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CATEGORIES WHICH ARE VARIETIES OF CLASSICAL OR
ORDERED ALGEBRAS

Dedicated to the memory of Bill Lawvere

JIŘÍ ADÁMEK∗

Abstract. Following ideas of Lawvere and Linton we prove that classical varieties are
precisely the exact categories with a varietal generator. This means a strong generator
which is abstractly finite and regularly projective.

An analogous characterization of varieties of ordered algebras is also presented. We
work with order-enriched categories, and introduce the concept of subcongruence (cor-
responding to congruence in ordinary categories): it is a relation which is order-reflexive
and transitive. Varieties of ordered algebras are precisely the categories with effective
subcongruences and a subvarietal generator. This means a strong generator which is
abstractly finite and subregularly projective.

1. Introduction

One of the fundamental achievements of the thesis of Bill Lawvere was a characterization
of categories equivalent to varieties of (finitary, one-sorted) algebras. He introduced the
concept of an abstractly finite object G (weaker than the concept of a finitely generated
object, later used by Gabriel and Ulmer): every morphism from G to its copower factorizes
through a finite subcopower. Lawvere formulated a theorem stating that a category is
equivalent to a variety iff it has

(1) Finite limits.

(2) Effective congruences.

(3) A generator with copowers which is abstractly finite and regularly projective (its
hom-functor preserves regular epimorphisms).

Unfortunately, a small correction is needed: in (1) the existence of coequalizers should be
added (since Lawvere uses them twice in his proof), and the generator in (3) needs to be
regular (also used in that proof). A category satisfying the three conditions above which,
however, is not equivalent to a variety is presented below (Example 2.14).
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40 JIŘÍ ADÁMEK

Thus Lawvere’s, very elegant, proof is a verification of the following theorem.

1.1. Theorem. A category is equivalent to a variety iff it has

(1) Finite limits and coequalizers.

(2) Effective congruences.

(3) A regular generator G with copowers which is an abstractly finite regular projective.

Actually, Lawvere worked in (2) with effectivity of congruences with respect to G,
but we prove in Proposition 2.12 that this makes no difference in case G is a regular
generator. An improved version of the above theorem was presented in [ARV]: kernel
pairs and reflexive coequalizers are sufficient in (1), and strong (rather than regular)
generator in (3). This leads us to the following concept: A varietal generator is a strong
generator with copowers which is an abstractly finite regular projective.

By applying Linton’s characterization of monadicity over Set, we present a shorter
proof and make one further simplification step: in (1) coequalizers of kernel pairs are
sufficient. This corresponds well to Barr’s concept of an exact category (Def. 2.13 below):
he only assumed that kernel pairs and their coequalizers exist. We obtain the following
result (Theorem 5.8 below).

1.2. Theorem. A category is equivalent to a variety iff it is exact and has a varietal
generator.

Our second topic is a characterization of varieties of ordered algebras. Here one works
with algebras acting on posets so that the operations are monotone. A variety is a full
subcategory presented by inequations between terms. Varieties are enriched categories
over the cartesian closed categoryPos of posets. In [ARO] a characterization of varieties of
ordered algebra has been presented, and our purpose is to sharpen and correct that result
slightly. For that we introduce the concept of a subcongruence. In ordinary categories a
congruence is a reflexive, symmetric and transitive relation. In order-enriched categories,
we lose the symmetry, but gain a stronger property than reflexivity – we call it order-
reflexivity (Definiton 4.8). A subcongruence is an order-reflexive and transitive relation.
(Example: in Pos itself a subcongruene on A is a transitive relation containing the order
of A.) Given a morphism f : X // Y , its subkernel pair r0, r1 : R //X (universal with
respect to f ·r0 ≤ f ·r1) is a subcongruence. We prove that every variety of ordered algebras
has effective subcongruences : each subcongruence is the subkernel pair of a morphism.

Whereas reflexive coequalizers play an important role for classical varieties (because
they are preserved by the forgetful functors to Set), for ordered varieties reflexive coin-
serters play the analogous role. A subregular epimorphism is a morphism which is a coin-
serter of a reflexive pair. In varieties these are precisley the surjective homomorphisms.
An object whose hom-functor to Pos preserves subregular epimorphisms is a subregular
projective. The concept corresponding to the varietal generators in ordinary categories is
a subvarietal generator : a strong generator with copowers which is an abstractly finite
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subregular projective. Example: in every variety the free algebra on one generator is a
varietal generator. (Sorry about the double meaning of the word generator...)

The following result (see Theorem 5.8 below) slightly improves and corrects the char-
acterization presented in [ARO]:

1.3. Theorem. An order-enriched category is equivalent to a variety of ordered algebras
iff it has (1) a subvarietal generator, (2) effective subcongruences, and (3) subkernel pairs
and reflexive coinserters.

Related Work Vitale characterized monadic categories over Set as precisely the finitely
complete, exact categories with a regularly projective regular generator ([V, Prop. 3.2]).
He does not assume finite limits, but uses them all over his proof. Our proof, based on
Linton’s theorem 2.18, shows that finite limits (beyond kernel pairs) need not be assumed,
and a regularly projective strong generator is sufficient to characterize varieties.

Similarly, Rosický and the author characterized classical varieties using the existence of
reflexive coequalizers (rather than just coequalizers of kernel pairs) – otherwise Corollary
3.6 in [ARV] is the same as Corollary 5.10 below. Our Theorem 2.19 is just a small
improvement, however, precisely that needed for getting the characterization using Barr’s
exactness. Moreover, the proof we present is simpler than that in [ARV].

A closely related result is a recent characterization of varieties of ordered algebras due
to Rosický and the author: in [ARO] subregular epimorphisms and subregular projectives
have been introduced, and a characterization theorem was proved that differs from Theo-
rem 2.19 essentially by not working with suncongruences, and by assuming the generator
to be subregular. Since small gaps appear in op. cit., we present a corrected version.

Our concept of subcongruence is new. It is related to congruences due to Kurz and
Velebil [KV] for poset-enriched categories and Bourke and Garner [BG] in general enriched
categories, but those definitions are quite more technical. See Section 6 for details.

Acknowledgement The author is grateful to Jǐŕı Velebil for consultations on enriched
categories, and to the referee for a number of useful comments.

Note Added in Proof The author has found out too late that the concept of subcon-
gruence was already introduced (under the name congruence) by Vasileios Aravantinos-
Sotiropoulos in his PhD thesis ’Aspects of Regular and Exact Completions’, Univeritsité
Catolique de Louvain, 2001.

2. Varieties

Classical (finitary, one-sorted) varieties were characterized by Lawvere. We explain why
a small correction is needed, and present some simplifications.

Throughout the paper we work with algebras of a finitary signature Σ = (Σn)n ∈ kN ,
where Σn is the set of all n-ary operation symbols. For an object G in a category K with
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copowers (denoted by M ·G for all sets M) we obtain the canonical morphisms

[f ] : K(G,X) ·G =
∐

f : G //X

G −→ X (X ∈ objK) .

Recall that G is a generator if all canonical morphisms are epic, a strong generator if they
are extremally epic (do not factorize through a proper subobject of X), and a regular
generator if they are regular epimorphisms. Recall further that G is a regular projective
if for each regular epimorphism e : X // Y all morphisms from G to Y factorize through
e. Shortly: K(G,−) preserves regular epimorphisms.

Lawvere introduced the following concept; he attributed it to Freyd.

2.1. Definition. [L] An object G is abstractly finite if every morphism from G to a
copower M ·G factorizes through a finite subcopower.

That is, for every set M and every morphism f : G //M ·G there exists a finite subset
u : M0 ↪→ M such that f factorizes through u ·G : M0 ·G //M ·G (the morphism induced
by u).

2.2. Example. (1) In Set this means that G is finite, in the category of vector spaces
that G is finite-dimensional.

(2) Every finite poset is abstractly finite in Pos. But also the linearly ordered set R
is. In fact, every poset with finitely many connected components is abstractly finite.

(3) The free algebra on one generator is abstractly finite in the category of Σ-algebras.
This fololows from the fact that the copower indexed by a set M is the free algebra on
M .

2.3. Definition. A varietal generator is a strong generator with copowers which is an
abstractly finite regular projective.

2.4. Lemma. Let K have kernel pairs and their coequalizers. Every regularly projective
strong generator G with copowers is a regular generator.

Proof. For every object X let us prove that the morphism

[h] :
∐

h : G //X

G //X

is the coequalizer of its kernel pair r0, r1. Let e be the coequalizer of that pair, and m
the unique factorization:

R
r1 //
r0
//

∐
h : G //X

G

e

��

[h] // X

G

u′
0

<<

u′
1

<<

u1 //
u0

//

v

OO

Y

m

;;
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Since [h] is a strong epimorphism, so is m. Thus it sufficient to prove that m is monic:
then it is invertible. Since G is a generator, we can restrict ourselves to parallel pairs with
domain G.

Given u0, u1 : G // Y with m · u0 = m · u1, we verify u0 = u1. Since G is a regular
projective, we have u′

i with ui = e·u′
i (i = 0, 1). Fromm·u0 = m·u1 we get [h]·u′

0 = [h]·u′
1.

Since r0, r1 is the kernel pair of [h], there is v : G //R with ri · v = u′
i (i = 0, 1). Thus

u0 = e · r0 · v = e · r1 · v = u1 .

Recall that an object is finitely generated if irs hom-hom-functor preserves directed
colimits of monomorphisms.

2.5. Lemma. Let K be a cocomplete category with kernel pairs.
(1) Every finitely generated object is abstractly finite.
(2) Every abstractly finite regular generator is finitely generated.

Proof. (1) Just use that for M infinite the copower M · G is the directed colimit of all
M0 ·G for ϕ ̸= M0 ⊆ M finite. The connecting morphisms are split monomorphisms.

(2) Let G be an abstractly finite regular generator. We first prove an auxilliary fact:
(a) Every morphism f : G //

∐
i∈I

Ai factorizes through a finite subcopower of
∐
i∈I

Ai.

Indeed, each of the canonical morphisms

ci = [h] :
∐

h : G //Ai

G // Ai

is a regular epimorphism . Thus the morphism

c =
∐
i∈I

ci :
∐
i∈I

∐
h : G //Ai

G //
∐
i∈I

Ai

is also a regular epimorphism. As G is a regular projective, there exists a factorization
of f as f = c · g for some g : G //

∐
i∈I

∐
h : G //Ai

G. Since g factorizes through a finite

subcoproduct, we have a finite subset J ⊆ I such that g factorizes through the subcopower∐
i∈J

∐
h : G //Ai

G. Consequently f = c · g factorizes through
∐
i∈J

Ai, as claimed.

(b) We prove that G is finitely generated. Given a colimit ai : Ai
// A (i ∈ I) of a

directed diagram D of monomorphisms, our task is to prove that K(G,−) preserves it.
In other words: every morphism f : G // A factorizes through some ai. The standard
construction of colimits via coproducts and coequalizers proves that [ai] :

∐
i∈I

Ai
// A

is a regular epimorphism. Thus f factorizes through it. By (a), f factorizes through
[aj]j∈J :

∐
j∈J

Aj
// A for some finite subset J ⊆ I. The diagram D is directed, so we can

find an upper bound i ∈ I of J . Then [aj]j∈J factorizes through ai, thus so does f .
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Recall that regular epimorphisms are stable under pullback if in every pullback

P
f ′

��

e′

  
A

e
��

B

f��
Q

with e a regular epimorphism, so is e′.

2.6. Lemma. Let G be a regularly projective strong generator with copowers. If K has
kernel pairs and their coequalizers, then

(1) It has (Regular Epi, Mono)-factorizations;
(2) Regular epimorphisms are stable under pullback.

Proof. (1) Every morphism f : A // B with kernel pair r0, r1 factorizes as f = m · c,
where c is the coequalizer of r0, r1. The proof that m is monic is analogous to the proof
of Lemma 2.4.

(2) In the above pullback, where e is a regular epimorphism, we observe that every
morphism g : G //B factorizes through e′:

G

h

��

��
g

��

P

f ′

��
e′

��
A

e

��

B

f
��

Q

Indeed, since G is a regular projective, for the composite f · g : G // C there is a fac-
torization (say, h) through e. The universal property of the pullback yields the desired
factorization of g.

Let e′ = m · c be the factorization of e′ as in (1). Then every morphism g : G // B
factorizes also through m, and since G is a strong generator, this proves that m is invert-
ible. Thus e′ is a regular epimorphism.
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2.7. Remark. We recall that in a (not necessarily finitely complete) category a relation
on an object A is represented by a collectively monic (ordered) pair of morphisms

l, r : R // A .

We say that a parallel pair s, s′ : S // A factorizes through the relation if there is
f : S //R with s = l · f and s′ = r · f .

The concept of congruence is usually defined in categories with pullbacks. However,
in general categories there is also a natural definition of congruence: a parallel pair that
every hom-functorK(S,−) takes to a set-theoretical eqivalence relation on the setK(S,R).
Here are the details:

2.8. Definition. A congruence is a relation l, r : R // A which is
(i) Reflexive: l, r are split epimorphisms with a joint splitting. Equivalently: for every

morphism s : S // A the pair s, s factorizes through l, r.
(ii) Symmetric: the pair r, l factorizes through l, r. Equivalently: whenever a pair s,

s′ : S // A factorizes through l, r, then so does s′, s.
(iii) Transitive: given morphisms s, s′, s′′ : S //A such that both pairs s, s′ and s′, s′′

factorize through l, r, then s, s′′ also factorizes through l, r.

2.9. Remark. In finitely complete categories a relation represents a subobject of X2.
Reflexivity means that the diagonal is contained in that subobject. And transitivity
simplifies as follows: given the pullback P of r and l (on the left), the pair l · l̄, r · r̄
factorizes through l, r via a morphism p:

P
l̄
�� ∨ r̄

��
R

l
�� r ��

R

l��
r
��

X X X

P
l̄
��
p

��

r̄
��

R
l
��

R
r
��

X R
l

oo
r
// X

2.10. Example. Let f : A //B be a morphism. Its kernel pair (which is a universal pair
r0, r1 : R //A with f · r0 = f · r1) is a congruence. A category has effective congruences
if every congruence is a kernel pair of some morphism.

2.11. Remark. (1) A parallel pair l, r : R // A is a congruence iff for every object S
the relation

{(l · f, r · f); f : S //R}

on the set K(S,A) is reflexive, symmetric, and transitive.
(2) Lawvere worked, for a given object G, with a relative concept of reflexivity, sym-

metry and transitivity: instead of taking an arbitrary object S as above, he restricted it
to S = G. He then called the relation a congruence with respect to G if the set-theoretical
relation on K(G,A) is an equivalence relation. However, this makes no difference in case
G is a regular generator:
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2.12. Proposition. In any category, if G is a regular generator with copowers, then
every congruence with respect to G is a congruence.

Proof. Let r0, r1 : R // A be a congruence with respect to G. We prove that it is a
congruence.

(1) Reflexivity. Let u0, u1 : U //A be a pair with the coequalizer [h] :
∐

h : G //A
G //A.

Since r0, r1 is reflexive with respect to G, each pair h, h factorizes through r0, r1: there
exists h′ : G //R with h = r0 · h′ = r1 · h′. The morphism [h′] :

∐
h : G //A

G //R merges

u0 and u1:

U
u1 //
u0

//
∐

h : G //A
G

[h] //

[h′]

��

A

R

r1

;;

r0

;;

Indeed, we use that the pair r0, r1 is collectively monic. For r0 we have

r0 · [h′] · ui = [r0 · h′] · ui = [h] · ui

which is independent of i = 0, 1. The same holds for r1. Consequently, [h
′] · u0 = [h′] · u1.

Therefore [h′] factorizes through [h]: we have d : A //R with [h′] = d · [h]. This is a joint
splitting of r0 and r1. Indeed, r0 · d = id because [h] is epic and

r0 · d · [h] = r0 · [d · h] = r0 · [h′] = [r0 · h′] = [h] .

Analogously for r1.

(2) Symmetry. Let u0, u1 : U //
∐

h : G //R
G be a pair with coequalizer

[h] :
∐

h : G //R

G //R.

Then symmetry with respect to G implies that given h : G //R (which is a factorization
of the pair r0 · h, r1 · h through r0, r1), there exists h′ : G // R factorizing r1 · h, r0 · h
through r0, r1. Thus we have the following commutative squares

G
h′

//

h

��

R

r0

��
R r1

// A

G
h′

//

h

��

R

r1

��
R r0

// A

The morphism [h′] :
∐

h : G //R
G // R merges u0 and u1. This is analogous to (1): for r0

we have
r0 · [h′] · ui = [r0 · h′] · ui = [r1 · h] · ui = r1 · [h] · ui
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which is independent of i = 0, 1. The same holds for r1.
The morphism d : R //R defined by [h′] = d · [h] is the desired factorization of r1, r0

through r0, r1. Indeed, r0 = r1 · d because [h] is epic and

r0 · [h] = [r0 · h] = [r1 · h′] = r1 · [h′] = r1 · d · [h] .

Analogously for r1 = r0 · d.
(3) Transitivity. We are given morphisms s, s′, s′′ : S // A for which factorizations t

and t′ through r0, r1 below exist:

S

s

��

t

��

s′

��
A R

r0oo r1 // A

S

s′

__

t′

OO

s′′

??

Our task is to find t′′ : S //R with

s = r0 · t′′ and s′′ = r1 · t′′ .

Since r0, r1 is a transitive relation with respect to G, the set-theoretical relation R̂ on
K(G,R) consisting of all pairs (r0 · h, r1 · h) for h : G // R is transitive. Consider an
arbitrary morphism g : G //S. Due to t, the pair (s · g, s′ · g) lies in R̂; due to t′ the pair
(s′ · g, s′′ · g) also lies there. Thus, (s · g, s′′ · g) ∈ R̂. Hence for each g : G //S there exists
ḡ : G //R with

s · g = r0 · ḡ and s′′ · g = r1 · ḡ .

Let u0, u1 : U //
∐

g : G // S
G be a pair with coequalizer [g] :

∐
g : G // S

G // S. The

morphism [ḡ] :
∐

g : G // S
G //R merges u0, u1. Indeed, for r0 we have

r0 · [ḡ] · ui = [r0 · ḡ] · ui = [s · g] · ui = s · [g] · ui

which is independent of i = 0, 1. The same holds for r1. We thus get a morphism

t′′ : S //R with [ḡ] = t′′ · [g] .

It has the desired properties: s = r0 · t′′ follows from

s · [g] = [s · g] = [r0 · ḡ] = r0 · [ḡ] = r0 · t′′ · [g] .

Analogously for s′′ = r1 · t′′.



48 JIŘÍ ADÁMEK

We now recall Barr-exactness. In his paper [B] Barr does not require finite limits: only
kernel pairs are included in his definition. By the way, congruences are called equivalences
in op. cit.

2.13. Definition. [B] A category is exact if
(1) Kernel pairs and their coequalizers exist.
(2) Congruences are effective.
(3) Regular epimorphisms are stable under pullback.

We have mentioned in the Introduction the claim in Lawvere’s thesis ([L, Thm. 3.2.1])
that varieties are characterized by having finite limits, effective congruences and a gen-
erator with copowers which is an abstractly finite regular projective. Here is a counter-
example.

2.14. Example. The following category Set∗ is not equivalent to a variety: we add to
Set a formal terminal object ∗ (with Set(∗, X) = ∅ for all sets X). Then for the terminal
set 1 we have the monomorphism 1 //∗ demonstrating that no object of Set∗ is a strong
generator. In contrast, free algebras in varieties are strong generators.

The category Set∗ has finite limits: Set is closed under nonempty limits in Set∗. A
product X ×∗ where X is a set is X itself, and there are no new parallel pairs of distinct
morphism in Set∗. Effectivity of congruences in Set∗ also follows from this fact. Finally,
1 is an abstractly finite, regularly projective generator of Set∗.

2.15. Remark. As observed in [A] another source of counter-examples are non-complete
lattices with a top element.

As mentioned in the Introduction, Lawvere proved in [L] Theorem 1.1. Several authors
presented various simplifications. For example Pedicchio and Wood [PW] showed that
effective congruences can be deleted in case the hom-functor of the generator in (3) is
assumed to preserve reflexive coequalizers. This has led to the following

2.16. Definition. [ARV] An object is effective if its hom-functor preserves coequalizers
of congruences.

Explicitly, this means that every coequalizer c : A //C of a congruence r0, r1 : R //A
has the following properties:

(1) G is projective with respect to c.
(2) Given morphisms u, v : G // A with c · u = c · v , then they are connected in

K(G,A) by a ziz-zag of composites with ri for i = 0, 1.

2.17. Proposition. Let K be a category with kernel pairs and their coequalizers. For
every regularly projective strong generator G we have the equivalence

G effective ⇔ K has effective congruences.
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Proof. (1) Let K have effective congruences. Given a regular epimorphism c : A // C
and its kernel pair r0, r1 : R // A, our task is to prove that the map

c · (−) : K(G,A) //K(G,C)

is a coequalizer of ri ·(−) for i = 0, 1. Since G is a regular generator (Proposition 2.4), the
map c · (−) is surjective. Thus, we only need to verify that it has the kernel pair ri · (−).
Indeed, let c · (−) merge a pair in K(G,A), say, c · f0 = c · f1. Then there is a unique
f ′ : G //R with fi = ri · f ′ (i = 0, 1).

(2) Suppose that K(G,−) is effective. Let r0, r1 : R // A be a congruence. Since
K(G,−) is faithful and preserves pullbacks, the pairK(G, r0),K(G, r1) : K(G,R) //K(G,A)
is a congruence in Set. We know that the coequalizer c : A // C of r0, r1 yields a co-
equalizer K(G, c) of K(G, ri). It follows that the above pair is a kernel pair of K(G, c).

To verify that r0, r1 is the kernel pair of c, be u0, u1 ∈ K(G,A) fulfil c · u0 = c · u1.
Since the relation of all (r0 · v, r1 · v) with v : G // R is an equivalence on K(G,A), and
c · (−) is its quotient map, there is a unique v ∈ K(G,R) with ui = ri · v (i = 0, 1).

We now prove the main result of the present section. We use the monadicity theorem
of Linton:

2.18. Theorem. [Li, Prop. 3] A functor U : K // Set is monadic iff
(a) U is right adjoint.
(b) K has kernel pairs and coequalizers of congruences.
(c) U preserves and reflects congruences.
(d) U preserves and reflects regular epimorphisms.

2.19. Theorem. A category is equivalent to a variety iff it is exact and has a varietal
generator.

Proof. Necessity. Every variety V is well known to be a cocomplete and exact category.
Its free algebra G on one generator is a regular projective: regular epimorphisms are pre-
cisely the surjective homomorphisms and V(G,−) is naturally isomorphic to the forgetful
functor. Further, it is an abstractly finite object since it is finitely generated (Lemma
2.5). Finally, G is a strong (indeed, regular) generator since its copowers are the free
algebras of V.

Sufficiency. Let K be an exact category and G a varietal generator. For the hom-
functor

U = K(G,−) : K // Set

we prove that it is monadic, and the corresponding monad is finitary. Consequently, K is
equivalent to a variety (as proved by Linton [Li]).

(U is monadic. Indeed, U has the left adjoint M 7→ M · G, and Condition (b) in
Linton’s theorem is a part of exactness.

We thus only need to verify (c) and (d) .
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(c1) U preserves congruences. In fact, let r0, r1 : R // A be a congruence. Since U
is faithful, Ur0, Ur1 is collectively monic. The relation Ur0, Ur1 in Set represents the
set-theoretical relation R̂ on K(G,R) defined by

R̂ =
{
(r0 · g, r1 · g); g : G //R

}
.

Since r0, r1 is reflexive, so is R̂: given d : A // R with r0 · d = id = r1 · d, we have, for
each h : G // A

(h, h) = (r0 · d · h, r1 · d · h) ∈ R̂ .

Analogously, R̂ is symmetric. To verify transitivity, let (r0 · g, r1 · g) and (r0 · g′, r1 · g′) be
members of R̂ with r1 · g = r0 · g′. The pair r0 · g, r1 · g also factorizes through r0, r1 via
g, and the pair r0 · g, r1 · g′ factorizes via g′. Since r0, r1 is transitive, the pair r0 · g, r1 · g′
factorizes through r0, r1: we have g′′ with

r0 · g = r0 · g′′ and r1 · g′ = r1 · g′′ .

This proves (r0 · g, r1 · g′) ∈ R̂, as desired.
(c2) U reflects congruences. Let r0, r1 : R // A be a pair such that Ur0, Ur1 is a

congruence. Since G is a generator, the fact that Uri = ri · (−) is a collectively monic pair
for i = 0, 1 implies that r0, r1 is collectively monic. To say that Ur0, Ur1 is a congruence
means that r0, r1 is a congruence with respect to G (Remark 2.11).

Since G is a regular generator (Proposition 2.4) the proof follows from Lemma 2.12.
(d1) U preserves regular epimorphisms because G is a regular projective.
(d2) U reflects regular epimorphisms. That is, given a morphism e : A //B such that

every morphism g : G // B factorizes through it, we verify that e is a coequalizer of its
kernel pair r0, r1 : R // A.

Let c : A //C be a coequalizer of r0, r1, and let hmake the triangle below commutative:

G

v

||

v1

��

v0

��

u1 //
u0

// C

h

��
R

r1 //
r0

// A e
//

c

<<

B

We prove that h is an isomorphism, thus, e = coeq(r0, r1). Every morphism g : G // B
factorizes through e, hence also through h. Hence, to verify that h is invertible, it is
sufficient to prove that it is monic (using that G is a strong generator). Indeed, for every
pair u0, u1 : G // C with

h · u0 = h · u1

we derive u0 = u1 Since c is a regular epimorphism, we have vi with ui = c ·vi. We deduce
that

e · v0 = h · c · v0 = h · c · v1 = e · v1 .



CATEGORIES WHICH ARE VARIETIES 51

Therefore there is v : G //R with vi = ri · v. Thus

ui = c · vi = c · ri · v

is independent of i = 0, 1.
(ii) The functor T = UF , where F is the left adjoint of U , is finitary because G

is finitely generated (Lemma 2.5). Indeed, F preserves directed colimits of nonempty
monomorphisms and these monomorphisms split. Consequently, T = K(G,−) · F pre-
serves these colimits, too. Given an infinite set X, express it as the directed colimit of all
of its finite nonempty subsets. Since T preserves this colimit, for every element x ∈ TX
there exists a finite subset m : M ↪→ X such that x lies in the image of Tm. By [AMSW],
Thm 3.4, this implies that T is finitary.

Observe that we have not used the stability of regular epimorphisms under pullback
in the above proof. (No surprise – see Lemma 2.6.) We thus get, using Proposition 2.17,
the following statement slightly improving Corollary 36 of [ARV].

2.20. Corollary. A category is equivalent to a variety iff it has
(1) Kernel pairs and their coequalizers.
(2) An effective varietal generator.

For an analogous result about many-sorted algebras see [ARV].

3. Reflexive Coequalizers

Before turning to order-enriched varieties in Section 4, we prove an auxiliary proposition
for enriched categories in general. In the present section we assume that a symmetric
monoidal closed category

(V,⊗, I)

is given (which in Sections 4 and 5 will be the cartesian closed category of posets).
Throughout this section let K be an enriched category over V.

3.1. Remark. When speaking about ordinary colimits (coproducts, coequalizers, etc.)
we always mean the conical ones: weighted colimits with the weight constant with value
I.

Reflexive coequalizers are (conical) coequalizers of pairs r0, r1 : R // X that are re-
flexive: there is d : X //R with ri · d = idX .

Recall that an object G has tensors if the hom-functor K(G,−) : K // V has a left
adjoint F . The notation is V ⊗ G for FV . That is, we have an isomorphism between
K(V ⊗G,X) and [V,K(G,X)] natural in X ∈ K.

3.2. Definition. [K] A full subcategory A of K is dense if the functor

E : K // [Aop,V]

assigning to K ∈ K the restriction of K(−, A) to Aop is fully faithful.
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3.3. Example. In the category of Σ-algebras the free algebras TΣn on n = {0, ..., n− 1}
form a dense subcategory for n ∈ N. Indeed, given algebras A = (X, (σA)) and B =
(Y, (σB)), then a function f : X //Y is a homomorphism whenever for all n its composites
with all homomorphisms h : TΣn //A are homomorphisms. Indeed, given an n-ary symbol
σ, we verify

f · σA = σB · fn : An //B.

For every n-tuple h0 : n //A let h : TΣn //A be the corresponding homomorphism. By
assumption we have

(f · h) · σTΣn = σB · (f · h)n.

We apply this to ηn ∈ (TΣn)
n for which

h · σTΣn(ηn) = σA · hn(ηn) = σA(h0).

This proves the desired equality: we have f · σA(h0) = (f · h) · σTΣn(ηn), as well as
σB · fn(h0) = σB · fn(h · ηn) = (f · h) · σTΣn(ηn).

3.4. Proposition. Let A be a small dense subcategory such that K has (1) reflexive
coequalizers, (2) tensors for all objects of A, and (3) coproducts of such tensors.

Then K it is equivalent to a full reflective subcategory of [Aop,V].

Proof. Since the functor E : K // [Aop,V] is fully faithful, we only need to prove that it
has an enriched left adjoint. That is, E[K] is a reflective subcategory. For that we verify
that the inclusion functor J : A //K has weighted colimits

colimHJ

for all weights H : Aop // V. Then the functor assigning to each H the above colimit is
an enriched left adjoint of E.

We first form coproducts

X =
∐

A∈objA

HA⊗ A and Y =
∐

f : B //A

HA⊗B

with injections

i(A) : HA⊗ A //X and j(f) : HA⊗B // Y .

Every morphism f : B // A of A yields a parallel pair pf , qf : HA⊗B //X as follows

HA⊗B

HA⊗f

yy

pf

��

gf

��

Hf⊗B

%%
HA⊗ A

i(A)
// X HB ⊗B

i(B)
oo
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The resulting pair p = [pf ] and q = [qf ] of morphisms from Y to X is reflexive: both
morphisms are split by the morphism[

j(idA)
]
: X // Y .

The desired colimit C = colimHJ is given by the following reflexive coequalizer

Y
p
//

q // X c // C

That is, morphisms from C to Z correspond under a bijection (natural in Z) to natural
transformations from H to K(J−, Z). This follows from the argument (in dual form)
presented by Kelly [K] in Section 3.3.10, see the formulas 3.68 and 3.70.

Recall that an enriched category is (co)complete if it has all small weighted (co)limits.

3.5. Corollary. Let K be a V-category with reflexive coequalizers. If an object G with
tensors exists whose finite copowers form a dense subcategory then K is complete and
cocomplete.

Proof. The full subcategory A of all finite copowers of G (which is essentially small)
satisfies (2) and (3) of the above proposition: for (2) use V ⊗

(∐
n

G
)
=

(∐
n

V
)
⊗ G.

Analogously for (3). Since V is (co)complete, so is [Aop,V] ([K], Section 3.3.3), and since
K is equivalent to a full reflective subcategory, it is also (co)complete ([K], Section 3.3.5).

3.6. Remark. In the proof of Proposition 3.4 the object Y is a tensor of G, whenever
B = n.G: we have Y = V ⊗ G for n ·K(G,B) ×HA. Thus, in the above corollary it is
sufficient to assume the existence of reflexive coequalizers for parallel pairs whose domains
are tensors of G.

4. Subcongruences

We now introduce subcongruences in order-enriched categories. In the subsequent section
we will apply them for a characterization of varieties of ordered algebras. Throughout
the rest of our paper we work with categories enriched over the cartesian closed category
Pos of posets (shortly: order-enriched categories). Thus, each hom-set carries a partial
order such that composition is monotone. Enriched functors are functors which are locally
monotone. Enriched natural transformations are just the usual natural transformations
between the underlying ordinary functors. Here is an important example of an enriched
category:
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4.1. Notation. Let Σ = (Σn)n<∈N be a signature, where Σn is the set of all n-ary
operation symbols. We denote by

Σ-Pos

the category of ordered Σ-algebras with monotone operations as objects, and monotone
homomorphisms as morphisms. This is an order-enriched category with the pointwise
ordering of parallel homomorphisms.

Whereas coequalizers and regular epimorhisms play a central role in the characteri-
zation of classical varieties, the corresponding role is taken by coinserters and subregular
epimorphisms in Σ-Pos.

4.2. Definition. Let f0, f1 : X // Y be morphisms of an order-enriched category K.
(We use indices 0, 1 to indicate that f0 comes first and f1 second. We do not assume
f0 ≤ f1 in K(X, Y ).)

Their coinserter is the universal morphism c : Y //Z with respect to c · f0 ≤ c · f1 in
K(X, Y ). That is:

(1) Every morphism c′ : Y // Z ′ with c′ · f0 ≤ c′ · f1 factorizes through c.

(2) Given u0, u1 : Z // U with u0 · c ≤ u1 · c, it follows that u0 ≤ u1.

Observe that (2) implies that the factorization in (1) is unique.

4.3. Example. In Pos the coinserter of f0, f1 : X // Y is given as follows. Recall that
a preorder is a reflexive and transitive relation. The posetal reflection of a preordered set
(Y,⊑) is the quotient modulo the equivalence ∼ with y ∼ y′ iff y ⊑ y′ ⊑ y.

Let ⊑ be the least preorder on Y with f0(x) ⊑ f1(x) (for all x ∈ X) and containing
the order ≤ of Y . The coinserter c : (Y,≤) //Z of f0, f1 is given by the posetal reflection
of that preorder

c : (Y,⊑) // (Y,⊑)/ ∼= Z.

4.4. Definition. [ARO] A morphism c : Y // Z in an order-enriched category is a
subregular epimorphism if it is a coinserter of a reflexive parallel pair:

X
f1 //

f0
// Y

d

��
c // Z f0 · d = idY = f1 · d .

4.5. Example. (1) Subregular epimorphisms in Pos, and more generally in Σ-Pos, are
precisely the surjective homomorphisms ([ARO], Proposition 4.4).

(2) If an order-enriched category has finite coproducts, then we have

regular epi ⇒ subregular epi ⇒ epi

([ARO], Example 3.4).
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4.6. Definition. Let K be an order-enriched category.

(1) A morphism r : R //A is an embedding if for all pairs f , f ′ : X //R with r·f ≤ r·f ′

we have f ≤ f ′.

(2) A parallel pair r0, r1 : R // A is a collective embedding provided that whenever
morphisms f , f ′ : X // R fulfil r0 · f ≤ r0 · f ′ and r1 · f ≤ r1 · f ′, then f ≤ f ′. (If the
power A2 exists, this means precisely that < r0, r1 > : R // A2 is an embedding.)

Such a parallel pair represents a relation on the object A.

(3) A subkernel pair of a morphism h : A //B is a universal parallel pair r0, r1 : R //A
with respect to h · r0 ≤ h · r1.

That is, a relation on A such that every pair v0, v1 : V // A with h · v0 ≤ h · v1
factorizes through r0, r1.

(4) A morphism c : C //D is a quotient if for every pair u, v : A //C with u · c ≤ c ·v
we have u · v.

4.7. Example. (1) Every coinserter is a quotient.
(2) In Pos embedings represent precisely the subposets of the poset A, and relations

represent the subposets of the power A2. The subkernel pair of h : A //B is the subposet
of A2 on all pairs x, y with h(x) ≤ h(y). Quotients are precisely the surjective morphisms.

In ordinary category theory the concept of congruence is an abstraction of kernel pair:
every kernel pair is a congruence, and the opposite implication holds in Set (and other
categories, e.g. varieties). In order-enriched categories we introduce subcongruences which
are abstractions of subkernel pairs. Each subkernel pair is reflexive (even order-reflexive,
see below) and transitive. It is, of course, usually not symmetric.

Recall from Remark 2.7 that the reflexivity of a pair r0, r1 : R //A means that of all
s : S // A the pair s, s factorizes through r0, r1. Here is a stronger property:

4.8. Definition. A relation r0, r1 : R // A in an order-enriched category is order-
reflexive if every comparable pair s0 ≤ s1 : S // A factorizes through r0, r1.

4.9. Example. In Pos a relation on a poset A = (X,≤) is a relation R on X (endowed
with the coordinate-vise order). It is order-reflexive iff it contains the relation ≤. Indeed,
for the necessity choose S = 1 in the above definition: we conclude for every pair s0 ≤ s1
in A that s0Rs1. Sufficiency is clear.

4.10. Proposition. Given an order-enriched category, every subkernel pair is order-
reflexive and transitive (Definition 2.8).

Proof. Let r0, r1 : R // A be the subkernel pair of f : A //B.
(1) Order-reflexivity: from s0 ≤ s1 : S //A it follows that f · s0 ≤ f · s1, thus the pair

s0, s1 factorizes through the subkernel pair of f .
(2) Transitivity: let s, s′, s′′ : S // A be morphisms such that both s, s′ and s′, s′′

factorize through r0, r1. Then f merges both s, s′ and s′, s′′, consequently, it merges s, s′′

which implies that that pair also factorizes through r0, r1.
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4.11. Definition. In an order-enriched category a subcongruence is an order-reflexive
and transitive relation.

Thus every subkernel pair is a subcongruence.

4.12. Example. (1) In Pos a subcongruence on a poset is a preorder containing the
order-relation.

(2) In Σ-Pos a subcongruence on an algebra is a preorder containing the order-relation
which is compatible with all operations.

(3) In an arbitrary order-enriched category a subcongruence is precisely a parallel pair
that every hom-functor takes to a subcongruence in Pos.

4.13. Construction. For every subcongruence r0, r1 : R // A in Pos the following
relation ⊑ on A is a preorder:

x ⊑ y iff x = r0(z) and y = r1(z) for some z ∈ R.

The posetal reflection c : (A,⊑) // C yields the coinserter c : A // C of r0 and r1.

In all varieties of ordered algebras we will prove in Section 5 the that every subcongru-
ence is a subkernel pair. To achieve this, we first show how coinserters of subcongruences
are constructed in Pos.

Proof. Let ≤ denote the given partial order on A. We verify that ⊑ is indeed a preorder,
and that it contains ≤. Thus c is a monotone map from (A,≤) to C. It then easily follows
that c is the coinserter of r0 and r1.

(1) The relation ⊑ is reflexive because r0, r1 is order-reflexive. We verify the transi-
tivity:

if x ⊑ x′ ⊑ x′′ , then x ⊑ x′′.

We are given z, z′ ∈ R with

x = r0(z) , x′ = r1(z) = r0(z
′) and x′′ = r1(z

′) .

Let s, s′, s′′ : 1 // A be the morphisms representing x, x′ and x′′, resp. Then the pair
s, s′ factorizes through r0, r1: use the morphism 1 // R representing z. Analogously,
s′, s′′ factorizes through r0, r1. Since the relation r0, r1 is transitive, the pair s, s′′ also
factorizes through r0, r1. The factorizing morphism represents an element z′′ ∈ R such
that x = r0(z) = r0(z

′′) and x′′ = r1(z
′) = r1(z

′′). This verifies that x ⊑ x′′.
(2) We show that

x0 ≤ x1 implies x0 ⊑ x1 .

We have morphisms qi : 1 // A which represent xi (i = 0, 1). Then q0 ≤ q1, thus by
order-reflexivity there exists k : 1 // R with q0 = r0 · k and q1 = r1 · k. In other words,
the element z ∈ R represented by k fulfils x0 = r0(z) and x1 = r1(z); hence x0 ⊑ x1.

(3) The monotone map c : (A,≤) //C is a coinserter of r0 and r1. In fact, c ·r0 ≤ c ·r1:
for every z ∈ R we have r0(z) ⊑ r1(z), thus c · r0(z) ≤ c · r1(z).



CATEGORIES WHICH ARE VARIETIES 57

Let c′ : A // C ′ fulfill c′ · r0 ≤ c′ · r1. To prove that c′ factorizes through the posetal
reflection c of (A,⊑), we just need to observe that

x0 ⊑ x1 implies c′(x0) ≤ c′(x1) in C ′ .

But this follows trivially from c′ · r0 ≤ c′ · r1.
Since c is surjective, Property (2) of Definition 4.4 is clear.

4.14. Definition. An order-enriched category has effective subcongruences if every sub-
congruence is the subkernel pair of some morphism.

4.15. Notation. (1) The forgetful functor of Σ-Pos is denoted by U : Σ-Pos // Pos.
(2) Every set is considered as a (discretely ordered) poset.
(3) The classical free Σ-algebra TΣX on a set X (of all terms in variables from X),

discretely ordered, is also a free ordered Σ-algebra on X. Given an ordered Σ-algebra A
and a map h : X // UΣA, we denote by

h# : TΣX // A

the corresponding homomorphism.

4.16. Lemma. Let A be an ordered algebra. Given a set X and maps h ≤ k : X // UA
in [X,UA], it follows that h# ≤ k#.

Proof. By structural induction on the complexity of terms t ∈ TΣX we prove that
h#(t) ≤ k#(t). For variables in X this is our assumption. In case t = σ(t1, ..., tn) for some
σ ∈ Σn, and the inequality holds for each ti, we use the monotonicity of σ to derive the
desired inequality for t.

4.17. Proposition. The category Σ-Pos of ordered Σ-algebras has effective subcongru-
ences, and the forgetful functor U preserves their coinserters.

Proof. (1)Pos has effective subcongruences. Indeed, given a subcongruence r0, r1 : R //A
and the morphism c : A // C of Construction 4.13, then r0, r1 is the subkernel pair of c:
first, c · r0 ≤ c · r1 clearly holds. Second, for every pair

u0, u1 : S // A with c · u0 ≤ c · u1

we show that it factorizes through r0, r1 which (since r0, r1 is a collective embedding)
implies the desired universal property. Indeed, for every z ∈ S we have c

(
u0(z)

)
≤

c
(
u1(z)

)
, which means u0(z) ⊑ u1(z). Thus there exists a (necessarily unique) element

v(z) ∈ R with
ri
(
v(z)

)
= ui(z) (i = 0, 1) .

This defines a mapping v : S //R with ui = ri · v. Moreover, v is monotone. This follows
from r0, r1 being a collective embedding: given z ≤ z′ in S, for i = 0, 1 we have (using
that ui is monotone) that

ri
(
v(z)

)
= ui(z) ≤ ui(z

′) = ri
(
v(z′)

)
(i = 0, 1) .
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(2) For every n ∈ N the morphism cn : An // Cn has the subkernel pair rn0 , r
n
1 . This

follows easily from Construction 4.13.
(3) The forgetful functor U : Σ-Pos // Pos preserves subcongruences. In fact, let

r0, r1 be a subcongruence in Σ-Pos.
a. Ur0, Ur1 is transitive: see Remark 2.9, and use that U preserves pullbacks (in fact,

it creates limits).
b. Ur0, Ur1 is order-reflexive: let s0 ≤ s1 : S // UA be given. The corresponding

homomorphisms s♯i : TΣS //A are also comparable by the preceding Lermma, thus they
factorize through r0, r1 in Σ-Pos. Consequently si = Us♯i · ηS implies that s0, s1 factorize
through Ur0, Ur1.

(4) We are ready to prove that Σ-Pos has effective subcongruences. Let r0, r1 : R //A
be homomorphisms forming a subcongruence in Σ-Pos. By Item (1) Ur0, Ur1 is the
kernel pair of a (surjective) morphism c : A // C in Pos. We prove that C carries a
unique structure of an algebra making c a homomorphism. In other words, for every
n-ary operation symbol σ ∈ Σ a unique morphism σC exists making the square below
commutative:

Rn
rn1 //
rn0

// An

cn

��

σA // A

c
��

Cn
σC

// C

Indeed, by (2), rn0 , r
n
1 is a subcongruence on An, and cn is the coinserter. Since r0, r1 are

homomorphisms, we have (c · σA) · rn0 ≤ (c · σA) · rn1 , indeed:

c · σA · rn0 = c · r0 · σR ≤ c · r1 · σR = c · σA · rn1 .

Thus we get the unique σC as stated.
Moreover, the resulting homomorphism c is the coinserter of r0 and r1 in Σ-Pos.

Indeed, given a homomorphism c′ : A //C ′ with c′ ·r0 ≤ c′ ·r1, there is a unique monotone
map h making the triangle below commutative in Pos:

A
c

��
c′

��
C

h
// C ′

Since c and c′ are homomorphisms and c is surjective, it follows that h is also a homo-
morphism. Thus, c is the coinserter of r0 and r1 in Σ-Pos: property (2) in Definition 4.2
follows since c is surjective.

(5) From the above description it easily follows that U preserves coinserters of sub-
congruences.
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4.18. Definition. [ARO] An object G of an order-enriched category is a subregular
projective if its hom-functor to Pos preserves subregular epimorphisms. That is, given a
subregular epimorphism e : A //B, every morphism from G to B factorizes through e:

G
∃

��
∀
��

A e
// B

4.19. Example. (1) A poset is a subregular projective in Pos iff it is discrete. Indeed,
sufficiency follows from subregular epimorphisms being surjective (Example 4.5). Let G
be a non-discrete poset. Then for the 2-chain B with 0 < 1 we have a monomorphism
f : B // G. Let id : A // B be the morphism from the discrete poset A = {0, 1}. This
is a subregular epimorphism (Example 4.5) through which f does not factorize. Thus G
is not a subgerular projective.

(2) Let X be a set. The free algebra TΣX is a regular projective in Σ-Pos, since
subregular epimorphisms are surjective.

As in Remark 3.1, colimits in order-enriched categories are understood to be conical.

4.20. Lemma. In an order-enriched category with reflexive coinserters every object G
with copowers has tensors.

Proof. We describe, for every poset P , the tensor C = P ⊗G as the following reflexive
coinserter: ∐

R G
r̄1 //
r̄0
//
∐

|P | G
c // C

Here |P | is the underlying set of P and R ⊆ |P |×|P | is its order relation. The morphisms
r̄i = ri ·G are induced by the projection ri : R //|P | given by ri(x0, x1) = xi. The diagonal
∆: |P | //R yields a joint splitting ∆ ·G of the pair r̄1, r̄2, thus, the coinserter exists. Its
components are denoted by cx : G // C for x ∈ P .

Our task is to find a natural isomorphism

C
f // X

P
i(f)
// K(G,X)

Given f , define i(f) in x ∈ P as f · cx. This map i(f) is monotone since
∐

|P | G is

a conical coproduct. The resulting map i : K(C,X) // [P,K(G,X)] is also monotone:
f ≤ f ′ : C //G implies f · cx ≤ f ′ · cx for all x, thus i(f) ≤ i(f ′).

Conversely, given g : P //K(G,X) in Pos, then the morphism ḡ :
∐

|P | G
//X given

by ḡ = [g(x)]x∈|P | fulfils ḡ · r̄0 ≤ ḡ · r̄1 because each pair x0 ≤ x1 in R yields g(x0) ≤ g(x1)
in K(G,X). Let j(g) : C //X be the unique morphism with

ḡ = j(g) · c .
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This defines a monotone map j : [P,K(G,X) //K(C,X): if g ≤ h : P //K(G,X), then
ḡ ≤ h̄, thus j(g) ≤ j(h) by the universal property of c.

It is easy to see that i and j are inverse to each other. And i is natural: given
u : X //X ′, then i(u · f) assigns to x the value u · f · cx, which is what u · i(f) does, too.
Thus u · i(−) = i(u · −).

4.21. Definition. A subvarietal generator in an order-enriched category is a strong
generator with copowers which is an abstractly finite subregular projective.

4.22. Proposition. Let K be an order-enriched category with subkernel pairs, reflexive
coinserters, and a subvarietal generator G.

(a) K is complete and cocomplete.
(b) A parallel pair p, q : K // L fulfils p ≤ q iff p · f ≤ q · f holds for all morphisms

f : G //K.
(c) A morphism m : A //B is an embedding (Definition 4.6) iff given a pair u0, u1 :

G // A with m · u0 ≤ m · u1, we have u0 ≤ u1.

Proof. (1) For every object K we denote the adjoint transpose of the identity morphism
on K(G,K) by cK : K(G,K)⊗G //K. It is a subgerular epimorphism: see Lemma 3.22
in [ARO], where G is thus called a subregular generator.

(2) To prove (a), we form a small full subcategory A of K containing G and closed
under finite coproducts. This subcategory is dense: see [ARO], Theorem 3.23. (In the
formulation of that theoremK is assumed to also have kernel pairs. However, this assump-
tion is not used in the proof, except for guaranteeing that G is a subregular generator–
which holds by (a).) Moreover, K has coequalizers of reflexive pairs p, q : X // Y in A,
where X is a tensor of G: the coproduct X +X exists (being a tensor of G, too), and the
following pair

X +X
[p,q] //

[q,p]
// Y

is reflexive, and its coinserter is the coequalizer of p and q.
By Corollary 3.5 and Remark 3.6, K is complete and cocomplete.
(3) To prove (b), let K0(G,K) be the underlying set of K(G,K), and denote by

i · K0(G,K) // K(G,K) the identity-carried map. This is a subregular epimorphisms
(Example 4.5). The functor (−) ⊗ G is a left adjoint, hence, it preserves tesnors. T
therefore i⊗G is also a subregular epimorphims. Thus the composite

ck · (i⊗G) :
∐

f∈K0(G,K)

G //K

is a quotient (Definition 4.6). The components of this quotient are f : G // K. Thus
from p · f ≤ q · q, and the fact that coproducts are conical, we conclude p ≤ q.

(4) To prove (c), let v0, v1 : K // A be a parallel pair with m · v0 ≤ m · v1, then we
verify that v0 ≤ v1. As in Item (3), we only need to verify v0 ·cK · (i⊗G) ≤ v1 ·cK · (i⊗G).
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This again follows from from coproducts being conical, since for every f : G //K we have
v0 · f ≤ v1 · f : apply (c) to ui = vi · f .

5. Varieties of Ordered Algebras

Here we present a characterization of varieties of ordered algebras analogous to Theorem
2.19. This follows ideas of [ARO], which we slightly correct and improve, endowed with
the concept of a subexact category introduced below.

5.1. Definition. A variety of ordered algebras is a full subcategory of Σ-Pos presented
by inequations t ≤ s between terms t, s ∈ TΣX for finite sets X. It consists of algebras
A such that h#(t) ≤ h#(s) holds for each of the inequations and each interpretation
h : X // A of the variables.

In the classical universal algebra Birkhoff’s Variety Theorem states that a full subcat-
egorry of Σ-Alg is a variety iff if is closed under products, subalgebras, and quotients (=
homomorphic images). For ordered algebras we have the analogous three constructions:

(1) A product of algebras Ai (i ∈ I) is their cartesian product with both operations
and order given coordinate-wise.

(2) By a subalgebra of an ordered algebra A is meant a subposet closed under the
operations. Thus subalgebras are represented by homomorphisms m : B //A carried by
embeddings (Definition 4.8).

(3) By a homomorphic image of an algebra we mean a quotient represented by a
subregular epimorphism e : A //B. (That is, e is surjective, see Example 4.5.)

5.2. Birkhoff Variety Theorem. [ADV] A full subcategory of Σ-Pos is a variety of
ordered algebras iff it is closed under products, subalgebras, and homomorphic images.

5.3. Remark. The category Σ-Pos has weighted limits and colimits. Indeed, it has
coequalizers of pairs f, g : A //B obtained by forming the wide pushout of all quotients
of B carried by surjective morphisms and merging f and g. The free algebra G = TΣ1
on one generator has the property that its finite copowers form the full subcategory of all
finitely generated free algebras. This subcategory is dense: this is completely analogous
ton Example 3.3, we just need to add that given homomorphisms f, f ′ : A // B, then
f ≤ f ′ iff f · h ≤ f ′ · h holds for all homomorphisms h : TΣ1 // A. Thus we can apply
Corollary 3.5.

5.4. Corollary. Every variety of ordered algebras has
(1) Weighted limits and colimits.
(2) Effective subcongruences.
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Proof. (1) The category Σ-Pos is complete and has the factorization system with
E=surjective homomorphisms, and M=subalgebra embeddings. It is clearly co-well-
powered with respect to E. Given a variety V ⊆ Σ-Pos, it is a reflective subcategory
with reflection maps in E. This follows since it is closed under products and subalge-
bras ([AHS], Theorem 16.8). The reflector R : Σ-Pos //V is enriched: given morphisms
f ≤ g : A1

// A2, for the reflections maps ri : Ai
//RAi we have

Rf · r1 = r2 · f ≤ r2 · g = Rg · r1.

Since r1 is surjective, this implies Rf ≤ Rg.
Thus the preceding Remark implies that V has weighted limits and colimits ([K],

Section 3.3.8).
(2) Since V is closed under pullbacks (in fact, under limits), every subcongruence

r0, r1 : R //A in V is also a subcongruence in Σ-Pos (Remark 2.9). By Proposition 4.17
there is a homomorphism h : A //B in Σ-Pos with subkernel pair r0, r1. From the proof
of that proposition we know that h is surjective. Hence B is a homomorphic image of
A ∈ V. Consequently, B ∈ V and h is a morphism of V with the subkernel pair r0, r1.

Recall that effective objects (in ordinary categories) are those with hom-functor pre-
serving coequalizers of congruences. Here is the enriched variant:

5.5. Definition. [ARO] An object G of an order-enriched category is subeffective if its
hom-functor to Pos preserves coinserters of subcongruences.

In a category with subkernel pairs every subeffective object is, of course, a subeffective
projective.

5.6. Example. The free algebra G on one generator in a variety V of ordered algebras is
subeffective; moreover it is a subvarietal generator. Indeed, the forgetful functor of V has
a left adjoint F : Pos //V, and the free algebra G = F1 is an abstractly finite subregular
projective by [ARO], Example 4.6. The hom-functor of G is naturally isomorphic to the
forgetful functor U : V // Pos. By Proposition 4.17 in case V = Σ-Pos, the functor U
preserves coinserters of subcongruences. For general varieties V the same is true since V

is closed under subgerular quotients.

The following proposition has a completely analogous proof to that of Proposition 2.17:

5.7. Proposition. In an order-enriched category K with subkernel pairs and their coin-
serters, let G be a subregularly projective strong generator. Then we have the following
equivalence:

G subeffective ⇔ K has effective subcongruences.

5.8. Theorem. An order-enriched category is equivalent to a variety iff it has
(1) Effective subcongruences.
(2) A subvarietal generator.
(3) Subkernel pairs and reflexive coinserters.
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Proof. Every variety V satisfies the above conditions by Corollary 5.4 and Example 5.6.
Let K be a category as above with a subvarietal generator G. We first verify some

properties of K.
(a) K is complete and cocomplete by Proposition 4.22.
(b) K has factorizations of morphisms as a subregular epimorphism followed by an

embedding (Definitoins 4.4 and4 4.6). (The proof presented in [ARO] is incomplete.)
Given a morphism f : A //B, form the subkernel pair r0, r1 : R //A of f . This is a

reflexive pair, thus, a coinserter c : A //C exists. We have the unique morphism m with
f = m · c

R
r1

��r0 ��
A

f //

c ��

B

G

v

OO

v1

??

v0

??

u1 //
u0

// C

m

??

We prove that it is an embedding. By Proposition 4.22 this is equivalent to proving for
all u0, u1 : G // C that

m · u0 ≤ m · u1 implies u0 ≤ u1 .

As G is a subregular projective, there exist morphisms vi : G //A with ui = c · vi. Then

f · v0 = m · u0 ≤ m · u1 = f · v1.

This implies that we have v : G //R with vi = ri · v. This proves the desired inequality:

u0 = c · r0 · v ≤ c · r1 · v = u1 .

(c) In [ARO] the following signature Σ is used: its n-ary operations are the morphisms
from G to n ·G:

Σn = K(G, n ·G) (n ∈ N) .

As proved in Item(2a) of Thm. 4.8 in loc. cit., we obtain a full embedding

E : K // Σ-Pos

as follows. The algebra EK for an object K of K has the underlying poset K(G,K).
Given an n-ary operation symbol σ : G // n ·G, to every n-tuple fi : G //K(i < n) the
map σEK assigns the following composite

σEK(fi) ≡ G
σ−−−−→ n ·G [fi]−−−−−→ K .

To a morphism h : K // L the functor E assigns the homomorphism

Eh = h · (−) : K(G,K) //K(G,L) .
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Let K̄ be the closure of E[K] under isomorphism in Σ-Pos. Then K is equivalent to K̄,
and we use the Birkhoff Variety Theorem to verify that K̄ is a variety, thus finishing our
proof.

(i) K̄ is closed under products because K has products by (a), and E clearly preserves
limits.

(ii) K̄ is closed under subalgebras. The proof presented in [ARO] is incomplete, we
present a proof now. A subalgebra of EK, for K ∈ K, is a subposet M ⊆ K(G,K) closed
under the operations. That is, given an n-ary symbol σ, we have

[fi] · σ ∈ M for all f0, . . . , fn−1 ∈ M .

We are to find an object C ∈ K with EC ≃ M .
The morphism [h] :

∐
h∈M

G // K has a factorization as a subregular epimorphism c

followed by an embedding m:

∐
h∈M

G
[h] //

c
!!

K

C

m

AA

We prove that the ordered algebras EC and M are isomorphic. For that, we verify that
in Pos the image of Em (a subposet of EK) is M :

M = Em[EC] .

Since both the subposets M and Em[EC] are closed under the operations, this implies
M = EC in Σ-Pos, as desired.

The inclusion M ⊆ Em[EC] is obvious: given h ∈ M , the corresponding component
ch : G // C of c above lies in EC, and fulfils h = m · ch.

Conversely, we prove

Em(g) = m · g ∈ M for each g : G // C .

Since G is a subregular projective, g = c · g′ for some morphism g′:

n ·G u·G //M ·G

c

��

[h] // K

G

σ

^^

g′

??

g
// C

m

BB

Finite abstractness yields an injection u : n //M (where n denotes the discrete poset
{0, . . . , n − 1}) such that g′ factorizes through u · G. We denote by σ the factorizing
morphism lying in Σn.
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Then for hi = u(i) ∈ M we get [h] · (u ·G) = [hi]i<n . Since

σEK(hi)i<n = [hi]i<n · σ ,

we obtain from the above diagram that

σEK(hi)i<n = m · g .

This concludes the proof of m · g ∈ Em[EC] since hi ∈ M and M is closed under σEK .
(iii) K̄ is closed under homomorphic images. See [ARO], Item (3c) of the proof of

Theorem 4.8.

5.9. Definition. An order-enriched category is subexact if it has
(1) Subkernel pairs and reflexive coinserters.
(2) Effective subcongruences.

5.10. Corollary. An order-enriched category is equivalent to a variety of ordered alge-
bras iff it is subexact, and has a subeffetive subvarietal generator.

This follows from Example 5.6, Proposition 5.7, and the above theorem.

We have not included stability of subregular epimorphisms under pullback in the
definition of exact category. The reason is that in the presence of a subvarietal generator
this property follows from the existence of subkernel pairs and reflexive coinserters. This
is a consequence of the above theorem, a direct proof is analogous to that of Lemma 2.6.

6. Congruences Versus Subcongruences

We now compare the concepts of congruence studied in [KV] and [BG] with our concept of
subcongruence. In case of congruences in Pos we show that these concepts are equivalent
to that of subcongruence. It folllows that they are also equivalent for arbitrary poset-
enriched categories because a parallel pair is a congruence in op. cit. iff every hom-functor
takes it to a congruence in Pos (compare with Example 4.12(3)).

6.1 Congruences due to Kurz and Velebil
Congruences in order-enriched categories A are defined by Kurz and Velebil [KV] as

follows. A category object in A is a diagram

A2

d22 //
d21
//

d20

//
A1

d11 //

d10

//
A0i00

oo

such that

(1) The square d1! · d20 = d10 · d22 is a pullback.
(2) d11 · d22 = d11 · d21 and d10 · d20 = d10 · d21.
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(3) d11 · i00 = id = d10 · i00.

A congruence on an object A0 is a category object such that (a) the pair d10, d
1
1 is

a collective embeddindg (Definition 4.6), and (b) the span d10, d
1
1 is a two-sided discrete

fibration. Now (a) means that we have a relation A1 on the object A0. This relation is
transitive. Indeed, let us use Remark 2.8 with l = d10 and r = d11. From (1) we then get
l̄ = d20 and r̄ = d22. Thus the desired factorization of l · l̄, r · r̄ through l, r is p = d21: use
(2).

We verify order-reflexivity of the relation A1 in case A = Pos. Given a poset A0 =
(X,≤), the relation A1 is reflexive due to (3). As explained in [KV], Example 4.5, the fact
that A1 is a discrete fibration means that it contains both of its composite with ≤. Since
A1 is reflexive, this implies that it contains ≤, hence it is order-reflexive by Example 4.9.

Conversely, given a subcongruence on A0 which we now denote by d10, d
1
1 : A1

// A0,
then Condition (1) above tells us how to construct the appropriate category object. It
clearly satisfies (a), and order-reflexivity implies (b).

6.2 Congruences due to Bourke and Garner
Bourke and Garner [BG] work with general congruences, called F-cogruences, in V-

categories, where V is a symmetric monoidal closed category (here Pos). Their concept
depends on the choice of a V-category F containing the free V-category 2 on a single
arrow 1 // 0. The full subcategory of F on all objects but 0 is denoted by K. We thus
have full embeddings I : K // F and J : 2 // F.

Let A be a finitely complete V-category. Then right Kan-extensions along J yield a
functor from [2,A] to [F,A]. We compose it with (−) · I : [F,A] // [K,A] to get a a
functor K with a left adjoint Q:

Q ⊢ K : [2,A] // [K,A].

An F-kernel in A is an object of [K,A] in the image ofK, and an F-quotient is a morphism
of [2,A] in the essential image of Q.

Let us choose V = Pos and as F the enriched category obtained from 2 by adding an
object X and a parallel pair of morphisms from it to 1 such that K(X, 1) is discretely
ordered, whereas K(X, 0) is a two chain. Then [K,A] is the category of all parallel pairs
in A. The functor K assings to every morphism of A its subkernel pair, whereas Q
assigns to every parallel pair its coinserter. Thus F-quotients are precisely the subregular
epimorphisms in A, and F-kernels are the subkernel pairs.

Bourke and Garner call a morphism between finitely presentable objects of [K,V]
an F-congruence axiom provided that it is orthogonal to every F-kernel. Then an F-
congruence in V is an object of [K,V] orthogonal to every F-congruence axiom. Finally,
an F-congruence in A is an object of [K,A] such that every hom-functor maps it to an
F-congruence in V.

With our choice of V and F above, an F-congruence in Pos is a parallel pair of
morphisms of Pos whose orthogonality to all F-congruence axioms means precisely that
it is an order-reflexive and transitive relation. This can be verified analogously to Section
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5.2 in [BG] where the special case that V is the category of small categories, and F is
chosen so that F-quotients are precisely the functors surjective on objects is presented.
By using a completely analogous argument for our choice of V and F above, it follows
that an F-congruence in Pos is precisely a congruence in the sense of Kurz and Velebil.
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Giuseppe Rosolini, Università di Genova: rosolini@unige.it
Michael Shulman, University of San Diego: shulman@sandiego.edu
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
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