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AN ELEMENTARY CHARACTERIZATION OF

STABLY PRECOHESIVE GEOMETRIC MORPHISMS
AS PARTICULAR PRECOHESIVE GEOMETRIC MORPHISMS

THOMAS STREICHER

Dedicated to the Memory of Bill Lawvere

Abstract. We consider various characterizations of stably precohesive geometric mor-
phisms which are elementary in the sense that they avoid reference to concepts of relative
category theory.

1. Introduction

Bill Lawvere to whom we owe among many other things the quintessential notion of
elementary topos in his last decades has spent quite some effort on investigating a notion
of cohesive geometric morphism. The aim of this concept is to axiomatize what is a
“topos of spaces” over some base topos, see e.g. [LM15]. Cohesive geometric morphisms
F ⊣ U : E → S are defined as precohesive geometric morphims satisfying the further
requirement that the canonical morphism L(AFI) → L(A)I is an isomorphism for all
I ∈ S and A ∈ E where L ⊣ F .

A geometric morphism F ⊣ U : E → S is precohesive iff it is local and hyperconnected
and F has a left adjoint L which preserves binary products. This is not verbatim Lawvere’s
original definition but equivalent to it as shown in [Jo11]. Recall that hyperconnected
means that U preserves subobject classifiers and local means that F is full and faithful
and U has a right adjoint R. As shown in [Jo11] a hyperconnected and local geometric
morphism is precohesive iff F preserves exponentials (which as shown in Theorem 2 of
[BP80] is equivalent to F having an S-strong left adjoint L).

As shown in [LM15] a precohesive geometric morphism F ⊣ U : E → S is stably
precohesive, i.e. all its slices over some I ∈ S are precohesive, iff it is molecular (aka
locally connected). This is obvious from the fact that a geometric morphism F ⊣ U is
molecular iff one of the following equivalent conditions holds

(1) F has a left adjoint L fibered (or indexed) over S
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(2) all slices of F preserve exponentials

(3) F preserves dependent products (i.e. right adjoints to pullback functors)

as shown in C3.3.1 of [Jo02]. Notice that condition (1) can be explicitated as the require-
ment that
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Lq

- LA

implies
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?

u
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â
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where we write â for the upper transpose εI ◦ La : LA → I of a (and similarly for p).
As shown by J.-L. Moens and M. Jibladze and explained in [Str23] geometric mor-

phisms to S correspond to toposes fibered over S which have (internal) sums and are
locally small from which it follows that the geometric morphism extends to a fibered one
of the kind ∆ ⊣ Γ. From this point of view it appears as most natural to require that the
left adjoint of the inverse image part of the geometric morphism extends to a fibered left
adjoint of ∆ and, accordingly, stably precohesive appears as the more natural notion.

But in [LM15] the authors raise the question whether precohesive and stably precohe-
sive coincide or there is a counterexample separating these two notions. Though we cannot
answer this question in this paper we instead will provide alternative characterizations of
stably precohesive geometric morphisms in terms of conditions which are “elementary”
in the sense that they avoid any direct reference to concepts of the theory of fibered
categories and thus might be easier to check.

2. The case of bireflective exponential ideals

Suppose F ⊣ U : E → S is a geometric morphism which is connected, i.e. F is full and
faithful, and which has a left adjoint L preserving binary products, i.e. S is a bireflective
exponential ideal within E via F .

We will identify various conditions equivalent to F ⊣ U being molecular.

2.1. Theorem. The geometric morphism F ⊣ U as above is molecular iff
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for all monos n : J ↣ I in S.
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Proof. The condition given is an immediate consequence of the (explicitation of the)
requirement that L is a fibered left adjoint of F as described in the introduction.

For the reverse direction we show that the condition implies that for all I ∈ S the left
adjoint to F/I : S/I → E/FI preserves binary products. For this purpose suppose that
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A

p

?

f
- FI

g

?

i.e.
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⟨p, q⟩
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?
-

FδI
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?

where pf = d = qg. Then by the assumed condition it follows that
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- LA×LB
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?
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- I×I
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?

and thus

LP
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- LB

LA

Lp

?

Lf
- LFI
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?

since f̂ = εI ◦ Lf and ĝ = εI ◦ Lg and the counit ε of L ⊣ F is a natural isomorphism
because F is full and faithful as follows from the assumption that the geometric morphism
F ⊣ U is connected.
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Next we show that the previous theorem holds already when requiring the condition
given there only for the cases where n is ⊤S .

2.2. Theorem. The geometric morphism F ⊣ U is molecular iff
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Proof. The necessity of this condition follows from Theorem 2.1. The reverse direction
follows since
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because our assumption guarantees the required implication for the outer rectangles, the
lower squares are pullbacks anyway and thus the required implication holds for the upper
squares by the usual pullback lemma.

Recall from [BP80] that a morphism in E is called S-definable if it can be obtained
as pullback of Fu for some morphism u in S. It is straightforward to check that a
monomorphism m : P ↣ A in E is S-definable iff for some mono n : J ↣ I in S it can be
obtained as pullback of F (n : J ↣ I) along some a : A → FI. As already observed in the
proof of the previous theorem m can be obtained as pullback of F⊤S along Fq ◦ a where
q : I → ΩS classifies n. Thus, a monomorphism in E is S-definable iff can be obtained as
pullback of F⊤S .

Recall from [Jo80] that F ⊣ U is called subopen iff the classifying map τ : FΩS → ΩE
for F⊤S is monic. Thus, if F ⊣ U is subopen then F⊤S classifies S-definable monos in E .

2.3. Lemma. If F ⊣ U is molecular then it is subopen.
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Proof. Suppose p1, p2 : A → ΩS with τ ◦ p1 = τ ◦ p2. Let m : P ↣ A be the mono
classified by this morphism. Then for i = 1, 2 we have

P-
m

- A

F1S
?
-

F⊤S- FΩS
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?

1E
?

⊤E
- ΩE

τ

?

from which it follows by Theorem 2.2 that p̂1 and p̂2 both classify the mono Lm. Thus
p̂1 = p̂2 from which it follows that p1 = p2.

Next we give a further characterization of S-definable monos under the assumption
that the geometric morphism under consideration is essential.

2.4. Lemma. Suppose F ⊣ U : E → S is an essential geometric morphism, i.e. F has
a left adjoint L. Then a mono m : P ↣ A in E is S-definable iff it appears as pullback
along ηA : A → FLA of Fn for some mono n : Q ↣ LA in S.

Proof. Obviously, the condition is sufficient. For the reverse direction suppose that m
appears as pullback of F⊤S along some p : A → FΩS . Let n : Q ↣ LA be the mono
classified by p̂ : LA → ΩS . Then we have

P-
m

- A

FQ
? Fn

- FLA
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?

F1S
?

F⊤S
- FΩS

F p̂

?

where the lower square is a pullback since F preserves pullbacks and the outer rectangle
is a pulback since m arises as pullback of F⊤S along p = F p̂ ◦ ηA and thus the upper
square is a pullback as desired.
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For the rest of this section we resume the assumption that F ⊣ U is connected and F
has a left adjoint preserving binary products.

2.5. Theorem. The geometric morphism F ⊣ U is molecular iff it is subopen and for all
S-definable monos m : P ↣ A in E the map Lm is a mono in S and

P
m

- A

FLP

ηP

?

FLm
- FLA

ηA

?

is a pullback in E.

Proof. For the forward direction suppose F ⊣ U is molecular. Then it is also subopen
by Lemma 2.3. Suppose m : P ↣ A is S-definable. Then m appears as pullback of F⊤S
along a unique map p : A → FΩS . Thus, by Theorem 2.2 it holds that
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?
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?

from which it follows that in
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?
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the lower square is a pullback since F preserves pullbacks and the outer rectangle is a
pulback since p = F p̂◦ηA classifies m. Accordingly, the upper square is a pullback square
as well.
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For the backwards direction suppose F ⊣ U is subopen and L sends S-definable
monos in E to monos in S such that the naturality square for η is a pullback square
for S-definable monos m. For showing that F ⊣ U is molecular we verify the criterion
provided by Theorem 2.2.

For this purpose suppose m : P ↣ A appears as pullback of F⊤S along some (neces-
sarily unique) map p : A → FΩS . Then Lm is monic. Thus, there exists a unique map
q : LA → ΩS classifying Lm. Then we have
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- A

FLP

ηP

?
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?

F1S
?
-

F⊤S
- FΩS

Fq

?

from which it follows that p = Fq ◦ ηA and thus q = p̂. Thus Lm appears as pullback of
⊤S along p̂ as desired.

2.6. Lemma. If F ⊣ U is molecular then m 7→ Lm and n 7→ η∗AFn establishes a 1-1-
correspondence between S-definable subobjects m of A and arbitrary subobjects n of LA.

Proof. Suppose n : Q ↣ LA is classified by q : LA → ΩS . We have to show that n and
L(η∗AFn) are isomorphic as subobjects of LA. For this purpose consider
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?
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from which it follows by Theorem 2.1 that
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LP
Lm

- LA

Q

p̂

?
-

n
- LA

wwwwwwwwww
and thus Lm and n are isomorphic as subobjects of LA via p̂, which is an isomorphism
since it arises as pullback of idLA.

Suppose m : P ↣ A is S-definable. Then m ∼= η∗AFLm follows from Theorem 2.5.

In [GS21] one can find examples of local geometric morphism having a further left
adjoint preserving finite products but nevertheless are not molecular. However, none of
these counterexamples is hyperconnected for which reason the question of Lawvere and
Menni still remains open.

Nevertheless assuming F ⊣ U to be hyperconnected or even precohesive allows us to
improve some of our results as we will see in the next section.

3. Exploiting the additional assumption that F ⊣ U is precohesive

From now on we assume that the geometric morphism F ⊣ U : E → S under consideration
is not only connected with F having a finite product preserving left adjoint L but also
that it is hyperconnected, i.e. fullfills one of the following equivalent conditions

(1) U preserves subobject classifiers

(2) for all I ∈ S the functor F/I : S/I → E/FI restricts to an equivalence between
SubS(I) and SubE(FI)

(3) all units and counits of F ⊣ U are monic.

See A4.6.6 of [Jo02] for a proof and further characterizations. The intuition is that hyper-
connected is the opposite of localic in the sense that these two classes form a factorization
system on geometric morphisms in the appropriate 2-categorical sense.

Since U⊤E ∼= ⊤S we have

FU1E-
FU⊤E- FUΩE

1E

ε1E
∼=

?
-

⊤E
- ΩE

εΩE

?

?
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with εΩE being monic because the counit of a hyperconnected geometric morphism is
monic. Since FU⊤E ∼= F⊤S it follows that εΩE

∼= τ and thus τ is monic. Thus hypercon-
nected geometric morphisms are necessarily subopen. Actually, by Corollary C3.1.9(i) of
[Jo02] they are even open.

Thus, under the current assumptions a mono m : P ↣ A is S-definable iff its classi-
fying map χ : A → ΩE factors through τ : FΩS ↣ ΩE via a unique map p : A → FΩS
whose transpose p̂ : LA → ΩS classifies the unique mono n : Q ↣ LA with m ∼= η∗AFn.
Without the assumption that F ⊣ U is molecular it is, however, not clear at all why this
n should be isomorphic to Lm nor is it clear why the additional assumption of F ⊣ U
being local should ensure this.

For the rest of this section we further assume that F ⊣ U is precohesive, i.e. also
hyperconnected and local.

3.1. Theorem. Let F ⊣ U : E → S be a precohesive geometric morphism. Thus F has a
left adjoint L. Then n 7→ η∗AFn establishes a 1-1-correspondence between subobjects of LA
in S and S-definable subobjects of A in E. Its inverse is given by sending an S-definable
subobject m of A in E to the image of Lm in S.

Proof. Since F ⊣ U is precohesive it follows by Cor. 2.5 in [Jo11] that for all A ∈ E the
unit map ηA : A → FLA is epic.

Since F ⊣ U is hyperconnected it is in particular subopen and thus a subobject of A is
S-definable iff its characteristic map factors through the mono τ : FΩS ↣ ΩE as argued
immediately before Lemma 2.3.

Suppose p : A → FΩS . We write n : Q ↣ LA for the mono classified by p̂ and
m : P ↣ A for the S-definable mono classified by p = F p̂ ◦ ηA. Thus, the two squares

P-
m

- A Q
n

- LA

F1S
?

F⊤S
- FΩS

p

?
1S
?

⊤S
- ΩS

p̂

?

are both pullbacks. Since F as a right adjoint preserves pullbacks the square

FQ
Fn

- FLA

F1S
?

F⊤S
- FΩS

F p̂

?

is a pullback, too. Let e be the unique arrow making the following diagram
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P-
m

- A

FQ

e

??
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Fn
- FLA
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??

F1S
?
-

F⊤S
- FΩS

F p̂

?

commute. It exists since the lower square and the outer rectangle are pullbacks. Thus the
upper square is a pullback as well. Thus e is epic since ηA is epic and epis are stable under
pullbacks along arbitrary morphisms. Another consequence is that m is the pullback of
Fn along ηA. Moreover, from ηA ◦m = Fn ◦ e it follows by taking the upper transpose
of both sides w.r.t. L ⊣ F that Lm = idLA ◦ Lm = η̂A ◦ Lm = n ◦ ê. Since left adjoints
preserve epis Le is an epi and since εQ is an iso it follows that ê = εQ ◦Le is an epi. Thus,
from Lm = n ◦ ê it follows that n is the image of Lm.

Based on this result we can give the following characterization of stably precohesive
geometric morphism as precohesive ones validating a simple preservation property.

3.2. Theorem. A precohesive geometric morphism F ⊣ U is stably precohesive, i.e. also
molecular, iff the left adjoint L of F sends S-definable monos in E to monos in S.

Proof. Suppose F ⊣ U is precohesive.
If F ⊣ U is molecular then it follows from Theorem 2.1 that L sends S-definable monos

in E to monos in S.
For the backward direction suppose F has a left adjoint L sending S-definable monos

in E to monos in S. For showing that F ⊣ U is molecular we will verify the condition
given in Thm 2.2. For this purpose suppose

P-
m

- A

F1S
?
-

F⊤S
- FΩS

p

?

for some p : A → FΩS . Then we have
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P-
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??
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?
-

F⊤S
- FΩS
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?

since p = F p̂ ◦ ηA and F as a right adjoint preserves pullbacks. Transposing the left
rectangle according to L ⊣ F we obtain

LP-
Lm

- LA

Q

ê

??
-

n
- LA

wwwwwwwwww

1S
?
-

⊤S
- ΩS

p̂

?

since ê = εQ ◦ Le is epic because Le is epic since L as a left adjoint preserves epis and
εQ is an iso. But ê is also monic since Lm = n ◦ ê is monic due to the assumption that
L sends S-definable monos in E to monos in S. Thus ê is an isomorphism from which it
follows by the previous diagram that

LP
Lm

- LA

1S
?
-

⊤S
- ΩS

p̂

?

is a pullback as required by the condition given in Theorem 2.2.
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One calls a geometric morphism stably precohesive iff it is precohesive and molecular.
For precohesive geometric morphisms by Theorem 3.1 for S-definable subobjects m of A
the (unique up to iso) subobject n of LA with m isomorphic to η∗AFn is obtained as the
image of Lm whereas for stably precohesive geometric morphism by Theorem 3.2 this
n is isomorphic to Lm in S/LA. Thus, if one does not adopt the fibered point of view
the requirement of being stably precohesive may appear as somewhat ad hoc and thus
presumably will not hold automatically for all precohesive geometric morphisms!

4. Relation to an alternative characterization of being molecular

First we give an alternative characterization of being molecular.

4.1. Theorem. A geometric morphism F ⊣ U : E → S is molecular iff F has a left
adjoint L such that

P
q

- FI LP
q̂
∼=

- I

implies

A

p

?

ηA
- FLA

Fu

?
LA

Lp

?
======== LA

u

?

for all u : I → LA in S.

Proof. Obviously the condition is necessary.
For showing it is also sufficient suppose

P
b

- FK

A

p

?

a
- FJ

Fv

?

for some v : K → J . There is a pullback

I
w

- K

LA

u

?

â
- J

v

?
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in S. Since F is a right adjoint it sends this pullback to a pullback in E . Let q : P → FI
be the unique mediating arrow with Fu ◦ q = ηA ◦ p and Fw ◦ q = b. Then we have

P
q

- FI
Fw

- FK

A

p

?

ηA
- FLA

Fu

?

F â
- FJ

Fv

?

since F preserves pullbacks and the rectangle is a pullback by assumption from which it
follows by the usual pullback lemma that the left square is a pullback, too. Transposing
the previous diagram w.r.t. the adjunction L ⊣ F we obtain

LP
q̂

- I
w

- K

LA

Lp

?
========LA

u

?

â
- J

v

?

where w ◦ q̂ = b̂. Thus

LP
b̂

- K

LA

Lp

?

â
- J

v

?

as required.

Notice that for an essential geometric morphism F ⊣ U : E → S with L ⊣ F we have
L/A ⊣ η∗A ◦ F/LA for all objects A in E (see Theorem 16.4 of [Str23] for an explicitation
of the units and counits of this adjunction which also works when the left adjoint is not
required to preserve finite limits). The right adjoint is full and faithful iff the counit
of this adjunction is an iso. That the latter holds for all objects A in E is obviously
equivalent to the condition given in Theorem 4.1 since the square on the right is the
counit of L/A ⊣ η∗A ◦ F/LA at u. Thus F ⊣ U is molecular iff η∗A ◦ F/LA is full and
faithful for all A in E . This condition is given in C3.3.5(ii) of [Jo02] but we think our
proof is more transparent.
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Thus, for molecular geometric morphisms F ⊣ U : E → S the S-definable maps to A
form a full reflective subcategory of E/A. Thus, a map f : B → A in E is S-definable iff
the unit of L/A ⊣ η∗A ◦ F/LA at f is an isomorphism, i.e.

B
ηB- FLB

A

f

?

ηA
- FLA

FLf

?

is a pullback. This reflection restricts to an equivalence between S-definable maps to A
in E and maps to LA in S and thus, in particular, to an equivalence between S-definable
subobjects of A and ordinary subobjects of LA.

Accordingly, as suggested by M. Menni in private communication, showing that F ⊣ U
is not molecular amounts to exhibiting an A in E such that η∗A ◦ F/LA is not full and
faithful. However, so far we have not been inventive enough to find such a thing. The main
reason for this failure is that we only know examples of precohesive geometric morphisms
to boolean base toposes (or whose construction is analogous to such ones) and these are
all necessarily stably precohesive as shown in [Men22].

5. For precohesive geometric morphisms F ⊣ U : E → S the S-definable
subobjects of A are a full reflective subcategory of E/A canonically
equivalent to S/LA

Let F ⊣ U : E → S be a precohesive geometric morphism and L ⊣ F . For objects A of
E let iA : SubS(LA) ↪→ S/LA be the inclusion of subobjects of LA into the slice S/LA.
This functor has a left adjoint rA sending maps to LA to their image in S.

5.1. Theorem. Let F ⊣ U : E → S be a precohesive geometric morphism and L be a left
adjoint of F . Then for every object A of E the functor η∗A ◦F/LA ◦ iA : SubS(LA) → E/A
is full and faithful with left adjoint rA ◦L/A and thus the S-definable subobjects of A form
a full reflective subcategory of E/A.
Proof. First recall that the counit of L/A ⊣ η∗A ◦ F/LA at u : I → LA is given by
q̂ : Lp → u where

P
q

-- FI

A

p

?

ηA
-- FLA

Fu

?
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and q̂ = εI ◦ Lq. As already observed at the beginning of the proof of Theorem 3.1 by
Cor. 2.5 of [Jo11] the map ηA is epic since F ⊣ U is precohesive. Notice that q̂ is an epi
since L as a left adjoint preserves epis and εI is an iso. Thus the functor rA sends the
counit q̂ at u in S/LA to an iso in SubS(LA). Thus, since all counits of rA ⊣ iA are isos
the counit of rA ◦ L/A ⊣ η∗A ◦ F/LA ◦ iA at u is an iso as desired.

6. Conclusion

We have shown in Theorem 3.1 that for a precohesive geometric morphism F ⊣ U : E → S
with L ⊣ F it holds that

(1) F ∗⊤S classifies S-definable monos in E and

(2) for p : A → FΩS from the subobject n of LA classified by the upper transpose
p̂ : LA → ΩS the corresponding S-definable subobject m of A classified by p may
be constructed as η∗AFn and

(3) n is the image of Lm.

In the subsequent Theorem 3.2 we have shown that F ⊣ U is stably precohesive iff L
sends S-definable monos in E to monos in S. For such geometric morphisms a mono
m : P ↣ A is S-definable iff

P-
m

- A

FLP

ηP

?

FLm
- FLA

ηA

?

is a pullback square.
In section 4 following a suggestion of M. Menni we have observed that a precohesive

geometric morphism F ⊣ U fails to be stably precohesive iff for some A in E the functor
η∗A ◦ F/LA : S/LA → E/A fails to be full and faithful.

Finally, in section 5 we have shown in Theorem 5.1 that for precohesive geometric mor-
phisms F ⊣ U : E → S the S-definable subobjects of A form a full reflective subcategory
of E/A canonically equivalent to S/LA.
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