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INNER AUTOMORPHISMS OF GROUPOIDS

In memory of Pieter Hofstra

RICHARD GARNER

Abstract. Bergman has given the following abstract characterisation of the inner
automorphisms of a group G: they are exactly those automorphisms of G which can
be extended functorially along any homomorphism G → H to an automorphism of
H. This leads naturally to a definition of “inner automorphism” applicable to the
objects of any category. Bergman and Hofstra–Parker–Scott have computed these inner
automorphisms for various structures including k-algebras, monoids, lattices, unital
rings, and quandles—showing that, in each case, they are given by an obvious notion of
conjugation.
In this paper, we compute the inner automorphisms of groupoids, showing that they are
exactly the automorphisms induced by conjugation by a bisection. The twist is that this
result is false in the category of groupoids and functors; to make it true, we must instead
work with the less familiar category of groupoids and cofunctors in the sense of Higgins
and Mackenzie. Besides our main result, we also discuss generalisations to topological
and Lie groupoids, to categories and to partial automorphisms, and examine the link
with the theory of inverse semigroups.

1. Introduction and background
This article revolves around mathematical topics which I will always associate closely with
Pieter Hofstra, and which formed one of the more prominent themes in his later research.
The story begins with the extremely pretty article [6], a collaboration of Pieter with Jon
Funk and Ben Steinberg which introduced and studied the isotropy group of a topos. This
is closely related to what Freyd called the core of a topos [4] and to what algebraists term
Tannaka–Krein reconstruction. The idea is to find an object internal to a topos E which
in a suitable sense classifies the automorphism group of the identity functor 1E : E→ E.
Since any topos is cartesian closed, and so enriched over itself, one can do this using the
enriched functor category. When you work it through, the isotropy group turns out to be
a group object Z in E which acts on every object of E, and acts on itself by conjugation;
this is what [6] terms a crossed topos. The original motivation for these ideas came from
inverse semigroup theory, where one wants to understand how effectivity of a semigroup
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is manifested in the associated topos of sheaves. The answer turns out to be: through
triviality of the isotropy group.

During 2015 I had an ongoing email exchange with Pieter, Jon and Ben about ideas
relating to isotropy, during which discussion Jon raised the very natural question: is the
isotropy group of the classifying topos for groups given by the generic group? It turned
out that the answer was “yes”, and that the problem had already been solved in another
extremely pretty article [2] of George Bergman, which by pure serendipity I came across
not long after Jon had raised the question.

In this article, Bergman was not wittingly calculating the isotropy group of a topos;
rather, his goal was to give an element-free characterisation of the inner automorphisms of
a group G. He showed, following [15], that they are exactly those automorphisms of G
which can be extended in a functorial way along any group homomorphism f : G→ H to
an automorphism of H. More precisely, Bergman defines an extended inner automorphism
β of G to be a family of group automorphisms (βf : H → H), one for each group H and
homomorphism f : G→ H, with the property that, for all such f and all g : H → K, the
following square commutes:

H
βf
//

g
��

H

g
��

K
βgf
// K .

(1.1)

It is easy to see each a ∈ G gives an extended inner automorphism by taking βf(x) =
f(a)xf(a)−1 for all f : G→ H; the main contribution of [2] is to prove the less obvious
fact that every extended inner automorphism of G is of this form for a unique a ∈ G.

We can draw the link with [6] as follows. It is direct from the definitions that the
isotropy group Z of the classifying topos [Grpfp, Set] has its value at a finitely presentable
group G given by the group of all extended inner automorphisms of G. Since Bergman’s
result identifies this group with G itself, we can identify Z : Grpfp → Grp with the inclusion
functor: that is, with the generic group in [Grpfp,Set]. This, then, is the positive answer
to Jon’s question. The discovery of this interesting link between topos theory and universal
algebra led to a number of further papers involving Pieter, Phil Scott and Jason Parker,
which sought to find the isotropy groups of other presheaf toposes [C,Set], but now couched
in terms of Bergman’s language of calculating the “extended inner automorphisms” of
objects in C—by which, to be clear, we mean the following:

1.1. Definition. [Extended inner automorphism, [2]] An extended inner automorphism
of an object G of a category C is a family of automorphisms (βf : H → H), one for each
map f : G→ H in C, which render commutative the square (1.1) for each f : G→ H and
g : H → K.

Bergman himself performed these calculations in [2] for the extended inner automorph-
isms of k-algebras over a field k, as well as the extended inner endomorphisms (dropping
the requirement of invertibility of the maps βf) for groups and k-algebras, along with
further variants such as “inner derivations”. The contributions of Hofstra–Parker–Scott
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can be found in [8, 9] with further contributions by Parker alone in [12, 13]; these papers
in particular calculate the extended inner automorphism groups in full for examples such
as monoids, abelian groups, lattices, unital rings, racks, quandles, presheaf categories and
monoidal categories. In each case, the extended inner automorphisms capture, as we might
hope, a natural notion of conjugation.

In this article, I make a further contribution in this spirit, by showing that, in the
context of groupoids, extended inner automorphisms are once again given by conjugation,
not now by a single element, but rather by a suitable family of elements of a kind which is
well-known from the study of Lie and topological groupoids. (Here, and subsequently, we
write G0 and G1 for the sets of objects and morphisms of a groupoid.)

1.2. Definition. [Bisection] A bisection α of a groupoid G comprises a bijective function
α̃ : G0 → G0 together with a G0-indexed family of morphisms (αx : x→ α̃(x)).

Now, each bisection induces a conjugation automorphism cα : G→ G with action on
objects α̃ and action on morphisms

f : x→ y 7→ αy ◦ f ◦ α−1
x : α̃(x)→ α̃(y) , (1.2)

and this led me, in a 2017 continuation of my email exchange with Pieter, Ben and Jon,
to conjecture rather breezily that the isotropy group of the classifying topos for groupoids
should take a finitely presentable groupoid G to its group of bisections. I got no further
with this, but when I next saw Pieter in 2019, he patiently and diplomatically explained
to me that my conjecture was nonsense.

Indeed, it is not true that conjugation by a bisection cα : G→ G is the 1G-component
of an extended inner automorphism of G in the category Grpd of small groupoids and
functors. There is an intuitively clear explanation for this fact: given a functor F : G→ H,
we should like to define βF = cFα, as in the case of groups, but there is no obvious way of
defining the pushforward Fα of the bisection α along F . While this does not exclude the
possibility that there is a non-obvious way of defining the pushfoward, we have, in fact:

1.3. Proposition. There are no non-trivial extended inner automorphisms in Grpd.
Proof. Let β be an extended inner automorphism of the small groupoid G. Consider
the coproduct G + 1 of G with the terminal groupoid, and ι : G→ G + 1 the coproduct
injection. By (1.1), we have βι ◦ ι = ι ◦ β1G , and so the automorphism βι : G + 1→ G + 1
must map the full subcategory G of G + 1 into itself; thus, to be bijective on objects, it
must map the remaining object ⋆ of G + 1 to itself.

Now for any functor F : G→ H and any x ∈ H, there is a functor ⟨F, x⟩ : G + 1→ H
such that ⟨F, x⟩ ◦ ι = F and ⟨F, x⟩(⋆) = x. The first condition implies using (1.1) that
βF ◦ ⟨F, x⟩ = ⟨F, x⟩ ◦ βι, whence

βF (x) = βF (⟨F, x⟩(⋆)) = ⟨F, x⟩(βι(⋆)) = ⟨F, x⟩(⋆) = x (1.3)

so that each βF is the identity on objects.
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Consider now the groupoid G + J and coproduct injection ȷ : G→ G + J, where here
J is the groupoid with two objects and a single isomorphism between them. Writing
φ : ξ → γ for the image of this isomorphism in G + J, we conclude from the fact that
βȷ : G + J→ G + J is the identity on objects that βȷ(φ) = φ.

Now for any functor F : G → H and any arrow f : x → y ∈ H, there is a (unique)
functor ⟨F, f⟩ : G + J → H with ⟨F, f⟩ ◦ ι = F and ⟨F, x⟩(α) = f . Repeating the
calculation (1.3), mutatis mutandis, we conclude that βF (f) = f so that each βF is also
the identity on morphisms.

This would seem to dash any hope of characterising conjugation by bisections as
extended inner automorphisms; but it turns out that, despite the preceding negative result,
we can do this: we simply need to alter the kind of morphism that we consider between
groupoids. Rather than the usual functors, we must instead consider the cofunctors of
Higgins and Mackenzie [7], whose definition we recall in Definition 2.1 below. A cofunctor
F : G⇝ H between groupoids involves a mapping backwards on objects, but a mapping
forwards on morphisms. Most importantly for us, and as in [1], it turns out that bisections
do transport along cofunctors; this rectifies the problem we observed earlier, allowing us
to show that:

1.4. Theorem. The extended inner automorphisms of an object G of the category of
small groupoids and cofunctors are in bijection with the bisections of G. The extended
inner automorphism corresponding to a bisection α is given by the family of congjuation
automorphisms (cFα | F : G⇝ H).

This is our main result, and will be proven in Section 3 below. Preceding this is
Section 2, which sets up the necessary background on [7]’s notion of cofunctor, the relation
to functors, and the link with bisections. Finally, after proving our main result, we describe
in Section 4 various natural generalisations—to topological and Lie groupoids, and to
categories—and finally, to close the loop and bring things back round to the original
motivations for [6], we discuss an alternative perspective involving inverse semigroups.

2. Cofunctors and bisections
The definition of cofunctor we give here is not the original one of [7], but a reformulation
due to [1], from where we also take the name.

2.1. Definition. [Cofunctor] A cofunctor F : G⇝ H between small groupoids comprises
a function F : H0 → G0 together with, for each object x of H and morphism f : F (x)→ y
of G, an object f!(x) of H and morphism Fx(f) : x→ f!(x). These data are subject to the
following axioms:

(i) F (f!x) = y for all x ∈ H and f : F (x)→ y in G;

(ii) (1Fx)!(x) = x and Fx(1Fx) = 1x for all x ∈ H;
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(iii) g!(f!(x)) = (gf)!(x) and Fx(gf) = Ff!x(g) ◦ Fx(f) for all x ∈ H and f : F (x) → y
and g : y → z in G.

Cofunctors may be composed in the evident manner, and in this way we obtain a category
Grpdco of small groupoids and cofunctors.

There are two ways in which a functor can give rise to a cofunctor. On the one hand,
any bijective-on-objects functor F : G → H induces a cofunctor F∗ : G ⇝ H which on
objects acts as the inverse to F : G0 → H0, and which assigns to the object x ∈ H and
arrow f : F−1(x)→ y in G the object F (y) ∈ H and arrow F (f) : x→ F (y).

On the other hand, we can obtain a cofunctor from any discrete opfibration. Recall
that a functor F : G→ H is a discrete opfibration if, for each x ∈ G and map f : Fx→ y
in H, there is a unique pair of an object f!(x) ∈ G and map Fx(f) : x→ f!(x) such that
F (f!(x)) = y and F (Fx(f)) = f . In this situation, the action on objects of F and the
unique liftings of arrows provide the data of a cofunctor F ∗ : H⇝ G.

In fact, as explained in [1, Section 4.4], all cofunctors are generated from those in the
image of (–)∗ and (–)∗:

2.2. Proposition. Any cofunctor F : G⇝ H can be decomposed as

F = G (F1)∗
// K (F2)∗

// H . (2.1)

Proof. Consider the directed graph K whose vertices are the objects of H and whose
edges x −7→ y are maps f : F (x)→ F (y) of G such that y = f!(x). We claim that K is a
groupoid under the composition inherited from G. On the one hand, by cofunctor axioms
(ii) and (iii), the condition y = f!(x) is stable under binary and nullary composition,
so that K is a category. On the other hand, the cofunctor axioms easily imply that
(Fx(f))−1 = Ff!(x)(f−1); so if f : F (x)→ F (y) satisfies y = f!(x), then f−1 : F (y)→ F (x)
satisfies x = (f−1)!(y). So the category K is closed under inverses in G, whence a groupoid.

There is an identity-on-objects functor F2 : K → H whose action on morphisms is
given by F2(f : x −7→ y) = Fx(f) : x → y—where functoriality follows from axioms
(ii) and (iii) for a cofunctor—and so we can form (F2)∗ : K ⇝ H. There is also a
functor F1 : K → G with the same action as F on objects, and action on morphisms
F1(f : x −7→ y) = f : F (x) → F (y). Note that, for any map f : F (x) → y in G, the
unique map of K with domain x whose F1-image is f is f : x −7→ f!(x). So F1 is a discrete
opfibration, and we can form (F1)∗ : G ⇝ K. It is now direct from the definitions that
f = (F2)∗(F1)∗ as in (2.1).

In fact, we can equally define cofunctors G ⇝ H as (equivalence classes of) spans
G ← K → H with left leg a discrete opfibration and right leg bijective-on-objects; this
is essentially the original definition of [7]. The following “Beck–Chevalley lemma” shows
that composition of cofunctors corresponds to the composition of the representing spans
by pullback.
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2.3. Lemma. Given a commuting square of functors

G F //

H
��

H
K
��

K G // L

where both F and G are bijective on objects and both H and K are discrete opfibrations (it is
easy to see that any such square is necessarily a pullback), we have F∗H

∗ = K∗G∗ : K⇝ H.
Proof. On objects, the two composites act by x 7→ G−1K(x) and x 7→ HF−1(x); these
coincide since GH = KF . For a map f : G−1K(x) = HF−1(x) → y in K, the map
(K∗G∗)x(f) is the unique map of H with domain x and K-image G(f). On the other hand,
(F∗H

∗)x(f) = F (g), where g is the unique map of G with domain F−1(x) and H-image
f . It follows that F (g) has domain x and K-image KF (g) = GH(g) = G(f) whence
(F∗H

∗)x(f) = (K∗G∗)x(f) as desired.
Since we will be interested in automorphisms in the category Grpdco, the following

lemma will be useful; its straightforward proof is left to the reader.

2.4. Lemma. Any invertible map G ⇝ H in Grpdco is of the form F∗ for a unique
invertible functor F : G→ H; moreover, we have (F∗)−1 = F ∗ : H⇝ G.

Finally in this section, we discuss the relationship between cofunctors and bisections.
This is most clearly expressed in the terms of the fully faithful functor

Σ: Grp→ Grpdco

from the category of groups which on objects takes G to the corresponding one-object
groupoid ΣG. We will show that taking bisections provides a right adjoint to this functor.

First observe that the set Bis(G) of bisections of a groupoid G is indeed a group under
the operation on bisections β, α 7→ β · α given by

(β · α)x = x
αx−−→ α̃(x)

βα̃(x)−−−→ β̃(α̃(x)) . (2.2)

The identity element is the bisection 1 with (1)u = 1u. The inverse of the bisection α is
the bisection α−1 determined by (α−1)α̃(u) = (αu)−1.

2.5. Proposition. The full embedding Σ: Grp→ Grpdco has a right adjoint whose value
at a groupoid G is given by the group of bisections Bis(G).
Proof. Let H be a group and G a groupoid, and consider what it is to give a cofunctor
F : ΣH ⇝ G. On objects, F must send each object x ∈ G to the unique object ∗
of ΣH. On morphisms, we must provide for each object x ∈ G and each morphism
h : F (x) → y in ΣH—which is simply an element h ∈ H—an object h!(x) ∈ G and
morphism Fx(h) : x → h!(x), subject to the axioms (i)–(iii) of Definition 2.1. Now,
axiom (i) is trivial as ΣH has only one object. Axiom (ii) says that for all x ∈ G we have

e!(x) = x and Fx(e) = 1x (2.3)
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where e is the identity element of H. Finally, axiom (iii) says that for all x ∈ G and
h, k ∈ H we have:

k!(h!(x)) = (kh)!(x) and Fx(kh) = Fh!x(k) ◦ Fx(h) . (2.4)

The left equations in (2.3) and (2.4) say that the assignment h, x 7→ h!(x) gives a left
H-action on G0; in particular, each function h! : G0 → G0 is invertible. It follows that for
each h ∈ H, the collection of maps (Fx(h) : x→ h!x) constitutes a bisection F̄ (h) ∈ Bis(G).
Now comparing the right equations in (2.3) and (2.4) with (2.2), we see that they assert
precisely that the mapping F̄ : H → Bis(G) so obtained is a group homomorphism. In
this way, we have produced bijections

( ) : Grpdco(ΣH,G)→ Gpd(H,Bis(G)) (2.5)

which are easily seen to be natural in H. This shows, as claimed, that Σ has a right adjoint
whose value at the groupoid G is given by Bis(G).

Due to the adjointness exhibited above, the assignment G 7→ Bis(G) extends uniquely
to a functor Bis : Grpdco → Grp making the bijections (2.5) natural in G as well as H. In
other words, there is a canonical way of transporting bisections along cofunctors. To read
off an explicit formula, note that, since bisections of G correspond bijectively to group
homomorphisms Z→ Bis(G), they also correspond bijectively to cofunctors ΣZ⇝ G, and
in these terms, the transport of a bisection along a cofunctor G⇝ H is given simply by
postcomposition. Spelling this out, we obtain:

2.6. Definition. [Pushforward bisection] Given a a cofunctor F : G⇝ H and a bisection
α of G, the pushforward bisection Fα of H has components

(Fα)x = Fx(αFx) : x→ (αFx)!(x) .

In particular, if F : G→ H is a bijective-on-objects functor, then pushing forward the
bisection α of G along F∗ yields the bisection F∗α of H with components determined by

(F∗α)F (x) = F (αx) . (2.6)

On the other hand, if F : H → G is a discrete opfibration, then we can push forward α
along F ∗ to obtain the bisection F ∗α of H uniquely determined by

F ((F ∗α)x) = αF (x) . (2.7)

3. Inner automorphisms of groupoids
We now prove our main result. We begin with the easier direction.

3.1. Proposition. Each bisection α of the groupoid G gives an extended inner auto-
morphism of G in Grpdco whose component at F : G⇝ H is the conjugation isomorphism
(cFα)∗ : H⇝ H.
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Proof. We must check that, for each bisection α of a groupoid G, and each f : G⇝ H
and g : H⇝ K, the square of cofunctors left below commutes:

H (cF α)∗
//

G
��

H
G
��

K (cGF α)∗
// K

G (cα)∗
//

G
��

G
G
��

K (cGα)∗
// K .

(3.1)

Since Fα is a bisection of H, we can without loss of generality assume that H = G and
F = 1, and so reduce to checking commutativity as right above. By Proposition 2.2
we can in turn reduce to the cases where G = F∗ or where G = F ∗. If G = F∗ for a
bijective-on-objects F , then it is sufficent to check commutativity to the left in:

G cα //

F
��

G
F
��

K
cF∗α

// K

K cF ∗α //

F
��

K
F
��

G cα // G ;

and this holds at a map f : x→ y of G since, by functoriality of F and (2.6),

F (αy ◦ f ◦ α−1
x ) = F (αy) ◦ Ff ◦ F (αx)−1 = (F∗α)y ◦ Ff ◦ (F∗α)−1

x .

On the other hand, if G = F ∗ for a discrete opfibration F , then on replacing the
horizontal maps (cα)∗ and (cF ∗α)∗ in (3.1) by their inverses (cα)∗ and (cF ∗α)∗, we may
reduce to checking commutativity of the square right above. This equality is verified
at f : x → y in K since, by functoriality of F and (2.7), F

(
(F ∗α)y ◦ f ◦ (F ∗α)−1

x

)
=

F ((F ∗α)y) ◦ Ff ◦ F ((F ∗α)−1
x ) = αFy ◦ Ff ◦ α−1

Fx.
It remains to show that:

3.2. Proposition. Each extended inner automorphism of G in Grpdco is induced in the
manner of Proposition 3.1 from a unique bisection α of G.
Proof. Suppose we are given an extended inner automorphism β of G with components
(βF )∗ : H⇝ H. To prove the result, we must exhibit a unique bisection α of G such that
βF = cFα for each F .

We first construct α. For each x ∈ G, consider the coslice groupoid x/G, whose objects
are arrows f : x→ y of G with domain x, and whose morphisms are commuting triangles
under x. The obvious codomain projection πx : x/G → G is a discrete opfibration, and
so among the data of β is an automorphism βπ∗

x
: x/G→ x/G. Let αx : x→ α̃(x) be the

image of 1x ∈ x/G under βπ∗
x
.

Now as β is an extended inner automorphism, the square of cofunctors left below
commutes. Replacing (β1G)∗ and (βπ∗

x
)∗ by their inverses (β1G)∗ and (βπ∗

x
)∗, this is to say

that the square of functors to the right below commutes. (Henceforth we will make such
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reductions to functors without comment.)

x/G
(βπ∗

x
)∗
//

OO

(πx)∗

x/G
OO

(πx)∗

x/G
βπ∗

x //

πx

��

x/G
πx

��

G
(β1G )∗

// G G
β1G // G

(3.2)

Tracing 1x around this square yields β1G(x) = α̃(x). Thus, since β1G is invertible, so is the
function x 7→ α̃(x); whence (αx)x∈G is a bisection of G.

We now show that β1G = cα : G→ G. Consider a map f : x→ y of G. This induces
by precomposition a functor (–) ◦ f : y/G→ x/G, which fits into a commuting triangle
of discrete opfibrations as left below. Since β is an extended inner automorphism, this
implies the commutativity of the square of functors to the right.

y/G (–)◦f
//

πy
  

x/G

πx
~~

G

y/G
βπ∗

y
//

(–)◦f
��

y/G
(–)◦f
��

x/G
βπ∗

x // x/G

Tracing 1y around this square, we find that βπ∗
x

sends the object f ∈ x/G to αy◦f ∈ x/G.
Thus βπ∗

x
sends the map f : 1x → f of x/G to a map αx → αy ◦ f of x/G. Such a map

is equally well a map h : α̃(x)→ α̃(y) of G satisfying h ◦ αx = αy ◦ f , and so necessarily
h = αy ◦ f ◦ α−1

x . Thus, tracing the map f : 1x → f around the right square of (3.2), we
see that β1G(f : x→ y) = αy ◦ f ◦ α−1

x , and so β1G = cα as claimed.
It remains to show that βF = cFα for all cofunctors F : G⇝ H. For this, it suffices to

show that the bisection associated to the extended inner automorphism β(–)F of H is Fα,
since then βF = β(1H)F = cFα as desired. That is, we must prove:

βπ∗
xF (1x) = (Fα)x for all F : G⇝ H and x ∈ H . (3.3)

Step 1. Suppose first that F = G∗ for some discrete opfibration G : H→ G. We then
have a commuting square of discrete opfibrations as to the left in:

x/H x/G
//

πx

��

Gx/G

πGx

��

x/H
βπ∗

xG∗
//

x/G

��

x/H

x/G

��

H G // G Gx/G
βπ∗

Gx// Gx/G ,

and so, since β is an extended inner automorphism, a commuting square of functors as to
the right. Tracing 1x around this square yields G(βπ∗

xG
∗(1x)) = βπ∗

Gx
(1Gx) = αGx, and so

by (2.7) that βπ∗
xG

∗(1x) = (G∗α)x as required for (3.3).
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Step 2. Now suppose that F = H∗ for some bijective-on-objects functor H : G→ H.
We form the outer square, the pullback and the induced comparison map as to the left in:

x/G

πx

��

x/H
//

R
##

Hx/H

πHx

��

x/G βπx∗
//

R
��

x/G
R
��

x/G βπx∗
//

x/H

��

x/G

x/H

��

P

P

��

Q

55

P βP ∗
//

Q
��

P
Q
��

G H // H Hx/G
βQ∗P ∗

// Hx/G Hx/G
βπ∗

Hx
H∗
// Hx/G

In this square, πx and πHx are discrete opfibrations, and so is P , since it is a pullback
of πHx. It follows that the comparison map R is also a discrete opfibration. Since PR = πx
and β is an extended inner automorphism, we have that the top square centre above
commutes. On the other hand, Q is bijective-on-objects as a pullback of F , and so, since
β is an extended inner automorphism, the bottom square centre above commutes.

By applying Lemma 2.3 to the pullback square left above, we have Q∗P
∗ = π∗

HxH∗,
and so the composite of the two centre squares is equally the square right above. Tracing
the object 1x around both sides yields βπ∗

HxH∗(1Hx) = H(αx), and so by (2.6) we conclude
that βπ∗

HxH∗(1x) = (H∗α)x as required for (3.3).
Step 3. We now prove for a general F : G ⇝ H that the bisection associated to the

inner automorphism β(–)F of H is Fα. We first apply Proposition 2.2 to decompose F as
H∗G

∗ : G⇝ K⇝ H. By Step 1 applied to β and G, the bisection associated to the inner
automorphism β(–)G∗ of K is G∗α. Now by Step 2 applied to β(–)G∗ and H, the bisection
associated to the inner automorphism β(–)H∗G∗ = β(–)F of K is H∗G

∗α = Fα, as required.
We have thus proved the theorem stated in the introduction. In fact, we can do slightly

better. The extended inner automorphisms of any object in any category form a group
under the operation of composition. We noted above that the bisections of a groupoid also
form a group. It is easily seen that these two group structures are related by the equation
cβ ◦ cα = cβ·α, and so we have:

3.3. Theorem. The group of extended inner automorphisms of G ∈ Grpdco is isomorphic
to the group Bis(G). The extended inner automorphism corresponding to α ∈ Bis(G)
is given by the family of automorphisms ((cFα)∗ : H ⇝ H) as F ranges over cofunctors
G⇝ H.

4. Generalisations and further perspectives
4.1. Topological and Lie groupoids. As mentioned in the introduction, bisections
show up frequently in the study of Lie and topological groupoids. It is therefore natural
to ask if our results generalise to those settings. The answer is yes. As the adaptations in
the two cases are so similar, we concentrate on the topological one.

First we must adapt the basic notions. For a topological groupoid G, we restrict
attention to continuous bisections α: those for which the assignment x 7→ αx is continuous
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as a map G0 → G1. This implies, easily, that the associated conjugation homomorphism
cα : G→ G is a continuous map of topological groupoids. We should like to identify these
cα’s as the extended inner automorphisms of G in a suitable category.

The morphisms of this category will be cofunctors F : G ⇝ H between topological
groupoids which are continuous, in the sense of rendering continuous the following maps:

H0 → G0 G1 ×G0 H0 → H1

x 7→ Fx (x, f) 7→ Fx(f) ;

here, the fibre product G1×G0 H0 is taken along the source map s : G1 → G0 and the action
on objects F : H0 → G0. Much like before, we obtain continuous cofunctors G⇝ H from
continuous functors G→ H which are homeomorphic-on-objects; and from functors H→ G
which are continuous discrete opfibrations, meaning that the operation of forming the
unique lifting Fx(f) : x→ f!x of a map f : F (x)→ y is a continuous map G1×G0 H0 → H1.
As in Proposition 2.2, every continuous cofunctor arises by composing ones of these two
special kinds.

We also have an analogue of Proposition 2.5: the functor Σ: Grp → TopGrpdco
embedding each discrete group G as a one-object discrete topological groupoid has a right
adjoint, sending a topological groupoid G to its discrete group of continuous bisections
Bis(G). In particular, continuous bisections of a topological groupoid can be transported
along continuous cofunctors, with the same formulae as before. Using this Proposition 3.1
carries over, mutatis mutandis, showing that every continuous bisection of G ∈ TopGrpdco
induces an extended inner automorphism.

All that remains is to adapt the proof of Proposition 3.2, showing that every extended
inner automorphism β of G arises in this manner. All of the constructions in this proof
continue to work in the topological context, and so we can conclude immediately that
β must be of the form βF = cFα for a unique, but not necessarily continuous, bisection
α of G. To prove continuity, we consider the décalage [10] of G. This is the topological
groupoid Dec(G) whose underlying topological graph is given by

G1 t×s G1
π1 //

µ
// G1 ,

where µ is the composition map of G. The composition and units of Dec(G) itself are
determined by requiring that its underlying discrete groupoid be the disjoint union of the
coslice categories x/G. There is a continuous discrete opfibration π : Dec(G)→ G which
projects onto the codomain; and for each x ∈ G this fits into a commuting triangle as to
the left below, where ιx is the obvious inclusion functor:

x/G ιx //

πx
##

Dec(G)

π
{{

G

x/G
βπ∗

x //

ιx
��

x/G
ιx
��

Dec(G) βπ∗
// Dec(G) .
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It follows that each square as right above is commutative in TopGrpd; so in particular,
βπ∗(1x) = βπ∗

x
(1x) = αx for each x ∈ G. This shows that composing the continuous

identities map 1(–) : G0 → G1 with the continuous map G1 → G1 giving the action on
objects of βπ∗ yields the assignment x 7→ αx—which is thus continuous, as desired. We
thus obtain:

4.2. Theorem. The group of extended inner automorphisms of G ∈ TopGrpdco is iso-
morphic to the group of continuous bisections Bis(G), under the same correspondence as
in Theorem 3.3.

4.3. Internal groupoids. Topological and Lie groupoids are particular examples of
internal groupoids in a category C. It is therefore natural to ask if our results generalise
further to groupoids internal to any category C. The answer is no.

To see this, consider the category SetZ2 whose objects are sets X endowed with an
involution τ : X → X, and whose maps are equivariant functions (i.e., ones commuting
with the involutions). A groupoid internal to SetZ2 is an ordinary groupoid G with a
(strict) involution τ : G→ G; internal functors and cofunctors are just ordinary functors
and cofunctors which commute with the involutions.

Now if (G, τ) is an involutive groupoid, then the functor τ is easily seen to be equivariant
(G, τ) → (G, τ); it follows that (G, τ) has an extended inner automorphism β whose
component at any (G, τ)⇝ (H, σ) is σ∗ : (H, σ)⇝ (H, σ). However, this β need not arise
from any bisection α of G. For example, if G is the discrete groupoid on two objects, and
τ is the swap map, then (G, τ) has no non-identity bisections, and yet the β defined above
is not the identity.

The reason that things work differently in this case is really that objects in the indexing
category Z2 can have their own non-trivial extended inner automorphisms. A more general
formulation of our results would have to take this into account—but, lacking as we do any
compelling reasons for developing such a generalisation, we have not pursued this further.

4.4. Categories. Another obvious direction of generalisation involves replacing groupoids
everywhere by categories. There is not so much to say here; everything works without
fuss. Cofunctors are defined exactly as before, and factorise in exactly the same way.
For bisections, we must add the requirement that each map αx : x→ α̃(x) is invertible,
and can then induce conjugation automorphisms in exactly the same way. Once again,
bisections transport along cofunctors, with this now being evidenced by an an adjunction
Σ: Grp⇆ Catco : Bis.

Proposition 3.1 continues to work; and the only adaptation required in Proposition 3.2
is at the very start. Given an extended inner automorphism β of a category C, with
components (βf )∗, we have as before the collection of maps αx = βπ∗

x
(1x) : x→ α̃(x). The

argument showing the assignment x 7→ α̃(x) is invertible still holds; but we must now also
show that each αx is invertible. For this, we first show as before that the automorphism
βπ∗

x
: x/C→ x/C is given on objects by βπ∗

x
(f : x→ y) = αy ◦ f . Being an automorphism,

there is in particular some such f for which αy ◦ f = 1x. So we have a commuting triangle
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as to the left below in x/C. Applying βπ∗
x

yields a commuting triangle as to the right.

f
??

f αy

��

1x>>
h k

  1x 1x

// 1x αx 1α̃(x)
// αx

Since k : 1x → αx we have k = k ◦ 1x = αx; since h : αx → 1x we have h ◦ αx = 1x; and
since the triangle commutes we have αx ◦ h = 1x. So h is an inverse for αx. The remainder
of the argument now follows exactly as before, and so we have:

4.5. Theorem. The group of extended inner automorphisms of C ∈ Catco is isomorphic
to the group of bisections Bis(C), under the same correspondence as in Theorem 3.3.

4.6. Inverse semigroups. Our main results seem to diverge from the pattern for the
computation of extended inner automorphism groups in [2, 8]. In this prior work, the
categories under consideration have as objects, the models of an equational algebraic
theory T, and as morphisms, the obvious structure-preserving maps. This allows the
extended inner automorphisms of a T-model X to be characterised via universal algebra:
they correspond to those invertible unary operations of the diagram theory TX1 which
commute with each T-operation.

By contrast, our main result concerns the category of groupoids and cofunctors;
and while the objects of this category are algebraic in nature—they are the models of
an essentially-algebraic theory in the sense of [5]—the morphisms are not the obvious
structure-preserving ones (which led only to our negative Proposition 1.3). This means
that our argument for computing the extended inner automorphisms is necessarily different
in nature. In fact, there is a way of reconciling our results with those of [2, 8]: we adopt
a different perspective on groupoid structure in which the cofunctors are the natural
structure-preserving maps. More precisely, we take as the basic data of a groupoid not its
objects and morphisms, but its partial bisections:

4.7. Definition. [Partial bisection] A partial bisection α of a groupoid G comprises
subsets s(α) and t(α) of G0; a bijection α̃ : s(α) → t(α); and an s(α)-indexed family of
morphisms (αx : x→ α̃(x)).

The set PBis(G) of partial bisections of a groupoid G can be endowed with the structure
of a pseudogroup—a special kind of inverse semigroup—and this structure allows PBis(G)
to represent G faithfully. This fits into the pattern of a well-known correspondence
between étale topological groupoids and pseudogroups, detailed, for example, in [14, 11].
As explained in [3], the most general form of this correspondence equates the natural
structure-preserving maps of pseudogroups with the cofunctors between the corresponding
groupoids. Thus, we may consider our result about groupoids and cofunctors instead as a

1i.e., the theory obtained by extending T with new constants for each element of X, and new equations
describing the value of each T-operation on those constants.
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result about pseudogroups and their structure-preserving morphisms, so fitting it in to the
general pattern established in [2, 8].

To make the preceding claims more precise, we now define the category PsGrp of
pseudogroups, and give a direct proof following [3] that the assignment G 7→ PBis(G)
yields a full embedding of Grpdco into PsGrp.

4.8. Definition. [Pseudogroup] An inverse monoid is a unital semigroup M such that,
for every m ∈ M , there is a unique m∗ ∈ M with mm∗m = m and m∗mm∗ = m∗. The
natural partial order ⩽ and the compatibility relation ∼ on M are given by

m ⩽ n iff mn∗n = n

m ∼ n iff mn∗ and n∗m are idempotent.

A (abstract) pseudogroup is an inverse monoid M such that any family S ⊆M of pairwise-
compatible elements admits a join ∨

S (with respect to ⩽) which is preserved by each
function m · (–) : M → M and (–) ·m : M → M . Pseudogroups form a category PsGrp
wherein maps are monoid homomorphisms that preserve joins of compatible families.

4.9. Example. For any groupoid G, the set of partial bisections PBis(G) is a pseudogroup
under the binary operation β, α 7→ β · α, where β · α has

s(β · α) = s(α) ∩ α̃−1(s(β)) t(β · α) = β̃(t(α)) ∩ t(β)

and components (β · α)x = βα̃(x) ◦ αx : x → β̃(α̃(x)). The unit for this operation is the
identity bisection 1, and the partial inverse α∗ of α has s(α∗) = t(α), t(α∗) = s(α) and
components determined by (α∗)α̃(x) = (αx)−1.

Two partial bisections α, β are compatible if αx = βx for all x ∈ s(α) ∩ s(β), while
α ⩽ β if α ∼ β and s(α) ⊆ s(β). The join α of a pairwise-compatible family of partial
bisections (αi : i ∈ S) has s(α) = ⋃

i s(αi), t(α) = ⋃
i t(αi) and components αx = αix, for

any i ∈ S with x ∈ s(αi).

4.10. Proposition. The assignment G 7→ PBis(G) is the action on objects of a full
embedding of categories Grpdco → PsGrp.
Proof. Let F : G ⇝ H be a cofunctor of groupoids, and α ∈ PBis(G). Generalising
Definition 2.6, we can define a pushforward partial bisection Fα ∈ PBis(H) by taking
s(Fα) and t(Fα) to be the inverse images of s(α) and t(α) under the function F : H0 → G0,
and with components given like before by

(Fα)x = Fx(αFx) : x→ (αFx)!(x) .

Straightforward checking shows that the assignment α 7→ Fα is a pseudogroup morphism
PBis(F ) : PBis(G)→ PBis(H) and that the assignment F 7→ PBis(F ) is functorial; so we
have a functor PBis : Grpdco → PsGrp.
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To see this functor is faithful, note that we can recover the action on objects of
F : G⇝ H from φ := PBis(F ) : PBis(G)→ PBis(H) by the formula

F (y) = x iff y ∈ s(φ([1x])) ; (4.1)

here, if f : x→ y is any map of G then we write [f ] for the partial bisection whose sole
component is the map f . In a similar way, we can recover the action of the cofunctor F
on maps by the formula

Fx(f) = g iff φ([f ])x = g . (4.2)

It remains only to show that PBis is full. So let φ : PBis(G) → PBis(H) be any
pseudogroup morphism. In PBis(G) we have that

1 = ∨
u∈G[1u] and [1u] · [1v] = ⊥ for u ̸= v ;

since φ is a pseudogroup morphism, it follows that in PBis(H) we have

1 = ∨
u∈G φ([1u]) and φ([1u]) · φ([1v]) = ⊥ for u ̸= v ,

so that the sets s(φ([1u])) are a partition of H0. We thus have a well-defined function
F : H0 → G0 determined by (4.1); whereupon we obtain the assignments on morphisms
required for a cofunctor F : G ⇝ H by the formula (4.2). The cofunctor axioms now
follow easily from the homomorphism axioms for φ together with the observation that
[a] · [b] = [a ◦ b] in PBis(G) whenever a and b are composable maps. Finally, to see that
PBis(F ) = φ, we observe that PBis(F )([a]) = φ([a]) by construction; now since for any
α ∈ PBis(G), we have α = ∨

u∈s(α)[αu], and since both PBis(F ) and φ preserve joins, it
follows that PBis(F )(α) = φ(α) for all α ∈ PBis(G), as desired.

It is not too hard to characterise the essential image of the embedding Grpdco → PsGrp;
it comprises the complete atomic pseudogroups—those whose partially ordered set of
idempotents forms a complete atomic Boolean algebra (i.e., a power-set lattice). Thus,
our main result, concerning the “non-algebraic” category of groupoids and cofunctors, can
be recast as one about the “algebraic” category of complete atomic pseudogroups and
pseudogroup homomorphisms; and following [11], we may recast the generalisation of our
main result to étale topological groupoids in terms of more general pseudogroups.

There are a couple of points worth noting here. Firstly, when translated into the
language of pseudogroups, our main result states that every extended inner automorphism
of a complete atomic pseudogroup M is induced by conjugation (in the usual sense) by an
invertible (in the usual sense) element of the monoid M—indeed, such invertible elements
correspond to total bisections of the corresponding groupoid. So in this sense, our result
fits into the pattern established in [2, 8].

On the other hand, if we translate the proof of our main Theorem 3.3 into the language
of complete atomic pseudogroups, then it is still not a proof in the same mould as [2, 8]. If it
were, then the first step in determining the components of an extended inner automorphism
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β of M would be to adjoin freely a new element x to M and consider the component
βι : M [x] → M [x] at the resulting inclusion map ι : M → M [x]. This is quite different
from what is done in Proposition 3.2: in the language of pseudogroups, the first step
there is to consider an atomic idempotent x ∈ M , and now consider the component βȷ
corresponding to the homomorphism

ȷ : M → PBij(Mx)
m 7→ m · (–)

into the pseudogroup of all partial bijections of Mx = {m ∈ M : m∗m = x}. It may be
interesting to compare these approaches more thoroughly.

4.11. Extended partial inner automorphisms. In a pseudogroup M , any element
a ∈M induces a conjugation map ca(x) = axa∗. However, ca : M →M is not typically an
automorphism of M , nor even a well-defined homomorphism, since it does not preserve
the monoid unit 1 unless a ∈M is genuinely invertible.

Nonetheless, we would like to think of ca as a partial automorphism of M , hoping for
a result to the effect that every extended inner partial automorphism of a pseudogroup
is induced by conjugation by an element. In the world of groupoids this would translate
into the statement that every extended partial automorphism in Grpdco comes from
conjugating by a partial bisection.

Making this precise is delicate because, just as conjugation on a pseudogroup does not
give a pseudogroup homomorphism, so conjugation on a groupoid by a partial bisection
does not give a cofunctor. Thus, much as in Section 6 of [2], we must proceed in an
essentially ad hoc manner.

4.12. Definition. A partial automorphism φ : G −7→ G of a groupoid G is given by full
subcategories s(φ), t(φ) ⊆ G together with an isomorphism of groupoids φ : s(φ)→ t(φ).
Given a cofunctor F : G ⇝ H and partial automorphisms φ : G −7→ G and ψ : H −7→ H,
we say that

G φ
+ //

F
��

G
F
��

H
ψ
+ // H

(4.3)

is a commuting square if:

(i) On objects, we have u ∈ s(ψ) if and only if F (u) ∈ s(φ); and for those u where this
does hold, we have that φ(F (u)) = F (ψ(u)) in t(φ).

(ii) For all f : F (x)→ y in s(φ), we have ψ(Fx(f)) = Fψ(x)(φ(f)) in t(ψ).

Now by an extended inner partial automorphism of G, we mean a family of partial
automorphisms (βF : H −7→ H), one for each cofunctor F : G ⇝ H, such that for all
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cofunctors F : G⇝ H and G : H⇝ K we have a commuting square:

H βF+ //

G
��

H
G
��

K
βGF

+ // K .

Using the fact that commuting squares of the form (4.3) stack vertically and horizontally
to give commuting squares, we can now follow through the same argument as before,
mutatis mutandis, to show that:

4.13. Theorem. The monoid of extended partial inner automorphisms of a groupoid G is
isomorphic to the monoid of partial bisections PBis(G). The extended inner automorphism
corresponding to α ∈ PBis(G) is the family of partial automorphisms (cFα : H −7→ H) as F
ranges over cofunctors G⇝ H.

The details are sufficiently similar that we leave them to the interested reader to
reconstruct.
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