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THE NERVE THEOREM FOR RELATIVE MONADS

In memory of F. William Lawvere, whose deep
understanding of the nature of algebra has shaped our own.

NATHANAEL ARKOR AND DYLAN MCDERMOTT

Abstract. A fundamental result in the theory of monads is the characterisation
of the category of algebras for a monad in terms of a pullback of the category of
presheaves on the category of free algebras: intuitively, this expresses that every
algebra is a colimit of free algebras. We establish an analogous result for enriched
relative monads with dense roots, and explain how it generalises the nerve theorems
for monads with arities and nervous monads. As an application, we derive sufficient
conditions for the existence of algebraic colimits of relative monads. More generally,
we establish such a characterisation of the category of algebras in the context of an
exact virtual equipment. In doing so, we are led to study the relationship between a
j-relative monad T and its associated loose-monad E(j, T ), and consequently show
that the opalgebra object and the algebra object for T may be constructed from
certain double categorical limits and colimits associated to E(j, T ).

Contents

1 Introduction 403
2 The nerve theorem and its applications 407
3 Formal categorical prerequisites 417
4 The loose-monad associated to a relative monad 421
5 Exact virtual equipments 425
6 Algebras and opalgebras from exactness 428
7 The formal nerve theorem 435
8 The enriched nerve theorem 442
9 Loose-monads andよ-relative monads 446
A Strictification for virtual equipments 448

1. Introduction

A monad may be viewed as an abstraction of the specification of an algebraic structure
by operators and equations [38, 44, 45]. Consequently, an algebra for a monad is an
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abstraction of the classical notion of an algebra qua a set equipped with algebraic
structure. Classically, every algebra may be presented as a quotient of a free algebra.
The same is true for algebras for monads: given a monad T = (t, µ, η) and a T -algebra
(a, α), the following diagram forms a coequaliser in the category of T -algebras [9].

tta ta aαtα

µa
(1)

Consequently, every T -algebra is a colimit of free T -algebras. This observation may
be refined by considering not just an individual T -algebra, but the entire category of
T -algebras. Denote by uT : Alg(T ) → A the forgetful functor from the category of
algebras; by kT : A → Kl(T ) the inclusion functor into the category of free algebras
(i.e. the Kleisli category); and byよA : A→ [Aop,Set] the Yoneda embedding. Then the
following diagram forms a pullback of categories [46, Observation 1.1].

Alg(T ) [Kl(T )op,Set]

A [Aop,Set]

uT [kT
op,Set]

よA

⌟ (2)

Assuming that A is small, the presheaf category [Kl(T )op,Set] is the free cocompletion
of the category of free T -algebras under all small colimits. The pullback above exhibits
the category of algebras as a full subcategory of the presheaf category, which is further-
more closed under representables, since every free algebra is, in particular, an algebra.
Consequently, the category of algebras may be seen as a cocompletion of the category
of free algebras under a class of small colimits [31, Theorem 5.19].

The primary purpose of this paper is to generalise this result to relative monads,
which generalise monads by permitting the underlying functors to be arbitrary functors,
rather than endofunctors [2, 3]. Specifically, given a dense functor j : A→ E, we prove
that, for a j-relative monad T , the following diagram forms a pullback of categories,
where we denote by nj : E → [Aop,Set] the nerve of j, which sends an object e ∈ |E| to
the restricted Yoneda embedding a 7→ E(ja, e).

Alg(T ) [Kl(T )op,Set]

E [Aop,Set]

uT [kT
op,Set]

nj

⌟ (3)

Furthermore, the unlabelled functor above is isomorphic to the nerve of the comparison
functor iT : Kl(T ) → Alg(T ) and consequently exhibits the T -algebras as certain
presheaves on the category of free T -algebras: namely, those presheaves in the essential
image of the nerve niT : Alg(T ) → [Kl(T )op,Set]. We therefore call this the nerve
theorem for relative monads. Such a theorem is of interest for several reasons. From
a purely conceptual point of view, it establishes that (under the mild assumption of
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density of the root j) algebras for relative monads are colimits of free algebras. This is
deeper an observation than might appear at first, since algebras for relative monads do
not admit a coequaliser presentation1 like that for monads (1), as it is not possible to
iterate the underlying functor t : A→ E. From a practical point of view, it facilitates
simple proofs that the category of algebras for a (relative) monad inherits structure
from its base: for instance, it follows easily from (3) that the category of algebras for
an accessible monad on a locally presentable category is itself locally presentable. But
perhaps of most interest is the role of the theorem in categorical logic.

Indeed, despite relative monads and their algebras having been introduced only in the
last 15 years, pullbacks resembling (3) are much older. A similar pullback first appeared
in [46, §2], in Linton’s study of Lawvere’s structure–semantics adjunction, which relates
algebraic theories to their categories of algebras [38, Theorem III.1.2]. Motivated by
Linton [46], such pullbacks appeared also in the work of Diers [16, §4.0]; [18, §1] and
of Lee [39, Theorem 2.2.7], both of whom took (3) as the definition of categories of
algebras for structures that turn out to be equivalent to relative monads [7]. More
recently, the pullback (3) has been rediscovered in work on generalisations of the notion
of algebraic theory, and nerve theorems for associated classes of monads [41, 69, 52, 35,
50, 36, 10, 13, 48]. However, the connection to relative monads has not been observed2.
In fact, the nerve theorem for relative monads strictly subsumes the nerve theorems for
monads that have appeared previously in the literature. Thus, the importance of the
nerve theorem for relative monads has essentially already been appreciated throughout
the categorical literature, albeit implicitly.

1.1. Relative monads and distributors. While it is entirely possible simply to
give a direct proof of the nerve theorem (as we shall do in Theorem 2.8), this sheds
little light on the conceptual reason the theorem holds. Thus, the secondary purpose of
this paper is to elucidate the phenomenon.

The key to understanding the nature of (3) lies in the study of the connection
between the theory of relative monads and the theory of distributors (a.k.a. profunctors
or (bi)modules). It was observed in [7] that to every (j : A→ E)-relative monad T there
is an associated loose-monad (a.k.a. promonad, profunctor monad, or arrow) E(j, T )
on A (cf. [17]). In fact, the connection between relative monads and loose-monads is
very strong: j-relative monads can be characterised as loose-monads whose carrier has
the form E(j, t), for a functor t : A→ E, satisfying a natural compatibility condition
(Proposition 4.9). In other words, the j-relative monad T and the loose-monad E(j, T )
may be seen as different presentations of the same structure. It is then natural to ask
to what extent we can understand relative monads via their associated loose-monads:
for instance, whether we can capture the T -algebras (a.k.a. the left-modules, which are
classified by the Eilenberg–Moore category) and T -opalgebras (a.k.a. the right-modules,
which are classified by the Kleisli category) via natural structures associated to E(j, T ).

1A similar obstruction arises when one attempts to generalise the classical monadicity theorem [9],
which is formulated in terms of coequalisers, to relative monads. However, there, too, it is possible to
entirely avoid consideration of coequalisers [6] (cf. [53]).

2Though see Remark 1.4.
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This turns out to be the case: T -algebras may be characterised as certain loose-monad
modules into E(j, T ), assuming j is dense; while T -opalgebras may be characterised
as certain loose-monad morphisms from E(j, T ). Since the Kleisli category and the
Eilenberg–Moore category for T exhibit a universal opalgebra and a universal algebra
for T respectively, we may thus characterise the Kleisli category as a certain universal
loose-monad morphism associated to E(j, T ) – its collapse [59, 70] – and the Eilen-
berg–Moore category as a certain universal loose-monad module associated to E(j, T ) –
its semanticiser (Definition 6.6). The collapse of a loose-monad is a kind of (virtual)
double categorical colimit, while the semanticiser is a kind of (virtual) double categorical
limit. The final step in understanding the nerve theorem is to observe that semanticisers
may be constructed from pullbacks and presheaf categories, which, in particular, recovers
the nerve theorem (3).

In the special case of non-relative monads, the relationship between monads and
loose-monads, and the connection to the theory of algebras and opalgebras, was first
observed by Wood [70] in the setting of proarrow equipments, inspired by Thiébaud’s
study of the structure–semantics adjunction [66]. However, it is fair to say that this
relationship is not well known, and the perspective we present is new. Therefore, we
hope that this paper serves as an exposition of these ideas even in the non-relative case.

Before we begin, we should say a word about the setting in which we work. While we
have spoken so far only about unenriched relative monads, the results we have mentioned
hold more generally. Following [7, 6], we shall work throughout in the context of a
virtual equipment [15], which is a two-dimensional framework for formal category theory.
This permits us to establish our theorems for various flavours of category theory at once:
in particular, we obtain a nerve theorem for enriched relative monads (Theorem 8.8)
by instantiating the main theorem (Theorem 7.17) in the virtual equipment V-Cat of
categories enriched in a monoidal category V.

1.2. Outline of the paper. We begin in Section 2 by sketching a direct proof of the
nerve theorem for unenriched relative monads, presenting several applications of the
theorem, and discussing the connection to nerve theorems for monads. In Section 3, we
briefly recall the formal categorical concepts from [7] that will be fundamental to our
study of the nerve theorem. In Section 4, we study the canonical loose-monad associated
to a relative monad, and thereby characterise relative monads as certain sections of
loose-monads. We take a brief interlude in Section 5 to introduce exactness for virtual
equipments, which is necessary to relate the algebra objects and opalgebra objects for a
relative monad T to its associated loose-monad E(j, T ), which we do in Section 6. In
Section 7, we show that, assuming the existence of presheaf objects, we obtain a formal
nerve theorem; and in Section 8 demonstrate how the formal theory may be applied to
V-Cat to obtain a nerve theorem for enriched relative monads. We conclude in Section 9
by observing that loose-monads may be seen as monads relative to Yoneda embeddings
(cf. [3, §5]). Finally, in Appendix A we include a strictification result for virtual
equipments (Theorem A.1) and pseudo equipments (Corollary A.3), which provides
conceptual justification for a simplifying assumption taken in the paper (Definition 5.1).
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1.3. Remark. In [4, §5.5], the first-named author gave an alternative proof of the nerve
theorem for relative monads, based on embeddings of relative monads rather than on
distributors. We shall relate the two approaches in future work.

1.4. Remark. After presenting an early version of this work to the Masaryk University
Algebra Seminar, the authors were informed that John Bourke, Marcelo Fiore, and
Richard Garner have, in unpublished joint work, independently established a nerve
theorem for enriched relative monads.

1.5. Notation. We have chosen to refrain from some common abuses of notation. We
denote the pullback of a cospan f : A→ C ← B :g by f ×C g rather than by A×C B.
We denote the underlying function of an (enriched) functor f : A→ B by |f | : |A| → |B|
rather than by f : |A| → |B|. For morphisms f : a → b and g : b → c, we denote by
(f ; g) : a→ c or gf : a→ c their composite.

1.6. Acknowledgements. The authors thank the anonymous reviewer for their
comments, and in particular for suggesting a simpler proof of Proposition 4.7; and thank
John Bourke for insights about limits of locally presentable categories. The first-named
author was supported by a departmental postdoctoral grant from the Department of
Software Science at Tallinn University of Technology. The second-named author was
supported by Icelandic Research Fund grant № 228684-052.

2. The nerve theorem and its applications

We begin by presenting the nerve theorem for unenriched relative monads (Theorem 2.8),
sketching a direct proof of the theorem, and giving several applications. The remainder
of the paper is devoted to giving an abstract justification for the theorem (Sections 4
to 7) and thereby deducing the nerve theorem for enriched relative monads (Section 8).
For convenience, we first recall the definitions central to this section.

2.1. Relative adjunctions and relative monads.

2.2. Definition. [67, Definition 2.2] Let j : A→ E be a functor. A j-relative adjunction
(or simply j-adjunction) in Cat comprises

1. a functor ℓ : A→ C;
2. a functor r : C → E;
3. an isomorphism C(|ℓ|x, y) ∼= E(|j|x, |r|y) natural in x ∈ |A| and y ∈ |C|.

We denote this situation by ℓ ⊣j r.

C

A E

ℓ r

j

⊣

Just as every adjunction induces a monad, every j-adjunction induces a j-monad.
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2.3. Definition. [3, Definition 2.1] Let j : A→ E be a functor. A j-relative monad
(or simply j-monad) in Cat comprises

1. for each object x ∈ |A|, an object |t|x ∈ |E|;
2. for each morphism f : |j|x→ |t|y in E, a morphism f † : |t|x→ |t|y in E;
3. for each object x ∈ |A|, a morphism ηx : |j|x→ |t|x in E,

satisfying the following laws.
4. ηx ; f † = f for each morphism f : |j|x→ |t|y in E.
5. ηx† = 1|t|x for each object x ∈ |A|.
6. (f ; g†)† = f † ; g† for each pair of morphisms f : |j|x → |t|y and g : |j|y → |t|z

in E.

It follows that |t| extends uniquely to a functor t : A → E for which † and η are
natural [7, Theorem 8.12].

2.4. Definition. [3, §2.3] Let j : A→ E be a functor and let T = (t, †, η) be a j-monad.
The Kleisli category Kl(T ) has the same objects as A, and has morphisms given by
Kl(T )(x, y) := E(|j|x, |t|y). The identity morphism for an object x ∈ |A| is given by
ηx : |j|x→ |t|x in E; and the composite of morphisms f : x→ y and g : y → z in Kl(T )
is given by (f ; g†) : |j|x→ |t|z in E.

The Kleisli category for a j-monad forms a j-adjunction, whose left adjoint sends a
morphism f : x→ y in A to (f ; ηy) : |j|x→ |t|y in E, and whose right adjoint is given
by the action of †.

Kl(T )

A E

vTkT

j

⊣

2.5. Definition. [3, Definition 2.11] Let j : A→ E be a functor and let T = (t, †, η) be
a j-monad. A T -algebra comprises

1. an object e ∈ |E|;
2. for each morphism f : |j|x→ e in E, a morphism f⋊ : |t|x→ e in E,

satisfying the following laws.
3. ηx ; f † = f for each morphism f : |j|x→ e in E.
4. (f ; g⋊)⋊ = f † ; g⋊ for each pair of morphisms f : |j|x→ |t|y and g : |j|y → e in E.

A T -algebra morphism from (e,⋊) to (e′,⋊′) is a morphism ϵ : e→ e′ such that f⋊ ; ϵ =
(f ; ϵ)⋊

′ for each morphism f : |j|x→ e in E. T -algebras and their morphisms form a
category Alg(T ).

It follows that, for each T -algebra (e,⋊), the extension operator ⋊ is natural. The
category of algebras for a j-monad forms a j-adjunction, whose left adjoint is given by
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applying t, and whose right adjoint forgets the T -algebra structure.

Alg(T )

A E

uTfT

j

⊣

There is a canonical fully faithful comparison functor iT : Kl(T )→ Alg(T ), which
sends each object x ∈ |A| to |t|x, and each morphism f : |j|x → |t|y in E to f †, thus
exhibiting Kl(T ) as the category of free T -algebras.

2.6. The nerve theorem.

2.7. Definition. For a functor j : A→ E between locally small categories, we denote
by nj : E → [Aop,Set] the nerve of j, which sends an object e ∈ |E| to the restricted
Yoneda embedding a 7→ E(ja, e). By definition, j is dense if its nerve nj is fully faithful.

2.8. Theorem. Let j : A→ E be a dense functor between locally small categories. For
a j-monad T , the category of T -algebras exhibits the following pullback of categories.

Alg(T ) [Kl(T )op,Set]

E [Aop,Set]

uT [kT
op,Set]

nj

⌟

Furthermore, the unlabelled functor above is isomorphic to the nerve of the comparison
functor iT : Kl(T )→ Alg(T ), exhibiting iT as a dense functor.

Sketch of Proof. Given a T -algebra (e ∈ |E|,⋊ : E(j−, e)⇒ E(t−, e)), we define a
presheaf on Kl(T ) by the following assignments,

a 7→ E(|j|a, e) (f : |j|a→ |t|a′) 7→
(
(g : |j|a′ → e) 7→ ((f ; g⋊) : |j|a→ e)

)
with functoriality following from the two T -algebra laws. A T -algebra morphism induces
a natural transformation between the corresponding presheaves by postcomposition.
This defines a functor Alg(T )→ [Kl(T )op,Set] rendering the square above commutative,
and thus induces a functor Alg(T )→ nj ×[Aop,Set] [kT

op,Set] into the pullback.
In the other direction, given an object e ∈ |E| and a presheaf p : Kl(T )op →

Set in the pullback, observe that each Kleisli morphism f : |j|a → |t|a′ induces a
function p(f) : p(a′) = E(|j|a′, e) → E(|j|a, e) = p(a). This assignment defines a
natural transformation E(|j|a, |t|a′) × E(|j|a′, e) → E(|j|a, e), which, by transposing,
is equivalently a natural transformation E(|j|a′, e)→ [Aop,Set](E(j−, |t|a′), E(j−, e)).
When j is dense, so that nj is fully faithful, the codomain is isomorphic to E(|t|a′, e),
which produces a function E(|j|a′, e) → E(|t|a′, e) for each a′ ∈ |A|. This family of
functions forms a T -algebra structure on e, the T -algebra laws following from functoriality
of p. Furthermore, given a morphism ϵ : e→ e′ and a natural transformation p⇒ p′ in
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the pullback, naturality of the latter implies that ϵ is a morphism between the induced
T -algebras. The assignment thus extends to a functor nj×[Aop,Set] [kT

op,Set]→ Alg(T ).
We leave to the reader the routine checks that the functors

Alg(T ) ⇄ nj ×[Aop,Set] [kT
op,Set]

thus defined are inverse to one another.
Finally, since fT ⊣j uT , and fT = (kT ; iT ), we have an isomorphism

E(|j|a, e) ∼= Alg(T )(|iTkT |a, (e,⋊)) = Alg(T )(|iT |a, (e,⋊))

natural in (e,⋊) ∈ |Alg(T )|, using that kT is identity-on-objects. Thus, to establish
that the unlabelled functor is isomorphic to the nerve of iT , it is enough to verify that
this isomorphism is natural in a ∈ |Kl(T )|. However, naturality corresponds to the
commutativity of the following square, for each morphism f : |j|a → |t|a′, which is
trivial.

E(|j|a, e) E(|j|a′, e)

Alg(T )(|iT |a, (e,⋊)) Alg(T )(|iT |a′, (e,⋊))

(−)⋊

f ;(−)⋊

(−)⋊

(f ;(−))⋊

Thus the unlabelled functor is isomorphic to the nerve niT : Alg(T )→ [Kl(T )op,Set].
That the nerve is fully faithful (and hence that iT is dense) follows from stability of
fully faithful functors under pullback.

Dually, the category of coalgebras for a relative comonad may be expressed as a
pullback over a category of copresheaves. (Since the theory of relative comonads is
formally dual to the theory of relative monads, we shall leave subsequent dualisations
for the reader to spell out.)

2.9. Theorem. Let i : Z → U be a codense functor. For an i-comonad D, the category
of D-coalgebras exhibits the following pullback of categories.

Coalg(D) [Kl(D),Set]op

U [Z,Set]op

uD [kD,Set]
op

mi

⌟

Above, we denote by mi : U → [Z,Set]op the co-nerve of i, which sends an object u ∈ |U |
to the restricted Yoneda embedding z 7→ U(u, iz). Furthermore, the unlabelled functor
above is isomorphic to the co-nerve of the comparison functor iD : Kl(D)→ Coalg(D),
exhibiting iD as a codense functor.
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2.10. Remark. When j is not dense, there is still a canonical comparison functor

Alg(T )→ nj ×[Aop,Set] [kT
op,Set]

from the category of algebras into the pullback, but it is not, in general, an equivalence.
For instance, denote by V the freestanding span {▽ ← ♢ → ▽} and let j : 1 → V
denote the constant functor on ♢. j is not dense, since V (♢,▽) ∼= 1 ∼= V (♢, ▽

) but
V (▽, ▽

) = ∅. Consider T the constant j-monad on ▽. kT is the identity on 1, so that
kT

∗ is the identity on [1op,Set] ≃ Set, and thus the apex of the pullback is V . However,
Alg(T ) ∼= 1 ̸≃ V , since there is a unique T -algebra (whose underlying object is ▽).

On the other hand, there are cases in which j is not dense, but the square (3) in
Theorem 2.8 is still a pullback. For instance, suppose that j : A→ E is fully faithful.
Then the Kleisli category for j, viewed as a trivial j-monad, is isomorphic to A [7,
Proposition 6.55], while the category of algebras is E [7, Proposition 6.42]. Therefore,
the square (3) trivially forms a pullback in Cat, as shown below. However, j need not
be dense.

E [Kl(j)op,Set]

E [Aop,Set]

1E ∼=

nj

⌟

(For an alternative proof that the nerve theorem holds when j = t and j is fully faithful,
observe that, in the proof of Theorem 2.8, we then have that

[Aop,Set](E(j−, |j|a′), E(j−, e)) ∼= [Aop,Set](A(−, a′), E(j−, e)) ∼= E(|j|a′, e)

using full faithfulness of j, followed by the Yoneda lemma.)

2.11. Remark. Pullbacks of identity-on-objects functors along nerves, as below, were
first considered by Linton [46, §5], who called objects of the pullback k-algebras (rel. j).
Indeed, elements of the proof of Theorem 2.8 are present loc. cit. However, Linton had
no notion of relative monad, nor of algebras thereof, to formulate the nerve theorem at
this level of generality.

· [Kop,Set]

E [Aop,Set]

[kop,Set]

nj

⌟

Later, Diers and Lee independently established the equivalence of the following struc-
tures [17, Théorème 2.1 & Théorème 2.2]; [39, Theorem 2.2.7 & Corollary 2.2.8].

1. Pullbacks of the form in Theorem 2.8.
2. Terminal resolutions of j-monads.
3. Right j-adjoints creating j-absolute colimits.
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However, neither author had an independent definition of the category of algebras for a
relative monad: Diers took (1) to be the definition thereof, whilst Lee took (2) to be
the definition. Therefore, Theorem 2.8, which adds a fourth equivalent characterisation
to the list above, is entirely new.

4. Categories of algebras for j-monads.
(In our formal setting, the equivalence between (2 & 4) follows from the universal
property of algebra objects [7, Corollary 6.41], while the equivalence between (3 & 4)
follows from the relative monadicity theorem [6, Corollary 4.8].)

The proof of Theorem 2.8 readily generalises, with appropriate modifications, to
enriched relative monads. However, rather than give such a concrete proof, we shall
derive the enriched nerve theorem (Theorem 8.8) from a more general result using formal
techniques.

2.12. Applications. We give a number of applications of the nerve theorem. In our
examples, we shall freely make use of the enriched nerve theorem, which will be proven
in Theorem 8.8. For simplicity, we shall here take V to be a closed monoidal locally
presentable category, while noting that the nerve theorem itself holds under much weaker
assumptions on the base of enrichment V.

First, we observe that the nerve theorem for relative monads does indeed generalise
the classical characterisation theorem for the category of algebras for a monad.

2.13. Example. Let A be a V-category admitting a presheaf V-category PA, and
let T be a V-enriched monad on A. Taking j = 1A, so that the nerve of j is the
Yoneda embedding, the following diagram forms a pullback. This recovers the original
characterisation of Linton [46, Observation 1.1], as well as the enriched variant [42]; [63,
Theorem 14]; [43].

Alg(T ) P(Kl(T ))

A PA

uT kT
∗

よA

⌟

One of the motivating applications of the nerve theorem for relative monads is to the
theory of algebraic theories, in the sense of Lawvere [38, Chapter 2] (cf. [6, Example 5.6]).

2.14. Example. Denote by F the category of finite ordinals, which is the free category
with strictly associative and unital finite coproducts on a single object 1. The inclusion
j : F ≃ FinSet ↪→ Set of finite ordinals into sets exhibits a cocompletion under sifted
colimits, and is hence dense and fully faithful.

Now consider a j-monad T . The inclusion of F into the Kleisli category of T forms
an algebraic theory kT : F→ Kl(T ), since kT is identity-on-objects and preserves finite
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coproducts. The category of T -algebras forms a pullback as follows.

Alg(T ) [Kl(T )op,Set]

Set [Fop,Set]

uT [kT
op,Set]

nj

⌟

Noting that Kl(T ) has finite coproducts, the following also forms a pullback.

Cart[Kl(T )op,Set] [Kl(T )op,Set]

Cart[Fop,Set] [Fop,Set]

Cart[kT
op,Set] [kT

op,Set]
⌟

Moreover, since kT is identity-on-objects, [kT op,Set] is an amnestic isofibration, and so
both pullbacks are furthermore bipullbacks [29, Corollary 1]. By the universal property
of F, there is an equivalence of categories Cart[Fop,Set] ≃ Set concrete over [Fop,Set].
Consequently, the category of T -algebras is concretely equivalent to the category of
finite product-preserving functors Kl(T )op → Set, and thus to the category of algebras
for the algebraic theory kT .

Conversely, the relative monadicity theorem establishes that the category of models for
an algebraic theory is strictly j-monadic [6, Example 5.6]. Together, these observations
exhibit an equivalence between the category of algebraic theories and the category of
j-monads, which commutes with taking categories of algebras (cf. [4, Chapter 3]).

The analysis of Example 2.14 extends to more general notions of algebraic theory;
this perspective will be explicated in future work (cf. [4, Chapter 7]; [5]).

Another useful application of the nerve theorem is in establishing properties of the
categories of algebras for relative monads: for instance, local presentability.

2.15. Example. Let j : A → E be a dense V-functor with small domain and locally
presentable codomain. The nerve nj : E → PA has a left adjoint, since E is small-
cocomplete. Therefore, for every j-monad T , each of the V-functors appearing in the
cospan of the pullback of V-categories below is a right adjoint between locally presentable
V-categories.

Alg(T ) P(Kl(T ))

E PA

uT kT
∗

nj

⌟

Consequently, by [11, Theorem 6.11], the V-category of T -algebras is locally presentable,
and each of the functors above is a right adjoint. Furthermore, it follows from [6,
Proposition 4.12] that uT is strictly monadic.

In particular, if A is κ-cocomplete, for some regular cardinal κ, and j preserves
κ-small colimits, then nj is κ-accessible (i.e. preserves κ-filtered colimits), in which



414 NATHANAEL ARKOR AND DYLAN MCDERMOTT

case Alg(T ) is locally κ-presentable and each of the functors above is κ-accessible [11,
Theorem 6.10].

An immediate consequence of Example 2.15 is a simple proof that categories of
algebras for accessible monads on locally presentable categories are themselves locally
presentable [22, 68].

2.16. Example. Let κ be a regular cardinal and let T be a κ-accessible monad on a
locally κ-presentable V-category E. Denote by j : A → E the full subcategory of κ-
presentable objects in E. By [7, Example 4.8], the forgetful V-functor uT : Alg(T )→ E
is strictly j-monadic. Thus, by Example 2.15, Alg(T ) is locally κ-presentable and uT is
κ-accessible.

2.17. Example. Example 2.14 and Example 2.15 (for fixed κ) are instances of a more
general phenomenon that holds for any class of weights that is sound in the sense of
[1, 36]. Let Ψ be a class of small weights and let Ψ+ be the class of Ψ-flat weights [32].
We say that Ψ is sound if, for every Ψ-cocomplete V-category A, the V-category of
Ψ-exact V-presheaves PΨ(A) is equivalent to the free cocompletion Ψ+(A) of A under
Ψ+-weighted colimits.

Let A be a small Ψ-cocomplete V-category, and let E be a locally Ψ-presentable
V-category, i.e. the free Ψ+-cocompletion of a small Ψ-cocomplete V-category. Then,
for any dense V-functor j : A→ E, the V-category of algebras for any j-monad is also
locally Ψ-presentable. We briefly sketch the proof idea; the full details will appear
elsewhere.

Let T be a j-monad. The nerve theorem implies that the following diagram is a
pullback of V-categories; since kT ∗ is an amnestic isofibration, it is also a bipullback [29,
Corollary 1].

Alg(T ) P(Kl(T ))

E PA

uT kT
∗

nj

⌟

By analogous arguments to Example 2.15, nj and kT ∗ preserve Ψ-flat colimits and admit
left adjoints. Thus, it suffices to show that the 2-category of locally Ψ-presentable
V-categories and Ψ+-cocontinuous right-adjoint functors admits bipullbacks, which
will be preserved by the forgetful 2-functor into V-Cat. By a duality theorem for
Ψ-complete V-categories analogous to that of [14, Theorem 3.1], this 2-category is dually
biequivalent to the 2-category of small Ψ-complete V-categories admitting absolute
limits, which is the 2-category of algebras for an accessible 2-monad on V-Cat, and
hence admits bicolimits [12, Theorem 5.8]. Since bilimits are preserved by biequivalence,
the 2-category of locally Ψ-presentable V-categories consequently admits bipullbacks,
and thus the V-category of T -algebras in the pullback above is locally Ψ-presentable.

In particular, when V = Set and Ψ is the class of finite discrete weights, this recovers
Example 2.14; and, when Ψ is the class of κ-small weights, recovers Example 2.15.
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Next, we give an application of the nerve theorem to colimits of relative monads.
Recall from [7, Corollary 6.40] that the assignment taking each j-monad T to its forgetful
functor uT : Alg(T ) → E forms a fully faithful functor u(−) : RMnd(j)op → Cat/E.
We extend the terminology of [30, §26] from monads to relative monads.

2.18. Definition. Let j : A→ E and T(−) : I → RMnd(j) be functors. A colimit of
T is algebraic if it is preserved by u(−)

op : RMnd(j)→ (Cat/E)op.

In other words, given some functor T : I → RMnd(j) admitting a colimit colimi∈I Ti,
the colimit is algebraic if it is sent by u(−) to a limit in Cat/E. The following then
generalises [30, Proposition 26.4] from monads to relative monads with dense roots.

2.19. Proposition. Let j : A→ E be a dense functor with small domain. A diagram
T : I → RMnd(j) of j-monads admits an algebraic colimit if and only if the limit
limi∈|I| uTi in Cat/E admits a left j-adjoint.

Proof. Denote by u : D → E the limit limi∈|I| uTi . The functor u(−) : RMnd(j)op →
Cat/E reflects limits because it is fully faithful, so it is enough to show that, if u admits
a left j-adjoint, then it exhibits the category of algebras for the induced j-monad.

Denote by k : A→ B the colimit colimi∈|I| kTi in A/Cat. The functor

[(−)op,Set] : A/Cat→ (Cat/[Aop,Set])op

admits a right adjoint, and hence preserves colimits: this follows from the “prelim-
inary structure–semantics adjunction” of [46, Theorem 3.1] relative to the Yoneda
embeddingよA : A → [Aop,Set], observing that Aop/Cat ∼= A/Cat. We thus have
that [(colimi∈|I| kTi)

op,Set] exhibits the limit limi∈|I|[kTi
op,Set] in Cat/[Aop,Set]. Now,

for each i ∈ |I|, the nerve theorem implies that the following square is a pullback of
categories.

Alg(Ti) [Kl(Ti)
op,Set]

E [Aop,Set]

uTi [kTi
op,Set]

nj

⌟

Since the pullback functor nj ×[Aop,Set] (−) : Cat/[Aop,Set] → Cat/E is right-adjoint
(to postcomposition by nj), it preserves limits, so that the following square also exhibits
a pullback of categories.

D [Bop,Set]

E [Aop,Set]

u=limi∈|I| uTi limi∈|I|[kTi
op,Set]=[kop,Set]

nj

⌟
(4)

k is identity-on-objects, so that [kop,Set] strictly creates colimits. Thus u strictly creates
those colimits preserved by nj , i.e. the j-absolute colimits, by [58, Proposition 21.7.2(c)].
u is therefore j-monadic if and only if it admits a left j-adjoint by [6, Proposition 4.12].
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2.20. Example. Let j : A → E be a dense functor with small domain and locally
presentable codomain. Then each of the functors appearing in the cospan of the pullback
(4) is a right adjoint between locally presentable categories, so that u is also right adjoint
by [11, Theorem 6.11]. Thus RMnd(j) admits all small algebraic colimits.

As a final example, we explain how the nerve theorem for relative monads relates
to the nerve theorems for monads arising in the theory of monads with arities [69] and
nervous monads [13].

2.21. Example. [Nerve theorems for monads] Let j : A→ E be a dense V-functor with
small domain and let T be a V-enriched monad on E. Precomposition by j defines a
V-enriched j-monad (j ;T ) [7, Proposition 5.36]. The nerve theorem for relative monads
implies that the following diagram is a pullback of V-categories.

Alg(j ; T ) P(Kl(j ; T ))

E PA

uj;T kj;T
∗

nj

⌟

The Kleisli V-category for (j ; T ) is given by the full image of (j ; kT ), i.e. the full
subcategory of Kl(T ) spanned by the objects of A.

Kl(j ; T ) Kl(T )

A E

kT

j

kj;T

Now, assuming that uj;T admits a left adjoint, [6, Proposition 4.12] implies that uj;T
is strictly monadic, and so the V-category of T -algebras is isomorphic over E to the
V-category of (j ; T )-algebras.

Alg(T ) Alg(j ; T )

E

∼=

uT uj;T

Monads satisfying this condition are called j-ary in [4, Definition 5.4.1]. In particular,
monads with arities j [69, Definition 4.1] and j-nervous monads [13, Definition 17]
both satisfy the given assumptions, and are hence j-ary. We thereby recover the nerve
theorems of [69, Theorem 4.10]; [50, §4]; [10, Theorem 1.10], and the characterisations
of categories of algebras for nervous monads in [13, Theorem 18]; [48, Proposition 4.10].
In future work, we shall study the notion of j-ary monad in detail to clarify the precise
relationship between these concepts (cf. [4, §5.4]).
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3. Formal categorical prerequisites

We shall work throughout the remainder of paper in the context of a virtual equipment
X, adopting the terminology and notation of [7]. In this section, we shall briefly recall
the fundamental concepts of formal category theory in a virtual equipment. A more
detailed introduction may be found in §2 – §3 of [7].

A virtual equipment is, in particular, a virtual double category, which is a two-
dimensional structure having objects; tight-cells (→); loose-cells (−7−→); and 2-cells (⇒)
of the following form (cf. [7, Definition 2.1]).

A0 A1 · · · An−1 An

B0 Bnqp

pnpp1p pn−1pp2p
fnf0 ϕ

For instance, the virtual double category V-Cat has as objects the (possibly large)
V-categories; as tight-cells the V-functors; as loose-cells the V-distributors; and as 2-cells
the V-natural transformations, which are families of morphisms

ϕx0,...,xn : p1(x0, x1)⊗ · · · ⊗ pn(xn−1, xn)→ q(|f0|x0, |fn|xn)

in V for each x0 ∈ |A0|, . . . , xn ∈ |An|, satisfying several naturality laws [7, Definition 8.1].
For tight-cells f : A→ B and g : B → C, we denote by (f ; g) : A→ C or gf : A→ C
their composite. For each pair of objects A and B in X, the category of loose-cells
A −7−→ B and globular 2-cells is denoted by XJA,BK, while the set of tight-cells A→ B is
denoted by X[A,B].

A virtual equipment is a virtual double category for which every object A admits a
loose-identity A(1, 1) : A −7−→ A ([7, Definition 2.4]); and for which, for every loose-cell
p : X −7−→ Y and tight-cells g : W → X and f : Z → Y , there is a restriction loose-cell
p(f, g) : W −7−→ Z ([7, Definition 2.7]). We denote the restriction A(1, 1)(f, g) along a
loose-identity A(1, 1) by A(f, g): in V-Cat, this restriction is given by the hom-objects
of A. Finally, for each tight-cell f : A → B, we denote by ⌢f : A(1, 1) ⇒ B(f, f)
and by ⌣f : B(1, f), B(f, 1) ⇒ A(1, 1) the unit and counit respectively of the loose-
adjunction B(1, f) ⊣ B(f, 1) [7, Notation 2.8]. In a virtual equipment, we may consider
2-cells between tight-cells, and consequently each set of tight-cells X[A,B] extends
to a category. A virtual equipment is representable if it admits composite of loose-
cells; a representable virtual equipment is equivalently a pseudo double category with
companions and conjoints.

3.1. Relative monads, opalgebra objects and algebra objects. We recall
the concepts introduced in [7] that are most relevant to our study of the nerve theorem.
The central concept is that of a relative monad, which is a generalisation of a monad
that permits the carrier to be an arbitrary tight-cell, rather than an endo-tight-cell.
Accordingly, a relative monad is parameterised by a tight-cell j : A→ E that plays the
same role that the identity tight-cell plays for a non-relative monad.
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3.2. Definition. [7, Definition 4.1] A relative monad comprises
1. a tight-cell j : A→ E, the root;
2. a tight-cell t : A→ E, the carrier;
3. a 2-cell † : E(j, t)⇒ E(t, t), the extension operator;
4. a 2-cell η : j ⇒ t, the unit,

satisfying associativity and left- and right-unit laws. A j-relative monad (or simply
j-monad) is a relative monad with root j.

Relative monads admit notions of algebra and algebra morphism analogous to those
for non-relative monads. However, it is important to observe that, in the context of
a virtual equipment, the appropriate notion of morphism of algebras is graded by a
chain of loose-cells. This permits the consideration of morphisms between algebras with
different domains, in contrast to morphisms of algebras in a 2-category [63].

3.3. Definition. [7, Definitions 6.1 & 6.29] Let T be a relative monad. An algebra for
T (or simply T -algebra) comprises

1. an object D, the domain;
2. a tight-cell e : D → E, the carrier;
3. a 2-cell ⋊ : E(j, e)⇒ E(t, e), the extension operator,

satisfying compatibility laws with the extension operator † and unit η for T .
Let (e : D → E,⋊) and (e′ : D′ → E,⋊′) be T -algebras. A (p1, . . . , pn)-graded

T -algebra morphism from (e,⋊) to (e′,⋊′) is a 2-cell

ϵ : E(1, e), p1, . . . , pn ⇒ E(1, e′)

satisfying a compatibility law with the two extension operators ⋊ and ⋊′.

3.4. Remark. [7, Remark 6.30] A (p1, . . . , pn)-graded T -algebra morphism from (e,⋊)
to (e′,⋊′) is equivalently a 2-cell

ϵ : p1, . . . , pn ⇒ E(e, e′)

satisfying a compatibility law with the two extension operators ⋊ and ⋊′. We shall use
the term algebra morphism to refer to both forms of 2-cell interchangeably.

An algebra object for a relative monad T is a universal T -algebra. In V-Cat, this
corresponds to the V-category of T -algebras [7, §8.3].

3.5. Definition. [7, Definition 6.33] Let T be a relative monad. A T -algebra
(uT : Alg(T )→ E,⋊T ) is an algebra object for T when

1. for every T -algebra (e : D → E,⋊), there is a unique tight-cell ⟨⟩(e,⋊) : D → Alg(T )
such that ⟨⟩(e,⋊) ; uT = e and ⋊T (1, ⟨⟩(e,⋊)) = ⋊;
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2. for every graded T -algebra morphism ϵ : E(1, e), p1, . . . , pn ⇒ E(1, e′), there is a
unique 2-cell ⟨⟩ϵ : Alg(T )(1, ⟨⟩(e,⋊)), p1, . . . , pn ⇒ Alg(T )(1, ⟨⟩(e′,⋊′)) such that:

ϵ =

E D · · · D′

E D′

pnpp1pE(1,e)p

E(1,e′)
p

E(1,uT ),⟨⟩ϵ

3.6. Definition. [7, Definitions 6.4 & 6.43] Let T be a relative monad. An opalgebra
for T (or simply T -opalgebra) comprises

1. an object B, the codomain;
2. a tight-cell a : A→ B, the carrier or underlying tight-cell;
3. a 2-cell ⋉ : E(j, t)⇒ B(a, a), the extension operator,

satisfying compatibility laws with the extension operator † and unit η for T .
Let (a : A → B,⋉) and (a′ : A → B′,⋉′) be T -opalgebras. A (p1, . . . , pn)-graded

T -opalgebra morphism from (a,⋉) to (a′,⋉′) is a 2-cell

α : p1, . . . , pn, B(1, a)⇒ B′(1, a′)

satisfying a compatibility law with the two extension operators ⋉ and ⋉′.

An opalgebra object for a relative monad T is a universal T -opalgebra. In V-Cat,
this corresponds to the Kleisli V-category [7, §8.4].

3.7. Definition. [7, Definition 6.45] Let T be a relative monad. A T -opalgebra
(kT : A→ Opalg(T ),⋉T ) is called an opalgebra object for T when

1. for every T -opalgebra (a : A → B,⋉), there is a unique tight-cell
[](a,⋉) : Opalg(T )→ B such that kT ; [](a,⋉) = a and ⋉T ; [](a,⋉) = ⋉;

2. for every graded T -opalgebra morphism α : p1, . . . , pn, B(1, a)⇒ B′(1, a′), there is
a unique 2-cell []α : p1, . . . , pn, B(1, [](a,⋉))⇒ B′(1, [](a′,⋉′)) such that:

α =

B′ · · · B A

B′ A

B(1,a)p

B′(1,a′)
p

pnpp1p
[]α(1,kT )

For every virtual equipment X, there is a dual virtual equipment Xco. Results about
relative comonads and their coalgebras will consequently follow from the results in this
paper by duality [7, §7]; we shall not state these dual formulations explicitly.

3.8. Loose-monads. A loose-monad on an object A in a virtual double category is a
monoid in the multicategory of loose-cells A −7−→ A. Loose-monads in V-Cat have also
been called promonads, profunctor monads, or arrows (cf. Remark 8.3). Loose-monads
in a given virtual double category form a virtual double category.
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3.9. Definition. [40, Definition 5.3.1] Let X be a virtual double category. The virtual
double category cMnd(X) is defined as follows.

1. An object is a loose-monad in X, comprising an object A ∈ X, a loose-cell
T : A −7−→ A, and 2-cells

A A A

A A

Tp Tp

T
p

µ

A A

A A
T
p

η

subject to the following laws.

(µ, 1A) ; µ = (1A, µ) ; µ (η, 1A) ; µ = 1A (1A, η) ; µ = 1A

2. A tight-cell from (A, S, µA, ηA) to (B, T, µB, ηB) is a loose-monad morphism, com-
prising a tight-cell f : A→ B and a 2-cell

A A

B B

f

Sp
f

T
p

ϕ

subject to the following laws.

µA ; f = (f, f) ; µB ηA ; f = 1f ; ηB

3. A loose-cell is a loose-monad module, comprising a loose-cell p : A −7−→ B and 2-cells

B B A

B A

Tp pp

pp

λ

B A A

B A

pp Sp

pp

ρ

subject to the following laws.

(µB, 1p) ; λ = (1B, λ) ; λ (ηB, 1p) ; λ = 1p

(1p, µA) ; ρ = (ρ, 1A) ; ρ (1p, ηA) ; ρ = 1p

(λ, 1A) ; ρ = (1B, ρ) ; λ

4. A 2-cell is loose-monad transformation, comprising a 2-cell in X

A0 · · · An

B0 Bn

f0

p1p pnp
fn

qp

ψ
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subject to the following laws.3

(ϕ0, ψ) ; λp = (ψ, ϕn) ; ρq (n = 0)
(λp1 , 1p2 , . . . , 1pn) ; ψ = (ϕ0, ψ) ; λq (n ≥ 1)

(1p1 , . . . , 1pn−1 , ρpn) ; ψ = (ψ, ϕn) ; ρq (n ≥ 1)
(1p1 , . . . , λpi+1

, . . . , 1pn) ; ψ = (1p1 , . . . , ρpi , . . . , 1pn) ; ψ (1 ≤ i < n)

3.10. Remark. In [15, Definition 2.8], in which virtual double categories are named
after their loose-cells rather than their objects, cMnd(X) is called Mod(X).

For a fixed object A ∈ X, we denote by cMnd(A) the category of loose-monads on
A [7, Definition 2.16].

4. The loose-monad associated to a relative monad

We now proceed with our pursuit of a more abstract understanding of the nerve theorem.
This begins with the understanding of relative monads in terms of loose-monads. It
is shown in [7, Theorem 4.22] that, given a j-monad T with carrier t : A → E, the
loose-cell E(j, t) : A −7−→ A has the structure of a loose-monad. In this section we sharpen
this result by showing that if E(j, t) has the structure of a loose-monad, and satisfies a
mild compatibility condition, the tight-cell t : A→ E has the structure of a j-monad.
This establishes a strong relationship between a relative monad T and its associated
loose-monad E(j, T ), which we will build upon in the subsequent sections.

To begin, we shall need an abstract result about monoids in multicategories (Proposi-
tion 4.7). We will then specialise to the multicategory of endo-loose-cells on a fixed object
in a virtual equipment to obtain a statement about relative monads (Proposition 4.9).

4.1. Definition. A morphism g : B → C in a multicategory is monic if, for each pair
of multimorphisms f, f ′ : A1, . . . , An → B, we have (f ; g = f ′ ; g) =⇒ (f = f ′).

4.2. Example. For each section–retraction pair s : B ⇄ A :r (i.e. satisfying (s;r) = 1B),
the section s is monic.

4.3. Lemma. Let M be a multicategory and let (A, µA, ηA) be a monoid in M. Let B be
an object together with a morphism s : B → A. If s is monic, then there is at most one
monoid structure on B for which s is a monoid morphism.

Proof. Suppose that B is equipped with two monoid structures (µB, ηB) and (µ′
B, η

′
B) for

which s is a monoid morphism, so that the following diagrams commute. Consequently,

3Note that [40, Definition 5.3.1] is incomplete, as it omits the coherence condition for nullary 2-cells.
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since s is monic, µB = µ′
B and ηB = η′B.

B,B

B A,A B

A

µB s,s
µ′B

s
µA

s

B B

A

s

ηB η′B

ηA
s

In particular, given a section–retraction pair s : B ⇄ A :r, if B admits a monoid
structure for which s is a monoid morphism, the monoid structure is necessarily given
by B,B s,s−→ A,A

µA−→ A
r−→ B and ηA−→ A

r−→ B. It is natural to ask when this canonical
structure does indeed form a monoid. With this in mind, we introduce the following
definition.

4.4. Definition. Let (A, µA, ηA) be a monoid in a multicategory. An (A, µA, ηA)-
section comprises a section–retraction pair s : B ⇄ A :r rendering the following diagram
commutative.

B,B

A,A A,A

A B A

s,s

µA

s,s

µA

r s

ηA ηA

4.5. Example. Let (A, µA, ηA) be a monoid in a multicategory and let e : A→ A be an
idempotent monoid homomorphism. If e admits a splitting (r ; s) : A→ B → A, then
(s, r) forms an (A, µA, ηA)-section.

4.6. Example. If a multicategory admits a unit ηJ : → J , then J carries a canonical
monoid structure (cf. [7, Proposition 4.12]). Up to isomorphism, the only section of
this monoid is J itself. Indeed, for each section (s, r) of the monoid J , the equation
(ηJ ; r ; s) = ηJ implies that (r ; s) is the identity on J , so that s is an isomorphism of
monoids.

Intuitively, the two commutativity laws in Definition 4.4 are exactly those stating that
s is a monoid morphism to A from the tentative monoid structure on B. The following
proposition shows that, under these assumptions, the tentative monoid structure is
indeed a monoid structure.
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4.7. Proposition. Let M be a multicategory and let (A, µA, ηA) be a monoid in M.
An (A, µA, ηA)-section (B, s, r) endows B with a unique monoid structure such that s is
a monoid morphism.

Note that r need not be a monoid morphism (though does preserve the unit, by
definition).

Proof. By Lemma 4.3, the unit and multiplication are uniquely determined. Define

ηB :=
ηA−→ A

r−→ B µB := B,B
s,s−→ A,A

µA−→ A
r−→ B

We will show that (B, µB, ηB) is a monoid. The unit laws follow from commutativity of
the following diagrams, since s is monic.

B B,B

A,A B

A A

ηB ,B

s

s,s µB

µA sηA,A

B B,B

A,A B

A A

B,ηB

s

s,s µB

µA sA,ηA

The associativity law follows from commutativity of the following diagram, since s is
monic.

B,B,B B,B

A,A,A A,A B

A,A

B,B B A

B,µB

s,s,s

µB ,B

s,s µB

A,µA

µA,A

µA s

µAs,s

µB s

s is then a monoid morphism, the unit law following from the unit section law; and the
multiplication law following from the multiplication section law.

4.8. Remark. Ralph Sarkis and Jean-Baptiste Vienney have observed that there is
a complementary notion of monoid retract, which implies that r, rather than s, is a
monoid morphism.

Recall that, for any object A in a virtual equipment X, the endo-loose-cells A −7−→ A
form a multicategory XJA,AK. Every tight-cell t : A→ E induces a monoid E(t, t) in this
multicategory. The insight relating relative monads to loose-monads is the observation
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that the laws for a j-relative monad with carrier t are precisely the laws for a section of
the monoid E(t, t). Thus, every relative monad is a section of an endomorphism monoid.
This may be viewed as a Cayley representation for relative monads, though it is sharper
than the typical formulations of representation theorems (cf. [57]), as the laws for the
submonoid are deduced rather than assumed.

4.9. Proposition. Let t : A → E be a tight-cell in a virtual equipment with chosen
restrictions. The following are in bijection.

1. Relative monads with carrier t.
2. E(t, t)-sections with strictly t-corepresentable carrier.

Proof. Let (B, s, r) be an E(t, t)-section. Strict t-corepresentability means that B is
of the form E(j, t) for some tight-cell j : A→ E (it is this that requires that we have
chosen restrictions, since otherwise it is only possible to consider corepresentability up to
isomorphism). We have an induced 2-cell ⌢t

=⇒ E(t, t)
r
=⇒ E(j, t), which is equivalent to a

2-cell j ⇒ t, that we shall call η. Defining † := s, we therefore have a section–retraction
pair

E(j, t)
†
=⇒ E(t, t)

E(η,t)
====⇒ E(j, t)

which gives us the root, unit, and first unit law for a relative monad.
For the second unit law, observe that the following diagram commutes (as is particu-

larly clear from the corresponding string diagrams).

A(1, 1) E(t, t)

E(j, j) E(j, t)

⌢t

⌢j E(η,t)

E(j,η)

Therefore the unit law for the section is the second unit law for a relative monad. For
the associativity law, observe that the following diagram commutes.

B,B A,A A A

B,A A,A A B

s,s

B,s

µA r;s

s,A µA r

s

In our case, the bottom composite is

E(j, t), E(t, t)
†,E(t,t)
====⇒ E(t, t), E(t, t)

⌣t(t,t)
====⇒ E(t, t)

E(η,t)
====⇒ E(j, t)

which is equal to ⌢t(j, t) by the first unit law of the relative monad. Thus, the
multiplication law for the section is the associativity law for the relative monad.

For the converse, every j-relative monad with carrier t induces an E(t, t)-section
(E(j, t), †, E(η, t)).
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Note that we do not recover a relationship between j-monad morphisms and loose-
monad morphisms this way, since it is j that varies above, rather than t. However, we
shall not be concerned with the morphisms for what follows.

4.10. Remark. Dually, for a tight-cell d : Z → U , relative comonads are the U(d, d)-
sections with strictly d-representable carriers.

We observe in passing that, as a consequence of Proposition 4.9, the associativity
law in [7, Definition 4.1] can be replaced by the following equation.

A A A

A A A

A A

E(j,t)pE(j,t)p

E(t,t)E(t,t)

E(t,t)
p

††

⌣t(t,t)

=

A A A

A A A

A A

A A

A A

E(j,t)pE(j,t)p

E(t,t)E(t,t)

E(t,t)

E(j,t)

E(t,t)
p

††

⌣t(t,t)

E(η,t)

†

(5)

For relative monads in Cat, this says that the associativity law is equivalently specified
by asking that, given morphisms f : |j|x→ |t|y and g : |j|y → |t|z, if we first form the
composite (f † ; g†) : |t|x→ |t|y → |t|z by extending both morphisms, then, subsequently,
precomposing the unit and then extending does nothing. In other words, the following
equation holds.

(ηx ; f
† ; g†)† = f † ; g†

4.11. Corollary. Let T be a j-monad. Then E(j, T ) is a loose-monad, and
† : E(j, t)⇒ E(t, t) is a loose-monad morphism.

This statement follows from [7, Theorem 4.22 & Example 6.6 & Lemma 6.7]. However,
the formulation of this section facilitates a direct proof.

Proof. Direct from Proposition 4.7.

5. Exact virtual equipments

In our previous work on the formal theory of relative monads [7, 6], we worked within the
setting of a virtual equipment X, without additional global assumptions. In contrast, to
establish the nerve theorem formally, we require X to admit more structure. Conceptually,
the relevant structure is an exactness property, corresponding to the existence of certain
colimits that interact well with restrictions (which may be thought of as a limit-like
notion). While not every virtual equipment satisfies this property, it is commonly
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satisfied in settings of interest for formal category theory. For instance, it is satisfied in
every virtual equipment constructed from a virtual double category with restrictions via
the loose-monads construction cMnd, which includes virtual equipments of enriched
categories, internal categories, generalised multicategories, and so on [15].

Before introducing the definition of exactness for a virtual equipment, we first
make a small simplification to our setting, motivated by the observation that, while
restrictions in a general virtual double category are identified up to isomorphism by their
universal property, in many examples of interest there is a canonical choice of restrictions
that are particularly well behaved. For instance, in the virtual equipment V-Cat of
V-enriched categories, restriction is given by pre- and postcomposition of V-functors,
and is consequently strictly functorial (rather than being only pseudofunctorial, as is
automatic for restrictions by their universal property). This is convenient, as it means
that we may often reason about loose-cells in V-Cat up to equality, rather than up to
isomorphism. The following definition captures this property.

5.1. Definition. A virtual equipment is strict if equipped with a strictly functorial
choice of restrictions, in the sense that following 2-cells exhibit the chosen cartesian
2-cells (so that p(1, 1) = p and p(f, g)(f ′, g′) = p(ff ′, gg′)), for all objects A,A′, B,B′′,
tight-cells f, f ′, g, g′, and loose-cell p.

A B

A Bpp

p(1,1)p
=

A′′ B′′

A′ B′

A Bpp

f g

p(f,g)

g′f ′

p(ff ′,gg′)p

cart

cart

We shall henceforth assume our ambient virtual equipment X is strict. While this is
not a necessary assumption (that is, our theorems continue to hold, in a weaker sense,
without the assumption of strictness), it significantly simplifies reasoning that involves
restrictions. For instance, without this assumption, we would have to consider in places
universal properties that identify objects only up to equivalence, rather than isomorphism
(cf. Remark 7.4). Given that examples of interest are strict, this seems a reasonable
trade-off. Lest the reader worry that we are sacrificing generality for simplicity, we note
that strictness is not a restrictive assumption, as every virtual equipment is equivalent
to a strict one (Theorem A.1).

We may now introduce the appropriate notion of exactness for a virtual equipment.
Note that we shall not assume our ambient virtual equipment X is exact throughout
the rest of the paper: exactness will be explicitly assumed when it is needed.

5.2. Definition. A strict virtual equipment X is exact when the following conditions
hold.

1. For every object A in X and loose-monad T on A, there is an object «T» and
tight-cell π

T : A→ «T», the collapse of T , satisfying T = «T»( π

T ,

π

T ) and such
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that, for every object B in X and loose-monad morphism (f, ϕ) : T → B(1, 1),
there is a unique tight-cell []f : «T»→ B factoring (f, ϕ).

ϕ =

A A

«T» «T»

B B

π

T

π

T

p

Tp

[]f []f

p

f f

cart

=

2. For every object A in X, the identity on 1A exhibits the collapse of the loose-identity
A(1, 1).

3. For every loose-monad module p : T ′ −7−→ T in X, there is a loose-cell
«p» : «T ′» −7−→ «T», the collapse of p, satisfying p = «p»( π

T ,

π

T ′) and such that,
for every loose-monad transformation,

T0 · · · Tn

B(1, 1) B′(1, 1)

(f,ϕ)

p1p pnp
(f ′,ϕ′)

qp

ψ

there is a unique 2-cell []ψ factoring ψ.

ψ =

A0 · · · An

«T0» · · · «Tn»

B B′

π

T0

p1p
···

pnp

π

Tn

[]f

«p1» «pn»

[]f ′

qp

cart cart

[]ψ

4. For every loose-monad T in X, the collapse of T qua a loose-monad exhibits the
collapse of T qua an identity loose-monad module T −7−→ T .

5. Each loose-cell p : «T ′» −7−→ «T» between collapses is equal to the collapse
«p( π

T ,

π

T ′)» of the loose-monad module p( π

T ,

π

T ′) : T ′ −7−→ T .

5.3. Remark. Definition 5.2 is inspired by that of Schultz [59, Definition 5.1] (which,
in turn, is inspired by Wood’s Axiom 5 [70, §2] and its subsequent study in [23, §15 &
§16]). Schultz motivates the terminology by drawing a number of connections between
exact virtual equipments and exact categories in the sense of Barr [8]. However, the
definition of Schultz is too weak, as it specifies a universal property only for unary 2-cells.
(The unary property is sufficient for representable virtual equipments, which is Schultz’s
primary interest.) Note that our universal property Definition 5.2.3 for multiary 2-cells
can only be defined in the presence of collapses for all loose-monad modules. In contrast,
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Schultz [59, Definition 3.9] gives a definition of collapse for an individual loose-monad
module that does not require the existence of collapses for other loose-monad modules,
but is consequently too weak to prove theorems of interest (e.g. Theorem 6.3).

5.4. Remark. Abstractly, Definition 5.2 corresponds to asking for the inclusion
X→ cMnd(X) of X into the virtual equipment of loose-monads and modules in X –
which sends each object A to the loose-monad A(1, 1) – to admit a left-adjoint
retraction «−» : cMnd(X)→ X that strictly preserves loose-identities and restrictions,
and whose unit components are cartesian. This condition is equivalent to asking for X
to be a well-behaved algebra for the cMnd construction (cf. [15, Remark 5.15]; [70,
Proposition 47]). However, we shall defer this perspective to future work.

6. Algebras and opalgebras from exactness

In Section 4, we showed that j-relative monads are essentially characterised by loose-
monads of the form E(j, T ). An essential aspect of the theory of relative monads
is the theory of algebras and opalgebras [7, §6]. In this section, we shall show that
the relationship between a j-monad T and its associated loose-monad E(j, T ) extends
to algebras and opalgebras: in other words, that we may characterise both the T -
algebras and the T -opalgebras in terms of E(j, T ). In particular, this characterisation
extends to the universal algebras and universal opalgebras, which in V-Cat are precisely
the notions of Eilenberg–Moore V-category, and Kleisli V-category. This has several
useful consequences: for instance, we shall show that it is possible to construct algebra
objects and opalgebra objects in a virtual equipment with suitable limits and colimits
(Theorems 6.3 and 6.10). In particular, the construction of an algebra object in this
manner generalises the nerve theorem to settings in which presheaf categories may not
exist.

6.1. Opalgebra objects via collapse. We begin by considering opalgebras. In
addition to being the simpler of the two to characterise, the description of algebra
objects in terms of E(j, T ) involves the corresponding description of opalgebras.

6.2. Lemma. Let j : A→ E be a tight-cell and let T be a j-monad. For each tight-cell
a : A→ B, there are bijections between

• T -opalgebra structures on a, and loose-monad morphisms E(j, T )⇒ B(a, a);
• (p1, . . . , pn)-graded T -opalgebra morphisms as below,

B′ · · · B A

B′ A
B′(1,a′)

p

B(1,a)ppnpp1p



THE NERVE THEOREM FOR RELATIVE MONADS 429

and loose-monad transformations as below.

B′(1, 1) · · · B(1, 1) E(j, T ) B′(1, 1)

B′(1, 1) B′(1, 1)

B(1,a)ppnpp1p B′(a′,1)p

p

Proof. The correspondence between opalgebras and loose-monad morphisms is [7,
Lemma 6.7]. In the correspondence between opalgebra morphisms and loose-monad
transformations, the only nontrivial law is the compatibility between the action of B(1, a)
and the action of B′(a′, 1), which corresponds to the single compatibility condition for
an opalgebra morphism.

Consequently, it is natural to expect that opalgebra objects for T are characterised by
universal loose-monad morphisms from E(j, T ). This is where exactness enters the pic-
ture (Definition 5.2). The universal properties of opalgebra objects ([7, Definition 6.45])
and of collapses are closely related. First, the distinction between their one-dimensional
universal properties is exactly the respective distinction between loose-monad morphisms
of the form on the left below, and loose-monad morphisms of the form on the right below.
It is straightforward to confirm that the two forms are in bijection, and so opalgebra
objects and collapses satisfy the same one-dimensional universal property.

A A

A A

Tp

B(f,f)
p

ϕ

A A

B B

Tp

p

ff ϕ

Second, the distinction between the two-dimensional universal properties is the
distinction between a “one-sided” universal property in the case of opalgebra objects,
which involves a chain of loose-cells stemming from a single opalgebra object, and
a “multivariant” universal property in the case of collapses, which involves a chain
of loose-cells between multiple collapses. Thus, collapses satisfy a stronger universal
property than opalgebra objects (indeed, this is the reason we must continue to work
with collapses in Section 6.4, rather than opalgebra objects, as we shall have need of
this stronger universal property). The preceding discussion provides the intuition for
the following theorem.

6.3. Theorem. Let j : A → E be a tight-cell and let T be a j-monad. If X is exact,
then the coprojection π

E(j,T ) : A→ «E(j, T )» exhibits an opalgebra object for T .

Proof. For convenience, we shall denote by πthe tight-cell π

E(j,T ). We shall show that
the canonical opcartesian 2-cell E(j, t)⇒ «E(j, T )»( π, π) exhibits the opalgebra object.

By definition, we have that E(j, T )⇒ «E(j, T )»( π, π) is a loose-monad morphism,
hence is an opalgebra by Lemma 6.2. Let (a,⋉) be a T -opalgebra, i.e. a loose-monad
morphism E(j, T )⇒ B(a, a). The universal property of the collapse gives a unique
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factorisation of a through π, and ⋉ through the cartesian 2-cell defining the collapse, as
below on the left. This is equivalent to a unique factorisation of ⋉ through the induced
opcartesian 2-cell (by definition of opcartesianness), as below on the right, and hence
exhibits the one-dimensional universal property of an opalgebra object.

A A

«E(j, T )» «E(j, T )»

B B

E(j,T )p

π π

[]a []a

p

pa a

[]⋉

cart

A A

A A

A A

E(j,T )p

B(a,a)
p

«E(j,T )»( π, π)

opcart

Now let α : p1, . . . , pn, B(1, a)⇒ B′(1, a′) be a (p1, . . . , pn)-graded T -opalgebra mor-
phism, which is equivalently a loose-monad transformation of the following form by
Lemma 6.2.

B′(1, 1) · · · B(1, 1) E(j, T ) B′(1, 1)

B′(1, 1) B′(1, 1)

B(1,a)ppnpp1p B′(a′,1)p

p

Exactness thus gives a unique factorisation of α through the cartesian 2-cells defining
the collapses of B(1, a) and B′(a′, 1), as below.

B′ · · · B A B′

B′ · · · B «E(j, T )» B′

B′ B′

B(1,a)ppnpp1p B′(a′,1)p

p

pnpp1p «B(1,a)» «B′(a′,1)»

π= cart cart

By Definition 5.2.5, we have «B(1, a)» ∼= B(1, []a) and «B′(a′, 1)» ∼= B′([]a′ , 1), and so
this is equivalent to a factorisation of α through πas below, which thus exhibits the
collapse as satisfying the two-dimensional universal property of an opalgebra object
for T .

B′ · · · B «E(j, T )»

B′ «E(j, T )»
B′(1,[]⋉′ )

p

pnpp1p B(1,[]⋉)p
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As a consequence, every exact virtual equipment admits opalgebra objects for relative
monads. However, we shall see that, since the universal property of a collapse is stronger
than that of an opalgebra object, opalgebra objects in exact equipments are particularly
well behaved.

6.4. Algebra objects via collapse. We now consider algebras. In contrast to the
consideration of opalgebras in Section 6.1, it will be necessary here to assume that j
is dense. We first observe that T -algebras and their graded morphisms may be char-
acterised in terms of the loose-monad E(j, T ). In contrast to opalgebras (Lemma 6.2),
algebras may not be characterised in terms of loose-monad morphisms: instead, they
may be characterised in terms of loose-monad modules. (Note that, by taking compan-
ions, we could also have characterised T -opalgebras in terms of loose-monad modules
E(j, T ) −7−→ B(1, 1).)

6.5. Lemma. Let j : A → E be a dense tight-cell and let T be a j-monad. For each
tight-cell e : D → E, there are bijections between

• T -algebra structures on e, and loose-monad modules D(1, 1) −7−→ E(j, T ) with carrier
E(j, e) : D −7−→ A;

• (p1, . . . , pn)-graded T -algebra morphisms as below,

E D · · · D′

E D′

pnpp1pE(1,e)p

E(1,e′)
p

and loose-monad transformations as below.

E(j, T ) D(1, 1) · · · D′(1, 1)

E(j, T ) D′(1, 1)

pnpp1pE(j,e)p

E(j,e′)
p

Proof. A T -algebra structure on e is a 2-cell E(j, e) ⇒ E(t, e) compatible with
the unit and extension operators of T . A 2-cell E(j, e) ⇒ E(t, e) is equivalently
a 2-cell E(1, t), E(j, e) ⇒ E(1, e), and hence, by density of j, equivalently a 2-cell
E(j, t), E(j, e)⇒ E(j, e). The unit and extension laws for a T -algebra then correspond
to the unit and multiplication laws of a loose-monad module.

Similarly, 2-cells E(1, e), p1, . . . , pn ⇒ E(1, e′) are, by density of j, in bijection with
2-cells E(j, e), p1, . . . , pn ⇒ E(j, e′). The former is a T -algebra morphism exactly when
the latter is a loose-monad transformation.

Perhaps surprisingly, the asymmetry between algebras and opalgebras means that
universal algebras are characterised quite differently (with respect to the associated
loose-monad) to universal opalgebras. In fact, universal algebras are characterised in
terms of universal opalgebras, together with the following virtual double categorical
limit notion.



432 NATHANAEL ARKOR AND DYLAN MCDERMOTT

6.6. Definition. Let n : E −7−→ A be a loose-cell and let k : A → K be a tight-cell. A
semanticiser of k relative to n comprises an object n×A k, a tight-cell π1 : n×A k → E,
and a loose-cell π2 : n×A k −7−→ K satisfying π2(k, 1) = n(1, π1), which is universal in the
following sense.

n×A k K

E Anp

kπ1

π2p

1. For each tight-cell e : · → E and loose-cell p : · −7−→ K such that p(k, 1) = n(1, e),
there is a unique tight-cell ⟨e, p⟩ : · → n ×A k such that ⟨e, p⟩ ; π1 = e and
π2(1, ⟨e, p⟩) = p.

·

n×A k K

E Anp

kπ1

π2

⟨e,p⟩
pp

e

2. For each pair of 2-cells

χ1 : E(1, e), s1, . . . , sn ⇒ E(1, e′) χ2 : p, s1, . . . , sn ⇒ p′ (n ≥ 0)

that induce the same 2-cell n(1, e), s1, . . . , sn ⇒ n(1, e′) by composition with n and
K(k, 1) respectively, there is a unique 2-cell

⟨χ1, χ2⟩ : (n×A k)(1, ⟨e, p⟩), s1, . . . , sn ⇒ (n×A k)(1, ⟨e′, p′⟩)

that induces χ1 and χ2 by composition with E(1, π1) and π2 respectively.

6.7. Remark. The name semanticiser is intended to be suggestive of the operation of
taking the semantics of an algebraic theory in Lawvere’s structure–semantics adjunction
and in Linton’s subsequent generalisation. We will expand upon this connection in
future work.

We observe that Definition 6.6 simplifies in examples of interest. First, we must
introduce the notion of density for a loose-cell.

6.8. Definition. A loose-cell p : A −7−→ B is dense when the identity 2-cell 1p : p ⇒ p
exhibits A(1, 1) as the right lift p◀ p.

Observe that a tight-cell j : A→ E is dense in the sense of [7, Definition 3.19] if and
only if its conjoint E(j, 1) : E −7−→ A is dense in the sense of Definition 6.8.
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6.9. Lemma. Consider a square of the following shape, such that π2(k, 1) = n(1, e) and
in which n is dense.

n×A k K

E Anp

kπ1

π2p

Then Definition 6.6.2 is equivalent to the condition that, for every pair of tight-cells e
and e′ with codomain E, every pair of loose-cells p and p′ with codomain K, and every
2-cell

χ2 : p, s1, . . . , sn ⇒ p′ (n ≥ 0)

such that p(k, 1) = n(1, e) and p′(k, 1) = n(1, e′), there is a unique 2-cell

(n×A k)(1, ⟨e, p⟩), s1, . . . , sn ⇒ (n×A k)(1, ⟨e′, p′⟩)

that induces χ2 by composition with π2. Consequently, the above square is a semanticiser
if and only if it satisfies Definition 6.6.1 and π2 is dense.

Proof. Each 2-cell χ2 : p, s1, . . . , sn ⇒ p′ induces a 2-cell n(1, e), s1, . . . , sn ⇒ n(1, e′)
by postcomposing K(k, 1), but these are in bijection, by density of n, with 2-cells
E(1, e), s1, . . . , sn ⇒ E(1, e′). Hence, in Definition 6.6.2, the 2-cell χ2 uniquely deter-
mines χ1, and the equivalence follows.

Assuming the square satisfies Definition 6.6.1, it suffices to consider the case in
which e = e′ = π1 and p = p′ = π2; the general case follows by expressing p and p′ as
restrictions of π2. The required condition then expresses a bijection between 2-cells
π2, s1, . . . , sn ⇒ π2 and 2-cells s1, . . . , sn ⇒ (n×A k)(1, 1); this bijection is precisely
density of π2.

We are now in a position to prove our main result, characterising the algebra object
for a relative monad in terms of its associated loose-monad and its opalgebra object
kT : A→ Opalg(T ).

6.10. Theorem. Let j : A→ E be a dense tight-cell and let T be a j-monad. If X is
exact, then a tight-cell u : D → E exhibits the algebra object for T if and only if there
exists a loose-cell π : D −7−→ Opalg(T ) exhibiting the following square as a semanticiser.

D Opalg(T )

E A
E(j,1)
p

kTu

πp

Proof. The tight-cell kT : A → Opalg(T ) exhibits the collapse of E(j, T ) by Theo-
rem 6.3, and, by Lemma 6.5, we can view T -algebras and their morphisms equivalently
as loose-monad modules and transformations.
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To give a loose-cell π : D −7−→ Opalg(T ) such that π(kT , 1) = E(j, u) is thus equiva-
lently to give a T -algebra with carrier u. We show that such a T -algebra is the algebra
object exactly when the square above is a semanticiser.

A j-representable loose-monad module E(j, e) : D(1, 1) −7−→ T is equivalently a loose-
cell «E(j, e)» : D −7−→ Opalg(T ), by taking the collapse. Given this data, the universal
properties of the semanticiser and of the algebra object both ask for a unique tight-cells
⟨⟩e : · → D such that e = ⟨⟩d ; u. The semanticiser additionally requires π(1, ⟨⟩e) =
«E(j, e)», while the algebra object additionally requires E(j, e) to be the module induced
by restricting E(j, u) along ⟨⟩e. These two conditions are equivalent because the collapse
of the latter loose-module is π(1, ⟨⟩e).

Let E(j, e) and E(j, e′) : D(1, 1) −7−→ T be j-representable loose-monad modules.
A loose-monad transformation E(j, e), s1, . . . , sn ⇒ E(j, e′) is equivalently a 2-cell
χ2 : «E(j, e)», s1, . . . , sn ⇒ «E(j, e′)». By Lemma 6.9 it follows that the two-dimensional
universal properties of the semanticiser and of the algebra object are equivalent.

6.11. Remark. From Theorem 6.10, taking j = 1 and assuming X is representable, we
recover [70, Proposition 7], in which semanticisers relative to A(1, 1) are called universal
kones.

Recall that the opalgebra and algebra objects for a j-monad T form initial and
terminal resolutions kT ⊣j vT and fT ⊣j uT respectively [7, Corollary 6.41 & Corol-
lary 6.51]. As a consequence, they are related by a unique morphism of resolutions
iT : Opalg(T )→ Alg(T ) [7, Definition 5.23 & Remark 6.54], the comparison tight-cell,
which renders the following diagram commutative.

Opalg(T )

A E

Alg(T )

iT

kT

fT

vT

uT

What is remarkable about Theorem 6.10 is that, in the setting of exact virtual equipments,
it exhibits a joint universal property of the opalgebra and algebra objects, mediated
by the comparison tight-cell. As a consequence, in this setting, iT is particularly well
behaved. We summarise this observation in the following proposition.

6.12. Proposition. Let j : A → E be a dense tight-cell and let T be a j-monad
admitting an algebra object. Assume that X is exact. Then the loose-cell
Alg(T )(iT , 1) : Alg(T ) −7−→ Opalg(T ) is isomorphic to a loose-cell π that exhibits the
following square as a semanticiser.

Alg(T ) Opalg(T )

E A
E(j,1)
p

kTuT

πp
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Consequently, the comparison tight-cell iT : Opalg(T ) → Alg(T ) is dense and fully
faithful.

Proof. Since kT : A→ Opalg(T ) exhibits the collapse of the loose-monad E(j, T ), the
restriction Alg(T )(iTkT , 1) = Alg(T )(fT , 1) forms a loose-monad module
Alg(T )(fT , 1) : Alg(T )(1, 1) −7−→ E(j, T ), whose collapse is the loose-cell Alg(T )(iT , 1).
There is an isomorphism Alg(T )(fT , 1) ∼= E(j, uT ) of loose-monad modules, and hence
an isomorphism Alg(T )(iT , 1) ∼= «Alg(T )(j, uT )» between their collapses. We can
therefore take the collapse «Alg(T )(j, uT )» for π by Theorem 6.10.

Density of iT is immediate from density of π, which follows from Lemma 6.9. For
full faithfulness of iT , it suffices by [7, Corollary 3.28] to exhibit an isomorphism
Opalg(T )(1, 1) ∼= Alg(T )(iT , iT ), which we do as follows.

Opalg(T )(1, 1) = «E(j, T )» = «E(j, uT )(1, iTkT )»
= «E(j, uT )»(1, iT ) ∼= Alg(T )(iT , iT )

7. The formal nerve theorem

The semanticiser theorem of Theorem 6.10 may be viewed as a formulation of the
nerve theorem that involves neither pullbacks nor presheaves. This makes it particularly
general, as it holds even in settings in which neither exist. However, it is also a somewhat
less convenient formulation, as semanticisers are an unfamiliar notion. In this section,
we give sufficient conditions for semanticisers to exist in a virtual equipment, showing
that it suffices for presheaf objects and pullbacks to exist. This provides the final step
in our formal understanding of the nerve theorem, allowing us, in Theorem 7.17, to
capture the algebra object for a relative monad as a pullback of the expected form.

7.1. Presheaves in virtual equipments. We begin by defining the notion of a
presheaf object in a virtual equipment, which classifies loose-cells into an object A by
tight-cells into a corresponding object of presheaves PA.

7.2. Definition. Let A be an object of a strict virtual equipment X. A presheaf object
for A comprises an object PA and a dense loose-cell πA : PA −7−→ A, such that, for every
loose-cell p : X −7−→ A, there is a unique tight-cell p̆ : X → PA satisfying p = πA(1, p̆).

1. We denote by
よA :=

(

A(1, 1) : A→ PA

the presheaf embedding, which is the unique tight-cell satisfying
A(1, 1) = πA(1,よA).

2. For a tight-cell j : A→ E, we denote by

nj :=

(

E(j, 1) : E → PA
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the nerve of j, which is the unique tight-cell satisfying E(j, 1) = πA(1, nj). (By
definition,よA is the nerve of the identity 1A.)

3. For k : A→ B a tight-cell between objects admitting presheaf objects, we denote by

k∗ :=

(

πB(k, 1) : PB → PA

the restriction4 along k, which is the unique tight-cell satisfying πB(k, 1) =
πA(1, k

∗).

7.3. Remark. Observe that Definition 7.2 is essentially a double categorical (or, more
precisely, an equipment-theoretic) notion of limit over a diagram with a single object A,
where the projection πA : PA −7−→ A is required to be loose, and the unique mediating
morphisms p̆ : X → PA are required to be tight: the difference in tightness between the
projections and mediating morphisms is what permits the limit of a one-object diagram
to be nontrivial. However, Definition 7.2 is not a limit in the sense of [24] or [56], nor,
as far as we are aware, in any other sense defined in the literature. This suggests it may
be fruitful to study more general notions of double limit capturing this one. (Note that
a general definition would be expected also to impose the two-dimensional universal
property of Proposition 7.6, which is automatic under our assumptions.)

7.4. Remark. By virtue of Lemma 7.9, our definition of presheaf object is a strict
analogue of the Yoneda embeddings of [33, Definition 1.1.2.2.1], and of the dual to
the Yoneda morphisms of [34, Definition 4.2] (the difference in variance is due to
Koudenburg’s convention for the direction of distributors, which is opposite to ours).
Kern and Koudenburg do not require uniqueness of the mediating tight-cell p̆ : X → PA,
though density of πA implies that it is automatically essentially unique. Our (strict)
presheaf objects are thus analogous to 2-categorical limits (a.k.a. 2-limits), whereas
Kern’s and Koudenburg’s (non-strict) presheaf objects are analogous to bicategorical
limits (a.k.a. bilimits).

In a strict representable virtual equipment, our definition coincides with the power
objects of [37, Definition 11.4] assuming density of PA −7−→ A, which are motivated
by the power allegories of [21, §2.41]. Similarly, by Lemma 7.7, presheaf objects are
strongly related to the power objects of [49, §2.5] and strict representability of tight-cells
in the sense of [54, p. 11]; [55, p. 22], though neither definition require density of πA
(equivalently ofよA). Related also are the Yoneda situations of [51, Definition 6], though
these do not classify loose-cells, but merely exhibit an embedding of tight-cells X → PA
into loose-cells X −7−→ A (cf. [65, §7(2)]).

4Here, restriction is used in a different sense than the restriction p(f, g) of a loose-cell along a pair
of tight-cells, but there is no ambiguity between the two usages.
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7.5. Lemma. Let A be an object admitting a presheaf object. For every pair of loose-cells
p : X −7−→ A and q : Y −7−→ A, the canonical 2-cell

X

Y Aqp

ppPA(p̆,q̆) p

exhibits PA(p̆, q̆) as the right lift q ◀ p of q through p.

Proof. We have PA(p̆, q̆) ∼= (πA◀ πA)(p̆, q̆) ∼= πA(1, q̆)◀ πA(1, p̆) = q◀ p using density
of πA, [7, Lemma 3.6], and the universal property of the presheaf object.

Consequently, while Definition 7.2 appears only to specify a one-dimensional universal
property, density of the projection πA : PA −7−→ A implies that presheaf objects further
satisfy a two-dimensional universal property, analogous to the two-dimensional universal
property of an algebra object (cf. [7, Definition 6.33]).

7.6. Proposition. Let A be an object admitting a presheaf object. Every 2-cell ϕ of
the following form

A X · · · X ′

A X ′
qp

pp p1p pnp
ϕ

factors uniquely through a 2-cell ϕ̆, as below.

A PA X · · · X ′

A PA X ′

PA(1,p̆)p

PA(1,q̆)
p

p1p pnpπAp

πA
p

ϕ̆=

Proof. Since q ◀ p ∼= PA(p̆, q̆) by Lemma 7.5, the factorisation follows directly from
the universal property of the right lift [7, Definition 3.1].

Consequently, the universal property of a presheaf object may be rephrased in terms
of a two-dimensional adjointness property.

7.7. Lemma. A dense loose-cell πA : PA −7−→ A exhibits a presheaf object for A if and
only if, for each object X ∈ X,

(

(−) : XJX,AK ⇄ X[X,PA] :πA(1,−)

exhibits an isomorphism of categories.

Proof. Suppose that πA : PA −7−→ A exhibits a presheaf object. That the assignment
forms a bijection on objects is immediate from the universal property; that it forms a
bijection on morphisms is immediate from Proposition 7.6.

Conversely, suppose that πA : PA −7−→ A exhibits an isomorphism of categories. The
universal property of Definition 7.2 follows trivially.
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The following lemma shows that presheaves interact nicely with restrictions.

7.8. Lemma. Consider a diagram A
f−→ B

p←[−− C
g←− D. Suppose that A and B admit

presheaf objects. Then

(

p(f, g) = (g ; p̆ ; f ∗) : D → PA.

Proof. We have

C(1, f ∗p̆g) = PA(1, f ∗)(1, p̆g) = πB(f, 1)(1, p̆g) = πB(f, p̆g) = πB(1, p̆)(f, g) = p(f, g)

hence f ∗p̆g =

(
p(f, g) using the universal property of the presheaf object.

We defer an in-depth exploration of the consequences of admitting a presheaf object.
However, it is instructive to observe that it is possible to deduce from Definition 7.2 a
formal statement of the Yoneda lemma, as follows.

7.9. Lemma. For every object A admitting a presheaf object, there is an isomorphism
PA(よA, 1) ∼= πA.

Proof. By Lemma 7.5, PA(よA, 1) ∼= πA ◀ A(1, 1) ∼= πA.

In particular, for every tight-cell p̆ : · → PA, which we may view as a presheaf on A,
we have PA(よA, p̆) ∼= πA(1, p̆) = p. It will also be useful, for Section 9, to observe that
nerves are right adjoints relative to the presheaf embedding.

7.10. Lemma. Let j : A→ E be a tight-cell for which A admits a presheaf object. Then
j ⊣よA nj.

Proof. Using Lemma 7.9, we have E(j, 1) = πA(1, nj) ∼= PA(よA, nj).

7.11. Pullbacks in virtual equipments. Next, inevitably, we require a notion of
pullback in a virtual equipment. The appropriate notion of pullback in a 2-category is a
pullback in the underlying 1-category, together with a universal property on 2-cells. A
pullback in a virtual equipment is similar, except that we require the universal property
on 2-cells to be suitably multiary.

7.12. Definition. A pullback of a cospan of 2-cells ϕ : p ⇒ r ⇐ q :ψ in a virtual
double category is a commuting square of 2-cells

ϕ×r ψ q

p r

π1

π2

ψ

ϕ

such that, for each span of 2-cells

p
χ1⇐== s1, . . . , sn

χ2
==⇒ q (n ≥ 0)
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such that χ1 ; ϕ = χ2 ;ψ, there is a unique 2-cell ⟨χ1, χ2⟩ : s1, . . . , sn ⇒ ϕ×r ψ rendering
the following diagram commutative.

s1, . . . , sn

ϕ×r ψ q

p r

π1

π2

ψ

ϕ

χ1

χ2

⟨χ1,χ2⟩

Concisely, a pullback of 2-cells is a pullback in the corresponding hom-multicategory
of X. Pullbacks of 2-cells interact nicely with restrictions.

7.13. Lemma. In a virtual equipment X, the restriction of any pullback of 2-cells is also
a pullback.

(ϕ×r ψ)(x, y) q(x, y)

p(x, y) r(x, y)

π1(x,y)

π2(x,y)

ψ(x,y)

ϕ(x,y)

Proof. Since X admits loose-identities, 2-cells of the form s1, . . . , sn ⇒ t(x, y) are in
bijection with 2-cells of the form X(1, x), s1, . . . , sn, Y (y, 1)⇒ t, natural in t. The result
follows immediately by taking t = (ϕ×r ψ) and using the universal property.

7.14. Definition. A pullback of a cospan f : A→ C ← B :g of tight-cells in a virtual
equipment X is a pullback in the underlying 1-category of objects and tight-cells of X, as
on the left below, such that the induced square on the right below is a pullback of 2-cells.

f ×C g B

A C

π2

π1

f

g
⌟

(f ×C g)(1, 1) B(π2, π2)

A(π1, π1) C(fπ1, gπ2)

⌢π1

⌢π2

⌢g(π2,π2)

⌢f (π1,π1)

In particular, a pullback in X is a 2-pullback in the tight 2-category X, but in general
the pullback has a stronger universal property.

7.15. The nerve theorem. In the presence of presheaf objects, we can give a con-
struction of semanticisers in terms of pullbacks.

7.16. Lemma. Let n : E −7−→ A be a loose-cell and let k : A → K be a tight-cell for
which A and K admit presheaf objects (Definition 7.2). Then the diagram on the left
exhibits a semanticiser (Definition 6.6) if and only if the diagram on the right exhibits a
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pullback (Definition 7.14).

n×A k K

E Anp

kπ1

π2p n×A k PK

E PA

π1

n̆

k∗

(π2

Proof. This is a simple exercise in the use of Lemma 7.8. To show the two diagrams
satisfy the same one-dimensional universal property, we need (1) their cones to be
equivalent; (2) their mediating morphisms to be equivalent.

For (1), observe that a pair (e, p) of a tight-cell e : · → E and p : · −7−→ K satisfying
n(1, e) = p(k, 1) is equivalent to a pair (e, p̆) of tight-cells e : · → E and p̆ : · → PK
satisfying e ; n̆ = p̆ ; k∗ since we have

(
n(1, e) = e ; n̆ and

(

p(k, 1) = p̆ ; k∗.
For (2), observe that a tight-cell ⟨e, p⟩ : · → n ×A k satisfying ⟨e, p⟩ ; π1 = e and

π2(1, ⟨e, p⟩) = p is equivalent to a tight-cell ⟨e, p̆⟩ : · → n×A k satisfying ⟨e, p⟩ ; π1 = e

and ⟨e, p̆⟩ ; (π2 = p̆ since, by Lemma 7.8, we have

(
π2(1, ⟨e, p⟩) = ⟨e, p⟩ ; (π2.

To show the two diagrams satisfy the same two-dimensional universal property
involves similar reasoning involving (1) equivalence of cones; and (2) equivalence of
mediating 2-cells. For (1), observe that the universal property of the semanticiser
involves a pair of 2-cells of the following form for each pair e, e′ : · → E of tight-cells
and each pair p, p′ : · −7−→ K of loose-cells,

χ1 : E(1, e), s1, . . . , sn ⇒ E(1, e′)

χ2 : p, s1, . . . , sn ⇒ p′

whereas the universal property of the pullback involves a pair of 2-cells of the following
form.

χ′
1 : s1, . . . , sn ⇒ E(π1, π1)

χ′
2 : s1, . . . , sn ⇒ PK(π2, π2)

However, by Lemma 7.13, restricting the pullback of the cospan
E(π1, π1)⇒ PA(n̆π1, k∗π2)⇐ PK(π2, π2) along ⟨e, p̆⟩ and ⟨e′,

(

p′⟩ exhibits a pullback of
the cospan E(e, e′)⇒ PA(n̆e, k∗

(

p′)⇐ PK(p̆,

(

p′), which satisfies a universal property
involving a pair of 2-cells of the following form.

χ′′
1 : s1, . . . , sn ⇒ E(e, e′)

χ′′
2 : s1, . . . , sn ⇒ PK(p̆,

(

p′)

By transposing e and p̆, and using the universal property of PK, the 2-cells χ′′
1 and

χ′′
2 are equivalent to the 2-cells χ1 and χ2. Conversely, taking ⟨e, p̆⟩ and ⟨e′,

(

p′⟩ to be
identities in χ′′

1 and χ′′
2 recovers χ′

1 and χ′
2. (2) then follows by completely analogous

reasoning.
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7.17. Theorem. [Nerve theorem] Let X be an exact virtual equipment, let j : A→ E
be a dense tight-cell, and let T be a j-monad. Suppose that A and Opalg(T ) admit
presheaf objects. Then u : D → E exhibits an algebra object for T if and only if there is
a loose-cell p̆ : D → P(Opalg(T )) exhibiting the following diagram as a pullback.

D P(Opalg(T ))

E PA

p̆

u kT
∗

nj

In this case, p̆ ∼= niT , exhibiting the comparison tight-cell iT : Opalg(T )→ Alg(T ) as
dense and fully faithful.

Proof. Direct from Theorem 6.10, Lemma 7.16, and Proposition 6.12.

7.18. Remark. From Theorem 7.17, taking j = 1, we essentially recover [64, The-
orem 35]; [65, Proposition 22], which establish analogous theorems in the context of
2-categories endowed with attributes and Yoneda structures respectively (there is a
strong relationship between Yoneda structures and presheaf objects in virtual equipments,
as established in [34, Theorem 4.24]).

The following establishes that every suitably complete virtual equipment admits
algebra objects for relative monads with small domain. In the case of enriched categories,
it is weaker than the existence theorem of [7, Corollary 8.20] (which requires neither
smallness nor density), but the assumptions are often convenient to verify in practice.

7.19. Corollary. Let X be an exact strict virtual equipment and let j : A→ E be a
dense tight-cell. If A admits a presheaf object, and X admits pullbacks along nj : E → PA,
then a j-monad admits an algebra object if its opalgebra object admits a presheaf object.

Proof. Direct from Theorem 7.17.

7.20. Remark. Theorem 7.17 involves several concepts that look like colimit notions
(opalgebra objects and collapses) and several concepts that look like limit notions (algebra
objects, semanticisers, pullbacks, and presheaf objects). In this light, Theorems 6.10
and 7.17 correspond to a notion of exactness, describing an interaction between certain
limits and colimits, while Lemmas 7.16 and 9.3 corresponds to the construction of one
kind of limit from another, akin to the construction of arbitrary limits from products and
equalisers. Limits and colimits for virtual double categories have not yet been defined.
However, even in the representable case, these concepts do not appear to be double
limits and colimits in the classical sense (cf. Remark 7.3), since they make fundamental
use of restrictions. It remains to be seen whether there are natural notions of limit and
colimit that capture these concepts.
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8. The enriched nerve theorem

We have now developed the abstract theory necessary to establish the nerve theorem for
enriched relative monads. In particular, we shall show that Theorem 7.17 may be applied
in the virtual equipment V-Cat of categories enriched in a monoidal category V ([7,
Definition 8.1]), thereby obtaining the desired nerve theorem. We make no assumptions
on the monoidal category V except where otherwise specified.

First, we must verify the assumptions of Theorem 7.17 on the virtual equipment
V-Cat. Recall that a V-distributor p : A −7−→ A comprises an object p(x, y) ∈ V for each
x, y ∈ |A|, along with pre- and postcomposition actions. A V-enriched loose-monad thus
comprises

1. a V-distributor T : A −7−→ A;
2. a V-natural transformation ◦ : T, T ⇒ T ;
3. a V-natural transformation I : ⇒ T ,

satisfying associativity and unitality laws. Unwrapping the definition, we see that each
loose-monad comprises, for each pair of objects x, y ∈ |A|, an object T (x, y) ∈ V; for
each heteromorphism f ∈ T (x, y) and heteromorphism g ∈ T (y, z), a heteromorphism
(g ◦ f) ∈ T (x, z); and for each morphism f : x→ y in A, a heteromorphism If ∈ T (x, y),
subject to unitality and associativity axioms. This structure strongly resembles that of
a V-category. In fact, every V-enriched loose-monad defines a V-category «p», together
with an identity-on-objects V-functor A→ «p».5

8.1. Definition. Let T be a V-enriched loose-monad on a V-category A. The collapse
of T is the category «T» defined by |«T»| := |A| and «T»(x, y) := T (x, y). Denote by

π

T : A→ «T» the identity-on-objects V-functor defined by the unit of T .

As the terminology suggests, the collapse of a V-enriched loose-monad exhibits a
collapse in the sense of Definition 5.2.

8.2. Proposition. Let V be a monoidal category. The virtual equipment V-Cat is
exact.

Proof. First observe that, for every V-enriched loose-monad T , the identity natural
transformation on its underlying V-distributor exhibits a cartesian 2-cell, since π

T is
identity-on-objects and the hom-objects of «T» are defined by T .

A A

«T» «T»

π

T

π

T

Tp

p

cart

5The converse is also true: one may show that V-enriched loose-monads on A are in bijection with
identity-on-objects V-functors from A (cf. [47, Corollary 10.4]; [62, Theorem 2.3.18]). However, we
defer a general proof to future work, as we have no need for it here.
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Note that «A(1, 1)» = A(1, 1) by definition. Consider a loose-monad morphism
(f, ϕ) : T → B(1, 1), i.e. a V-natural transformation

ϕx,y : T (x, y)⇒ B(|f |x, |f |y)

compatible with the multiplication and unit of T . The full image factorisation of f into
an identity-on-objects V-functor followed by a fully faithful V-functor defines a unique
factorisation of (f, ϕ).

Now consider a loose-monad module p : T ′ −7−→ T . We define a V-distributor
«p» : «T ′» −7−→ «T» by «p»(x, y) := p(x, y). The compatibility laws for p correspond
exactly to the compatibility laws for «p». Since π

T ′ and π

T are identity-on-objects, the
identity natural transformation exhibits a cartesian 2-cell.

A A′

«T» «T ′»

π

T

π

T ′

«p»p

pp
cart

Note that the collapse of the identity loose-monad module corresponding to a loose-
monad T is precisely the collapse of T . Consider a loose-monad transformation ψ as
in Definition 5.2, which is a V-natural transformation p1(x0, x1), . . . , pn(xn−1, xn) ⇒
q(|f |x0, |f ′|xn) satisfying compatibility laws. It is clear that ψ defines a V-natural
transformation framed by the full images as previously described, factoring ψ. Finally,
consider a loose-monad module p : «T» −7−→ «T ′» between collapses. Since the coprojec-
tions π

T and π

T ′ are identity-on-objects, we trivially have «p( π

T ,

π

T ′)» = p.

8.3. Remark. Loose-monads have also been called promonads or profunctor monads, in
accordance with the terminology profunctors for what we call distributors. In theoretical
computer science, they appear as the arrows of [26, §4] (cf. [25, Definition 4.1]).

Modulo strength, loose-monad morphisms from T to A(1, 1) are the algebras for
an arrow of [27, Definition 3]; [28, Definition 6.5]. The collapse appears as the Freyd
category associated to the arrow T (cf. [25, Theorem 5.4]), and the one-dimensional
universal property of a collapse is consequently established for the equipment Cat in
[27, Lemma 7]; [28, Lemma 6.1].

8.4. Corollary. [7, Theorem 8.21] Let V be a monoidal category. Every relative
monad in V-Cat admits an opalgebra object.

Proof. By Proposition 8.2, V-Cat is exact, so admits opalgebra objects by Theorem 6.3.

Next, we verify that the notion of presheaf object in Definition 7.2 does indeed
capture the notion of presheaf V-category ([7, Definition 8.5]).

8.5. Proposition. Let V be a monoidal category and let A be a small V-category
admitting a presheaf V-category. The presheaf V-category PA is a presheaf object in
V-Cat, for which the Yoneda embeddingよA : A→ PA exhibits a presheaf embedding.
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Proof. We define a V-distributor πA : PA −7−→ A assigning (a, p) 7→ p(a), with left-action

{◦pa′,a : A(a
′, a)⊗ p(a)→ p(a′)}a′∈|A|,a∈|A|,p∈|PA|

given by the left-action of the presheaf p, and right-action given by the universal V-
natural transformation associated to the object of V-natural transformations from p
to p′.

{ϖp,p′

a : p(a)⊗ PA(p, p′)→ p′(a)}a∈|A|,p∈|PA|,p′∈|PA|
The laws for a V-distributor follow from the laws for a presheaf, together with V-
naturality. Density of πA follows from [7, Lemma 8.7].

Let p : X −7−→ A be a V-distributor. We aim to define a V-functor p̆ : X → PA.
Observe that, in order that πA exhibit a presheaf object, for each x ∈ |X| and a ∈ |A|,
we must have (πA(1, p̆))(a, x) = πA(a, |p̆|(x)) = |p̆|(x)(a), with the left-action of |p̆|(x)
given by the left-action of p at x. This uniquely determines the action of p̆ on objects.
Indeed, this is a valid assignment, as the laws for the V-presheaf then follow from the laws
for the V-distributor. For the action of p̆ on hom-objects, observe that, for each pair of
objects x, x′ ∈ |X|, we have PA(|p̆|(x), |p̆|(x′)) = PA(p(−, x), p(−, x′)) = (p◀ p)(x, x′)
by [7, Lemma 8.7]. The right-action of πA thus uniquely determines the choice of the
morphism p̆x,x′ : X(x, x′) → PA(|p̆|(x), |p̆|(x′)) in V to be that corresponding to the
canonical V-natural transformation X(1, 1)⇒ p◀ p.

That the Yoneda embedding exhibits a presheaf embedding is precisely the Yoneda
lemma [7, Example 8.6].

8.6. Remark. While presheaf V-categories may exist even on V-categories that are
not small, existence of presheaf V-categories is generally a strong size constraint. For
instance, when V = Set, a V-category admits a presheaf V-category (i.e. a locally small
presheaf category) if and only it is essentially small [19, 20]. We do not know whether
there exists an example of a non-thin monoidal category V together with a V-category
A that admits a presheaf V-category PA but that is not Morita-small, i.e. for which
there does not exist a small V-category A′ for which PA ≃ P(A′).

Finally, we observe that the usual construction of pullbacks of V-functors produces
pullbacks in the virtual equipment V-Cat.

8.7. Proposition. Let V be a monoidal category admitting pullbacks. Then the virtual
equipment V-Cat admits pullbacks.

Proof. Given a cospan of V-functors f : A→ C ← B :g, the apex of the pullback is
the V-category f ×C g, whose objects are pairs (a ∈ |A|, b ∈ |B|) such that |f |a = |g|b,
and whose hom-objects are given by pullbacks in V:

(f ×C g)((a, b), (a′, b′)) B(b, b′)

A(a, a′) C(|f |a, |g|b′)

gb,b′

fa,a′

⌟
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Composition and identities in f ×C g are uniquely determined by the fact that the
projections form a span of V-functors A π1←− f ×C g

π2−→ C: this is the pullback in the
1-category of V-categories and V-functors. The actions of the V-functors form a pullback
of 2-cells in V-Cat, since every V-natural transformation s1, . . . , sn ⇒ (A×C B)(1, 1) is,
in particular, a family of morphisms to which we may apply the universal property of
pullbacks in V.

The following is now immediate.

8.8. Theorem. Let V be a complete left- and right-closed monoidal category and let
j : A→ E be a dense V-functor with small domain. For a j-monad T , the V-category
of T -algebras may be constructed as the following pullback in V-Cat.

Alg(T ) P(Kl(T ))

E PA

uT kT
∗

nj

⌟

Above, we denote by P the V-enriched presheaf construction; and by nj : E → PA the
nerve of j, which sends an object e ∈ |E| to the restricted Yoneda embedding E(j−, e).

Furthermore, the unlabelled V-functor is V-naturally isomorphic to the nerve of the
comparison V-functor iT : Kl(T )→ Alg(T ), exhibiting it as dense and fully faithful.

Proof. Follows directly from Theorem 7.17, using that V-Cat is exact (Proposition 8.2)
and, under the given assumptions, admits presheaf objects for small V-categories ([7,
§8.1] and Proposition 8.5) and pullbacks (Proposition 8.7).

8.9. Remark. When A is large, presheaf V-categories can no longer be assumed to
exist, and so Theorem 7.17 may not be applied. In this case, Theorem 6.10 may be used
directly.

8.10. Remark. If an algebra object for T is already known to exist, the relative
monadicity theorem [6] facilitates an alternative proof of Theorem 7.17, as was sketched
in [6, Example 5.11]. However, we find this alternative proof strategy to be conceptually
dissatisfying, as the assumption that the algebra object exists obscures the fact that the
existence of the pullback is both necessary and sufficient for the existence of the algebra
object.

It follows from [7, Corollary 8.20] that, when V is complete and closed, V-enriched
relative monads with small domains admit algebra objects. Theorem 8.8 thus establishes
the same result under almost the same conditions, except with the additional assumption
that the root be dense (however, the conclusion is also stronger, establishing that iT is
dense).
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9. Loose-monads andよ-relative monads

We conclude by observing that presheaf objects permit loose-monads to be captured by
relative monads. In doing so, we give another application of the semanticiser theorem,
in characterising the algebras forよ-relative monads.

9.1. Theorem. Let X be a strict virtual equipment, and let A be an object admitting a
presheaf object. There is an isomorphism

RMnd(よA) ∼= cMnd(A)

between the category ofよA-monads and the category of loose-monads on A.

Proof. By [7, Theorem 4.22], we have the following pullback of categories.

RMnd(よA) cMnd(A)

X[A,PA] XJA,AK
PA(よA,−)

UよA UA

PA(よA,−)

⌟

However, by Lemma 7.7, the bottom functor is an isomorphism, hence so too is the top
functor.

9.2. Remark. From Theorem 9.1, we recover [2, Theorem 9]; [3, Theorems 5.2 & 5.4]
regarding the correspondence between arrows (Remark 8.3) and monads relative to the
Yoneda embedding.

Given thatよ-relative monads correspond to loose-monads, we should hope that it is
possible also to characterise their (op)algebra objects in terms of the loose-monads. In
an exact equipment, this is indeed possible. First, we observe the following relationship
between semanticisers and presheaf objects.

9.3. Lemma. The following square exhibits a semanticiser if and only if π : P −7−→ B
exhibits a presheaf object and r̆ : P → PA exhibits the restriction of f .

P B

PA AπA
p

fr̆

πp

Proof. Since πA is dense, it suffices by Lemma 6.9 to show that the one-dimensional
universal property of the semanticiser is equivalent to the one-dimensional universal
property of the presheaf object.

The universal property of the presheaf object asks that, for each loose-cell p : X −7−→ B,
there is a unique tight-cell p̆ : X → P such that p = π(1, p̆).

The universal property of the semanticiser asks that, for each tight-cell e : X −7−→ PA
and loose-cell p : X −7−→ B such that p(f, 1) = πA(1, e), there is a unique tight-cell
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⟨e, p⟩ : X → P such that ⟨e, p⟩ ; r̆ = e and π(1, ⟨e, p⟩) = p. Note that the cone condition
uniquely determines e =

(

p(f, 1).
Thus, supposing that π exhibits a presheaf object and that r̆ = f ∗, it follows from

Lemma 7.8 that p̆ ; f ∗ =

(

p(f, 1), so that the square exhibits a semanticiser. Conversely,
supposing the square exhibits a semanticiser, π trivially exhibits a presheaf object.
Furthermore, commutativity of the square expresses that r = πA(1, r̆) = π(f, 1) and
hence that r̆ =

(
π(f, 1) = f ∗.

9.4. Corollary. Let X be an exact virtual equipment, let A be an object admitting a
presheaf object, and let T be aよA-monad. The opalgebra object for T is given by the
collapse of the corresponding loose-monad. Furthermore, T admits an algebra object
if and only if Opalg(T ) admits a presheaf object, in which case they are isomorphic
over PA.

Alg(T ) P(Opalg(T ))

PA
kT

∗

∼=

uT

Proof. By Theorem 9.1, the loose-monad associated to T is given by PA(よA, T ); by
Theorem 6.3, its collapse exhibits the opalgebra object for T . The second statement
then follows from Theorem 6.10, using thatよA is dense by Lemma 7.9, together with
Lemma 9.3 with respect to squares of the following form.

· Opalg(T )

PA AπA
p

kT

p

It follows from Theorem 9.1 and Corollary 4.11 that every j-monad T induces an
associatedよA-monad (T ; nj) by postcomposing nj : E → PA; alternatively, this can be
seen to follow from [7, Proposition 5.37] using Lemma 7.10.

E

A PA
よA

nj
j

t

⊣

η

We consequently recover the following generalisation of Corollary 9.4 (cf. [4, Re-
mark 5.5.7]). The relevance of this characterisation to the nerve theorem will be
expounded elsewhere.

9.5. Corollary. Let X be an exact virtual equipment and let j : A→ E be a tight-cell.
Suppose that A admits a presheaf object. TheよA-monad (T ;nj) admits an algebra object
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if and only if Opalg(T ) admits a presheaf object, in which case they are isomorphic
over PA.

Alg(T ; nj) P(Opalg(T ))

PA
kT

∗

∼=

uT ;nj

Proof. Immediate from Corollary 9.4, observing that Opalg(T ;nj) ∼= Opalg(T ) under
A by [7, Remark 6.28].

A. Strictification for virtual equipments

Recall that virtual double categories, their functors, and tight transformations form a
2-category VDbl [15, Definition 3.1]. An equivalence of virtual double categories is an
equivalence in VDbl.

A.1. Theorem. For every virtual double category X admitting restrictions, there is an
equivalent virtual double category X′, with the same underlying category of tight-cells,
admitting a strictly functorial choice of restrictions.

Proof. We define a virtual double category X′ as follows.
1. The category of objects and tight-cells is given by that of X.

2. A loose-cell from A to D is a diagram A
g−→ B

p−7−→ C
f←− D in X.

3. A 2-cell with frame

A0 A1 · · · An−1 An

B0 Bn

(f1,p1,g1)p (f2,p2,g2)p (fn−1,pn−1,gn−1)p (fn,pn,gn)p

(f ′,p′,g′)
p

f g

is a 2-cell with the following frame in X.

A0 A1 · · · An−1 An

B0 Bn

p1(f1,g1)p p2(f2,g2)p pn−1(fn−1,gn−1)p pn(fn,gn)p

p′(f ′,g′)
p

f g

4. Composition of 2-cells is given by that in X.
5. The identity of a loose-cell is given by that in X.

The associativity and unitality laws for X′ follow from those for X. There is a canonical
functor X′ → X sending each loose-cell (f, p, g) to p(f, g), which is the identity on the
tight category and fully faithful on 2-cells. It is trivially surjective on loose-cells, since
each loose-cell p : A −7−→ D is the image of the diagram A == A

p−7−→ D == D, and thus
the canonical functor is an equivalence of virtual double categories.
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It remains to show that X′ admits a strict choice of restrictions. To do so, observe
that the cartesian 2-cell in X on the left below exhibits a cartesian 2-cell in X′ on the
right below.

A0 An

B0 Bn
p(f,g)
p

f ′ g′

p(f ′f,g′g)p
cart

A0 An

B0 Bn
(f,p,g)
p

f ′ g′

(ff ′,p,gg′)p
cart

It is clear that this choice of restrictions is strictly functorial, being inherited from
composition of tight-cells in X.

One might expect the definition of a strict virtual equipment to include also a
condition on the loose-identities, i.e. that composition of loose-cells is strictly unital.
However, as the following lemma shows, we may always choose composites in a given
virtual double category in such a way as to make this hold.

A.2. Lemma. Every opcartesian 2-cell,

A0 · · · An

A0 An

qmpq1p

qp

opcart

for which the object Ai admits a loose-identity (for some fixed 0 ≤ i ≤ n), factors
through an opcartesian 2-cell as follows.

A0 · · · Ai Ai · · · An

A0 · · · Ai Ai · · · An

A0 An

qm

qp

q1 A(1,1)qi qi+1

qmpqi+1pqipq1p

opcart

= =opcart

Proof. That the given opcartesian 2-cell factors through some 2-cell follows immediately
from the universal property of the opcartesian 2-cell defining A(1, 1). That the 2-cell is
opcartesian follows from opcartesianness of the given 2-cell.

We conclude by observing that Theorem A.1 gives a full strictification result for
representable virtual equipments.

A.3. Corollary. For every pseudo double category admitting companions and conjoints,
there is an equivalent strict double category admitting a strictly functorial choice of
companions and conjoints.
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Proof. To every pseudo double category X, there is an equivalent strict double category
X′ [24, Theorem 7.5]. Applying Theorem A.1 then produces an equivalent pseudo double
category X′′ admitting a strictly functorial choice of restrictions. By [60, Theorem 4.1],
a (strictly functorial) choice of restrictions in a pseudo double category is equivalent
to a (strictly functorial) choice of companions and conjoints. It remains to show that
X′′ is actually a strict double category. The loose-composite of (f, p, g) and (f ′, p′, g′)
in X′′ is represented by the loose-composite of p(f, g) and p′(f ′, g′) in X′, and so if
loose-composition is strict in X′, it is also strict in X′′.

A.4. Remark. Michael Shulman has suggested an alternative approach to the strictifi-
cation of pseudo double categories with companions and conjoints [61], in which one
modifies the tight category – equipping each tight-cell with a specified companion and
conjoint – rather than modifying the loose bicategory. However, such a strictification X′

is equivalent to the original pseudo double category X only in a weak sense, in which
the tight 2-categories X and X′ are merely biequivalent rather than being 2-equivalent,
so that X and X′ are not equivalent as objects of VDbl.
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