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WEIL 2-RIGS

LUCA SPADA AND GAVIN ST. JOHN

Abstract. Among commutative unital semirings (rigs, for short), we call Weil the
ones that have a unique homomorphism into the initial algebra. Weil rigs can be thought
of as coordinate algebras of spaces with a single point. In the category of additively
idempotent rigs (2-rigs, for short) 2 is the initial algebra. We characterize Weil 2-rigs as
those that have a unique saturated prime ideal and provide an axiomatization thereof in
geometric logic. We further prove that the category of Weil 2-rigs is a co-reflective full
subcategory of the category of 2-rigs. Finally, we show that both the varieties of rigs,
2-rigs and integral rigs are generated by finite rigs with a unique homomorphism into 2.

1. Introduction

The age-old quest for a suitable mathematical notion of “space” has seen William Law-
vere among its finest modern contributors. After providing an elementary characteriza-
tion of Grothendieck’s notion of a category “of spaces”, Lawvere proceeded to develop
an axiomatic theory of these categories that could accommodate the different models of
dynamical mathematical theories [6]. A fundamental property in this framework is ex-
tensivity. A category C with finite coproducts is extensive [1] if the canonical functor
C/X × C/Y → C/(X + Y ) is an equivalence for every pair of objects X, Y in C. For
instance, the category of topological spaces and continuous functions between them is ex-
tensive; the category of groups is not. Extensivity describes a basic property of coproducts
in categories “of spaces”, with many interesting consequences.

In [7] Lawvere notices that the category Rig of rigs (i.e., commutative and unital
semirings) is coextensive (i.e., dual to an extensive category, see also [2]). In light of the
above considerations, one can expect that the category of rigs should have many things
in common with the category of k-algebras for an algebraically closed field k and that it
can be a useful conceptual guide to think of the category Rigop as a category “of spaces”.
This leads us to the concept of Weil rigs, which we are about to introduce.

Let C be a category with a terminal object 1. If X is an object of C, a point of X is
an arrow 1 → X. It is well known that there may exist several non-isomorphic objects
with only one point. As proved in [8], the finitely generated local complex algebras that
have a unique homomorphism into the (initial algebra) C are the so-called Weil algebras ;
intuitively, these are function algebras of spaces with a single point (see also [4, p. 260]).
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In this paper, we present two characterizations of Weil 2-rigs: the first is in terms of its
prime ideals, the second is an explicit description in geometric logic (see Theorem 3.5).

In a category of algebras in a finitary language, Birkhoff’s subdirect representation
theorem ensures that the maps into subdirectly irreducible objects are jointly monic. Du-
ally, in a category of spaces, points are often not jointly epic; yet it may happen that maps
whose domains have exactly one point are jointly epic. It would then be natural to expect
a strong connection between Weil and subdirectly irreducible algebras. Surprisingly, the
two classes are different as we show in Remark 3.2. However, in Theorem 5.7 we show
that if an equation fails in the variety of 2-rigs, then there exists a finite Weil 2-rig in
which it fails; a similar result also holds for rigs (see Theorem 4.10).

As a further example of a fruitful geometry-inspired concept, consider the following
one. An arrow f : X → Y in a category C is called constant if it factors through the
terminal object 1. More generally, an arrow f : X → Y is called pseudo-constant if it
coequalizes all the points of X. That is, for every pair of points a, b : 1 → X,

1 X D
b

a
f

one has f(a) = f(b). Of course, every constant arrow is a pseudo-constant and in the
category of sets the two concepts are equivalent. However, in 2Rigop this equivalence
fails. Yet, in Corollary 3.9 we show that the homomorphisms in 2Rig that are dual to
pseudo-constant functions always factor through a Weil 2-rig.

2. Preliminaries

For the purposes of this article, we understand a semiring to be an algebra ⟨A,+, ·, 0⟩
such that ⟨A,+, 0⟩ is a commutative monoid, · is associative and distributes over +, i.e.,
x · (y + z) ≈ (x · y) + (x · z) and (y + z) · x ≈ (y · x) + (z · x) hold, and 0 is multiplicatively
absorbing, i.e., 0 · x ≈ 0 holds.

A semiring is called commutative if · is commutative, unital if it has a neutral
element 1 for ·, idempotent if + is idempotent (x + x ≈ x), and integral if it satisfies
the identity (x · y) + y ≈ y. We call rig any commutative unital semiring and 2-rig any
idempotent rig.1 By distributivity, idempotency is equivalent to satisfying 1 + 1 ≈ 1. An
irig is an integral rig, which is equivalent to stipulating that 1 be additively absorbing:
1 + x ≈ 1. It is therefore immediate that every irig is a 2-rig.

2.1. Notation. We suppress multiplication and always assume that concatenation binds
tighter than sum, i.e., xy + z = (x · y) + z. We recursively define nx by setting 0x := 0
and n + 1x := x + nx; when no confusion may arise, we simply write nx. Similarly, xn is
recursively defined by x0 := 1 and xn+1 := x · xn.

1Similar to the pun that a rng is “a ring without identity”, the nomenclature rig serves to evoke “a
ring without negatives” (cf., [2, §1]).
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2.2. Example. The natural numbers with the usual operations ⟨N,+, ·, 0, 1⟩ forms a rig,
which we call the standard rig and denote it simply by N. The two-element distributive
lattice ⟨{0, 1},max,min, 0, 1⟩ is an example of a 2-rig, which we denote by 2. Notice that
N is the initial object in Rig and 2 is the initial object in 2Rig.

Recall that a class of algebras sharing the same finitary signature is called a variety if
it is closed under direct products, subalgebras, and homomorphic images. By a celebrated
result of Birkhoff, varieties are exactly the equationally axiomatizable classes of algebras.
Therefore, the classes of rigs, 2-rigs and irigs are varieties, also denoted by Rig, 2Rig, and
iRig, respectively.

2.3. Definition. In every monoid ⟨M, ◦, 0⟩ it remains defined a (natural) preorder:

a ⪯ b ⇐⇒ ∃m ∈ M such that a ◦m = b.

When we use this relation on rigs, we always assume ◦ = +.

Distributivity implies that, in a rig R, ⪯ is compatible with + and ·, and thus ho-
momorphisms preserve ⪯. In any 2-rig ⪯ is a partial order, as x + r = y if and only if
x + y = y. In other words, ⟨R,⪯, 0⟩ is a join-semilattice with least element 0, for any
2-rig R. Notice that in any irig 1 is the top of this order.

If ⋆ is a binary operation on a set X and S, T ⊆ X, we define S ⋆ T := {s ⋆ t | s ∈
S, t ∈ T}, called the complex ⋆ of S and T . For x ∈ X, we abbreviate: S ⋆ x := S ⋆ {x}.
In accordance with our previous conventions, we write Rx for R · {x}.

2.4. Definition. Let R be a rig. An ideal of R is a subset I ⊆ R that satisfies the
following conditions.

(I1) 0 ∈ I.

(I2) RI ⊆ I; i.e., r ∈ R and i ∈ I implies ri ∈ I.

(I3) I + I ⊆ I; i.e., i ∈ I and i′ ∈ I implies i + i′ ∈ I.

Dually, a subset F ⊆ R is called a filter if it satisfies the following conditions.

(F1) 1 ∈ F .

(F2) R + F ⊆ F ; i.e., r ∈ R and a ∈ F implies r + a ∈ F .

(F3) F · F ⊆ F ; i.e., a ∈ F and b ∈ F implies ab ∈ F .

It is easy to see that the set {0} is always an ideal, and the set ↑1 := R + 1 is always
a filter. Clearly R is itself both an ideal and a filter. Ideals and filters are called proper
if they are not equal to R.

Of course, ideals and filters are closed under arbitrary intersections, so it makes sense
to define for any S ⊆ R the ideal generated by S as the smallest ideal containing S,
denoted Id(S); similarly, the filter generated by S is the smallest filter containing S,
denoted Fi(S). The proof of the following lemma is routine.
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2.5. Lemma. Let R be a rig and S ⊆ R. Then

Id(S) = {r1s1 + · · · + rnsn | n ∈ N, s1, . . . , sn ∈ S, r1, . . . , rn ∈ R}, and
Fi(S) = {r + s1 . . . sn | n ∈ N, r ∈ R, s1, . . . , sn ∈ S}

In particular, if p ∈ R, I is an ideal and F is a filter of R, then

Id(I ∪ {p}) = Rp + I and Fi(F ∪ {p}) = R + Fp.

As a consequence of the above lemma, for any element p in a rig R, Id({p}) = Rp and
Fi({p}) = R + {pn | n ∈ N}.

2.6. Definition. An ideal I is called:

1. saturated if x + y ∈ I if and only if x ∈ I and y ∈ I.

2. prime if it is proper and xy ∈ I if and only if x ∈ I or y ∈ I.

Similarly, a filter F is called:

3. saturated if x · y ∈ F if and only if x ∈ F and y ∈ F.

4. prime if it is proper and x + y ∈ F if and only if x ∈ F or y ∈ F.

It is easy to see that our notion of saturated ideal coincides with that of [9] when
restricted to 2-rigs.

2.7. Remark. For any subset S of a rig R, set:

↓S := {x ∈ R | ∃r ∈ R, r + x ∈ S} and ÷S := {x ∈ R | ∃r ∈ R, r · x ∈ S}

It is straightforward from the definitions that a proper ideal I is saturated if and only if
I = ↓I and a filter F is saturated if and only if F = ÷F .

The following lemma is also readily verified by applying the above definitions.

2.8. Lemma. For a rig R and S ⊆ R, the set S is a saturated prime ideal if and only if
its complement is a saturated prime filter.

2.9. Lemma. [Prime ideal lemma] Let R be a rig and S, T ⊆ R be non-empty sets. If
Id(S) ∩ T = ∅ and T · T ⊆ T , then there exists a prime ideal extending S and disjoint
from T . If in addition T is a filter, then there is a saturated prime ideal P extending S
and a saturated prime filter F extending T so that P and F are disjoint.
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Proof. Let
I := {I | I ideal of R, S ⊆ I and I ∩ T = ∅}.

As Id(S) ∩ T is empty, I is non-empty. Let C be a chain in (I,⊆). It is elementary to
verify that

⋃
C is a member of I. So, Zorn’s Lemma applies yielding a maximal element

M of I. We show that M is prime. Note that M ̸= R as T is non-empty.
Suppose a /∈ M . Then Id(M ∪ {a}) is an ideal properly extending M , and therefore

must have non-empty intersection with T . By Lemma 2.5, there are t ∈ T , r ∈ R, and
m ∈ M such that t = ra + m. Similarly, if b /∈ M then there is t′ ∈ T , r′ ∈ R, and
m′ ∈ M with t′ = r′b + m′. So,

tt′ = (ra + m)(r′b + m′) = rr′ab + mr′b + ram′ + mm′,

since mr′b + ram′ + mm′ ∈ M we obtain tt′ ∈ Id(M ∪ {ab}). Since T · T ⊆ T by
assumption, it follows that Id(M ∪ {ab}) has non-empty intersection with T , and so this
ideal properly extends M . Hence ab ̸∈ M and therefore M is a prime ideal.

For the second claim, suppose additionally that T is a filter. We claim that M is also
saturated. Consider again the elements a, b ∈ R\M and t ∈ T from above. Observe that,

t + rb = (ra + m) + rb = r(a + b) + m ∈ R{a + b} + M = Id(M ∪ {a + b}).

Now, t + rb ∈ T since T is a filter and thus t + rb ̸∈ M , so the ideal Id(M ∪ {a + b})
properly extends M . Hence a + b ̸∈ M . Consequently, M is also a saturated ideal. Since
M is a saturated prime ideal, from Lemma 2.8, it follows that R \M is a saturated prime
filter which, moreover, contains T . Therefore, taking P := M and F := R \M , we have
established our second claim.

2.10. Definition. Let R be a rig and S ⊆ R. We set:
√
S := {x ∈ R | ∃n ∈ Z+, xn ∈ S},

Rad(S) :=
⋂

{I | I prime ideal, S ⊆ I},

dRad(S) :=
⋂

{I | I saturated prime ideal, S ⊆ I},

coRad(S) :=
⋂

{F | F prime filter, S ⊆ F},

codRad(S) :=
⋂

{F | F saturated prime filter, S ⊆ F}.

By Rad(R), the radical of R, we mean the intersection of all the prime ideals in R.
Since 0 belongs to any ideal, it is clear that Rad(R) = Rad({0}) and dRad(R) = dRad({0}).
For similar reasons, we set coRad(R) := coRad({1}) and codRad(R) := codRad({1}).

2.11. Remark. Notice that as an immediate consequence of the fact that 0 is multi-
plicatively absorbing, additively idempotent, and addition is commutative, we obtain ↓0
to be a saturated ideal. Furthermore, since 0 belongs to any ideal, any saturated ideal
must contain ↓0. Similarly, the fact that ↑1 is a filter is immediate from the fact that 1 is
a multiplicative identity and R is distributive. It follows that ↑1 is included in any filter.
Thus, in any non-trivial rig ↓0 ⊆ Rad(S) ⊆ dRad(S) and ↑1 ⊆ coRad(S) ⊆ codRad(S).
Therefore, none of these sets can be empty.
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2.12. Lemma. Let R be a rig. For any proper ideal I ⊆ R, we have
√
I = Rad(I).

Furthermore, if I is a saturated ideal, then
√
I = dRad(I).

Proof. Suppose that x ∈
√
I, then there exists n ∈ Z+ such that xn ∈ I. So xn belongs

to any prime ideal extending I and by primeness it follows that x also does. Whence
x ∈ Rad(I). Vice versa, suppose x ̸∈

√
I and set T := {xn | n ∈ Z+}. Then I ∩ T = ∅.

Clearly T · T ⊆ T , and so from Lemma 2.9 there exists a prime ideal P that extends I
and does not contain any power of x. Hence x ̸∈ Rad(I), completing the first claim. For
the second claim in the statement, suppose further that I = ↓I. If I ∩ Fi(T ) = ∅, then
by Lemma 2.9 we can assume that P is also a saturated ideal that does not intersect
T . Therefore, x ̸∈ dRad(S) and the claim is verified since also Rad(S) ⊆ dRad(S). So
suppose towards contradiction that a ∈ I ∩ Fi(T ). As a ∈ Fi(T ), by Lemma 2.5 and the
fact that T · T ⊆ T , we find a = r + t for some r ∈ R and t ∈ T . Since a ∈ I = ↓I, this
means that t ∈ I, a contradiction.

2.13. Lemma. Let R be a rig. For any filter F ⊆ R, ÷F = codRad(F ).

Proof. By definition x ∈ ÷F if and only if there exists r ∈ R such that rx ∈ F . So rx is
contained in all saturated prime filters extending F . By saturation, this entails that also
x belongs to all saturated prime filters extending F . Thus, x ∈ codRad(F ). We conclude
that ÷F ⊆ codRad(F ). Vice versa, if x ̸∈ ÷F , then F ∩ Rx = ∅ by definition. Since Rx
is an ideal and F is a filter, by Lemma 2.9, there is a saturated prime filter G extending
F and disjoint from Rx. In particular, x ̸∈ G, and so x ̸∈ codRad(F ).

2.14. Lemma. For any rig R,

codRad(R) = ÷(↑1) = {x | ∃r ∈ R, 1 ⪯ rx}
dRad(R) =

√
(↓0) = {x | ∃n ∈ N, xn ⪯ 0}.

Proof. The left-most equalities are consequences of Remark 2.11 and Lemmas 2.12
and 2.13. The rightmost equalities are obtained simply by unfolding the definitions.

Of course, the category of rigs contains all commutative unital rings. However, these
rigs do not have any homomorphism into 2 because −1 cannot be mapped to 0 nor to 1
in 2. We call proper-rig a rig that is not a ring. In the next section, we will show that
proper-rigs are exactly the ones that have a homomorphism into 2. For the moment, we
just show some easy equivalent conditions.

2.15. Lemma. Let R be a rig. The following are equivalent:

1. R is a proper-rig,

2. some element in R does not have an additive inverse,

3. for all r ∈ R, 1 + r ̸= 0,

4. 1 ̸⪯ 0 in R,
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5. ↓0 and ↑1 are disjoint,

6. R has at least one saturated prime ideal.

7. dRad(R) and codRad(R) are disjoint.

Proof.

(1)⇔(2) Trivially.

(2)⇔(3) One direction is obvious and the other follows from distributivity: 1 + r = 0
implies s + rs = 0, for any s ∈ R.

(3)⇔(4) By the definition of ⪯.

(4)⇔(5) By the transitivity of ⪯.

(5)⇒(6) Since ↓0 is an ideal disjoint from the filter ↑1, by Lemma 2.9 there is a prime
saturated ideal P extending ↓0.

(6)⇒(7) Recall that by Lemma 2.8, if P is a saturated prime ideal in R, then R \ P
is a saturated prime filter. Since they are obviously disjoint, so are dRad(R) and
codRad(R).

(7)⇒(5) Because by Remark 2.11, dRad(R) ∩ codRad(R) = ∅ implies ↓0 ∩ ↑1 = ∅.

3. Weil rigs

3.1. Definition. Let V be a variety of rigs. A rig R ∈ V is called Weil in V if there is
a unique rig homomorphism from R into the initial object of V.

So, recalling Example 2.2, a rig is Weil in Rig if and only if it has a unique homomor-
phism into N, while it is Weil in (any non-trivial subvariety of) 2Rig if and only if it has
a unique homomorphism into 2. In this paper, we are mostly interested in Weil rigs in
(subvarieties of) 2Rig, but most of our results do not need the assumption that the Weil
rig is itself a 2-rig. For this reason, we call 2-Weil any rig with a unique homomorphism
into 2. We also note that no finite rig is Weil in Rig as there is no homomorphism from
a finite rig into N (since the constant 1 must always map to 1 ∈ N).



WEIL 2-RIGS 389

3.2. Remark. Notice that the class of subdirectly irreducible and Weil 2-rigs are incom-
parable; the 2-rigs C and D below provide counter-examples to both inclusions.

1

y

x

0 = x2 = y2 = xy•
•
•
•

The 2-rig C.

1

b = b2

a

0 = a2 = ab•
•
•
•

The 2-rig D.

Indeed, as direct inspection shows (see also [5]) C is not subdirectly irreducible, but is
Weil because the only homomorphism into 2 is the one sending everything in 0 but 1.
The rig D is subdirectly irreducible (again, as direct inspection shows), but it has two
homomorphisms into 2: the first sends everything into 0 but 1, the second sends 0 and a
into 0 and the rest into 1.

3.3. Lemma. Let R be a rig. The homomorphisms of R into 2 are in bijection with its
saturated prime ideals.

Proof. We show that if f : R → 2 is a homomorphism, then ker f := {x | f(x) = 0} is a
saturated prime ideal. Clearly ker f satisfies (I1) and (I2) as f is a homomorphism, i.e.,
f(0) = 0 and f(rx) = f(r)f(x) = f(r)0 = 0 for x ∈ ker f . To see that it is saturated,
observe that f(x + y) = 0 if and only if f(x) + f(y) = 0 if and only if f(x) = 0 and
f(y) = 0. To conclude that it is a prime ideal, observe that f(xy) = 0 if and only if
f(x)f(y) = 0 if and only if f(x) = 0 or f(y) = 0.

Vice versa, let P be a saturated prime ideal of R, consider the map from R into 2

defined by:

fP (r) =

{
0 if x ∈ P

1 if x ̸∈ P.

We proceed to prove by cases that fP is a homomorphism. If r, s ∈ P , then fP (rs) = 0
and fP (r + s) = 0, as P is closed under product and sum by definition. The case
r, s /∈ P is similar because the complement of P is closed under sum by upward-closure
and is closed under product as a consequence of the primality of P . Finally, suppose
r ∈ P and s ̸∈ P , then rs ∈ P because P is an ideal, and r + s ̸∈ P as otherwise s
would be in P because the its complement is saturated (Lemma 2.8). We deduce that
fP (r + s) = 1 = fP (r) + fP (s) and fP (rs) = 0 = fP (r)fP (s). It is straightforward to
observe that the above correspondence is bijective by checking that both compositions
give the identity.

3.4. Corollary. A rig R is a proper-rig if and only if there exists a homomorphism
from R into 2.

Proof. By Lemma 2.15 being a proper-rig is equivalent to having at least one saturated
prime ideal. The latter condition is equivalent to having a homomorphism into 2 by
Lemma 3.3.
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3.5. Theorem. Let R be a rig. Then the following are equivalent.

1. R is 2-Weil.

2. R has a unique saturated prime ideal.

3. R = dRad(R) ∪ codRad(R) with dRad(R) ∩ codRad(R) = ∅.

4. R is a proper-rig such that for every x ∈ R

∃n ∈ N, xn ⪯ 0 or ∃r ∈ R, 1 ⪯ rx. (W)

Proof. The fact that the first two items are equivalent is an immediate corollary of
Lemma 3.3. The equivalence between item 3 and item 4 is an immediate consequence of
Lemma 2.14 and Lemma 2.15. To see that item 2 implies item 3, suppose that R has a
unique saturated prime ideal P . Then P = dRad(R) by definition. By Lemma 2.8, R \ P
is a saturated prime filter, which must be unique as well. Hence R \ P = codRad(R).
So R = dRad(R) ∪ codRad(R), and clearly the intersection is empty. Finally, to obtain
the implication from item 3 to item 2, observe that by Lemma 2.9, R must have a prime
ideal P and by definition dRad(R) ⊆ P . We claim that they are equal, so dRad(R) is the
unique prime ideal. To prove the claim, it is enough to notice that under the hypothesis
of item 3 x /∈ dRad(R) if and only if x ∈ codRad(R). But then 1 ∈ ↓Id(x) which implies
↓Id(x) = R. Therefore, x /∈ P , as the latter is proper by definition.

3.6. Corollary. A non-trivial 2-rig is Weil in 2Rig if and only if it satisfies condition
(W).

Proof. It is enough to show that any non-trivial 2-rig is a proper-rig. Notice that in
any non-trivial 2-rig 1 ̸⪯ 0 because 0 ⪯ 1 in any rig and in any 2-rig ⪯ is a partial order.
Thus, the claim can be obtained using the characterization of Lemma 2.15.

It is worth remarking that, as a consequence of the argument above and Corollary 3.4,
every non-trivial 2-rig has a homomorphism into 2. Note also that condition (W) reduces
to xn = 0 or 1 ⪯ rx in the case of 2-rigs, since 0 is the least element, and xn = 0 or x = 1
in the case of irigs, since there 1 is the greatest element. Therefore, an irig R is 2-Weil if
and only if

√
R = R \ {1}.

3.7. Lemma. If R is a proper-rig, then WR := dRad(R)∪ codRad(R) is the largest subal-
gebra of R with a unique homomorphism into 2.

Proof. It is straightforward to check that WR is a subalgebra of R, as any subset of
a rig obtained from the union of an ideal and a filter is again a rig. Clearly, if 1 ̸⪯ 0
holds in a rig then it also holds in all its subrigs. Thus, by Lemma 2.15 any subrig of
a proper-rig is a proper-rig. We now prove that WR = dRad(WR) ∪ codRad(WR). Using
Lemma 2.14 it is straightforward to check that dRad(WR) = dRad(R). Next, we prove that
codRad(WR) = codRad(R). Using the fact that codRad(R) = {x ∈ R | ∃r ∈ R, 1 ⪯ rx}
(cf. Lemma 2.14) it is clear that codRad(WR) ⊆ codRad(R). Now, suppose x ∈ codRad(R),
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again by Lemma 2.14 there exists r ∈ R such that 1 ⪯ rx, but for the same reason also
r ∈ codRad(R). Therefore, r ∈ WR and thus x ∈ codRad(WR). Summing up, we have
proved that WR is a proper-rig such that WR = dRad(WR) ∪ codRad(WR), combining
Lemma 2.15 and Theorem 3.5 we conclude that WR is 2-Weil.

3.8. Corollary.The inclusion functor from the category of 2-Weil rigs into the category
of proper-rigs has a right adjoint that assigns to any proper-rig R the 2-Weil rig WR.

Proof. It is enough to check that any homomorphism of rigs f : W → R, with a 2-
Weil domain and a proper-rig codomain factors through WR. Now, by Theorem 3.5
W = dRad(W ) ∪ codRad(W ). If x ∈ dRad(W ) then by Lemma 2.14 there exists n ∈ Z+

such that xn ⪯ 0, since f is a homomorphism f(x)n = f(xn) ⪯ 0, thus f(x) ∈ dRad(R).
If x ∈ codRad(W ), then again by Lemma 2.14 there exists w ∈ W such that 1 ⪯ wx, thus
1 ⪯ f(w)f(x). Therefore, f(x) ∈ codRad(R).

As an immediate consequence, it follows that the rig WR of Lemma 3.7 is the largest
2-Weil subrig of R. A further consequence is that the dual of a pseudo-constant function
factors through a 2-Weil rig, as shown in the next corollary.

3.9. Corollary. If f : R → S is a rig homomorphism such that g ◦ f = h ◦ f : R → 2

for every g, h : S → 2, then f factors through WS.

Proof. Note that, if S is not a proper-rig then there are no homomorphisms to 2, and
the claim is vacuously satisfied. So, assume S is a proper-rig and notice that f [R] is a
subrig of S. By hypothesis, there exists a unique homomorphism from f [R] into 2, thus
f [R] is 2-Weil. But from Corollary 3.8 WS is the largest 2-Weil subrig of S, therefore
f [R] ⊆ WS.

4. Free and generic algebras in varieties of rigs

Recall that by a fundamental result of Birkhoff any variety V has free algebras over any
set of generators X := {xi}i∈I , which we indicate with FV(I). We now review some results
concerning free rigs that probably belong to the folklore in semiring theory. Let A be any
algebra and R ⊆ A × A. We write CgA(R) for the smallest congruence containing R. If
s(x) and t(x) are terms in a single variable, we sometimes abbreviate CgA({(s(a), t(a)) |
a ∈ A}) by (s ≈ t).

4.1. Remark. It follows from Example 2.2 that N is the 0-generated free rig and 2 is
the 0-generated free 2-rig. It is also clear that for every n ∈ N the n-generated free
rig is isomorphic to the rig N[x1, . . . , xn] of polynomials with coefficients in N and the
n-generated free 2-rig is isomorphic to 2[x1, . . . , xn], i.e., the rig of polynomials with
coefficients in 2 (addition is, of course, idempotent).

For any commutative monoid ⟨A, ◦, e⟩ consider the set of finite multisets over A; i.e.,

M(A) :=
{
σ : A → N | σ−1[N \ {0}] is finite

}
.
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Recall that if σ, τ ∈ M(A) then their convolution is defined as

(σ ∗ τ)(a) :=
∑

{σ(x) · τ(y) | a = x ◦ y, for x, y ∈ A} .

The set M(A) is a rig when considered with multiset union (i.e., point-wise addition)
and convolution; the neutral element for the former operation is the empty multiset and
for the latter is the singleton (multi)set {e}. We will be interested in M(Nn), the rig of
finite multisets over the direct product ⟨Nn,+, 0̄⟩ of n copies of the additive monoid of
natural numbers.

It is clear that any rig term s(x1, . . . , xn) is equivalent in FRig(n) to one of the form

k∑
i=0

aix
vi(1)
1 · · · · · xvi(n)

n

for ai ∈ N and vi ∈ Nn. Thus, one can associate to each term s a finite S ⊆ Nn and a
related set {av ∈ N+ | v ∈ S}, so that s ≈

∑
{avx̄v | v ∈ S} holds in all rigs (recall that

0 :=
∑

∅).
The set S is called the support of s, and the av are the associated coefficients. An

element v ∈ S is often referred to as the Parikh vector for the monoid term x
v(1)
1 . . . x

v(n)
n .

When n is understood, we use the abbreviation x̄v := x
v(1)
1 . . . x

v(n)
n .

4.2. Proposition. For each n ∈ N, the rig M(Nn) is the n-generated free rig.

Proof. It is enough to show that N[x1, . . . , xn] and M(Nn) are isomorphic. Note that Nn

is generated by its elements ei, for i = 1, . . . , n, consisting of a single non-zero entry equal
to 1 in the i-th coordinate. Consider the homomorphism induced by freely mapping each
xi to the singleton (multi)set {ei} ∈ Nn. It is easy to see that this homomorphism assigns

each monomial m = ax
v(1)
1 . . . x

v(n)
n to the multiset containing only v with multiplicity a,

i.e. to the multiset µ : Nn → N defined by

µ(u) =

{
a if u = v,

0 otherwise.

It is straightforward to verify this map is a rig isomorphism.

Let ⟨A, ◦, e⟩ be a commutative monoid and recall that the complex multiplication
between subsets X and Y of A is defined as X ◦ Y := {x ◦ y | x ∈ X, y ∈ Y }. The
collection S(A) of finite subsets of A with union and complex multiplication is a 2-rig. It
is easy to see that S(A) ∼= M(A)/(1 + 1 ≈ 1).

4.3. Proposition. For each n ∈ N, the 2-rig S(Nn) is the n-generated free 2-rig.

Proof. This follows by observing that F2Rig(n) ∼= M(Nn)/(1+1 ≈ 1) ∼= S(Nn), or simply
verifying that the map 2[x1, . . . , xn] → S(Nn) induced by xi 7→ {ei} is an isomorphism.
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Let (A, ◦, e) be a monoid. Recall from Definition 2.3 that a ⪯ b if and only if a ◦ c = b
for some c ∈ A. Define ↑X := {a ∈ A | ∃x ∈ X, x ⪯ a}. The following lemma has a
straightforward proof.

4.4. Lemma. Let ⟨A, ◦, e⟩ be a monoid. For any X, Y ⊆ A, the following properties hold

1. ↑X = X ◦ A, A = ↑{e}, and ∅ = ↑∅.

2. ↑(X ∪ Y ) = ↑X ∪ ↑Y ,

3. ↑(X ◦ Y ) = ↑X ◦ ↑Y ,

4. ↑X ◦ A = ↑X.

It follows that if ⟨A, ◦, e⟩ is a commutative monoid, the set I(A) := {U ⊆ A | U = ↑U}
with union and complex multiplication is an irig; notice that in this case the neutral
element of the complex multiplication is A. The following lemma is immediate from
Lemma 4.4.

4.5. Lemma. Let ⟨A, ◦, e⟩ be a commutative monoid. Then ⇑ := {(S, T ) | ↑S = ↑T} is
a congruence on the 2-rig S(A) and its quotient S(A)/⇑ embeds into I(A) via the map
[S]⇑ 7→ ↑S.

For X ⊆ Nn, let Xmin be the set of ≤-minimal elements of X. Notice that Xmin is
an antichain with respect to order ≤. Now, Dickson’s lemma [3] ensures that Nn does
not contain any infinite antichains with respect to ≤. Consequently, any upwards closed
U ⊆ Nn, i.e., U = ↑U := U + Nn, is generated as the upward closure of a unique finite
sub-antichain which is exactly Umin, i.e., U = ↑(Umin). It is also clear that (↑S)min = Smin

for any S ∈ S(Nn).

4.6. Proposition. For each n ∈ N, the irig I(Nn) is the n-generated free irig.

Proof. Recall from Proposition 4.3, that the n-generated free 2-rig is isomorphic to
S(Nn). As iRig is the subvariety of 2Rig axiomatized by x + 1 = 1, the n-generated free
irig is F2Rig(n)/(x + 1 ≈ 1). So

FiRig(n) ∼= S(Nn)/≡ where ≡ := Cg{(X ∪ {0̄}, {0̄}) | X ∈ S(Nn)}.

We now prove that the congruences ≡ and ⇑ (introduced in Lemma 4.5) are identical.
We start by noticing that setting X = Nn in the definition of ≡ gives Nn ≡ {0̄}. Since
≡ is a congruence, this entails ↑Y = Y + Nn ≡ Y + {0̄} = Y for any Y ∈ S(Nn). Thus,
↑S = ↑T implies S ≡ T and so ⇑ ⊆ ≡. For the converse, it suffices to show that each
generator of ≡ is a member of ⇑. Indeed, for any set X ∈ S(Nn), from Lemma 4.4 we
find ↑(X ∪ {0̄}) = ↑X ∪ ↑{0̄} = ↑X ∪ Nn = Nn = ↑{0̄}, hence X ∪ {0̄} ⇑ {0̄}. Since
≡ is defined as the smallest congruence containing the generators, we obtain the other
inclusion and conclude that ⇑ = ≡. Since these congruences are identical, so are their
respective quotients of S(Nn). Thus, from Lemma 4.5 it follows that the map [S]≡ 7→ ↑S
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is a well-defined injective homomorphism from S(Nn)/≡ into I(Nn). Moreover, this map
is surjective as a consequence of Dickson’s lemma; i.e., for any U ∈ I(Nn), Umin ∈ S(Nn)
and [Umin]≡ 7→ U . Therefore, the map is an isomorphism, completing our claim.

Let s be a rig term, and let S ⊆ Nn be the support of s. We define the following
elements of 2[x1, . . . , xn]:

[s] :=
∑

{x̄v | v ∈ S} and [s]min :=
∑

{x̄v | v ∈ Smin}. (1)

4.7. Corollary. Let s, t be rig terms.

1. The following are equivalent.

(i) The identity s ≈ t is satisfied in all 2-rigs.

(ii) The identity [s] ≈ [t] is satisfied in all rigs.

(iii) The supporting sets of s and t are identical.

2. The following are equivalent.

(i) The identity s ≈ t is satisfied in all irigs.

(ii) The identity [s]min ≈ [t]min is satisfied in all 2-rigs.

(iii) The identity [s]min ≈ [t]min is satisfied in all rigs.

(iv) The minimal elements of the supporting sets of s and t are identical.

Proof. Let n be the total number of distinct variables occurring in the identity s ≈ t,
and let S, T ∈ S(Nn) be the supporting sets for the terms s, t, respectively. For item 1,
observe that [s] ≈ [t] holds in Rig if and only if S = T . Since S(Nn) is an n-generated free
2-rig, this occurs if and only if s ≈ t holds in S(Nn); equivalently, s ≈ t holds in 2Rig.

For item 2 we proceed in a similar manner. Notice that [s]min ≈ [t]min holds in 2Rig
if and only if Smin = Tmin. Since ↑S = ↑Smin and ↑T = ↑Tmin, the latter is equivalent to
↑S = ↑T . But ↑S = ↑T in the n-generated free irig I(Nn) iff the identity s ≈ t holds in
I(Nn), which is equivalent to iRig satisfying s ≈ t.

4.8. Proposition. The initial rig N generates the variety of rigs.

Proof. Let p(x1, . . . , xn) ≈ q(x1, . . . , xn) be an equation in the language of rigs. Clearly,
if p(x1, . . . , xn) ≈ q(x1, . . . , xn) holds in all rigs, then it holds also in N. The other
implication is proved by induction on the number of variables in p and q. Let n = 1
and suppose that p(x) = q(x) for all v ∈ N. Then p(v) − g(v) is a polynomial in Z[x]
with infinitely many roots. Since the ring Z is an integral domain, by a classical result in
algebra, p(x) − q(x) is the 0 polynomial. Hence, p(x) = q(x).

For the inductive step let k ≥ 0 be the largest exponent of xn in p and q. The
polynomials p(x1, . . . , xn) and q(x1, . . . , xn) can be written as a sum of the polynomi-
als p′j(x1, . . . , xn−1)x

j
n and q′j(x1, . . . , xn−1)x

j
n, for j = 0, . . . , k. Since by hypothesis the
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equation p(x1, . . . , xn) ≈ q(x1, . . . , xn) holds in N, for all v1, . . . , vn ∈ N we have∑
j≤k

p′j(v1, . . . , vn−1)v
j
n =

∑
j≤k

q′j(v1, . . . , vn−1)v
j
n.

It follows from the argument above that the 1-variable polynomials∑
j≤k

p′j(v1, . . . , vn−1)x
j
n and

∑
j≤k

q′j(v1, . . . , vn−1)x
j
n

must be equal. This means that p′j(v1, . . . , vn−1) = q′j(v1, . . . , vn−1) for any j ≤ k. The
induction hypothesis gives that p′j(x1, . . . , xn−1) = q′j(x1, . . . , xn−1). Thus we can conclude
that p(x1, . . . , xn) = q(x1, . . . , xn) in N[x1, . . . , xn].

4.9. Remark. Notice that for any rig R there is a homomorphism F : M(Nk) → RRk

defined for any r̄ ∈ Rk by

F(µ)(r̄) :=
∑
w∈Nk

µ(w) · r̄w.

The homomorphism F is a generalization of the Fourier transform, sending the convo-
lution of M(Nk) into the (pointwise) product of RRk

. Since M(Nk) is the free rig on k
generators, F is injective precisely when R generates the variety. Proposition 4.8 above
states that F is injective when R = N.

The following two theorems are, to the best of our knowledge, new.

4.10. Theorem. The variety of rigs is generated by a class of finite 2-Weil rigs.

Proof. Since N generates Rig by Proposition 4.8, it suffices to show that N is a subdirect
product of 2-Weil rigs. For k ≥ 1, let

Wk := N/(k ≈ k + 1). (2)

It is easy to see that Wk is isomorphic to the rig over the set {0, 1, . . . , k} with addition and
multiplication truncated at k. Note that Wk is generated by 1. Therefore, the assignment
0 7→ 0 and 1 7→ 1 from Wk into 2 uniquely extends to a homomorphism. Consequently,
Wk is a finite 2-Weil algebra, for any k ≥ 1. Now, consider the algebra

∏∞
k=1Wk, and

let 0̄ and 1̄ denote its additive and multiplicative identities, respectively. Set N̄ to be the
subalgebra generated by 1̄. The members of N̄ different from 0̄ have the form:

n̄(k) =

{
k if k ≤ n

n if k > n.

Thus, the unique homomorphism N → N̄ is injective. Consequently, the standard rig N
is a subdirect product of the rigs Wk, for k ∈ N.
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The 0-generated free 2-rig 2 obviously does not generate the whole variety 2Rig. In-
stead, 2 generates the variety of bounded distributive lattices; a proper subvariety of iRig.
However, as we show in the next theorem, 2Rig is generated by F2Rig(1). Before entering
into the details of the proof, we need to establish an elementary geometric fact.

For T ∈ S(Nn) and u ∈ Nn let us call adequate a vector x̂ ∈ Rn with positive entries
such that ⟨x̂, u − v⟩ ≠ 0 for every v ∈ T , where ⟨ , ⟩ indicates the scalar product of Rn.
Geometrically, an adequate vector is one that points in the positive orthant of Rn and,
when applied to the point u, lies normal to a hyperplane disjoint from T .

4.11. Lemma. Let T ∈ S(Nn) and u ∈ Nn. If u ̸∈ T then there exists an adequate vector
with integer coordinates.

Proof. We start by providing an adequate vector x̂ ∈ Rn. Let us call V the Q-vector
space over R. Observe that V is infinite dimensional, so there exists a vector x̂ ∈ Rn

whose entries are positive and linearly independent in V (e.g., take x̂(i) := log pi for pi
the i-th prime). For any v ∈ T , the entries of u − v are rational (in fact, integers) and
the entries of x̂ are linearly independent in V , it follows that ⟨x̂, u− v⟩ = 0 if and only if
u− v = 0. In turn, this is equivalent to u = v, but u ̸∈ T , so x̂ is adequate.

Now, recalling that the set T is finite, consider the function δ : Rn → R defined by

δ(x) := min{|⟨x, u− v⟩| | v ∈ T}.

As a composition of continuous maps, δ is continuous. Since x̂ is adequate, δ(x̂) > 0.
Thus, by the continuity of δ there exists a neighborhood of x̂ on which the function is
positive. Since Qn is dense in Rn, there exists r̂ ∈ Qn with all positive entries and such
that δ(r̂) > 0. Thus, r̂ is also adequate.

Finally, upon noticing that any positive multiple of an adequate vector is still ade-
quate, we obtain an adequate vector with (positive) integer coordinates from r̂ simply by
multiplying r̂ by the least common denominator of its entries.

4.12. Theorem. The variety of 2-rigs is generated by its free algebra over a single gen-
erator.

Proof. We tacitly use Proposition 4.3, identifying F2Rig(n) with S(Nn). We prove that
if an equation fails in the variety, then it fails in the 1-generated free algebra. Let s ≈ t
be an equation in n variables that fails in some 2-rig, then it fails in the n-generated free
algebra F2Rig(n). Thus, by Corollary 4.7(1) the supporting sets S and T of the terms s
and t must be different.

Since the evaluations of terms with n variables in an arbitrary 2-rig R are in bijection
with the homomorphisms from F2Rig(n) into R, it is enough to provide a homomorphism
σ : S(Nn) → S(N) such that σ(S) ̸= σ(T ). To this end, observe that each x ∈ Nn induces
a map

σx : S(Nn) → S(N) such that Y ∈ S(Nn) 7→ σx(Y ) := {⟨x, y⟩ | y ∈ Y }.
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It is easy to verify that σx is a rig homomorphism for any x ∈ Nn. Indeed, it is clear that
σx preserves addition (i.e., set-theoretic union), while the preservation of multiplication
(i.e., complex-+) is garnered from the fact that the map v 7→ ⟨x, v⟩ is linear.

Recall that S ̸= T . If S or T are the empty set, then any σx separates S and T .
Otherwise, without loss of generality, we can assume that there exists u ∈ S \ T . Hence,
Lemma 4.11 applies, yielding a vector x̄ ∈ Nn such that ⟨x̄, u⟩ ≠ ⟨x̄, v⟩ for any v ∈ T . It
follows that σx̄(S) ̸= σx̄(T ).

5. Weil determined varieties

In this section, we show that the varieties 2Rig and iRig are generated by finite 2-Weil
rigs. In fact, the generating 2-Weil rigs take a special transparent form, which we proceed
to describe. Fix an arbitrary n ∈ N and let X = {x1, . . . , xn} be a fixed set of free
generators. For each k > 0, let

Sk := {(xk
i , 0) | 1 ≤ i ≤ n} ∪ {(k, k + 1)}

(recall that k represents the k-fold sum of 1). When the context suffices to disambiguate,
we will write ≡k for the congruence generated by Sk either in FRig(n), in FiRig(n) or in
F2Rig(n). We will prove that, for V ∈ {Rig, iRig, 2Rig}, the rigs FV(n)/≡k are all 2-Weil
and that, for any fixed n ∈ N, the families obtained by letting k ranging among positive
integers afford subdirect representations of FV(n). We also remark that according to the
above definition FRig(0)/≡k coincides with the rig Wk of Equation (2).

Our first step is to provide a more concrete description of the congruences ≡k. This
will be given in Lemma 5.4.

5.1. Definition. For v ∈ Nn we denote its magnitude by |v| := max{v(i) | i =
1, . . . , n}. Let s be a rig term, let S be its support, and let {av | v ∈ S} be the cor-
responding coefficients. We define

s<k :=
∑

{avx̄v | v ∈ S and |v| < k}

s↾k :=
∑

{a′vx̄v | v ∈ S, a′v := min(k, av)}.

It follows directly from the definition that, for ∗ ∈ {↾k,<k}:

s∗ =
∑

{(avx̄
v)∗ | v ∈ S}. (3)

It is also clear that the operators are idempotent, i.e., (s∗)∗ = s∗, and commute with each
other, i.e., s<k′↾k = s↾k<k′ .

5.2. Lemma. For any a, b ∈ N and any v ∈ Nn,

1. (ax̄v + bx̄v)<k = ((ax̄v)<k + (bx̄v)<k)<k,
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2. (ax̄v + bx̄v)↾k = ((ax̄v)↾k + (bx̄v)↾k)↾k,

and for any monomials m and m′,

3. (m ·m′)<k = (m<k ·m′
<k)<k

4. (m ·m′)↾k = (m↾k ·m′
↾k)↾k

Proof. Item 1. Clearly, by definition (a · x̄v)<k = a · (x̄v)<k. Thus

(ax̄v + bx̄v)<k = (a + b) · (xv)<k = a · (x̄v)<k + b · (x̄v)<k = (ax̄v)<k + (bx̄v)<k.

The result follows from the idempotency of (−)<k.
Item 2. Clearly, (ax̄v + bx̄v)↾k = (a + b)↾k · x̄v. Observe that (a↾k + b↾k)↾k = k if and

only if a↾k + b↾k ≥ k and this inequality holds if and only if a + b ≥ k. Finally, the latter
is equivalent to (a + b)↾k = k. Thus,

(ax̄v + bx̄v)↾k = (a + b)↾k · x̄v = (a↾k + b↾k)↾k · x̄v = ((ax̄v)↾k + (bx̄v)↾k)↾k.

Item 3. Note that ((x̄u)<k · (x̄v)<k)<k = 0 if and only if either (x̄u)<k · (x̄v)<k = 0 or
|u + v| ≥ k. The former condition is equivalent to |u| ≥ k or |v| ≥ k. Since |u| ≥ k or
|v| ≥ k entails |u + v| ≥ k, we conclude that ((x̄u)<k · (x̄v)<k)<k = 0 holds if and only if
|u + v| ≥ k. In turn, this is equivalent to (x̄u · x̄v)<k = 0. The claim follows.

Item 4. The definition of (−)↾k yields (a · x̄v)↾k = (a↾k) · x̄v. Now, observe that
(a↾k · b↾k)↾k = k if and only if a↾k · b↾k ≥ k which in turn is equivalent to a · b ≥ k and thus
also to (a · b)↾k = k. Using Equation (3) the claim is established.

We define a further relation over terms as follows:

R<k↾k := {(s, t) | s<k↾k ≈ t<k↾k holds in Rig.}

5.3. Lemma. The relation R<k↾k is a congruence of FRig(n).

Proof. It is obvious that R<k↾k is an equivalence relation since it is defined by an equality.
Towards establishing compatibility, we first take the intermediary step of verifying, for
each operator ∗ ∈ {↾k,<k} and operation # ∈ {+, ·}, the following claim:

(s#t)∗ = (s∗#t∗)∗. (4)

Let terms s, t be given, with S, T being their respective supports, and {av | v ∈ S},
{bv | v ∈ T} their respective coefficients. We set av := 0 (resp., bv := 0) whenever v /∈ S
(resp., v /∈ T ). We start with the case # = +.

(s + t)∗ =
∑

v∈S∪T

(avx̄
v + bvx̄

v)∗ by commutativity and Equation (3)

=
∑

v∈S∪T

(
(avx̄

v)∗ + (bvx̄
v)∗
)
∗ by items 1 and 2 in Lemma 5.2

=

( ∑
v∈S∪T

(avx̄
v)∗ + (bvx̄

v)∗

)
∗

by Equation (3)

= (s∗ + t∗)∗
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For the case # = ·, let s :=
∑

m∈I m and t :=
∑

m′∈I′ m
′. We have

(s · t)∗ =

(∑
m∈I

∑
m′∈I′

m ·m′

)
∗

by distributivity

=

(∑
m∈I

∑
m′∈I′

(m ·m′)∗

)
∗

by repeated applications of Equation (4) for +

=

(∑
m∈I

∑
m′∈I′

(m∗ ·m′
∗)∗

)
∗

by items 2 and 3 in Lemma 5.2

=

(∑
m∈I

∑
m′∈I′

m∗ ·m′
∗

)
∗

by repeated applications of Equation (4) for +

= (s∗ · t∗)∗.

We are now ready to prove the compatibility. Suppose (s, s′), (t, t′) ∈ R<k↾k, then
s<k↾k = s′<k↾k and t<k↾k = t′<k↾k. Let # ∈ {+, ·} and observe:

(s # t)<k↾k = (s<k # t<k)<k↾k by (4) for ∗ = <k

= (s<k # t<k)↾k<k since the operators commute

= (s<k↾k # t<k↾k)↾k<k by (4) for ∗ = ↾k

By the same argument, it follows that (s′ # t′)<k↾k = (s′<k↾k # t′<k↾k)↾k<k. From the
assumption (s, s′), (t, t′) ∈ R<k↾k, it follows that

(s<k↾k # t<k↾k)↾k<k = (s′<k↾k # t′<k↾k)↾k<k,

and thus (s # t)<k↾k = (s′ # t′)<k↾k. Therefore R<k↾k is compatible with each operation.

We remark that a similar proof shows that also the relations

R↾k := {(s, t) | s↾k = t↾k} and R<k := {(s, t) | s<k = t<k}

are congruences on FRig(n). Recall that in (1) we defined for any rig term s,

[s] :=
∑

{x̄v | v ∈ S} and [s]min :=
∑

{x̄v | v ∈ Smin},

where S is the support of s and Smin is the antichain in S consisting of its ≤-minimal
elements.

5.4. Lemma. Let s, t be terms. Then for all k ≥ 1, the following items hold:

1. s ≡k t in FRig(n) if and only if s<k↾k ≈ t<k↾k holds.

2. s ≡k t in F2Rig(n) if and only if [s<k] ≈ [t<k] holds.

3. s ≡k t in FiRig(n) if and only if [s<k]min ≈ [t<k]min holds.
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Proof. We only prove item 1, as the other two items follow from the first and Corol-
lary 4.7. For the right-to-left implication of item 1, let s and t be terms such that
s<k↾k ≈ t<k↾k holds. Consider the sum

s≥k :=
∑

{avx̄v | v ∈ S and |v| ≥ k}.

Obviously, s = s≥k + s<k and since xk
i ≡k 0, it follows that s≥k ≡k 0. Hence, s =

s≥k +s<k ≡k s<k. Moreover, s<k ≡k s<k↾k since k ≡k k+1 by definition. Thus, s ≡k s<k↾k

and similarly t ≡k t<k↾k. We conclude that s ≡k t. For the forward implication, just
notice that the relation on the right is a congruence by Lemma 5.3 and obviously contains
the pairs {(k + 1, k)} ∪ {(xk, 0) | x ∈ X}; since ≡k is the smallest such congruence, the
implication must hold.

5.5. Lemma. Let V be either Rig, iRig or 2Rig. The n-generated free algebra in V is a
subdirect product of the rigs FV(n)/≡k for k ≥ 1.

Proof. It is sufficient to show that the intersection of the family {≡k | k ≥ 1} coincides
with the identity congruence ∆FV (n). If s and t are a pair of distinct elements of FV(n),
one can choose k large enough (i.e., larger than the magnitude of any Parikh vector or
coefficient appearing in either s or t) so that s = s<k↾k and t = t<k↾k. It follows from
Lemma 5.4 that s ̸≡k t.

5.6. Lemma. Let V be either Rig, iRig or 2Rig. For every k ≥ 1 and n ∈ N the rigs
FV(n)/≡k are finite and have a unique homomorphism into 2.

Proof. Clearly FRig(n)/≡k is finite, as there are only finitely many members v ∈ Nn with
|v| ≤ k, and every element in FV(n) is contained in one of the equivalence classes with
representative term

ℓ∑
i=0

aix̄
vi with ai ≤ k and |vi| ≤ k. (5)

It follows that also F2Rig(n)/≡k and FiRig(n)/≡k are finite, since they are quotients of
FRig(n)/≡k.

By the universal property of free objects, each function from X into 2 uniquely extends
to a homomorphism from FV(n) to 2.

FV(n) 2

FV(n)/≡k

h

By the First Isomorphism Theorem, there is a homomorphism along the dashed arrow in
the above diagram if and only if the congruence ≡k is contained in the kernel of h. In
particular, this means that h(xi) = 0 for 1 ≤ i ≤ n. Thus, the only homomorphism from
FV(n)/≡k into 2 is the one that sends the equivalence classes of the generators into 0.
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5.7. Theorem. The varieties 2Rig and iRig are generated by a class of their finite Weil
members.

Proof. From Lemma 5.6 it follows that the rigs F2Rig(n)/≡k and FiRig(n)/≡k are finite
and Weil algebras. Since, by Lemma 5.5 the free n-generated algebras are subdirect
products of the families {FV(n)/≡k | k ≥ 1}, the claim follows.

We note that a similar argument as above also establishes Theorem 4.10.

5.8. Corollary. The variety 2Rig is generated by the finite 2-Weil algebras of the form
F2Rig(1)/≡k.

Proof. By Theorem 4.12, F2Rig(1) generates 2Rig, it follows from Lemma 5.5 that
{Wk(1) | k ≥ 1} also generates the same variety.
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