codomain B is
(derived from) an enriched functor into B , recovering Cauchy-complete metric spaces as
a special case. This notion, together with the associated Cauchy-completion, has been
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extensively studied and adapted in many different contexts [4, 5, 6, 33, 36].
From a logical standpoint, the notion of Cauchy-completeness resembles a form of

choice rule. If we regard bimodules as some sort of (binary) relations between enriched
categories and enriched functors as some sort of functions, then left adjoint bimodules
are functional and total relations [36] and so, Cauchy-completeness amounts to requiring
that every functional and total relation is (the graph of) a function. This is precisely
a formulation of the rule of unique choice. The purpose of this paper is to make this
analogy precise, studying Cauchy-completeness and related constructions from a logical
perspective.

One of the most versatile tools to treat logic categorically are hyperdoctrines, or simply
doctrines, introduced by Lawvere in [22, 23]. Doctrines give a functorial description of
(theories) in predicate logic: they are contravariant functors on a base category C , which
can be regarded as a category of contexts and substitutions, mapping each object to the
poset of predicates over it ordered by logical entailment. The key feature of doctrines is
that logical structures, such as connectives and quantifiers, become algebraic structures.
This makes doctrines a simple and powerful framework, suitable to be adapted to the
various logical systems one wants to work with and, indeed, it is not surprising that many
variants appeared in the literature (see [19, 32] and references therein).

When doctrines have enough structure, i.e., conjunctions, equalities and existential
quantifiers, one can easily formulate choice rules using this language (see for example [27,
28, 29]. So it might appear obvious that one can study Cauchy-completeness in the setting
of doctrines, recovering also some motivating examples from enriched categories, such as
metric spaces. However, doctrines do not recover this latter example in a natural way.
In the definition of Cauchy-completeness, distances play the role of identity relations and
since distances can be seen as equivalence relations rewritten with a monoidal operation,
a naive attempt would be finding a doctrine over the category of metric spaces with a
monoidal conjunction and where equality predicates are given by distances. This approach
fails essentially because, as pioneered by Lawvere, equality predicates are given by left
adjoints and, as shown in [9], left adjoints necessarily produce trivial distances.

These difficulties arise from the fact that doctrines, abstracting predicate logic, have
to take care of variables, which is not trivial at all when dealing with a monoidal setting.
On the other hand, one can not avoid the use of variables, as they are needed to model
relations, which are nothing but predicates over contexts with many variables. To over-
come this problem, in this paper we make the shift of working with relational doctrines
[10], i.e., doctrines abstracting (a fragment of) the calculus of relations [1, 30, 38]. The
calculus of relation is a variable-free alternative to first order logic, where the primitive
concepts are (binary) relations instead of (unary) predicates, together with some basic
operations, such as relational identities, composition and converse. In general this calcu-
lus is less expressive than first order logic,1 but it is still quite expressive: for instance,
it suffices to axiomatize set theory [37]. Thus, a relational doctrine on a category C is a
contravariant functor mapping objects (A,B) in the product of C with itself to a poset

1The calculus of relations is equivalent to first order logic with three variables [15].
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that collects relations from A to B, together with transformations modelling relational
identities, composition and converse.

Given a relational doctrine, we define objects of the base that are Cauchy-complete
as those that satisfy the rule of unique choice and we say that a doctrine satisfies the
rule of unique choice when every object of its base is Cauchy-complete. We describe a 2-
categorical construction that freely completes a relational doctrine with the rule of unique
choice. This is obtained by adding left adjoint relations as new arrows in the base category,
leaving relations unchanged. We also introduce the class of relational doctrines with
singleton objects. These doctrines have the minimal structure needed to build the reflector
of the full subcategory on Cauchy-complete objects, that is, the Cauchy-completion. The
main result is that Cauchy-complete objects make a reflective subcategory of the base if
and only if the relational doctrine has singleton objects and this happens if and only if
the restriction of the relational doctrine to Cauchy-complete objects is equivalent to the
completion of the doctrine for the rule of unique choice. We recover many examples as
special cases: beside the category of Cauchy-complete metric spaces, we have the category
of Banach spaces, which are the Cauchy-complete objects for a doctrine over the category
of (semi-)normed vector spaces, the category of compact Hausdorff spaces, which are the
Cauchy-complete objects for an appropriate relational doctrine based on the category of
topological spaces and the category of sheaves for a topology j on an elementary topos E ,
which are the Cauchy-complete objects for the relational doctrines of j-closed relations
in E . We also find as instance of our theorem, Walters’ characterisation in [40] of sheaves
over a frame as Cauchy-complete categories. Finally, we show how compact Hausdorff
spaces in the general context of monoidal topology [8, 17] can be characterised as Cauchy-
complete objects for suitable relational doctrines constructed extending the Stone-Čech
compactification to this setting.

The rest of the paper is organised as follows. Section 2 recalls basic definitions and
properties on relational doctrines and introduce some relevant examples. In Section 3,
we introduce the rule of unique choice for relational doctrines, describing the universal
construction that freely adds it to any relational doctrine. Section 4 defines relational
doctrines with singleton objects and proves our main results. Finally, in Section 5 we
discuss in detail the examples coming from monoidal topology.

2. Preliminaries on relational doctrines

Lawvere’s hyperdoctrines, or simply doctrines, introduced in [22, 23], provide an algebraic
approach to the study of syntactic theories and their models, relying on the intuition that
a logic can be written as a functor mapping a context to the collections of formulas whose
free variables are in that context. More specifically a doctrine P on a category C is
a contravariant functor P : C op → Pos , where Pos denotes the category of posets and
monotone functions; the category C is named the base of the doctrine and, for X in C , the
poset P (X) is called fibre over X. For f : X → Y an arrow in C , the monotone function
Pf : P (Y ) → P (X) is called reindexing along f . The base category consists of the objects
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of interest with their transformations (such as contexts and substitutions or sets and
functions), a fibre P (X) collects and orders the “properties” of the object X (such as
predicates ordered by logical entailment or subsets ordered by inclusion) and reindexing
allows to transport the properties between objects according to their transformations
(such as substitution or inverse imaging).

In [10] relational doctrines were introduced as a functorial description of the core
fragment of the calculus of relations [38]. Since binary relations can be seen as predicates
over a pair of objects, relational doctrines are in particular functors2 of the form R :
(C × C )op → Pos , where each fibre R(X, Y ) collects relations from X to Y . The fragment
of the calculus of relations that relational doctrines model is the one given by relational
identities, composition and converse [1, 30, 38], leading to the following definition.

2.1. Definition. [Relational Doctrine [10]] A relational doctrine consists of:

• a base category C ,

• a functor R : (C × C )op → Pos ,

• an element dX ∈ R(X,X), for every object X in C , such that dX ≤ Rf,f (dY ), for
every arrow f : X → Y in C ,

• a monotone function – ; – : R(X, Y )×R(Y, Z) → R(X,Z), for every triple of objects
X, Y, Z in C , such that Rf,g(α) ;Rg,h(β) ≤ Rf,h(α ; β), for all α ∈ R(X, Y ), β ∈
R(Y, Z) and f : A→ X, g : B → Y and h : C → Z arrows in C ,

• a monotone function (–)⊥ : R(X, Y ) → R(Y,X), for every pair of objects X, Y in
C , such that (Rf,g(α))

⊥ ≤ Rg,f (α
⊥), for all α ∈ R(X, Y ) and f : A → X and

g : B → Y ,

satisfying the following equations for all α ∈ R(X, Y ), β ∈ R(Y, Z) and γ ∈ R(Z,W )

α ;(β ; γ) = (α ; β) ; γ dX ;α = α α ; dY = α

(α ; β)⊥ = β⊥ ;α⊥ d⊥X = dX α⊥⊥ = α

The element dX is the identity or diagonal relation on X, α ; β is the relational compo-
sition of α followed by β, and α⊥ is the converse of the relation α. Note that all relational
operations are lax natural transformations, but the operation of taking the converse, be-
ing an involution, is actually strictly natural. The requirement of lax naturality becomes
clear if one looks at the examples. Take for instance the relevant one of set-theoretic
relations, that can be organised into the relational doctrine Rel : (Set × Set )op → Pos
where Rel(X, Y ) = P(X × Y ) and Rel(f, g) = (f × g)−1. Here it is an easy check that
for α ⊆ A× B and β ⊆ B × C and for functions f : X → A, g : Y → B and h : Z → C,
it holds that Relf,g(α) ;Relg,h(β) = {(x, z) | ∃y∈Y (f(x), g(y)) ∈ α and (g(y), h(z) ∈ β)}

2Following the notation for usual doctrines, we will denote by Rf,g the action of the functor R on the
pair of arrows (f, g).
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and Relf,h(α ; β) = {(x, z) | ∃b∈B(f(x), b) ∈ α and (b, h(z)) ∈ β}; thus the inclusion
Relf,g(α) ;Relg,h(β) ⊆ Relf,h(α ; β) is an equality if and only if g is surjective. Similarly
the inclusion dX = {(x, x′) | x = x′} ⊆ {(x, x′) | f(x) = f(x′)} = Rf,f (dY ) is an equality
if and only if f is injective.

2.2. Remark. Typically, doctrines modelling predicate logic are based on categories
with finite products, which model concatenation of contexts, while product projections
represent variables of a context. The variable-free nature of the calculus of relations is
captured by the lack of requirements on the base category C . A comparison between
doctrines modelling predicate logic and relational doctrines is given in [10].

2.3. Remark. In Definition 2.1 we made explicit all the properties that a relational
doctrine must have to model the core fragment of the calculus of relations. However, the
presence of the converse operation (–)⊥ makes the list of axioms somewhat redundant.
For instance, each one of the two axioms stating that d is the neutral element of the
composition implies, together with other axioms, the other: for instance, assuming the
left identity, we derive

α ; dY = (d⊥Y ;α⊥)⊥ = (dY ;α⊥)⊥ = α⊥⊥ = α

More importantly, the symmetry axiom for the identity relation is derivable. Indeed, from
dX ; d⊥X = d⊥X we derive

dX = (d⊥X)
⊥ = (d⊥X)

⊥ ; d⊥X = dX ; d⊥X = d⊥X

This shows that the structures captured by relational doctrines are necessarily symmetric
(see Example 2.5 and Remark 2.6).

2.4. Remark. There are many alternative ways of defining relational doctrines. One
can see them as certain internal dagger categories in a category of indexed posets (see
[10]). Alternatively, they can be regarded as faithful framed bicategories [34, 21] with
an appropriate involution. Essentially, these are double categories with the additional
requirement that the pairing of the source and target functors is a fibration. In Defini-
tion 2.1, we give a more explicit and elementary description of relational doctrines, to stay
closer to the usual language of doctrines. Extending all our results to the more general
and proof-relevant setting of framed bicategories is an interesting problem we leave for
future work.

2.5. Example.

1. Let V = ⟨|V |,⪯, ·, 1⟩ be a commutative quantale. A V -relation [17] between sets
X and Y is a function α : X × Y → |V |, where α(x, y) ∈ |V | intuitively measures
how much elements x and y are related by α. We consider the functor V -Rel :
(Set × Set )op → Pos where V -Rel(X, Y ) = |V |X×Y is the set of V -relations from X



248 FRANCESCO DAGNINO AND FABIO PASQUALI

to Y with the pointwise order, V -Relf,g is precomposition with f × g. The identity
relation, relational composition and converse are defined as follows:

dX(x, x
′) =

{
1 x = x′

⊥ x ̸= x′
(α ; β)(x, z) =

∨
y∈Y

(α(x, y) · β(y, z)) α⊥(y, x) = α(x, y)

where α ∈ V -Rel(X, Y ) and β ∈ V -Rel(Y, Z). Special cases of this doctrine are
Rel : (Set × Set )op → Pos , when the quantale is B = ⟨{0, 1},≤,∧, 1⟩, and metric
relations, when the quantale is Lawvere’s one R≥0 = ⟨[0,∞],≥,+, 0⟩ as in [24].

2. A (symmetric) metric space in the sense Lawvere [24] is a pair X = ⟨|X|, δX⟩ where
δX : |X| × |X| → [0,∞] is a distance, i.e. is such that δX(x, x) = 0, δX(x, x

′) =
δX(x

′, x) and δX(x, x
′) + δX(x

′, x′′) ≥ δX(x, x
′′). A non-expansive map f : X → Y

is a function f : |X| → |Y | such that δX(x, x
′) ≥ δY (f(x), f(x

′)). Metric spaces
and non-expansive maps form the category Met which has a tensor product X ⊗ Y
where |X ⊗ Y | = |X| × |Y | and δX⊗Y (⟨x, y⟩, ⟨x′, y′⟩) = δX(x, x

′) + δY (y, y
′). The

functor M : (Met × Met )op → Pos maps ⟨X, Y ⟩ to the poset of non-expansive maps
Met (X ⊗ Y ,R≥0) ordered point-wise (these functions are called bimodules in [24]);
the action of M on a pair of non-expansive maps ⟨f, g⟩ : ⟨A,B⟩ → ⟨X, Y ⟩ and on α
in M(X, Y ) is the composition α ◦ (f × g). The functor M is a relational doctrine:
the identity relation, relational composition and converse are defined as follows:

dX = δX (α ; β)(x, z) = inf
y∈Y

(α(x, y) + β(y, z)) α⊥(y, x) = α(x, y)

where α ∈ M(X, Y ) and β ∈ M(Y, Z).

3. Let SVec be the category of seminormed vector spaces over the field of real numbers
and short linear maps. Abusing with the notation, we identify a (semi-)normed
space with its underlying vector space and write |X| and ∥–∥X for the underlying
set and the seminorm of the spaceX, respectively. Given semi-normed spacesX and
Y , denote by X×Y the product of X and Y and write ∥–∥X,Y for the semi-norm on
it defined by ∥⟨x,y⟩∥X,Y = ∥x∥X + ∥y∥Y . The functor SV : (SVec × SVec)op → Pos
sends X, Y to the poset of semisemi-norms on X×Y , i.e. functions α : |X| × |Y | →
[0,∞] such that

α(x,y) + α(x′,y′) ≥ α(x+ x′,y + y′) α(ax, ay) = |a|α(x,y)

and bounded by ∥–∥X,Y , i.e. such that

∥x∥X + ∥y∥Y ≥ α(x,y)

The order is the pointwise extension of the order of the Lawvere’s quantale. The
functor SV is a relational doctrine where

dX(x,x
′) = ∥x− x′∥X (α ; β)(x, z) = inf

y∈|Y |
(α(x,y) + β(y, z)) α⊥(y,x) = α(x,y)
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Concerning the axioms that these operations have to satisfy, we only check dX ;α =
α, the other being immediate. First, from the fact that α is bounded by ∥–∥X,Y , we
deduce that ∥x−x′∥X+∥y−y′∥Y ≥ α(x−x′,y−y′) ≥ α(x,y)−α(x′,y′), since α is
a semi-norm on X×Y , hence we get ∥x−x′∥X+α(x′,y′)+∥y−y′∥Y ≥ α(x,y). This
implies that (dX ;α)(x,y) ≥ dX(x,x

′)+α(x′,y) = ∥x−x′∥X+α(x′,y)+∥y−y∥Y ≥
α(x,y), while the other inequality is straightforward.

4. Let B be a locally partially ordered bicategory with objects in B0 and arrows in B1.
Recall from [4, 40] that a B-category X is a triple ⟨|X|, eX , dX⟩ of a set |X| together
with functions eX : |X| → B0 and dX : |X| × |X| → B1 such that dX(x1, x2) :
eX(x1) → eX(x2) and

ideX(x) ≤ dX(x, x) dX(x2, x3) ◦ dX(x1, x2) ≤ dX(x1, x3)

A B-functor f : X → Y is a function f : |X| → |Y | such that eY (f(x)) = eX(x)
and dX(x1, x2) ≤ dY (f(x1), f(x2)). B-categories and B-functors form the cate-
gory B-Cat . A B-bimodule (simply a bimodule) ϕ from X to Y is a function
ϕ : |X| × |Y | → B1 such that ϕ(x, y) : eX(x) → eY (y) and

ϕ(x, y) ◦ dX(x′, x) ≤ ϕ(x′, y) dY (y, y
′) ◦ ϕ(x, y) ≤ ϕ(x, y′)

A B-category X is symmetric if dX(x1, x2) = dX(x2, x1) and skeletal if dX(x1, x2) =
eX(x1) = eX(x2) implies x1 = x2. Denote by B-Cat ss the full subcategory of B-Cat
on symmetric skeletal B-categories.

We restrict our attention to the relevant case considered in [40], that is when B is
Rel(H ), where H is a frame. Objects of Rel(H ) are those of H , while an arrow
from u to v is w ≤ u ∧ v and the composition of two arrows is their meet. Rel(H )-
Bimodules define a relational doctrine Bimod : (Rel(H )-Cat ss ×Rel(H )-Cat ss)op →
Pos , mapping symmetric and skeletal Rel(H )-categories X and Y to the bimodules
from X to Y . The identity relation, relational composition and converse are

dX = dX (ϕ ;ψ)(x, z) =
∨
y∈Y

(ϕ(x, y) ∧ ψ(y, z)) ϕ⊥(y, x) = ϕ(x, y)

5. Let E be an elementary topos and denote by Sub : Eop → Pos its subobject functor.
A relation r from A to B is an element of Sub(A×B). As customary we freely confuse
subobjects with any of their representatives. Let r be the monic r : X → A×B
and s be s : Y → B × C. Write r1 and r2 for the compositions of r with projections
π1 : A×B → A and π2 : A×B → B and similarly for s1 and s2. The relational
composition r ; s in Sub(A× C) is given by the following pullback

r ; s =

W

}}   
pbX

r1~~ r2 !!

Y

s1~~ s2   
A B C
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The neutral elements of such a composition are the diagonal arrows, while the
converse of r is given by ⟨π2, π1⟩∗r, i.e. the pullback of r along ⟨π2, π1⟩. A Lawvere-
Tierney topology over E (or simply a topology) is a natural transformation j :
Sub

. // Sub such that for every subobject α in Sub(A) it holds that α ≤ jAα
(j is inflationary); jAjAα ≤ jAα (j is idempotent). A subobject α in Sub(A) is
j-closed (or simply closed) if jAα = α [3, 25]. We will often omit subscripts from j
when these are clear. The subposet of Sub(A) on closed subobjects will be denoted
by Subj(A). For every elementary topos E and every topology j over E consider
the functor SubRelj : (E × E)op → Pos that maps ⟨f, g⟩ : ⟨X, Y ⟩ → ⟨A,B⟩ to
(f × g)∗ : Subj(A×B) → Subj(X × Y ). The functor SubRelj is a relational doctrine
where dX = j∆X and α ; β = j(α ; β) where the relational composition on the right
is computed in Sub; due to naturality of j, the converse of a closed relations is
closed.

6. Let Top be the category of topological spaces and continuous functions. For a space
X in Top denote by cl(X) the set of closed subsets of X ordered by inclusion. We
say that R is a closed relation from the space X to the space Y if R is an element
of cl(X×Y ). Among all topological spaces, the compact-Hausdorff ones have some
pleasant properties with respect to the calculus of relations: if Y is compact, R ∈
cl(X×Y ) and S ∈ cl(Y ×Z), then R ;S = {⟨x, z⟩ | ∃y∈Y ⟨x, y⟩ ∈ R and ⟨y, z⟩ ∈ S} is
a closed relation, i.e. is in cl(X×Z), whereas if X and Z are Hausdorff the diagonal
relations, that are the neutral elements of the previous composition, are themselves
closed. One can “correct” the lack of compact-Hausdorffness of a space via the
Stone-Chech compactification, that provides the left adjoint β to the full inclusion
of compact-Hausdorff spaces into Top. This suggests a way to build a relational
doctrine of closed relations based on Top. It is the functor clβ : (Top × Top)op → Pos
that maps spaces X and Y to cl(βX × βY ) and a pair of continuous functions f, g
to (βf × βg)−1.

2.6. Remark. In Example 2.5(2) we show that relational doctrines can capture metric
spaces in the sense of Lawvere. However, we have to require them to be symmetric,
while in [24] this is not necessary the case. This is due to the very structure of relational
doctrines, which requires the identity relation to be symmetric (d⊥X = dX). Hence, to deal
with the non-symmetric case, we should drop this axiom, which however, as noticed in
Remark 2.3, it is derivable from the fact that the converse operation is idempotent and
does not act on the objects of the base category. A possible solution to this problem
is thus to extend the structure of a relational doctrine R : (C × C )op → Pos with an
involution (–)o : C → C on the base category so that the converse operation would have
shape (–)⊥ : R(X, Y ) → R(Y o, Xo). In this way, the argument in Remark 2.3 does not
work anymore and so we could safely drop the symmetry axiom, thus recovering also non-
symmetric Lawvere metric spaces. Although apparently innocent, this little modification
has a great impact on the theory of relational doctrines. For instance, it requires us to
change the definition of functional and total relation in such a way that Proposition 3.1
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would not hold anymore. Therefore, we leave the study of this for future work.

Relational doctrines are the objects of the 2-category RD.
A 1-arrow F : R → S in RD from R : (C × C )op → Pos to S : (D × D)op → Pos , is

a pair ⟨F̂ , F ⟩ consisting of a functor F̂ : C → D and a natural transformation F : R
.→

S ◦ (F̂ × F̂ )op,

(C × C )op
R

,,
(F̂×F̂ )op

��

Pos

(D × D)op S

22F ·
��

preserving relational identities, composition and converse, that is, satisfying dF̂X =
FX,X(dX) and FX,Y (α) ;F Y,Z(β) = FX,Z(α ; β) and (FX,Y (α))

⊥ = F Y,X(α
⊥), for α ∈

R(X, Y ) and β ∈ R(Y, Z).

A 2-arrow θ : F ⇒ G is a natural transformation θ : F̂
.→ Ĝ such that FX,Y ≤

SθX ,θY ◦GX,Y , for all objects X, Y in the base of R

(C × C )op
R

--
(F̂×F̂ )op

��

(F̂ ′×F̂ ′)op

��

Pos

(D × D)op
S

11F ·

��

· F ′

��

.

θop
oo ≤

In [10] also lax 1-arrows are considered and examples of 1-arrows capturing the notions
of relation lifting, among which the Barr lifting [2], are discussed there.

We now report some basic facts about relational doctrines discussed in detail in [10].
Let us fix a relational doctrine R : (C × C )op → Pos .
Graphs Every arrow f : X → Y in C defines a relation Γf = Rf,idY (dY ) ∈ R(X, Y )
called the graph of f . It is easy to see that the construction of graphs of arrows preserves
composition and identities, that is, Γg◦f = Γf ; Γg and ΓidX = dX . Furthermore, 1-arrows
of RD as defined above preserve graphs, i.e., if F : R → S is a 1-arrow and f : X → Y is
an arrow in C , we have FX,Y (Γf ) = ΓF̂ f (note that Γf is a relation in R, while ΓF̂ f is a
relation in S).

Relational composition allows us to express reindexing in relational terms and to show
that it has a left adjoint, where a left adjoint in Pos to a monotone function g : K → H is
a monotone function f : H → K such that for every x in K and y in H, both y ≤ gf(y)
and fg(x) ≤ x hold, or, equivalently, y ≤ g(x) if and only if f(y) ≤ x. For f : A → X
and g : B → Y in C the reindexing map Rf,g : R(X, Y ) → R(A,B) and its left adjoint

ER
f,g : R(A,B) → R(X, Y ) are given as follows: for α ∈ R(X, Y ) and β ∈ R(A,B)

Rf,g(α) = Γf ;α ; Γ⊥
g

ER
f,g(β) = Γ⊥

f ; β ; Γg
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Thus, in the following, we will avoid the use of reindexing in calculations, replacing it by
relational composition with graphs. Note that, since 1-arrows preserves graphs and left
adjoints are defined in terms of graphs, they are preserved by 1-arrows.

Extensional equality Given parallel arrows f, g : X → Y the condition Γf = Γg defines
an (external) equivalence relation ≈ on the set C (X, Y ). We say that f and g are R-equal,
or extensionally equal, when f ≈ g. The condition Γf = Γg can be equivalently written as
dX ≤ Rf,g(dY ), therefore, unfolding it when R is Rel, one find that two functions f and
g are Rel-equal if for every x and y in the domain of f and g, the equality x = y implies
f(x) = g(y). In Rel this suffices to show that f = g, so Rel-equal functions are actually
equal, but for a general relational doctrine this need not hold.

2.7. Definition. Let R : (C × C )op → Pos be a relational doctrine. We say that the
object Y of C is extensional if for every f, g : X → Y , f ≈ g implies f = g. We say that
the relational doctrine R is extensional if every object of the base is extensional.

2.8. Example.

1. The relational doctrine V -Rel : (Set × Set )op → Pos introduced in Example 2.5(1)
is always extensional.

2. Consider the relational doctrine M : (Met × Met )op → Pos described in Exam-
ple 2.5(2). A metric space is extensional precisely when it is separated, i.e. when
δX(x, x

′) = 0 implies x = x′.

3. Consider the relational doctrine SV : (SVec × SVec)op → Pos described in Exam-
ple 2.5(3). A space in SVec is extensional if the semi-norm is a norm, i.e. if ∥x∥ = 0
implies x = 0.

4. In the relational doctrine Bimod : (Rel(H )-Cat ss ×Rel(H )-Cat ss)op → Pos in Ex-
ample 2.5(4) the skeletality condition gives precisely the extensionality of Bimod.

5. Let j be a topology over an elementary topos E and consider the relational doctrine
SubRelj of Example 2.8(5). An object A of E is extensional precisely when j∆A =
∆A, i.e. when it is j-separated [25].

6. Consider the relational doctrine clβ : (Top × Top)op → Pos of Example 2.8(6).
Here two continuous functions f and g are clβ-equal precisely when βf = βg.
The extensional topological spaces are the completely Hausdorff ones, i.e. those
spaces X such that for every pair of different points x ̸= y there is a continuous
f : X → [0, 1] with f(x) = 0 and f(y) = 1 or, equivalently, those spaces X such
that unite ηX : X → βX of the Stone-Čech compactification is injective. Indeed
suppose X is completely Hausdorff and let βf = βg. Since for every continuous
function f : A → X it holds that βf ◦ ηA = ηX ◦ f , if ηX is injective, then f = g.
Conversely let X be extensional, and take two points x ̸= y of X, i.e. two different
continuous functions x, y : 1 → X. Since β1 is 1, the points x, y determines two
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points βx, βy : 1 → βX, that must be different as by extensionality ofX the equality
βx = βy would imply x = y. But βx = ηX(x) and βy = ηX(y) so ηX(x) ̸= ηX(y)
showing that ηX is injective.

Duality Thanks to the existence of left adjoints along all arrows in C , we are able
to define the opposite of R, i.e., a relational doctrine Ro on the category C op. This is
essentially a functor Ro : C × C → Pos defined by

⟨X, Y ⟩

⟨f,g⟩

��

R(X, Y )op

ER
f,g

��

� Ro
//

⟨A,B⟩ R(A,B)op

where the relational structure is the same as R. Note that, the fact that we take the
opposite order in the fibres is essential to prove that reindexing of Ro laxly preserves the
relational structure. This construction extends to a 2-functor (–)o : RDco → RD, which
is an involution.

3. The rule of unique choice

The rule of unique choice is a choice principle, weaker than the rule of choice, saying that
a relation that behaves like a function (in the sense that it relates every element of its
domain to a unique element in its codomain) is the graph of a function that for every x
in the domain picks the unique y related to x. In the context of relational doctrines this
can be given a formal definition, as we will see in this section.

Let R be a relational doctrine on C . We first identify those relations in R(X, Y ),
generalising usual set-theoretic notions of relations that are functional (i.e. if y and y′ are
related to the same x, then y = y′), total (i.e. every x is related to at least one y), injective
(i.e. different points in the domain are related to different points in the codomain) and
surjective (i.e. every y in the codomain is related to at least one x in the domain). A
relation α in R(X, Y ) is said to be

functional if α⊥ ;α ≤ dY
total if dX ≤ α ;α⊥

injective if α ;α⊥ ≤ dX
surjective if dY ≤ α⊥ ;α

Note that α is injective if and only if α⊥ is functional and α is surjective if and only if
α⊥ is total. Finally, α is bijective if both α and α⊥ are functional and total, that is, if we
have α ;α⊥ = dX and α⊥ ;α = dY .

From the definition of total and functional relations, it follows immediately that they
are part of adjunctions, in the sense that, if α is total and functional, then α⊥ ; β ≤ γ
if and only if β ≤ α ; γ and β ;α ≤ γ if and only if β ≤ γ ;α⊥. Moreover, they form a
discrete poset with respect to the order of the fibres of R.
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3.1. Proposition. [10] Let α and β be total and functional relations in R(X, Y ). Then,
α ≤ β implies α = β.

It is also easy to see that graphs of arrows are always functional and total relations.
We will say that an arrow f in C is R-injective, R-surjective or R-bijective, respectively,
when its graph Γf is injective, surjective or bijective, respectively.

3.2. Proposition. Let f : A→ X and g : B → Y be arrows in C . The following hold:

1. if f and g are R-injective, then Rf,g ◦

ER
f,g = idR(A,B),

2. if f and g are R-surjective, then

ER
f,g ◦Rf,g = idR(X,Y ),

3. if f and g are R-bijective, then Rf,g is an isomorphism.

Proof. We prove only Item 1, the other being analogous. Suppose that f and g
are R-injective, i.e., Γf ; Γ

⊥
f = dA and Γg ; Γ

⊥
g = idA. For all α ∈ R(A,B), we have

Rf,g(

ER
f,g(α)) = Γf ; Γ

⊥
f ;α ; Γg ; Γ

⊥
g = α, as needed.

3.3. Proposition. Let f : X → Y be an arrow in C . The following hold:

1. f is R-injective if and only if Rf,f ◦

ER
f,f = idR(X,X),

2. f is R-surjective if and only if
ER

f,f ◦Rf,f = idR(Y,Y ),

3. f is R-bijective if and only if Rf,f is an isomorphism.

Proof. We prove only Item 1, the other being analogous. The left-to-right implica-
tion follows by Proposition 3.2(1). For the other one, we have dX = Rf,f (

ER
f,f (dA)) =

Γf ; Γ
⊥
f ; Γf ; Γ

⊥
f . Then, sing Γf is total, we get Γf ; Γ

⊥
f ≤ Γf ; Γ

⊥
f ; Γf ; Γ

⊥
f = dX , proving

that f is R-injective.

The following corollary is straightforward.

3.4. Corollary. Let f : X → Y be an isomorphism of C , then f is R-bijective.

Proof. Immediate by Proposition 3.3(3), as Rf,f is an isomorphism.

The converse of Corollary 3.4 does not hold in general, unless, as we will see, the
domain of the arrow satisfies the rule of unique choice. This shows also that the rule of
unique choice can be seen as a form of balancedness of the base category.

A functional and total relation α ∈ R(X, Y ) has a tracking arrow if there is f : X → Y
in C with Γf = α. Note that, by Proposition 3.1, it suffices to require that Γf ≤ α.
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3.5. Definition. Let R : (C × C )op → Pos be a relational doctrine. An object Y in C
satisfies the rule of unique choice, (ruc) for short, if for every X in C every functional
and total relation in R(X, Y ) has a tracking arrow. The object Y satisfies the strong
rule of unique choice, (sruc) for short, if for every X in C every functional and total
relation in R(X, Y ) has a unique tracking arrow. A relational doctrine satisfies (ruc)
(respectively (sruc)) if every object of its base satisfies (ruc) (respectively (sruc)).

Functional and total relations are left adjoints, so objects satisfying (ruc) enjoy a
form of “completeness” that closely recalls the Cauchy-completeness, for this reason we
will often call these objects Cauchy-complete. Analogously an object Y that satisfies
(sruc) will be also called strongly Cauchy-complete.

3.6. Proposition. An object Y is strongly Cauchy-complete if and only if it is Cauchy-
complete and extensional.

Proof. If Y is strongly Cauchy-complete, then it is obviously Cauchy-complete. More-
over any arrow f : X → Y is the unique tracking arrow of its graph Γf . Therefore, if
Γf = Γg, then g tracks Γf , hence f = g, as needed. Conversely, suppose Y is extensional
and Cauchy-complete. Then, given a total and functional relation α in R(X, Y ) there is
f such that Γf = α and, if g is another arrow tracking α, we have Γg = α = Γf , hence,
by extensionality we get f = g.

The following proposition shows that when the (strong) rule of unique choice holds,
the converse of Corollary 3.4 holds as well.

3.7. Proposition. Let f : X → Y be an arrow in C where X and Y are extensional
objects. If X is Cauchy-complete and f is R-bijective then f is an isomorphism.

Proof. If f is R-bijective, Γ⊥
f is a functional and total relation in R(Y,X) so there is a

unique arrow g : Y → X such that Γg = Γ⊥
f . Then, we have Γf◦g = Γ⊥

f ; Γf = dY and

Γg◦f = Γf ; Γ
⊥
f = dX . Extensionality of X and Y imply f ◦ g = idY and g ◦ f = idX .

3.8. Example.

1. The relational doctrine V -Rel : (Set × Set )op → Pos of Example 2.5(1) need not
satisfy (ruc). It is shown in [17, Proposition III.1.2.1] that if the quantale V is
affine, i.e. if 1 is the top element, then V -Rel satisfies (ruc) if and only if the
quantale is lean, i.e. if x ∨ y = ⊤ and x ∧ y = ⊥ implies that x = ⊤ or y = ⊤.

2. The relational doctrine M : (Met × Met )op → Pos of Example 2.5(2) does not
satisfy (ruc) as a metric space is Cauchy-complete if and only if it is complete
in the standard sense. The proof basically follows the original arguments given
by Lawvere’s in [24]. Rewritten in the language of relational doctrines, Lawvere’s
theorem says that a metric space Y is complete if and only if for every X and every α
inM(X, Y ) which is a left adjoint, i.e. such that there is β inM(Y,X) with β ;α ≤ δY
and δX ≤ α ; β, there is a non-expansive map f : X → Y such that α(x, y) =
δY (f(x), y). The condition of Cauchy-completeness formulated in Definition 3.5 is
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a slightly weaker as it asks the right adjoint to be α⊥ which is not always the
case, in other words, not all left adjoint relations are functional and total, while all
functional and total relations are left adjoints. Nevertheless Lawvere’s argument can
still be carried out. The only care to be taken is in proving the necessary condition.
Suppose Y is Cauchy-complete and take a Cauchy sequence (yn)n∈N in it. Lawvere
defined a left adjoint relation α in M(1, Y ), i.e. from the one-point space to Y ,
as α(⋆, y) = lim

n→∞
δY (yn, y), which is well defined since (δY (yn, y))n∈N is a Cauchy

sequence in [0,∞]. However, it is easy to see that α is actually functional and total,
hence there is l : 1 → Y such that α(⋆, y) = lim

n→∞
δY (yn, y) = δY (l(⋆), y) = Γl(⋆, y).

Taking y = l(⋆), we get lim
n→∞

δY (yn, l(⋆)) = δY (l(⋆), l(⋆)) = 0, proving that l(⋆) is a

limit of (yn)n∈N.

3. The relational doctrine SV : (SVec × SVec)op → Pos of Example 2.5(3) does not
satisfies (ruc) as a semi-normed vector space is Cauchy-complete if and only if it
is complete as a metric space with the distance induced by the semi-norm. The
argument is essentially the same as Lawvere’s one for metric spaces, with some
differences due to the fact that we have to take into account the additional vector
space structure, in particular we use the axiom of choice to ensure that every vector
space has a basis. For this reason we will carry out it in detail. Let us start by
recalling a couple of easy properties of total and functional relations in SV. If α is a
total and functional relation in SV(X, Y ), the the following (in)equalities hold, for
all x ∈ |X| and y ∈ |Y |: α(0,y) = ∥y∥Y and ∥x∥X + α(x,y) ≥ ∥y∥Y .
Let X, Y be semi-normed vector spaces with Y complete and α a total and func-
tional relation in SV(X, Y ). Hence, for every x in X, we have 0 = ∥x − x∥X ≥
infy∈|Y | α(x,y) + α⊥(y,x), as α is total, and this implies that infy∈|Y | α(x,y) = 0.
Therefore, for every n ∈ N, there is yx,n ∈ |Y | such that 1/n > α(x,yx,n). The
sequence (yx,n)n∈N is a Cauchy-sequence: for all n ∈ N and h, k ≥ 2n, we have
1/n ≥ 1/h+1/k > α⊥(yx,h,x)+α(x,yx,k) ≥ ∥yx,h−yx,k∥Y , as α is functional. Let
{xi | i ∈ I} be a basis for X (whose existence relies on the axiom of choice) and
denote by yi the limit of the sequence (yxi,n)n∈N. We get a linear map f : X → Y ,
which is the unique such that f(xi) = yi. To show that f is indeed an arrow
in SVec, we have to prove that ∥x∥X ≥ ∥f(x)∥Y , for all x ∈ |X|, but, thanks
to properties of semi-norms, it suffices to check that ∥xi∥X ≥ ∥f(xi)∥Y , for all
i ∈ I. Since α is total and functional, we have ∥xi∥X + α(xi, f(xi)) ≥ ∥f(xi)∥Y ,
for all i ∈ I. Note that α(xi, f(xi)) = α(xi,yi) = 0, since 1/n + ∥yxi,n − yi∥Y >
α(xi,yxi,n) + ∥yxi,n − yi∥Y ≥ α(xi,yi) ≥ 0 and lim

n→∞
1/n + ∥yxi,n − yi∥Y = 0, as

lim
n→∞

yxi,n = yi. Thus, we get ∥xi∥X ≥ ∥f(xi)∥Y for all i ∈ I, as needed. To con-

clude that f tracks α, it suffices to show that ∥f(xi) − yi∥Y ≥ α(xi,yi), for all
i ∈ I, thanks to the fact that α is a semi-norm on X × Y . Since α(xi, f(xi)) = 0,
we deduce ∥f(xi)− y∥Y = α(xi, f(xi) + ∥f(xi)− y∥Y ≥ α(xi,y), as needed.

Conversely, let Y be a Cauchy-complete vector space and let (yn)n∈N be a Cauchy-
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sequence in Y . For every real number a and y ∈ |Y |, the sequence (∥ayn−y∥Y )n∈N
is a Cauchy-sequence in [0,∞]: this is an immediate consequence of the fact that
(yn)n∈N is a Cauchy-sequence in Y , observing that for all h, k ∈ N, |a| ∥yh−yk∥Y ≥
|∥ayh − y∥Y − ∥ayk − y∥Y |. Let R∞ denote the vector sapce of real numbers with
the (semi-)norm ∥–∥R∞ given by ∥0∥R∞ = 0 and ∥a∥R∞ = ∞ if a ̸= 0. Then, we
define a function α : |R∞| × |Y | → [0,∞] as follows: α(a,y) = lim

n→∞
∥ayn − y∥Y . It

is easy to see that α is a relation in SV(R∞, Y ). It is total, observing that, since
(yn)n∈N is a Cauchy sequence, for every ϵ > 0, there is nϵ ∈ N, such that, for all
k ≥ nϵ, ϵ > ∥ynϵ − yk∥Y , which implies |a| ϵ ≥ lim

n→∞
∥ayn − aynϵ∥Y = α(a, aynϵ).

Finally, it is functional, noting that α⊥(y, a)+α(a,y′) = lim
n→∞

∥ayn−y∥Y + ∥ayn−
y′∥Y ≥ lim

n→∞
∥y − y′∥Y = ∥y − y′∥Y . Since Y is Cauchy-complete, we get an arrow

f : R∞ → Y such that, for all a ∈ |R∞| and y ∈ |Y |, we have α(a,y) = ∥f(a)−y∥Y .
Therefore, taking l = f(1), we get α(1, l) = 0, that is, lim

n→∞
∥yn − l∥Y = 0, proving

that l is a limit of (yn)n∈N, as needed.

Finally, recalling from Example 2.8(3) that the extensional objects in SV are normed
vector spaces, using Proposition 3.6, we get that an object Y in SVec is strongly
Cauchy-complete if and only if it is a Banach space.

4. The relational doctrine Bimod : (Rel(H )-Cat ss ×Rel(H )-Cat ss)op → Pos intro-
duced in Example 2.5(4) is extensional (see Example 2.8(4)). So strongly Cauchy-
complete objects coincides with Cauchy-complete ones. Since composition of rela-
tions in Bimod is defined using meets and suprema, a bimodules ϕ is a left adjoint
if and only if its right adjoint is ϕ⊥, so Cauchy-complete objects of Rel(H )-Cat ss
are the Cauchy-complete symmetric and skeletal Rel(H )-categories as in [40].

5. Let E be an elementary topos, j a topology over it and consider the functor SubRelj :
(E × E)op → Pos of Example 2.5(5). An object of E satisfies is strongly Cauchy-
complete if and only if it is a j-sheaf. Indeed, suppose Y is strongly Cauchy-complete
(so Y is extensional by Proposition 3.6, hence j-separated) and consider the j-dense
arrow ηY : Y → s(Y ) to its associated j-sheaf s(Y ). The relation Γ⊥

ηY
is functional

and total, so it is the graph of an arrow which is necessarily the inverse of ηY . To
prove the converse take a functional and total α in SubRelj(X, Y ) ⊆ Sub(X, Y ). If
Y is a j-sheaf, then α is functional an total also in Sub(X, Y ) = Sub(X × Y ). Since
subobjects doctrines satisfies the (sruc) [19], there a unique is f : X → Y with
α = (f × idY )

∗∆Y = (f × idY )
∗j∆Y = Γf where Γf is computed with respect to the

doctrine SubRelj.

6. Consider the doctrine clβ : (Top × Top)op → Pos of Example 2.5(6). A topologi-
cal space is strongly Cauchy-complete if and only if it is compact and Hausdorff.
Indeed suppose Y is compact and Hausdorff: a functional and total relation F in
clβ(X, Y ) = cl(βX × βY ) is a continuous functions F : βX → βY , whose tracking
arrow is given composing F with ηX : X → βX and η−1

Y : βY → Y which is a
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homeomorphis as Y is compact and Hausdorff. Conversely suppose Y is strongly
Cauchy-complete, and consider ηY : Y → βY . It is ΓηY ; Γ⊥

ηY
= {(x, z) ∈ βY × βY |

∃y∈β2Y β(ηY )(x) = y and y = β(ηY )(z)} = {(x, z) | β(ηY )(x) = β(ηY )(z)} = dY so
Γ⊥
ηY

is functional. For totality consider Γ⊥
ηY

; ΓηY = {(u, v) ∈ β2Y × β2Y | ∃w∈βY u =
β(ηY )(w) and β(ηY )(w) = v}. Since β(ηY ) : βY → β2Y is an homeomorphis
Γ⊥
ηY

; ΓηY = {(u, v) | u = v} = dβY , then Γ⊥
ηY

in clβ(βY, Y ) has a unique tracking
arrow g : βY → Y which is the inverse of ηY making Y compact-Hausdorff.

3.9. Remark. Example 3.8 shows how the rule of unique choice in a relational doctrine is
linked to the notion of Cauchy completeness for some enriched categories, such as metric
spaces. However, doctrines, being a proof-irrelevant setting, can only deal with simple
examples of enriched categories. In order to cope with them in full generality, one should
adopt a proof-relevant framework like framed bicategories (cf. Remark 2.4).

The rest of this section is devoted to defining constructions which produce relational
doctrines satisfying (sruc) out of any relational doctrine. We focus on (sruc) rather
than on (ruc) as this allows us to show universal properties of the presented constructions
which would not hold if we considered just (ruc) (see Theorem 3.11). Denote by RD!

be the 1-full and 2-full subcategory of RD on relational doctrines that satisfy (sruc).
Let R be a relational doctrine over C . A first naive approach to build a relational

doctrine satisfying (sruc) starting from R is to consider the restriction R! of R to the full
subcategory CR

! of C spanned by strongly Cauchy-complete objects, i.e., the composite

(CR
! × CR

! )
op � � // (C × C )op R // Pos

Clearly, R! satisfies (sruc) (by Proposition 3.6) since the relational structure is exactly
that of R. However simple, this construction has the major drawback of being not func-
torial. Indeed, 1-arrows F in RD do not need to preserve Cauchy-complete objects,
essentially because F̂ and F need not be full and componentwise surjective, respectively.

In order to recover functoriality, we now define a different construction. First of all,
we observe that if α in R(A,B) and β in R(B,C) are functional so is α ; β in R(A,C)
as (α ; β)⊥ ;α ; β = β⊥ ;α⊥ ;α ; β ≤ β⊥ ; dB ; β = β⊥ ; β ≤ dC . Similarly, if α and β
are total, so is α ; β. This defines a category Map(R) whose objects are those of C
and arrows from A to B are functional and total relations in R(A,B). Then, for every
α : X → A and β : Y → B in Map(R), we let MapR(A,B) = R(A,B) and MapRα,β :

MapR(A,B) → MapR(X, Y ) be the function γ 7→ α ; γ ; β⊥. These assignments determine
a functor MapR : (Map(R)× Map(R))op → Pos , which is also a relational doctrines where
relational identities, composition and converse are those of R. Note that we can define a
1-arrow ΓR : R → MapR in RD as depicted below

(C × C )op
R

,,
(Γ̂[R]×Γ̂[R])op

��

Pos

(Map(R)× Map(R))op MapR

22Γ[R] ·
��
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where Γ̂[R] : C → Map(R) is the identity on objects and it maps an arrow f to its graph

Γf , and Γ[R] : R
.→ MapR(Γ̂[R]× Γ̂[R])op is componentwise the identity. We will often

omit the subscript from MapR when it is clear from the context.

3.10. Proposition. For a relational doctrine R : (C × C )op → Pos the following are
equivalent:

1. R satisfies (sruc).

2. ΓR : R → MapR is an isomorphism in RD.

3. ΓR : R → MapR is a section in RD.

Proof. It suffices to reason on Γ̂ as Γ is always componentwise an identity. (1) ⇒ (2).

If R satisfies (sruc), then Γ̂ is fully faithful hence, as it is the identity on objects, it is
an isomorphism. (2) ⇒ (3). It is trivial. (3) ⇒ (1). Let F : MapR → R be the retraction
of ΓR and α a total and functional relation in R(X, Y ). Then, α : X → Y is an arrow

in Map(R) and so f = F̂α : F̂X → F̂ Y is an arrow in C . Since F preserves graphs and

Γα = α, we get FX,Y (α) = FX,Y (Γα) = Γf . From F ◦ ΓR = IdR and Γ̂R is the identity

on objects and ΓR is componentwise the identity, we get that F̂ is the identity on objects
and F is componentwise the identity. Hence, we conclude α = FX,Y (α) = Γf , proving
that f tracks α and so R satisfies (sruc).

An immediate consequence of the proposition above is that MapR satisfies (sruc),
since, due to the idempotency of the construction, ΓMapR is an identity.

The following proposition shows that the construction of MapR is universal, proving
that it determines a left 2-adjoint of the inclusion RD! ↪→ RD.

3.11. Theorem. Let R : (C × C )op → Pos be a relational doctrine and S : (D × D)op →
Pos a relational doctrine satisfying (sruc). The functor

– ◦ ΓR : RD!(MapR, S) → RD(R, S)

is an isomorphism of categories.

Proof. First of all, we prove that it is an isomorphism on objects. Let F : R → S be a
1-arrow in RD. Every functional and total relation α in R(A,B) determines a functional

and total relation F (α) in S(F̂A, F̂B). By (sruc), we get that F (α) = Γeα for a unique

tracking arrow eα : F̂A→ F̂B. Define a 1-arrow F ′ : MapR → S as follows:

• the functor F̂ ′ : Map(R) → D is given by F̂ ′A = F̂A and F̂α = eα;

• the natural transformation F ′ : MapR
.→ S(F̂ ′ × F̂ ′)op is given by F ′

A,B(γ) =
FA,B(γ).
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It is easy to check that F ′ preserves relational identities, composition and converse, and,
moreover it satisfies F ′ ◦ ΓR = F . The only non-trivial commutativity is at the level of
functors between bases. Take f : A→ B in C , its value under ̂F ′ ◦ ΓR is eΓf

: F̂A→ F̂B.

Omitting the indexes in the natural transformation F and recalling that 1-arrows preserve
graphs, we deduce ΓeΓf

= F (Γf ) = ΓF̂ f and so, by (sruc), we conclude have eΓf
= F̂ (f),

as needed. Towards a proof that F ′ is the unique 1-arrow such that F ′ ◦ΓR = F , consider
G : MapR → S is such that G ◦ ΓR = F . Then, since G preserves graphs, this equation
implies that that the graph of Ĝ(α), for α : A → B in Map(R), is equal to F (α); hence,
by (sruc), we deduce Ĝ(α) = eα = F̂ ′(α), showing that F̂ ′ = Ĝ. The equality G = F ′ is
straightforward, hence we conclude G = F ′, as needed.

To conclude the proof, we just need to show tht – ◦ ΓR is fully faithful. Let F,G :
MapR → S be 1-arrows in RD! and θ : F ◦ ΓR ⇒ G ◦ ΓR a 2-arrow in RD. We define a 2-
arrow θ′ : F ⇒ G in RD! as θ

′
X = θX . In order to show that θ′ is a well-defined 2-arow, we

only check it is a natural transformation, the other condition being immediate. Consider
an arrow α : X → Y in Map(R) and observe that Γθ′Y ◦F̂α = ΓF̂α ; ΓθY ≤ ΓθX ; ΓĜα =

ΓĜα◦θ′X
, which,using Proposition 3.1 and (sruc), implies the equality θ′Y ◦ F̂α = Ĝα ◦ θ′X .

Finally, we have θ′ΓR = θ and clearly it is unique with this property, thus proving the
thesis.

3.12. Remark. Note that working with (sruc) instead of (ruc) is crucial in the proof
of Theorem 3.11. Indeed, without (sruc), we would not be able to construct the 1-
arrow F ′ which factorises F along ΓR, as it is defined by taking the tracking arrow of a
certain functional and total relation. Without (sruc) tracking arrows need not be unique,
and even with choice, one could not prove, for instance, that the chosen ones preserve
compositions and identities in the base category.

Theorem 3.11 determines a 2-adjuntion

RD!
�% ++

⊤ RD
Ruc

ll

where Ruc(R) = MapR, ̂Ruc(F )X = F̂X, ̂Ruc(F )α = Fα and Ruc(F )X,Y = FX,Y ,
and Ruc(θ)X = ΓθX . This 2-adjunction determines an idempotent 2-monad on RD
whose 2-category of algebras is isomorphic to RD!, thanks to Proposition 3.10. Indeed,
every algebra structure on a relational doctrine R, having ΓR as section, ensures that R
satisfies (sruc). Furhtermore, such algebras are necessarily inverses of ΓR, hence uniquely
determined. This shows that satisfying (sruc) is a property rather than a structure.

3.13. Remark. Most categorical models for the calculus of relations, such as allegories
[14] or (locally posetal) cartesian bicategories [7], are some kind of ordered category with
involution [20]. These are Pos-enriched categories C together with a Pos-enriched dagger,
i.e., an identity on objects and self inverse Pos-functor (–)⊥ : C op → C . In [10] it is
shown that the 2-category of ordered categories with involution, dagger preserving Pos-
enriched functors and lax natural transformations is equivalent to the 2-category RD!
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of relational doctrines satisfying (sruc). Therefore, from Theorem 3.11 we also derive
that ordered categories with involution arise as algebras for the idempotent 2-monad on
relational doctrines mentioned above.

4. Completions and Singletons

In the previous section, we have seen two ways of constructing a relational doctrine satis-
fying (sruc) starting from an arbitrary relational doctrine R: by restricting to strongly
Cauchy-complete objects (R!) or by replacing arrows with functional and total relations
(MapR). A natural question that arises at this point is when these two are equivalent. In
this section, we will show that R! and MapR are equivalent in the 2-category RD exactly
when one of the following equivalent conditions holds:

• R has a Cauchy-completion, i.e., a universal construction turning any object into a
strongly Cauchy-complete one,

• R has singleton objects, i.e., objects classifying functional and total relations.

Both of these structures are described in terms of certain adjunctions in RD, hence, we
start by reviewing some of their properties.

An adjunction in RD (see e.g., [11]) consists of the following data: two 1-arrows
F : R → S and S : R → and two 2-arrows η : IdR ⇒ GF and ϵ : FG ⇒ IdS, satisfying
the usual identities (ϵF )(Fη) = idF and (Gϵ)(ηG) = idG. In other words, this means that
we have

• an adjunction ⟨F̂ , Ĝ, η, ϵ⟩ in Cat and

• for every α ∈ R(X, Y ) and β ∈ S(A,B), α ≤ RηX ,ηY (GF̂X,F̂Y (FX,Y (α))) and

F ĜA,ĜB(GA,B(β)) ≤ SϵA,ϵB(β).

A 1-arrow F : R → S in RD is a change-of-base if F : R
.→ S(F̂ × F̂ )op is a natural

isomorphism. Intuitively, a change-of-base is a 1-arrow that acts only on base categories,
leaving posets of relations unchanged. For example, the universal 1-arrow ΓR : R → MapR

is a change-of-base.
Adjunctions that involve a change-of-base 1-arrow have special properties as the fol-

lowing proposition shows.

4.1. Proposition. Let F : R → S be a change-of-base and G : S → R a right adjoint
of F in RD. Then, the following hold.

1. For all objects A,B in the base of S, we have GA,B = F
−1

ĜA,ĜB ◦ SϵA,ϵB .

2. G is a change-of-base if and only if each component of ϵ is S-bijective.
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Proof. Item 1. Let A,B be objects in the base of S. Since ϵ : FG ⇒ IdS is a 2-arrow

in RD, we have F ĜA,ĜB ◦GA,B ≤ SϵA,ϵB , which is equivalent to GA,B ≤ F
−1

ĜA,ĜB ◦ SϵA,ϵB .
Hence, it suffices to show the opposite inequality. We have

F
−1

ĜA,ĜB ◦ SϵA,ϵB ≤ Rη
ĜA

,η
ĜB

◦GF̂ ĜA,F̂ ĜB ◦ F ĜA,ĜB ◦ F−1

ĜA,ĜB ◦ SϵA,ϵB η is a 2-arrow

= Rη
ĜA

,η
ĜB

◦GF̂ ĜA,F̂ ĜB ◦ SϵA,ϵB
= Rη

ĜA
,η

ĜB
◦RĜϵA,ĜϵB

◦GA,B G is natural

= R(ĜϵA)η
ĜA

,(ĜϵB)η
ĜB

◦GA,B R is a functor

= GA,B triangle identities

Item 2. If G is a change-of-base, then G is a natural isomorphism, hence we get
SϵA,ϵA = F ĜA,ĜA◦GA,A. This implies that SϵA,ϵA is an isomorphism and so ϵA is S-bijective
by Proposition 3.3(3). Conversely, if ϵ is componentwise S-bijective, by Proposition 3.2(3),

SϵA,ϵB is an isomorphism and so, by Item 1, we conclude GA,B = F
−1

ĜA,ĜB ◦ SϵA,ϵB is an
isomorphism as well.

Proposition 4.1 essentially states that the action on the fibres of a right adjoint of
a change-of-base 1-arrow is completely determined by the left adjoint and the counit of
the adjunction. Moreover, the right adjoint is itself a change-of-base exactly when the
counit is bijective. Thanks to the duality of relational doctrines described at the end of
Section 2, we can prove a similar result for left adjoints of change-of-base 1-arrows.

4.2. Corollary. Let F : R → S be a change-of-base and G : S → R a left adjoint of F
in RD. Then, the following hold:

1. for all objects A,B in the base of S, we have GA,B = F
−1

ĜA,ĜB ◦

ES
ηA,ηB

,

2. G is a change-of-base if and only if each component of η is S-bijective.

Proof. It follows by Proposition 4.1, noting that Go : So → Ro is right adjoint to
F o : Ro → So, moreover ηo : F oGo ⇒ IdRo is the counit and So

ηoA,η
o
B
=

ES
ηA,ηB

.

We are now ready to tackle our problem. Let R : (C × C )op → Pos be a relational
doctrine. We have the following commutative diagram of 1-arrows in RD

MapR

R!

<<

� �

ιR
// R

ΓR

OO

where both ιR and ΓR are change-of-base and identity-on-objects, hence, so is their com-
position ΓR ◦ ιR.

A Cauchy-completion of R is a change-of-base left adjoint of ιR. Intuitively, this means
that we can turn any object of C into a strongly Cauchy-complete one in such a way that
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relations between completed objects are the same as those between the original ones. Note
that, since ι̂R is fully faithful, a Cauchy-completion exhibits R! as a reflective subdoctrine
of R.

4.3. Theorem. For every relational doctrine R : (C × C )op → Pos the following are
equivalent:

1. ΓR ◦ ιR is an equivalence in RD.

2. ιR has a change-of-base left adjoint in RD.

Proof. 1 ⇒ 2. Let F : MapR → R! be the pseudoinverse of ΓR ◦ ιR. By Corollary 4.2,
it suffices to prove that ι̂R has a left adjoint in Cat and the unit of such adjuntion
is componentwise R-bijective. Denote by Ĉ the functor F̂ : Map(R) → CR

! . Every

object A in C is also an object of Map(R), so it is mapped by Ĉ to an object Ĉ(A) of

CR
! . Since Γ̂R ◦ ι̂R is the identity on objects and Ĉ is its pseudoinverse, there is also an

isomorphism γA : A → Ĉ(A) in Map(R), that is, a bijective relation γA ∈ R(A, Ĉ(A)).

By hypothesis Ĉ(A), being an object of CR
! , is strongly Cauchy-complte, hence, there

is an arrow ηA : A → Ĉ(A) in C such that ΓηA = γA. Now, consider an arrow f :
A → Y in C where Y is strongly Cauchy-complte, i.e., an object ot in CR

! . The relation

Γ⊥
ηA

; Γf = γ⊥A ; Γf ∈ R(Ĉ(A), Y ) is functional and total as it is the composition of two

functional and total relations. So there is a unique arrow f : Ĉ(A) → Y in C such that
Γf = Γ⊥

ηA
; Γf . Then, we have Γf◦ηA = ΓηA ; Γf = ΓηA ; Γ⊥

ηA
; Γf = Γf . By Proposition 3.6,

Y is also extensional, hence we deduce f ◦ ηA = f in C . Furthermore, any other arrow
g : Ĉ(A) → Y in C such that g ◦ ηA = f satisfies Γg = Γ⊥

ηA
; ΓηA ; Γg = Γ⊥

ηA
; Γf = Γf ,

hence, again by extensionality of Y , we conclude g = f , proving that f is unique. This
proves that Ĉ is a left adjoint of ιR. Therefore, the thesis follows as ηA is R-bijective by
construction as ΓηA = γA.

2 ⇒ 1. Let F : R → R! be the left adjoint of ιR and η and ϵ the unit and counit
of the adjunction, respectively. By hypothesis, ηA is R-bijective for every object A in C .
Since ι̂R is fully faithful, ϵA is an isomorphism for every object A in CR

! . Applying the
2-functor Ruc, obtained after Theorem 3.11, we obtain an adjunction Ruc(F ) ⊣ Ruc(ιR)
between MapR! and MapR, where the unit and counit are given by Ruc(η)A = ΓηA and
Ruc(ϵ)Y = ΓϵY for A in C and Y in CR

! . Since ΓηA is an isomorphism in Map(R), as ηA is
R-bijective by hypothesis, and ΓϵY is an isomorphism in Map(R!), as ϵA is an isomorphism

in CR
! , we get that Ruc(ιR) : MapR! → MapR is an equivalence. Furthermore, since R!

satisfies (sruc), the 1-arrow ΓR!
: R! → MapR! is an isomorphism by Proposition 3.10.

Hence, the composition Ruc(ιR) ◦ ΓR!
= ιR ◦ ΓR is an equivalence, as needed.

4.4. Corollary. Let C ↪→ D be a reflective subcategory, with reflector Ĉ : D → C , and
R : (C × C )op → Pos a relational doctrine satisfying (sruc). Then, R and R(Ĉ × Ĉ)op!
are equivalent.
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Proof. Let S = R(Ĉ × Ĉ)op. By Theorem 4.3, it suffices to show that MapR and MapS

are equivalent. The inclusion C ↪→ D induces a change-of-base F : R → S, where
FX,Y = RϵX ,ϵY , which is an isomorphism as ϵ is the counit of a reflection. Similarly, the

reflector Ĉ induces a change-of-base G : S → R, where GA,B = idR(Ĉ(A),Ĉ(B)). Then, the
reflection extends to an adjunction G ⊣ F in RD, whose unit and counit are both bijetive
by Proposition 4.1 and Corollary 4.2. Hence, the 2-functor Ruc maps this adjunction to
an equivalence between MapR and MapS as needed.

Let us now focus on singletons. In set-theoretic terms, the set of singletons on a set A
is a subset Ŝ(A) of the powerset P(A). The powerset P(A) is completely characterised
by the following universal property: it is the set classifying relations into A, in the sense
that for every set X and relation α ⊆ X × A there is a unique function χα : X → P(A)
such that ⟨x, a⟩ ∈ α if and only if a ∈ χα(x). In other words, this means that there is a
natural bijection P(A)X ∼= P(X×A). Since relations are the arrows of the category Rel
of sets and relations, this gives rise to a natural bijection Set (X,P(A)) ∼= Rel (X,A),
establishing an adjoint situation between Set and Rel .

Then, for every subset U of P(A), the restriction of the natural bijection to Set (X,U)
determines a class of relations fromX to A. In particular, when U is the set Ŝ(A) of single-
tons of A, the class of relations from X to A it determines is precisely that of functional
and total ones. That is, there is a natural bijection Set (X, Ŝ(A)) ∼= Map(Rel)(X,A)
(where Rel is the relational doctrine of set-theoretic relations as in Example 2.5(1)). In
this case, i.e. for standard set-theoretic relations, the adjunction defined by the previous
natural bijection is an equivalence, but we cannot require this in general, as it would
force the doctrine to satisfy the strong rule of unique choice. Hence, we give the following
definition.

4.5. Definition. A relational doctrine R : (C × C )op → Pos has singleton objects or
simply singletons if the functor Γ̂R : C → Map(R) has a fully faithful right adjoint

Ŝ : Map(R) → C .

We refer to Ŝ : Map(R) → C as the singleton functor. The counit of the adjunction

Γ̂R ⊣ Ŝ ensures that, for every object A in C , there is a functional and total relation
∋A in R(Ŝ(A), A), representing the membership relation between Ŝ(A) and A, such that,
for every object X in C and every functional and total relation α in R(X,A), there is a

unique arrow χα : X → Ŝ(A) in C such that α = Γχα ;∋A. We shall call χα the classifying

arrow of α and we will say that Ŝ(A) classifies functional and total relations into A. Since

Ŝ is fully faithful, we now that ∋ is a natural isomorphism, that is, each component ∋A
is a bijection. This fact captures key properties of singletons as described e.g., in [12].
Functionality of ∋A captures the fact that if two elements belong to the same singleton,
then they are equal, while totality says that no singleton is empty. Injectivity of ∋A
models the property that if two singletons have an element in common, then they must
be equal, while surjectivity ensures that for every element of A there is a singleton it
belongs to.
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Furthermore, since the 1-arrow ΓR : R → MapR is a change-of-base, by Proposi-
tion 4.1, we know that the singleton functor extends uniquely to a right adjoint 1-arrow
S : MapR → R, which is a change-of-base as ∋ is componentwise MapR-bijective; in turn,
by Corollary 4.2, this implies that the unit of the adjunction, denoted by σ, is componen-
twise R-bijective, because ΓR is a change-of-base left adjoint.

The fact that Ŝ(A) classifies functional and total relations into A traces a connection

between singletons and Cauchy-complete objects. Roughly, if Ŝ(A) and A are isomorphic,
then classifying arrows provide candidates for tracking arrows. This connection is made
precise in Theorem 4.8. We start by proving that singleton objects are strongly Cauchy-
complete.

4.6. Lemma. Let R : (C × C )op → Pos be a relational doctrine with singleton objects.
Then, the singleton 1-arrow factors through the inclusion ιR : R! → R

MapR

S
��

S′

||
R! ιR

// R

Proof. It suffices to show that Ŝ(A) is strongly Cauchy-complete, as ι̂R is fully faith-
ful and ιR is componentwise the identity. Consider a functional and total relation α
in R(X, Ŝ(A)). By Definition 4.5, There is a unique χα : X → Ŝ(Ŝ(A)) with α =
Γχα ;∋Ŝ(A). By the triangle identities of the adjunction, we know that Γσ

Ŝ(A)
;∋Ŝ(A) =

dŜ(A) = Γσ
Ŝ(A)

; ΓŜ(∋A), where σ is the unit of the adjunction Γ̂R ⊣ Ŝ. Since ∋ is a natural

isomorphism, ∋Ŝ(A) and ΓŜ(∋A) are bijections, the latter as it is the graph of an isomor-
phism. Therefore, from the equality above, we deduce that ∋Ŝ(A) = ΓŜ(∋A) and this implies

that ΓŜ(∋A)◦χα
= Γχα ; ΓŜ(∋A) = Γχα ;∋Ŝ(A) = α, proving that Ŝ(∋A) ◦ χα : X → Ŝ(A), is

a tracking arrow of α. In order to show that this arrow is unique, consider an arrow
f : X → Ŝ(A) such that α = Γf . Then from ΓŜ(∋A)−1 ;∋Ŝ(A) = dŜ(A) it follows that

α = Γf = Γf ; dŜ(A) = Γf ; ΓŜ(∋A)−1 ;∋Ŝ(A), making Ŝ(∋A)−1 ◦ f a classifying arrow of α.

Therefore, Ŝ(∋A)−1f = χα and so we conclude f = Ŝ(∋A)χα.

Actually, we can prove the following slightly stronger result: every strongly Cauchy-
complete object is a singleton object.

4.7. Corollary. Let R : (C × C )op → Pos be a relational doctrine. An object X in C
is strongly Cauchy-complete if and only if σX : X → Ŝ(A) is an isomorphism.

Proof. The left-to-right implication follows from Proposition 3.7, as σX is always R-
bijective. The right-to-left implication is immediate by Lemma 4.6.
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We can now prove our second characterisation, showing that MapR and R! are equiv-
alent exactly when R has singleton objects.

4.8. Theorem. For every relational doctrine R : (C × C )op → Pos the following are
equivalent:

1. ΓR ◦ ιR is an equivalence in RD.

2. ΓR has a change-of-base right adjoint in RD.

Proof. 1 ⇒ 2. Let F : MapR → R! be the pseudoinverse of ΓR ◦ ιR and let ∋ :
ΓR ◦ ιR ◦ F ⇒ IdMapR be the natural isomorphism of the equivalence. For every A in

C we set Ŝ(A) = F̂ (A). Consider an arrow α : X → A in Map(R), i.e., a functional
and total relation in R(X,A). Since ∋A is an isomorphism, hence a bijection, ∋⊥

A is a

functional and total relation in R(A, Ŝ(A)), hence, α ;∋⊥
A is a functional and total relation

in R(X, Ŝ(A)). By definition, Ŝ(A) is an object of CR
! , thus it is strongly Cauchy-complete

and so we know that there is a unique arrow f : X → Ŝ(A) in C such that Γf = α ;∋⊥
A,

which is equivalent to Γf ;∋A = α. This proves that Ŝ determines a right adjoint of Γ̂R
with counit given by ∋. Furthermore, since ∋ is componentwise an isomorphism, hence
a bijection, we also derive that Ŝ is fully faithful and extends to a change-of-base right
adjoint S : MapR → R, by Proposition 4.1.

2 ⇒ 1. By Lemma 4.6, the singleton 1-arrow S factors through ιR, producing a 1-
arrow S′ : MapR → R!. This determines an adjoint situation (ΓR ◦ ιR) ⊣ S′. Since Ŝ is
fully faithful, the counit is a natural isomorphism and by Corollary 4.7 the unit is an
isomorphism as well. Therefore, the adjunction is actually an equivalence.

Combining Theorems 4.3 and 4.8 we obtain three equivalent conditions summarised
in the following diagram

MapR

S′

ww

≃ S

��

⊢

R!

ΓR◦ιR

88

� w

ιR

44⊥ R

ΓR

TT

C
tt

where C = S′ ◦ ΓR and S = ιR ◦ S′.

4.9. Remark. The previous diagram gives an easy way to verify whether a relational
doctrine R : (C × C )op → Pos has singleton or not: it suffices to check if C! is a reflective
subcategory of C with R-bijective unit. Indeed, in this case the inclusion of doctrines
ιR : R! → R has a change-of-base left adjoint (i.e. R has a Cauchy-completion) which is
built as in Corollary 4.2 Item 1, so ΓR ◦ ιR is an equivalence by Theorem 4.3.



CAUCHY COMPLETIONS AND UNIQUE CHOICE IN RELATIONAL DOCTRINES 267

4.10. Example.

1. Consider the relational doctrine M : (Met × Met )op → Pos described in Exam-
ple 2.5(2). As observed in Example 2.8(2) a metric space Y is extensional if and
only if it is separated and as observed in Example 3.8(2) the space Y is Cauchy-
complete if and only if it is complete. Thus the full subcategory of Met of separated

and complete metric spaces is MetM
! . Note that dense isometries are M− bijective

arrows, indeed an f : A→ B is dense if for all b ∈ B it is infa∈A δB(f(a), b) = 0 so

δB(b, b
′) = 2 inf

a∈A
δB(f(a), b) + δB(b, b

′) = inf
a∈A

(2δB(f(a), b) + δB(b, b
′)) =

inf
a∈A

(δB(f(a), b)+δB(f(a), b)+δB(b, b
′)) ≥ inf

a∈A
(δB(f(a), b)+δB(f(a), b

′)) = Γ⊥
f ; Γf (b, b

′)

showing that f is total. On the other hand if f is an isometry

Γf ; Γ
⊥
f (a, a

′) = inf
b∈B

(δB(f(a), b) + δB(b, f(a))) = δB(f(a), f(a
′)) = δA(a, a

′)

showing that f is M − injective. The completion of a metric space provide a left

adjoint to the inclusion of MetM
! into Met whose unite at Y , i.e. the non expansive

map ηY : Y → Y is a dense isometry, hence a family of M− bijective arrows. So the
relational doctrine M has singletons by Remark 4.9, then the category of complete
separated metric space equivalent to Map(M).

2. Consider the relational doctrine SV : (×)opSV ec → Pos as in Example 2.5(3). The

category Ban of Banach spaces is SVecSV! as shown in Example 3.8(3). It is also
a reflective subcategory of SV where every unit arrow ηX : X → X is a dense
isometry. Dense isometries in SVec are SV-bijections; the proof of this is similar
to the one given in Example 4.10(1), as a short linear map f : X → Y is dense if
infx∈X ∥f(x)− y∥Y = 0 and is an isometry if ∥f(x)∥Y = ∥x∥X , which implies that
∥f(x)−f(x)∥Y = ∥f(x−x′)∥Y = ∥x−x′∥X . So the unite of the adjunction between
Ban and SVec is a family of SV-bijections. By Remark 4.9 SV has singletons and
Ban is equivalent to Map(SV).

3. Consider the relational doctrine Bimod : (Rel(H )-Cat ss ×Rel(H )-Cat ss)op → Pos
introduced in Example 2.5(4), recall that it is extensional (see Example 2.8(4))
and that (Rel(H )-Cat ss)Bimod

! is the category of Cauchy-complete symmetric and
skeletal Rel(H )-categories (see Example 3.8(4)). This category is reflexive [4] and
the reflector sends X to X where |X| is the set of pairs ⟨h, α⟩ where h ∈ H is the
one point Rel(H )-category with eh(∗) = dh(∗, ∗) = h and α : |X| → H is a left
adjoint bimodule from h to X (whose right adjoint bimodule is necessarily α⊥ = α.
Moreover

eX(h, α) = h dX(⟨h, α⟩, ⟨g, β⟩) =
∨
x∈|X|

α(x) ∧ β(x)
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Abbreviate by η∗X(x1)(x2) the function dX(x1, x2), then the unite of the reflec-
tion ηX : X → |X| sends x1 to ⟨eX(x1), η∗X(x1)⟩. Note that ΓηX (x, ⟨h, α⟩) =
α(x), so ΓηX ; Γ⊥

ηX
≤ dX and dX ≤ Γ⊥

ηX
; ΓηX . Thus η is a family of Bimod-

bijections and by Remark 4.9 the relational doctrine Bimod has singletons. There-
fore the category (Rel(H )-Cat ss)Bimod

! of Cauchy-complete symmetric and skeletal
Rel(H )-categories is equivalent to Map(Bimod). To recover Walters’ theorem, that
says that (Rel(H )-Cat ss)Bimod

! is the category of sheaves over H [40], note that
for every X in Rel(H )-Cat ss the function dX is a partial equivalence relation,
since symmetry gives dX(x1, x2) = dX(x2, x1) and composition in Rel(H ) gives
dX(x1, x2) ∧ dX(x2, x3) ≤ dX(x1, x3). Note also that in Rel(H ) it is idu = u, so
eX(x) = ideX(x) ≤ dX(x, x) ≤ eX(x) ∧ eX(x) ≤ eX(x), showing that eX is deter-
mined by dX . This makes Rel(H )-Cat ss a category of partial equivalence relations
X = ⟨|X|, dX⟩ such that dX(x1, x2) = dX(x1, x1) = dX(x2, x2) implies x1 = x2 and
where arrows f : X → Y are functions f : |X| → |Y | that preserve the partial equiv-
alence relations and such that dX(x, x) = dY (f(x), f(x)). Using terminology as in
[32, 39], functions ϕ : |X| × |Y | → H are called predicates, so a Rel(H )-bimodule ϕ
from X to Y is a relational and strict predicate, while a left adjoint bimudule is also
a functional and total predicate. Therefore Map(Bimod) is the category of partial
equivalence relations whose arrows from X to Y are the total, functional, relational
and strict predicates from X to Y . The category Map(Bimod) is then the topos of
sheaves over H as described in [16] (see also [18, 31, 39]).

4. For an elementary topos E and a topology j, the full subcategory Shv j(E) of E on
j-sheaves is reflective and the unite arrows are j-dense. That is they are SubRelj −
bijective so SubRelj has singletons and Shv j(E) ≃ ESubRelj

! ≃ Map(SubRelj).

5. Consider the relational doctrine clβ : (Top × Top)op → Pos presented in Exam-

ple 2.5(6). The Stone-Čech compactification provides a left adjoint to the inclusion
of the category KH of compact-Hausdorff into Top. It is easy to check that unite

arrows are clβ-bijective, therefore clβ has singletons and KH ≃ Topclβ
!

≃ Map(clβ).

4.11. Remark. Similar to the situation depicted in Example 4.10(3), Frey considered in
[13] a general construction that has, among its instances, the category whose objects are
⟨X, ρ⟩ where ρ : X ×X → H is a partial equivalence relation and an arrow [f ] : ⟨X, ρ⟩ →
⟨Y, σ⟩ is an equivalence class of functions f : X → Y preserving the partial equivalence
relations and where [f ] = [g] if ρ(x1, x2) ≤ σ(f(x1), f(x2)). We call this category Per H .
Adding to Per H total, functional, relational and strict relations as new morphisms, one
finds the topos obtained from the localic tripos over H by the tripos-to-topos construction
[13], which is known to be the topos of sheaves over H [31]. It is proved in [13] that the
topos is equivalent to the full subcategory of Per H on coarse objects, i.e. objects right
orthogonal to those arrows that are epic and monic. This result perfectly falls into our
setting: the category Per H is the base of the relational doctrine that sends ⟨⟨X, ρ⟩, ⟨Y, σ⟩⟩
to relational and strict relations from ⟨X, ρ⟩ to ⟨Y, σ⟩, i.e. bimodules in the sense of
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Example 4.10(3); this doctrine has singleton objects, and the strongly Cauchy-complete
-objects in Per H are the coarse ones.

5. An application: Stone-Čech compactification via relational doctrines

In Example 2.5(6) we have considered a relational doctrine over the category of topolog-
ical spaces, showing then in Example 3.8(6) and Example 4.10(5) that strongly Cauchy-
complete objects in that doctrine are exactly the compact Hausdorff spaces, which admit
a Cauchy-completion via the well-known Stone-Čech compactification. It is known that
the category of topological spaces and continuous maps can be seen as a category of lax
algebras for the ultrafilter monad on Set (with its canonical relational extension) [2]; while
usual algebras for this monad are precisely compact Hausdorff spaces. In monoidal topol-
ogy [17], this structure is generalised taking an arbitrary monad on Set and considering
V -valued relations, whre V is a quantale, leading to the notion of ⟨T, V ⟩-space. For such
spaces one can identify compact Hausorff ones and describe a Stone-Čech compactification
functor [8]. In this section, we will rephrase these notions from monoidal topology in the
language of relational doctrines, generalising Example 2.5(6). To this end, we will first re-
call some basic properties of monads on relational doctrines, i.e., monads in the 2-category
RD, focusing on the associated doctrine of algebras and closed relations, which plays the
role of compact Hausdorff spaces. Then, we will define a category of lax algebras for the
monad, which extends the usual category of algebras, representing all topological spaces.
Finally, under suitable assumptions, we will construct in elementary terms a Stone-Čech
compactification, that is, a left adjoint of the inclusion of usual algebras into lax ones,
proving that the former ones are the strongly Cauchy-complete objects of a doctrine on
the latter ones.

Let us fix throughout this section a relational doctrine R : (C × C )op → Pos . Following
[35], a monad T = ⟨T, η, µ⟩ on R consists of a 1-arrow T : R → R and two 2-arrows
η : IdR ⇒ T and µ : T 2 ⇒ T , satisfying the usual monad laws, i.e., µ(ηT ) = idT = µ(Tη)
and µ(µT ) = µ(Tµ). Adapting from [11], this means that we have

• a monad T̂ = ⟨T̂ , η, µ⟩ on the base category C such that

• for all objects X, Y in C and α ∈ R(X, Y ), the following inequalities hold:

α ≤ ΓηX ;TX,Y (α) ; Γ
⊥
ηY

T T̂X,T̂Y (TX,Y (α)) ≤ ΓµX ;TX,Y (α) ; Γ
⊥
µY

We denote by C T̂ the category of T̂-algebras and their homomorphisms. Let ⟨X, a⟩ and

⟨Y, b⟩ be T̂-algebras. A relation α in R(X, Y ) is a, b-closed if Γ⊥
a ;TX,Y (α) ; Γg ≤ α or,

equivalently, TX,Y (α) ; Γb ≤ Γa ;α. We define a functor RT : (C T̂ × C T̂)op → Pos where
RT(⟨X, a⟩, ⟨Y, b⟩) is the suborder on a, b-closed relations and RT

f,g = Rf,g.

5.1. Proposition. The functor RT is a relational doctrine where composition, identities
and converse are as in R.
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Proof. Let ⟨X, a⟩, ⟨Y, b⟩ and ⟨Z, c⟩ be T̂-algebras and α ∈ RT(⟨X, a⟩, ⟨Y, b⟩) and β ∈
RT(⟨Y, b⟩, ⟨Z, c⟩) be closed relations. It suffices to check the following facts.

• α ; β is a, c-closed. We have

Γ⊥
a ;TX,Z(α ; β) ; Γc = Γ⊥

a ;TX,Y (α) ;T Y,Z(β) ; Γc

≤ Γ⊥
a ;TX,Y (α) ; Γb ; Γ

⊥
b ;T Y,Z(β) ; Γc Γb is total

≤ α ; β α and β are closed

• dX is a, a-closed. We have Γ⊥
a ;TX,X(dX) ; Γa = Γ⊥

a ; Γa ≤ dX , as Γa is functional.

• α⊥ is b, a-closed. We have Γ⊥
b ;α⊥ ; Γa = (Γ⊥

a ;α ; Γb)
⊥ ≤ α⊥, because α is a, b-closed.

5.2. Remark. Adapting results in [11], we can show that the doctrine RT is the Eilenber-
Moore object [35] for the monad T in RD, that is, for every relational doctrine S, there
is a natural isomorphism of categories

RD(S,RT) ∼= Mnd(RD)(⟨S, Id⟩, ⟨R,T⟩)
where Mnd(RD) is the 2-category of monads in RD. Note that, in order to prove this
result, the fact that relational doctrines have left adjoints along all arrows is essential.

We now define the category T-Sp of T-spaces as follows:

objects are pairs ⟨X,ϕ⟩ where X is an object of C and ϕ is relation in R(T̂X,X) such
that

dX ≤ ΓηX ;ϕ and T T̂X,X(ϕ) ;ϕ ≤ ΓµX ;ϕ

or, equivalently,

Γ⊥
ηX

≤ ϕ and Γ⊥
µX

;T T̂X,X(ϕ) ;ϕ ≤ ϕ

arrows f : ⟨X,ϕ⟩ → ⟨Y, ψ⟩ are arrows f : X → Y in C such that ϕ ≤ ΓT̂ f ;ψ ; Γ⊥
f or,

equivalently, ϕ ; Γf ≤ ΓT̂ f ;ψ.

Following monoidal topology, the objects ⟨X,ϕ⟩ of this category are regarded as “conver-

gence spaces”: X is the object of points, T̂X is an object of “generalised sequences” of
points in X and ϕ is a convergence relation, associating generalised sequences with their
limit points. Similarly, arrows f : ⟨X,ϕ⟩ → ⟨Y, ψ⟩ are arrows preserving the convergence
relation, i.e. continuous arrows.

We can see T̂-algebras as T-spaces by a functor G : C T̂ → T-Sp defined as follows:

G⟨X, a⟩ = ⟨X,Γa⟩ Gf = f

Essentially, this functor shows that every T̂-algebra can be regarded as a T-space where
the convergence relation is the graph of an arrow. Note also that G is always faithful,
but not necessarily full. Indeed, arrows in C T̂ must satisfy a commutative diagram, while
those in T-Sp need only to preserve the convergence relation. However, the following
holds.
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5.3. Proposition. If R is extensional, then G is full.

Proof. Let ⟨X, a⟩ and ⟨Y, b⟩ be T̂-algebras and f : ⟨X,Γa⟩ → ⟨Y,Γb⟩ be an arrow in
T-Sp. Then, we have Γf◦a = Γa ; Γf ≤ ΓT̂ f ; Γb = Γb◦T̂ f , which, by Proposition 3.1,

implies Γf◦a = Γb◦T̂ f . Hence, by extensionality we get f ◦ a = b ◦ T̂ f , proving that

f : ⟨X, a⟩ → ⟨Y, b⟩ is an arrow in C T̂.

A T-space ⟨X,ϕ⟩ is said to be compact Hausdorff if ϕ is functional and total, that is,
every generalised sequence converges exactly to one limit point. We denote by T-Sp

ch
the

full subcategory of T-Sp spanned by compact Hausdorff T-spaces. Clearly, the functor

G lands into T-Sp
ch
, hence every T̂-algebra, when regarded as a T-space, is compact

Hausdorff. However, the corestriction of G to T-Sp
ch
, benoted by Gch, is not (essentially)

surjective in general, because, without the rule of unique choice, functional and total
relations are not necessarily graphs of arrows. Hence, T̂-algebras are compact Hausdorff
T-spaces with the additional property that convergence can be “effectively computed”,
that is, it is described by an arrow in the base rather than by a relation.

We can extend the doctrine RT to T-Sp
ch

in such a way that Gch extends to a change-

of-base 1-arrow in RD. We define a functor RTch : (T-Sp
ch
× T-Sp

ch
)op → Pos , where

RTch(⟨X,ϕ⟩, ⟨Y, ψ⟩) is the suborder of R(X, Y ) on ϕ, ψ-closed relations, that is, those α
in R(X, Y ) such that ϕ⊥ ;TX,Y (α) ;ψ ≤ α, and RTch

f,g = Rf,g. It is easy to see that RTch is
a relational doctrine with the relational structure inherited from R.

5.4. Proposition.

1. If RTch satisfies (sruc), then RTch and RT are isomorphic.

2. If R satisfies (sruc), then RTch satisfies (sruc) as well.

Proof. Item 1. It suffices to prove that Gch is an isomorphism of categories. Let ⟨X,ϕ⟩ be
an object of T-Sp

ch
. Then, ϕ is a functional and total relation in RTch(⟨T̂X,ΓµX ⟩, ⟨X,ϕ⟩).

By (sruc), we get a unique arrow a : ⟨T̂X,ΓµX ⟩ → ⟨X,ϕ⟩ such that Γa = ϕ. By definition
of T-space and Proposition 3.1, we get the equalities Γa◦ηX = ΓidX and Γa◦µX = Γa◦T̂ a.

Since idX and a ◦ T̂ a are arrows in T-Sp
ch
, the equalities above imply that a ◦ ηX and

a ◦ µX are arrows as well. Thus, since (sruc) implies extensionality by Proposition 3.6,

we derive a ◦ ηX = idX and a ◦ µX = a ◦ T̂ a, that is, ⟨X, a⟩ is a T̂-algebra. Since a is
uniquely determined, this proves that Gch is bijective on objects.

Because we already know that Gch is faithful, to conclude we just need to check that
it is full. Let f : ⟨X,Γa⟩ → ⟨Y,Γb⟩ be an arrow in T-Sp

ch
. We have that Γf◦a = Γa ; Γf ≤

ΓT̂ f ; Γb = Γb◦T̂ f , which by Proposition 3.1 implies Γf◦a = Γb◦T̂ f . Since f ◦ a and b ◦ T̂ f
are parallel arrows in T-Sp

ch
, by extensionality we get f ◦ a = b ◦ T̂ f , proving that

f : ⟨X, a⟩ → ⟨Y, b⟩ is a T̂-algebra homomorphism, as needed.
Item 2. Let α be a functional and total relation in RTch(⟨X,ϕ⟩, ⟨Y, ψ⟩). Then, it is a

functional and total relation in R(X, Y ) and so by (sruc) there is a unique arrow f : X →



272 FRANCESCO DAGNINO AND FABIO PASQUALI

Y in C such that Γf = α. Now, since α is also ϕ, ψ-closed, we have ϕ⊥ ;TX,Y (Γf ) ; Γψ ≤ Γf ,
which implies ΓT̂ f ;ψ ≤ ϕ ; Γf and, by Proposition 3.1, ΓT̂ f ;ψ = ϕ ; Γf . Therefore, we

conclude that ϕ ≤ ΓT̂ f ;ψ ; Γ⊥
f , proving that f : ⟨X,ϕ⟩ → ⟨Y, ψ⟩ is an arrow in T-Sp

ch
, as

needed.

In summary, we have two slightly different doctrines that could play the role of com-
pact Hausdorff spaces, which coincide when R has the strong rule of unique choice. In the
following, we will work with RT, but all results can be easily recasted to RTch. Further-
more, at the end, to apply Corollary 4.4, we will need to assume that R satisfies (sruc),
thus making the choice between RT and RTch irrelevant.

We now aim at constructing a left adjoint of G. To this end, we will use quotients,
so let us start by recalling from [10] how one can talk about quotients within a relational
doctrine.

Let X be an object of C . An R-equivalence relation on X is a relation ρ in R(X,X)
satisfying dX ≤ ρ (reflexivity), ρ⊥ ≤ ρ (symmetry) and ρ ; ρ ≤ ρ (transitivity). A quotient
arrow of ρ is an arrow q : X → W in C such that ρ ≤ Γq ; Γ

⊥
q and, for every arrow

f : X → Z with ρ ≤ Γf ; Γ
⊥
f , there is a unique arrow h : W → Z such that f = h ◦ q.

Roughly, a quotient arrow of ρ is the “smallest” arrow q whose kernel Γq ; Γ
⊥
q is larger

than ρ, that is, mapping ρ-equivalent elements to equal ones. We say that R has quotients
if every R-equivalence relation admits a quotient arrow.

5.5. Remark. Quotient arrows in general are not very well-behaved and usually one
requires them to satisfy also additional conditions such as effectiveness and surjectivity
[10]. A quotient arrow q is effective if ρ = Γq ; Γ

⊥
q , that is, elements which are equal under

q are ρ-equivalent, and it is surjective (a.k.a. descent in [10] or of effective descent in
[26]) if dW = Γ⊥

q ; Γq, that is, q is R-surjective. We do not need these conditions in the
following, hence we do not assume them.

A 1-arrow F : R → S always preserves equivalence relations: if ρ is an R-equivalence
relation on X, then FX,X(ρ) is an S-equivalence relation on F̂X. Then, when R and S
have quotients, we say that F preserves them if it maps quotient arrows of ρ in R to
quotient arrows of FX,X(ρ) in S.

From now on, we make the following assumption.

5.6. Assumption. R has quotients and T̂ preserves them.

5.7. Remark. In [10] we present a universal construction which freely adds (effective
descent) quotients to any relational doctrine. Hence, if Assumption 5.6 does not hold, we
can always force it by applying this quotient completion.

The nice fact is that, under Assumption 5.6, we can prove that the doctrine of T̂-
algebras and closed relations has quotients as well.

5.8. Theorem. RT has quotients.
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Proof. Let ⟨X, a⟩ be a T̂-algebra and ρ an equivalence relation in RT(⟨X, a⟩, ⟨X, a⟩).
Then, ρ is an R-equivalence relation on X, hence, there is a quotient arrow q : X → W
in C . Since T preserves quotients, T̂ q is a quotient arrow of the R-equivalence relation
TX,X(ρ) on T̂X. Let f = q ◦ a, then we have

TX,X(ρ) ≤ Γa ; ρ ; Γ
⊥
a ρ is a, a-closed

≤ Γa ; Γq ; Γ
⊥
q ; Γ⊥

a q is a quotient

= Γf ; Γ
⊥
f

Hence, by the universal property of q, there is a unique arrow b : T̂W → W making the
following diagram commute:

T̂X

a

��

T̂ q // T̂W

b

��
X

q //W

If we prove that b is a T̂-algebra, this diagram shows that q is a T̂-algebra homomorphism.
This follows by the diagrams below, which commute because a is a T̂-algebra and q and
T̂ q are quotient arrows.

X

idX

��

ηX
��

q //W

idW





ηX
��

T̂X
T̂ q //

a

��

T̂W

b

��
X

q //W

T̂ 2X
T̂ 2q //

T̂ a

��

µX

||

T̂ 2W

T̂ b

��

µW{{

T̂X
T̂ q

//

a

��

T̂W

b

��

T̂X
T̂ q

//

a
{{

T̂W

b{{
X q

//W

To conclude, consider a T̂ -algebra homomorphism g : ⟨X, a⟩ → ⟨Z, c⟩ such that ρ ≤
Γg ; Γ

⊥
g . Since q is a quotient arrow in R, there is a unique arrow h : W → Z such that

g = h ◦ q. Note that we also have TX,X(ρ) ≤ ΓT̂ g ; Γ
⊥
T̂ g
, as T preserves graphs. Therefore,

the following diagram, which commutes since g is a T̂-algebra homomorphism and q and
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T̂ q are quotient arrows in R, shows that h is a T̂-algebra homomorphism as well.

T̂X
T̂ q

**
T̂ g !!

a

��

T̂Z
T̂ h

//

c

��

T̂W

b

��

X
q

**
g

""
Z

h
//W

We will define the action of the left adjoint of G on a T-space ⟨X,ϕ⟩ as a suitable

quotient of the free T̂-algebra ⟨X,µX⟩ by a suitable equivalence relation, which essentially
says that two generalised sequences are equivalent if they have a common limit point
according to ϕ. However, in order to construct it, we need a further assumption on R.

5.9. Assumption. For every T̂-algebra ⟨X, a⟩ and every relation α in R(X,X), there
is a reflexive and transitive a, a-closed relation J⋆a(α) in R(X,X) such that α ≤ J⋆a(α)
and, for every reflexive and transitive a, a-closed relation β in R(X,X), if α ≤ β then
J⋆a(α) ≤ β.

5.10. Remark. Essentially, Assumption 5.9 requires that, for every T̂-algebra ⟨X, a⟩,
we can compute the best reflexive, transitive and a, a-closed overapproximation of every
relation in R(X,X). This can be achieved in many ways. For instance, assuming that
the fibres of R are join-semilattices, Assumption 5.9 is equivalent to requiring that, for
every relation α in R(X,X), the monotone function Φa,α on R(X,X) defined by

Φa,α(γ) = α ∨ dX ∨ γ ; γ ∨ Γ⊥
a ;TX,X(γ) ; Γa

has a least (pre-)fixed point. For example, this is assured by one of the following condition.

• If the fibres of R are complete lattices, then the Knaster-Tarski fixed point theorem
ensures that every monotone function, like Φa,α has a least fixed point.

• If fibres of R have suprema of ω-chains, which are preserved by relational composi-
tion and by all components of T , then the Kleene fixed point theorem ensures that
every ω-continuous function, like Φa,α, has a least fixed point.

Theorem 5.12 provides a left adjoint of the functor G : C T̂ → T-Sp that plays the role

of the Stone-Čech compactification.

5.11. Lemma. Let ⟨X, a⟩ be a T̂-algebra. If α is a symmetric relation in R(X,X), then
J⋆a(α) is an R

T-equivalence relation on ⟨X, a⟩.
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Proof. We have that (J⋆a(α))
⊥ is reflexive as dX = d⊥X ≤ (J⋆a(α))

⊥, (J⋆a(α))
⊥ is tran-

sitive as (J⋆a(α))
⊥ ;(J⋆a(α))

⊥ = (J⋆a(α) ; J
⋆
a(α))

⊥ ≤ (J⋆a(α))
⊥, J⋆a(α)

⊥ is a, a-closed as
Γ⊥
a ;TX,X(J

⋆
a(α)

⊥) ; Γa = (Γ⊥
a ;TX,X(J

⋆
a(α)) ; Γa)

⊥ ≤ J⋆a(α)
⊥ and (J⋆a(α))

⊥ extends α as
α = α⊥ ≤ (J⋆a(α))

⊥ (since α is symmetric). Therefore, by definition of J⋆a(α) we conclude
J⋆a(α) ≤ (J⋆a(α))

⊥, proving that J⋆a(α) is symmetric. Then, the thesis follows immediately
by definition of J⋆a(α).

5.12. Theorem. The functor G : C T̂ → T-Sp has a left adjoint SC : T-Sp → C T̂.

Proof. Let ⟨X,ϕ⟩ be a T-space. Consider the relation ρϕ in R(T̂X, T̂X) defined by

ρϕ = J⋆µX (ϕ ;ϕ
⊥)

Since ϕ ;ϕ⊥ is symmetric, by Lemma 5.11, we have that ρϕ is a RT-equivalence on

⟨T̂X, µX⟩. Let qϕ : ⟨T̂X, µX⟩ → ⟨Xϕ, aϕ⟩ be a quotient arrow of ρϕ, which exists by
Theorem 5.8, and consider the arrow ζ⟨X,ϕ⟩ = qϕ ◦ ηX : X → Xϕ. We have that

ϕ ; Γζ⟨X,ϕ⟩ = ϕ ; ΓηX ; Γqϕ

≤ ϕ ;ϕ⊥ ; Γqϕ ⟨X,ϕ⟩ is a T-space
≤ ρϕ ; Γqϕ

≤ Γqϕ qϕ is a quotient

= ΓT̂ ηX ; ΓµX ; Γqϕ µX ◦ T̂ ηX = idT̂X

= ΓT̂ ηX ; ΓT̂ qϕ ; Γaϕ qϕ is a T̂-algebra homomorphism

= ΓT̂ ζ⟨X,ϕ⟩
; Γaϕ

proving that ζ⟨X,ϕ⟩ : ⟨X,ϕ⟩ → ⟨Xϕ,Γaϕ⟩ is an arrow in T-Sp. To conclude, we need to
show that ζ⟨X,ϕ⟩ is universal.

Consider a T̂-algebra ⟨Z, c⟩ and an arrow f : ⟨X,ϕ⟩ → ⟨Z,Γc⟩ in T-Sp and set g =

c ◦ T̂ f . We have that

ϕ ;ϕ⊥ ≤ ϕ ; Γf ; Γ
⊥
f ;ϕ Γf is total

≤ ΓT̂ f ; Γc ; Γ
⊥
c ; Γ⊥

f f is an arrow in T-Sp
= Γg ; Γ

⊥
g

that is, Γg ; Γ
⊥
g extends ϕ ;ϕ⊥. Moreover, g : ⟨T̂X, µX⟩ → ⟨Z, c⟩ is a T̂-algebra homo-

morphism, hence Γg ; Γ
⊥
g is a RT-equivalence relation on ⟨T̂X, µX⟩ and, in particular, it

is reflexive, transitive and µX , µX-closed. Therefore, by definition of ρϕ, we deduce that

ρϕ ≤ Γg ; Γ
⊥
g . By the universal property of qϕ, we conclude that there is a unique T̂-algebra
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homomorphism f † : ⟨Xϕ⟩ → ⟨Z, c⟩ making the following diagram commute

X
ηX //

f

��

T̂X
qϕ //

T̂ f
��

Xϕ

f†

��
Z

ηZ //

idZ

;;T̂Z c // Z

and this proves the thesis.

This results provides an elementary description of a Stone-Čech compactification, re-
quiring few and simple assumptions on the “logic” of the doctrine R. In particular, we do
not require the base category to be complete, while completeness is an essential hypothe-
sis for e.g. [8]. On the other hand, [8] works with lax monads, that in our context would
mean requiring T only to laxly preserve relational composition and identities. Therefore,
a precise comparison between the two constructions is still an open question, which we
left for future work.

We conclude the paper, showing that, when R satisfies the strong rule of unique
choice, the compact Hausdorff T-spaces arise as the strongly Cauchy-complete objects
of a relational doctrine on T-Sp, obtained by change-of-base along the compactification
functor SC, thus generalizing Example 4.10(5).

5.13. Corollary. If R satisfies (sruc), then RT and RT(SC × SC)op! are equivalent.

Proof. Since R satisfies (sruc), by Proposition 5.4, we deduce that RT satisfies (sruc)
as well. Moreover, since R is extensional by Proposition 3.6, we deduce that G is full, by
Proposition 5.3. Hence, by Theorem 5.12, C T̂ is a reflective subcategory of T-Sp and so
the thesis follows from Corollary 4.4.

5.14. Example. Let Rel : (Set × Set )op → Pos be the doctrine of set-theoretic relations.
This doctrine has quotients, the fibres are complete lattices and also satisfies the strong
rule of unique choice. Let T̂ = ⟨T̂ , η, µ⟩ be a monad on Set , where T̂ preserves weak
pullbacks. Then, using the Barr extension [2], this induces a monad T on Rel and, assuming
the Axiom of Choice, this monad preserves quotients in Rel. Therefore, Assumptions 5.6
and 5.9 are satisfied and Corollary 5.13 applies.

References
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URL: http://eudml.org/doc/91378.

[6] Aurelio Carboni and Ross Street. Order ideals in categories. Pacific Journal of
Mathematics, 124(2):275 – 288, 1986.

[7] Aurelio Carboni and Rober Walters. Cartesian bicategories I. Journal of Pure and
Applied Algebra, 49(1-2):11–32, 1987.

[8] Maria Manuel Clementino and Dirk Hofmann. Topological features of lax algebras.
Applied Categorical Structures, 11:267–286, 2003. doi:10.1023/A:1024274315778.

[9] Francesco Dagnino and Fabio Pasquali. Logical foundations of quantitative equal-
ity. In Christel Baier and Dana Fisman, editors, Proceedings of the 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2022, pages 16:1–16:13.
ACM, 2022. doi:10.1145/3531130.3533337.

[10] Francesco Dagnino and Fabio Pasquali. Quotients and extensionality in relational
doctrines. In Marco Gaboardi and Femke van Raamsdonk, editors, 8th International
Conference on Formal Structures for Computation and Deduction, FSCD 2023, vol-
ume 260 of LIPIcs, pages 25:1–25:23. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2023. doi:10.4230/LIPIcs.FSCD.2023.25.

[11] Francesco Dagnino and Giuseppe Rosolini. Doctrines, modalities and comonads.
Mathematical Structures in Computer Science, 31(7):769–798, 2021. doi:10.1017/

S0960129521000207.

[12] M. P. Fourman, D. S. Scott, and C. J. Mulvey. Sheaves and logic. Journal of Symbolic
Logic, 48(4):1201–1203, 1983. doi:10.2307/2273683.

[13] Jonas Frey. Triposes, q-toposes and toposes. Annals of Pure and Applied Logic,
166(2):232–259, 2015. URL: https://www.sciencedirect.com/science/article/
pii/S0168007214001109, doi:https://doi.org/10.1016/j.apal.2014.10.005.

http://eudml.org/doc/91301
http://eudml.org/doc/91378
https://doi.org/10.1023/A:1024274315778
https://doi.org/10.1145/3531130.3533337
https://doi.org/10.4230/LIPIcs.FSCD.2023.25
https://doi.org/10.1017/S0960129521000207
https://doi.org/10.1017/S0960129521000207
https://doi.org/10.2307/2273683
https://www.sciencedirect.com/science/article/pii/S0168007214001109
https://www.sciencedirect.com/science/article/pii/S0168007214001109
https://doi.org/https://doi.org/10.1016/j.apal.2014.10.005


278 FRANCESCO DAGNINO AND FABIO PASQUALI

[14] Peter J. Freyd and Andre Scedrov. Categories, allegories, volume 39 of North-Holland
mathematical library. North-Holland, 1990.

[15] Steven Givant. The calculus of relations as a foundation for mathematics. Journal
of Automated Reasoning, 37(4):277–322, 2006. doi:10.1007/s10817-006-9062-x.

[16] Denis Higgs. Injectivity in the topos of complete Heyting algebra valued sets. Cana-
dian Journal of Mathematics, 36(3):550–568, 1984. doi:10.4153/CJM-1984-034-4.

[17] Dirk Hofmann, Gavin J Seal, and Walter Tholen. Monoidal Topology: A Categorical
Approach to Order, Metric, and Topology, volume 153. Cambridge University Press,
2014.

[18] J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts. Tripos Theory. Math. Proc. Camb.
Phil. Soc., 88:205–232, 1980.

[19] Bart P. F. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in
logic and the foundations of mathematics. North-Holland, 2001. URL: http://www.
elsevierdirect.com/product.jsp?isbn=9780444508539.

[20] Joachim Lambek. Diagram chasing in ordered categories with involution. Journal of
Pure and Applied Algebra, 143(1):293–307, 1999. doi:https://doi.org/10.1016/

S0022-4049(98)00115-7.

[21] Michael Lambert. Double categories of relations. Theory Appl. Categ., 38(33):1249–
1283, 2022.

[22] F. Wiliam Lawvere. Adjointness in foundations. Dialectica, 23:281–296, 1969. also
available as Repr. Theory Appl. Categ., 16 (2006) 1–16. doi:10.1111/j.1746-8361.
1969.tb01194.x.

[23] F. William Lawvere. Equality in hyperdoctrines and comprehension schema as an
adjoint functor. In A. Heller, editor, Proceedings of the New York Symposium on Ap-
plication of Categorical Algebra, pages 1–14. American Mathematical Society, 1970.

[24] F. William Lawvere. Metric spaces, generalized logic, and closed categories. Rendi-
conti del Seminario Matematico e Fisico di Milano, 43:135–166, 1973. also available
as Repr. Theory Appl. Categ., 1 (2002), 1–37.

[25] Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic. Springer,
1992.

[26] Maria Emilia Maietti and Giuseppe Rosolini. Quotient completion for the foundation
of constructive mathematics. Logica Universalis, 7(3):371–402, 2013. doi:10.1007/
s11787-013-0080-2.

https://doi.org/10.1007/s10817-006-9062-x
https://doi.org/10.4153/CJM-1984-034-4
http://www.elsevierdirect.com/product.jsp?isbn=9780444508539
http://www.elsevierdirect.com/product.jsp?isbn=9780444508539
https://doi.org/https://doi.org/10.1016/S0022-4049(98)00115-7
https://doi.org/https://doi.org/10.1016/S0022-4049(98)00115-7
https://doi.org/10.1111/j.1746-8361.1969.tb01194.x
https://doi.org/10.1111/j.1746-8361.1969.tb01194.x
https://doi.org/10.1007/s11787-013-0080-2
https://doi.org/10.1007/s11787-013-0080-2


CAUCHY COMPLETIONS AND UNIQUE CHOICE IN RELATIONAL DOCTRINES 279

[27] Maria Emilia Maietti and Giuseppe Rosolini. Relating quotient completions via cate-
gorical logic. In Dieter Probst and Peter Schuster (eds.), editors, Concepts of Proof in
Mathematics, Philosophy, and Computer Science, pages 229–250. De Gruyter, 2016.

[28] M.E. Maietti, F. Pasquali, and G. Rosolini. Triposes, exact completions, and Hilbert’s
ϵ-operator. Tbilisi Math. J., 10(3):141–166, December 2017.

[29] Fabio Pasquali. A characterization of those categories whose internal logic is
Hilbert’s ϵ-calculus. Annals of Pure and Applied Logic, 2018. URL: http://www.

sciencedirect.com/science/article/pii/S0168007218301301, doi:https://

doi.org/10.1016/j.apal.2018.11.003.

[30] Charles S. Peirce. The logic of relatives. The Monist, 7(2):161–217, 1897.

[31] A.M. Pitts. Tripos theory in retrospect. Mathematical Structures in Computer Sci-
ence, 12(3):265–279, 2002. doi:10.1016/S1571-0661(04)00107-0.

[32] Andrew M. Pitts. Categorical logic. In Handbook of logic in computer science, Vol.
5, volume 5 of Handbook of Logic in Computer Science, pages 39–128. Oxford Univ.
Press, New York, 2000.

[33] Giuseppe Rosolini. A note on Cauchy completeness for preorders. Rivista di Matem-
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