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TOPOLOGICAL ENDOMORPHISM MONOIDS OF MODELS OF
GEOMETRIC THEORIES

MORGAN ROGERS

Abstract. A classical model theory result states that for a (set-theoretic) model of a
first-order theory, there is a Galois connection between subgroups of the automorphism
group of the model and ‘relational extensions’ of the model, and the subgroups which are
fixed by this connection are precisely the closed subgroups for the ‘pointwise convergence
topology’ on the automorphism group. We prove an analogous result for endomorphism
monoids of models, grounded in the theory of classifying toposes. In particular, we show
that the topos of continuous actions of the endomorphism monoid with respect to the
pointwise convergence topology classifies a natural theory associated to the model.

1. Introduction

I had the good fortune of having Pieter Hofstra on my PhD thesis committee at the end of
2021. Before then, he had already influenced my work indirectly through his collaboration
with Jonathon Funk on toposes and actions of inverse semigroups [5]. This paper is based
on a question which he asked me in my thesis defence about the connection between my
work on actions of topological monoids and a classical result in model theory regarding
the topological automorphism group of a model.

Many connections between model theory and category theory are well-established.
For example, the theories of locally presentable and accessible categories [1] straddle set-
theoretic and category-theoretic foundations to the end of capturing the global structure of
categories of models. Meanwhile, Caramello [3] and Kubís [12] have provided categorical
abstractions of the Fräıssé construction, which originates in model theory. The present
paper is a further contribution to the broader effort to lift celebrated results from model
theory to a wider categorical context.

1.1. Motivation. The following result appears in Wilfrid Hodges’ Model Theory [7].

1.1.1. Proposition. [7, Theorem 4.1.4] Let Ω be a set and G ≤ Aut(Ω) a subgroup of
its topological automorphism group, with the pointwise convergence topology whose
opens are unions of cosets of stabilizers of finite subsets. Let H ≤ G be a subgroup. Then
the following are equivalent:

• H is closed in G.
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• There is a structure A with dom(A) = Ω such that H = Aut(A) ∩G.

Hodges uses structure to refer to a set (the domain, dom(A)) equipped with relations
which automorphisms are required to preserve; our terminology in the remainder of the
article will more closely align with the point of view that such a structure is a model of a
theory in some fragment of logic. We can, for instance, choose G to be the automorphism
group of a model M (in Set) of a (single-sorted) theory T whose basic sort is interpreted
as the set Ω; Proposition 1.1.1 says that the closed subgroups of G are automorphism
groups of models obtained by adding relations to M , and hence to T.

Underlying this result is a Galois connection whose construction requires no advanced
theory:

{subgroups H ≤ G} ⇆ {families of relations on Ω}.

Given a subgroup H ≤ G, we can construct the set of relations on Ω which are preserved
by all elements of H, and given a family of relations we can extract the subgroup of
automorphisms preserving all relations in the family. As usual, each operation is order-
reversing and passing back and forth across the Galois connection produces an idempotent
closure operation on each side. It is possible to directly extend the above Galois connection
by putting submonoids of the endomorphism monoid of M on the left-hand side. Both
Galois connections and some further related ones were developed in the 1930s by Marc
Krasner [11] (this a reference to Krasner’s expository work in French; he gives several
references to his original work at the end of the introduction there), and have re-emerged
several times since, such as in the work of Rosenburg [16].

On the subgroup side, the closure operation preserves the bottom element and (much
less obviously) binary joins of subgroups, so it determines a topology on G, which is
precisely the pointwise convergence topology of Proposition 1.1.1. Hodges provides an
explicit description of a topology and then proves that closure with respect to this topology
coincides with the closure operator induced by the Galois connection. While Hodges’
exposition is transparent, one cannot help but wonder if there is more to this story. As
such, we seek to address the following question in the present article via topos theory:

What exactly is the pointwise convergence topology capturing, and what
does the corresponding notion of continuity have to do with model theory?

For reasons that will become apparent later on, we begin from the more general setting
of topological endomorphism monoids of models of geometric theories. By the end of the
article we will have recovered the equivalences of posets featuring in Proposition 1.1.1.

1.2. Summary. We begin in Section 2 with some pointers to topos theory background.
We lean heavily on [15], but since that work is not widely known we reproduce many
of the results we need here. We have not made the same level of effort for the much
better-established edifice of categorical logic, but we at least provide references for the
necessary foundational aspects.
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In Section 3 we take a modelM of a geometric theory T and factorize a corresponding
geometric morphism (a point of the classifying topos for T). In our view the most signif-
icant result of this article is Theorem 3.1.6, where we demonstrate that an intermediate
topos in this factorization is both the topos of continuous actions for the topological en-
domorphism monoid of the model and the classifying topos of a natural extension of T
determined by M . This is our answer to the question posed above. Drawing some further
results from [15], we go from there to recover a monoid-theoretic analogue of the Galois
connection described above, Theorem 3.2.1.

Finally, in Section 4 we recover the group-theoretic versions of the preceding results
(Corollaries 4.2.4 and 4.2.5). We exhibit some interesting auxiliary results along the way,
such as an example of a ‘pseudomonic’ geometric morphism which is not an inclusion
(Remark 4.1.5).

2. Background

Throughout, ‘topos’ is shorthand for Grothendieck topos. We freely use the fact that every
such category can be presented as the category of sheaves on a site; see [13, Chapter III].

2.1. Properties of geometric morphisms.

2.1.1. Definition. Let E ,F be toposes. Recall that a geometric morphism f : F → E
(consisting of an adjunction

F E
f∗

⊥
f∗

in which the left adjoint, called the inverse image functor, preserves finite limits) is called:

• an inclusion if f∗ is full and faithful;
• a surjection if f ∗ is faithful;
• localic if each object of F is a subquotient of one in the essential image of f ∗;
• hyperconnected if f ∗ is full and faithful and its essential image is closed under
subquotients;

• essential if f ∗ has an extra left adjoint (denoted f!).

Recall that toposes and geometric morphisms assemble into a bicategory, where the
2-morphisms are natural transformations between inverse image functors. We write
Geom(F , E) for the category of geometric morphisms from F to E . This bicategory ad-
mits several well-known orthogonal factorization systems; we shall exploit the surjection–
inclusion and hyperconnected–localic factorization systems (see [9, §A4]) in the present
paper. We can also examine the representable properties of geometric morphisms in this
bicategory.
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2.1.2. Definition. A geometric morphism f : F → E is called representably faithful
(resp. representably full and faithful) if composition with f is faithful (resp. full and
faithful) as a functor:

f ◦ − : Geom(G,F) → Geom(G, E)
for each topos G.

Such representable properties (and related ones) were important in [15], and we shall
examine some related properties in Lemma 3.1.2 and Lemma 4.2.1 below. Recall the
following relationships between Definitions 2.1.1 and 2.1.2.

2.1.3. Lemma. [15, Propositions 4.6, 4.10] Localic morphisms are representably faithful.
Inclusions are representably full and faithful.

2.2. Continuous actions of a topological monoid. In this article, we will denote
monoids by N or N ′, reserving M and variants thereof for models of theories. The unit
element of a monoid will be denoted by 1 (adding a superscript as in 1N if we fear
ambiguity).

Recall that a right action of a monoid N on a set X consists of a function α :
X ×N → X such that for all x ∈ X and m,n ∈ N ,

α(x, 1) = x and α(x,mn) = α(α(x,m), n).

The pair (X,α) is an act (sometimes called module) of N , and these form a category
with the evident notion of homomorphism. This category is equivalent to the category of
presheaves on N when the latter is viewed as a one-object category; as such, we conflate
the two and denote the category of acts by PSh(N).

If N is equipped with a topology τ , we can construct the full subcategory of PSh(N)
for which the action α is continuous when X is equipped with the discrete topology
and X × N equipped with the product of τ with the discrete topology. The resulting
category, denoted Cont(N, τ), is coreflective in PSh(N) and closed under finite limits
and subquotients (see [15, Proposition 1.4]). In fact, both PSh(N) and Cont(N, τ) are
toposes (see [15, Corollary 1.19 of Proposition 1.12] for the latter), and we have geometric
morphisms:

Set PSh(N) Cont(N, τ),

−×N

HomSet(N,−)

⊥

⊥
U

h∗

⊥
h∗

(1)

where U is the forgetful functor sending an act (X,α) to X and V is the inclusion of
Cont(N, τ) into PSh(N). The geometric morphism on the left is an essential surjection
and that on the right is hyperconnected.

A geometric morphism Set → E is called a point of E , so the composite of the
morphisms in (1) provides a point of Cont(N, τ), which we call its canonical point;
beware that this point is canonical for this presentation of the topos of actions, rather
than being intrinsically determined by the categorical structure of the topos.
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Conversely, suppose we are given a point p : Set → E and let N := End(p)op be (the
opposite of) the monoid of endomorphisms of p in Geom(Set, E). Then we can construct
a canonical factorization of p through the essential surjection Set → PSh(N). Indeed, for
each object X of E , the set p∗(X) is canonically equipped with a right action of N : an
element α ∈ N acts on X by the component at X of the natural endomorphism of p cor-
responding to α; naturality ensures that p∗ sends morphisms of E to act homomorphisms
for these actions. Thanks to the fact that the forgetful functor PSh(N) → Set creates all
limits and colimits, the resulting functor q∗ : E → PSh(N) still preserves finite limits and
inherits a right adjoint q∗, as required. This argument appears in [14, Proposition 6.1.1].

We can further factor the morphism q just constructed. Let τ be the coarsest topology
on N making all N -acts of the form q∗(X) continuous. Then we end up with a diagram
extending (1):

Set PSh(N) Cont(N, τ) E ,

−×N

HomSet(N,−)

⊥

⊥
U

h∗

⊥
h∗

l∗

⊥
l∗

(2)

where l∗ is simply q∗l
∗. We call (N, τ) the topological endomorphism monoid of p.

Observe that when l is an equivalence, this gives us a presentation of E as a topos of
continuous actions of a monoid.

2.2.1. Theorem. [15, Theorem 3.20] Suppose p is a point of E which decomposes as the
canonical point of PSh(N ′) followed by a hyperconnected morphism for some monoid N ′.
Then the morphism l in (2) is an equivalence. That is, E ≃ Cont(N, τ) (although the
monoid N may be distinct from N ′ in general).

In [15], we called a topological monoid complete if it was isomorphic to (the opposite
of) the topological automorphism monoid of the canonical point of its topos of actions.

2.2.2. Example.Observe that PSh(N) = Cont(N, τdisc), where τdisc is the discrete topol-
ogy. The monoid of endomorphisms of the canonical point of PSh(N) is isomorphic to
Nop. In other words, discrete monoids are complete in the above sense. We will use this
fact later on.

For a less trivial example, let Z denote the additive group of integers and consider
the coreflective subcategory C of PSh(Z) on the acts for which all orbits are finite. Then
C ≃ Cont(Z, τ), where τ is generated by the cosets {nZ + k | n ≥ 1, k ∈ Z}. However,
the above procedure yields an equivalence between C and the continuous actions of the
profinite completion of Z. In other words, (Z, τ) is not complete. See [15, Example 3.25]
for more detail on this example.

2.3. Extensions of theories. We must assume for this section that the reader is
familiar with the essentials of categorical logic, as presented in [9, §D1] or [4, Chapters
1 and 2]; out of respect for the reader’s sanity, we endeavour to make our notation
consistent with those references. Recall that any geometric theory T (over a signature Σ)
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has a classifying topos: a topos denoted Set[T] such that for any topos F we have an
equivalence,

Geom(F ,Set[T]) ≃ T -mod(F), (3)

naturally in F , where the left-hand side is the category of geometric morphisms between
the respective toposes and the right-hand side is the category of T-models in F . We shall
be concerned almost entirely with the case F = Set, but we shall speculate in Section
5.1 about how our results generalize. Explicitly, the classifying topos can be constructed
as the topos of sheaves on the (geometric) syntactic site of T, denoted (CT, JT), which we
shall only handle informally in the present text.

Two geometric theories are said to be Morita-equivalent if their syntactic sites
are equivalent, which is the same as their categories of model in any (pre)topos being
equivalent. The latter makes it clear that we should consider Morita-equivalent theories
to be ‘essentially the same’ from a category theory perspective.

Besides corresponding to a model, a geometric morphism E → Set[T] is induced by a
presentation of E as the classifying topos for an extension T′ of the theory T: a theory
obtained by adding ingredients (sorts or function symbols or relation symbols) to the
signature and axioms in the resulting extended language to those of T. While there are
typically many extensions producing essentially the same geometric morphism, we may
deduce the existence of an extension of a particular form from properties of the geometric
morphism and vice versa. We will take advantage of such results in the present paper, so
we recall them now.

2.3.1. Definition. Let T be a geometric theory (over a signature Σ).
An axiomatic extension (called a quotient in [4, Definition 3.2.2]) of T is a theory

T′ over the same signature Σ obtained by adding axioms (i.e. geometric sequents) to T
(or more generally, such that every axiom of T is provable in T′).

A relational extension (called a localic extension in [4, Definition 7.1.1]) of T is a
theory T′ obtained by adding only relation symbols to Σ and axioms to T.

In either case, the syntactic embedding of T into T′ induces a morphism of sites
(CT, JT) → (CT′ , JT′) which induces a geometric morphism p : Set[T′] → Set[T].

2.3.2. Theorem. [4, §3.2; Theorems 7.1.3 and 7.1.5] Let T be a geometric theory over a
signature Σ. If T′ is an axiomatic extension (resp. relational extension) of T, the induced
geometric morphism Set[T′] → Set[T] is an inclusion (resp. is localic).

Conversely, let p : E → Set[T] be an inclusion (resp. a localic morphism). Then p
factors as E ≃ Set[T′] → Set[T], where T′ is an axiomatic extension (resp. relational
extension) of T.

Proof. We refer the reader to the above-cited parts of Caramello’s book [4] for the full
proofs, but we note in each case how T′ is constructed from p in the converse direction.

For p an inclusion, an axiomatic extension is obtained by adding a sequent ψ ⊢x⃗ ϕ∧ψ
to T for each morphism {x⃗.ϕ ∧ ψ} → {x⃗.ψ} whose image in Set[T] is inverted by p∗.

When p is localic, we construct T′ by first adding to Σ a relation for each subobject in
E of a finite product of objects of the form p∗(yT({x⃗.⊤})) (which form a generating set of
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objects for E when p is localic), then adding to T all sequents valid in E for the extended
signature. Note that in the special case that p is actually an inclusion, the added relation
symbols are all T-provably equivalent to formulas expressible in Σ, so we end up with a
theory Morita-equivalent to the preceding one at the end of this process.

In fact, any relational extension T′ of T which makes all subobjects of products of
objects of the form p∗(yT({x⃗.⊤})) definable and makes any two such presentations T′-
provably equivalent will be Morita-equivalent to the extension described in the proof of
Theorem 2.3.2. We use such a variant in the proof of Theorem 3.1.6.

3. Endomorphisms of models

3.1. Factorizing the point. Let T be any geometric theory. An ordinary Set-model
M of T corresponds via (3) to a geometric morphism ⌜M⌝ : Set → Set[T], and moreover
the endomorphisms of this model correspond to the endomorphisms of that geometric
morphism. Let N := End(M)op be (the opposite of) the endomorphism monoid of M . In
this section we shall factor ⌜M⌝ as follows.

Set Set[T]

PSh(N) Set[TM ]

E

⌜M⌝

e

s

h

i

l

(4)

First of all, we consider the surjection–inclusion factorization of ⌜M⌝. The resulting
subtopos of Set[T], whose inclusion we call i, classifies the theory of M , the extension
TM of T obtained by adding to the axioms of T all geometric sequents which are valid in
M , or equivalently by the procedure from Theorem 2.3.2.

Next, we factor the surjective part of ⌜M⌝ as described before (2) to obtain an essential
surjection e followed by a surjection s. By Lemma 2.1.3, these two factorizations can
be performed in either order, since endomorphism monoid of the point of Set[TN ] is
isomorphic to N .

Let us pause to examine the relationship between the monoid N and the functors thus
constructed.

3.1.1. Lemma. Let (C, J) be any site for Set[TM ]. Denote by
∫
C s

∗ the category of el-
ements of the restriction of s∗ to the representable sheaves. The right N-act N , as an
object of PSh(N), is the limit:1

N = lim
(X,x)∈

∫
C s∗

s∗(X).

1Here and elsewhere we abuse notation a little in writing N for both the monoid defined previously
and its action on itself by right multiplication.
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Proof. Since the forgetful functor e∗ creates all limits and colimits, we can compute (the
underlying set of) this limit in Set. An element of the limit is easily interpreted as an
endomorphism of

∐
X∈ob(C) s

∗(X) which commutes with each morphism of C, which are

precisely the elements of N . Meanwhile, the action of N on the right on s∗(X) is exactly
the action by application of the endomorphisms on the left, so the action of N on itself is
recovered as expected.

From a calculation standpoint, Lemma 3.1.1 tells us nothing new. However, this result
identifies a universal property relating the site (C, J) and a generating object in PSh(N),
which enables us to deduce a useful property of the geometric morphism s.

3.1.2. Lemma. The geometric morphism s is representably full and faithful on
essential geometric morphisms, in the sense that for any topos F , the functor

s ◦ − : EssGeom(F ,PSh(N)) → Geom(F ,Set[TM ])

is full and faithful, where EssGeom(−,=) is the full subcategory of Geom(−,=) on the
essential geometric morphisms.

Proof. Concretely, the effect of s on a natural transformation α : x∗ ⇒ y∗ is restriction
to the image of s∗. In other words, α 7→ αs∗ : x∗s∗ ⇒ y∗s∗. Since y is essential, y∗

preserves small limits, so that in particular y∗(N) = lim(X,x)∈
∫
C s∗ y

∗(s∗(X)) for any site
(C, J) presenting Set[TM ] by Lemma 3.1.1. As such, αN is forced to be the unique
comparison morphism to this limit when x∗(N) is viewed as the apex of a cone over
the same diagram. Since N is a generator of PSh(N) and x∗, y∗ preserve colimits, α is
uniquely determined by its component at N and hence by the components αs∗ . It follows
that s ◦ − is bijective on such natural transformations, as required.

3.1.3. Remark. There is no reason to expect that s would be representably full and
faithful on a wider subcategory of Geom(F ,PSh(N)) in general. While we judge that the
construction of an explicit counterexample would distract from the narrative of the present
paper, we note in passing that the possibility of a representably fully faithful surjection
(or more specifically one which is not an equivalence) would be of interest in its own right,
since it is not known whether there are representably fully faithful geometric morphisms
which are not inclusions. See also Remark 4.1.5 below.

We complete diagram (4) by taking the hyperconnected–localic factorization of s.

3.1.4. Lemma. Let h; l be the hyperconnected–localic factorization of s in (4). Then h is
representably full and faithful on essential geometric morphisms.

Proof. Suppose we are given essential geometric morphisms x, y : F ⇒ PSh(N). Con-
sider the maps:

Hom(x, y)
h◦−−−→ Hom(h ◦ x, h ◦ y) l◦−−−→ Hom(s ◦ x, s ◦ y);

the composite map corresponds to composition with s, and so is injective and surjective
by Lemma 3.1.2. Injectivity ensures injectivity of the left-hand map, so h is representably



TOPOLOGICAL ENDOMORPHISM MONOIDS OF MODELS OF GEOMETRIC THEORIES 49

faithful on essential geometric morphisms. Surjectivity forces the right-hand map to be
surjective, but by Lemma 2.1.3 the right-hand map is also injective and thus a bijection.
It follows that the left-hand map is surjective, as required.

We are now ready to state the first main theorem. We first introduce some definitions
to streamline the theorem statement.

3.1.5. Definition. Let T be a geometric theory over a signature Σ, M a Set-model of
T and N the monoid of Σ-structure endomorphisms of M . The equivariant theory of
M is the theory obtained from T by adding a relation symbol R ↪→ A1, . . . , An for each N-
equivariant relation R ↪→ JA1KM × . . . JAnKM and all axioms relating these and geometric
formulas over Σ to one another which are valid in M . This is a localic extension of the
theory of M , TM , introduced earlier. We denote it by T↬M , FWoBN2.

The pointwise convergence topology on N induced by M has as basis of neigh-
bourhoods of an element m ∈ N the sets

Ux1,...,xk
(m) = {m′ ∈ N | m′(x1) = m(x1), . . . ,m

′(xk) = m(xk)},

where k varies over the natural numbers and xi ∈ JAiKM for sorts A1, . . . , Ak in Σ. We
denote this topology by τ .

3.1.6. Theorem. The intermediate topos E in (4) can equivalently be expressed as either
the topos of continuous actions of N with the pointwise convergence topology, or as the
classifying topos for equivariant theory of M . That is,

Cont(N, τ) ≃ Set[T↬M ]. (5)

Proof. The conclusion of Lemma 3.1.4 looks a lot like [15, Proposition 4.5], which char-
acterizes complete monoids mentioned before Example 2.2.2, and this is no coincidence;
the current proof is comparable to the proof of that result. By Theorem 2.2.1, E is equiv-
alent to Cont(N ′, τ ′), where (N ′, τ ′) is the topological endomorphism monoid of h◦e. But
from Example 2.2.2, the endomorphism monoid of e is Nop, and h being full and faithful
by Lemma 3.1.4 means that End(h ◦ e) ∼= End(e), so N ′ = N .

Meanwhile, τ ′ is the coarsest topology making all actions of the form h∗(X), for X
in E , continuous. Since a subquotient of a continuous act is continuous, this coincides
with the topology making acts of the form s∗(X) for X in Set[TM ] continuous. In the
language of [15], the opens of the form Ux(m) for x ∈ s∗(X) and m ∈ N are precisely
the ‘necessary clopens’: the subsets of N which must be open in order for the action of
N on s∗(X) to be continuous at x. By inspection, Ux1,...,xk

(m) =
⋂k

i=1 Uxi
(m), so these

subsets are forced to be open as soon as the necessary clopens are present. This proves
that τ ′ = τ coincides with the pointwise convergence topology.

On the other side, by Theorem 2.3.2 E classifies a relational extension of TM ; we need
only show that the equivariant theory of M is T↬M (up to Morita-equivalence). Indeed,
using a further construction from [4, Theorems 7.1.3], we can construct an extension T′

2For Want of Better Notation.
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of TM classified by PSh(N) by adding a (suggestively named) sort N to the signature Σ,
a function symbol m : N → N for each element of N (or at least for the unit element
and each generator in a presentation of N , if one is provided) and a function symbol
x : N → A for each element x ∈ JAKM . The axioms to be added are those expressing
the multiplication in N , the action of N on the M -interpretations of the sorts in Σ, and
axioms such as:

⊤ ⊢y:A

∨
x∈JAKM

(∃a : N) (x(1) = y)

asserting that the function symbols corresponding to elements of JAKM cover the inter-
pretation of A. We can recover a theory classified by E as the fragment of this theory
obtained by eliminating N , in the sense of retaining only relations definable in the larger
theory on lists of sorts not including N . We only introduced function symbols out of N ,
so the relations resulting from this elimination are precisely disjunctions of relations of
the form

(∃a : N) (x1(a) = y1) ∧ · · · ∧ (xk(a) = yk),

(up to substitution of terms y1, . . . , yk). These constitute exactly the relations appearing
in the equivariant theory of M . The axioms in T↬M are similarly all of the axioms of this
fragment, as required.

3.1.7. Remark. While we have been working in the language of classifying toposes, the
proofs of Lemmas 3.1.2 and 3.1.4 did not rely on the logical presentation. In particular,
the argument of the first part of the proof of Theorem 3.1.6 shows that the factoriza-
tion h; l appearing in (2) is the hyperconnected–localic factorization of the morphism
q : PSh(N) → E constructed beforehand.

3.2. Relational extensions of a model. Let M ′ be a relational extension of the
model M . This corresponds not merely to a localic morphism into Set[TM ], but more
particularly to a morphism through which ⌜M⌝ factors, since M ′ retains the interpre-
tations of the signature determining M . If we add this to the diagram (we name it a)
and, from there, factorize as we did in the previous section, we end up with the following
diagram:

Set Set[T]

PSh(N) Set[TM ]

PSh(N ′) E Set[TM ′ ]

E ′

⌜M⌝

e

e′
s

h

i

b

h′

l
a

c

l′

(6)
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The morphism b is induced by the inclusion of submonoids N ′ ⊆ N and thus is an
essential localic surjection; see [6, Corollary 3.4]. Indeed, N ′ = End(M ′)op is necessarily
a submonoid of N (this could be proved using Lemma 3.1.2, say).

There are several ways to construct c. Most abstractly, we can use orthogonality
of hyperconnected morphisms against localic morphisms. From here, we conclude that
c is a localic surjection because it is a left factor of the localic composite a ◦ l′ and a
right factor of the surjective composite h ◦ b. Alternatively, one can verify that b∗ maps
continuous (N, τ)-acts to continuous (N ′, τ ′)-acts, which guarantees that the inclusion
N ′ ↪→ N is continuous by [15, Lemma 4.2]. But (N, τ) and (N ′, τ ′) are complete monoids
by construction, and a geometric morphism Cont(N ′, τ ′) → Cont(N, τ) induced by a
continuous monoid homomorphism is localic if and only if it is a closed inclusion, by [15,
Theorem 4.24].

In the opposite direction, suppose we are given a submonoid N ′ of N , and hence a
geometric morphism b : PSh(N ′) → PSh(N). Taking the hyperconnected–localic factor-
ization of h ◦ b, we get a diagram:

Set Set[T]

PSh(N) Set[TM ]

PSh(N ′) E Set[TM ′ ]

E ′

⌜M⌝

e

e′
s

h

i

b

h′

l

c

(7)

From the classifying topos point of view, we recover a relational extension of the theory
of M (indeed, of the equivariant theory of M) from the composite l ◦ c. Practically
speaking, this operation boils down to the corresponding direction of the Galois connection
described in Section 1.1: M ′ is obtained by adding to M all of the relations preserved
by endomorphisms in N ′. Applying [15, Theorem 4.19 and Corollary 4.23], if (L, ρ) is
the closure of N ′ in (N, τ) (with the restriction topology) then (L, ρ) is the complete
monoid such that E ′ ≃ Cont(L, ρ), which provides another means of showing that the
closed submonoids are the fixed points on the left-hand side of the correspondence.

In summary, we have proved the following result.

3.2.1. Theorem. Let T be a geometric theory (over a signature Σ) and M a model of T
in Set. Let (N, τ) be (the opposite of the) topological endomorphism monoid of M . There
is a Galois connection,

{submonoids N ′ ≤ N} ⇆ {relational extensions of M},

whose fixed points on the left are closed submonoids, and whose fixed points on the right
are the maximal equivariant extensions.
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4. Automorphisms of models

Observe that a submonoid (and even a closed submonoid) of a topological group need
not be a subgroup: consider N in Z, for example. At first glance, Theorem 3.2.1 would
therefore seem to be in conflict with the theorem for groups quoted in Section 1.1! To
resolve this, we remind the reader that our ‘relational extensions’ have always implicitly
meant ‘relational geometric extension’. That is, since geometric logic does not include
negation as a logical connective, when we add a relation to the model, we need not also
add its complement, and the endomorphisms of a relational extension need not preserve
the complement of a relation. By restricting our attention to relational extensions where
relations are complemented, we can recover the group-theoretic version of the result.

Before getting there, though, we need a few more auxiliary results about invertible
elements of monoids which are interesting in their own right.

4.1. Invertible elements of a monoid.

4.1.1. Definition. Given a monoid N , we write N⋊ for the submonoid of right in-
vertible elements. That is,

N⋊ := {u ∈ N : ∃v ∈ N, uv = 1}.

We similarly write N× for the elements invertible on both sides.

4.1.2. Lemma. For any monoid N , (N⋊)⋊ = N×.

We leave the proof of this amusing result to the reader.

4.1.3. Lemma. The essential localic geometric morphism r : PSh(N⋊) → PSh(N) in-
duced by the inclusion N⋊ ⊆ N is representably faithful and representably full on iso-
morphisms.

Proof. Being representably faithful follows from Lemma 2.1.3, so we need only show
representable fullness on isomorphisms. Observe that the complement N⋊ of N⋊ ⊆ N is
a sub-N -set of N . Indeed, if n ∈ N is not right invertible, then the same is true of nm
for any m ∈ N . As such, we can take the cokernel in PSh(N) of the inclusion of N⋊ into
N , which is the pushout:

N⋊ N

1 P.

!

⌜

By construction, r∗(P ) ∼= N⋊ +1 decomposes as a coproduct, and the first inclusion is in
the image of r∗.

Now suppose we are given geometric morphisms x, y : F → PSh(N⋊) and a natural
isomorphism α : x∗r∗ ⇒ y∗r∗. Since x∗, y∗ preserve the pushout above, we have that αP

defines an isomorphism x∗(N⋊+1) → y∗(N⋊+1) which restricts to an isomorphism on the
1 component. As such, we can extract a complementary isomorphism βN⋊ : x∗(N⋊) →
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y∗(N⋊) which is a restriction of αN . Just as in Lemma 3.1.2, βN⋊ determines a natural
isomorphism β : x∗ ⇒ y∗ by colimits which must agree with α on the image of r∗. That
is, α is the restriction along r of β, which demonstrates fullness.

4.1.4. Remark. The fact that N⋊ is a complemented subset of N was important in the
proof. Should one wish to study actions of monoids in/over a non-Boolean topos, Lemma
4.1.3 may fail (for a monoid where N⋊ is not complemented in the object underlying N).
In particular, this is a hint that the monoid-theoretic result developed in the last section
may be more robust to generalization than its group-theoretic counterpart to follow.

4.1.5. Remark.A geometric morphism which is representably faithful and representably
full on isomorphisms is called pseudomonic, for example by Bunge and Lack in [2].
Lemma 4.1.3 provides an example of a pseudomonic geometric morphism which is not
an inclusion. Bunge and Lack did not know of any such example, and we similarly are
unaware of other examples (although it seems likely that some further related examples
between presheaf toposes can be constructed from this one).

It is worth noting that the proof can be extended to conclude that r is full on split
monomorphisms, although the splittings are not necessarily reflected, so this stronger
property is not compositional!

4.2. Recovering Hodges’ result. Let T, Σ, M be as in Section 3, but now consider
the group G := Aut(M)op dual to the group of automorphisms of M . We can perform a
similar factorization of the geometric morphism ⌜M⌝:

Set Set[T]

PSh(G) Set[TM ]

E .

⌜M⌝

e′

s′

h′

i

l′

(8)

To construct s′, we could directly adapt the construction of s by observing that G has
a canonical action on ⌜M⌝∗(X) for each X in Set[T]. Alternatively, we can identify G
with (N⋊)⋊ thanks to Lemma 4.1.2, then compose s with two instances of the geometric
morphism considered in Lemma 4.2.1 to obtain s′ as the composite:

PSh(G)
r′−→ PSh(N⋊)

r−→ PSh(N)
s−→ Set[TM ]. (9)

We take the hyperconnected–localic factorization of s′, as before, to obtain h′; l′.

4.2.1. Lemma. The geometric morphism s′ is representably faithful and representably
full on isomorphisms between essential geometric morphisms, in the sense that for any
(Grothendieck) topos F , the functor

s′ ◦ − : EssGeom(F ,PSh(G)) → Geom(F ,Set[TM ])

has these properties.
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Proof. Consider the decomposition of s′ in (9). By Lemma 4.1.3, r and r′ are repre-
sentably faithful and full on isomorphisms between arbitrary morphisms. Moreover, they
are essential, so the properties of s from Lemma 3.1.2 imply the desired property of s′.

4.2.2. Lemma. Let h′; l′ be the hyperconnected–localic factorization of s′ in (8). Then h
is representably faithful and full on isomorphisms between essential geometric morphisms.

Proof. Faithfulness can be proved via the first argument of the proof of Lemma 3.1.4.
For fullness on isomorphisms, we restrict composition with l′ and then composition with
h′ along the inclusion of the isomorphisms into Hom(s′ ◦ x, s′ ◦ y), for essential geometric
morphisms x, y : F ⇒ PSh(G). By Lemma 4.2.1 this restriction is bijective, so the latter
argument of Lemma 3.1.4 shows that h′ is full on natural transformations h′ ◦ x⇒ h′ ◦ y
which are mapped by composition with l′ to isomorphisms; this includes all isomorphisms,
as required.

4.2.3. Definition. Let T be a geometric theory over a signature Σ, M a Set-model
of T and G its group of automorphisms. The decidable equivariant theory of M
is the theory obtained from T by adding a relation symbol R ↪→ A1, . . . , An for each G-
equivariant relation R ↪→ JA1KM × . . . JAnKM and all axioms relating these and geometric
formulas over Σ to one another which are valid in M . We denote it by T≃M , FWoBN.

Implicit in Definition 4.2.3 is the fact that each relation in the decidable equivariant
theory of M is complemented: if a relation is preserved by all automorphisms of M then
its complement is too.

4.2.4. Corollary. The intermediate topos E in (8) can equivalently be expressed as
either the topos of continuous actions of G with the pointwise convergence topology, or as
the classifying topos for the decidable equivariant theory of M . That is,

Cont(G, τ) ≃ Set[T≃M ]. (10)

Proof. Applying Lemmas 4.2.1 and 4.2.2, we deduce that E ≃ Cont(G, τ ′) for the coars-
est topology τ ′ making all actions in the essential image of s∗ continuous; the argument
that this coincides with the pointwise convergence topology is identical to that in the
proof of Theorem 3.1.6. The reconstruction of T≃M from l′ is also almost identical.

Finally, we define a complemented relational extension of M to be an extension
obtained by adding relations and their complements toM . With this notion, we can close
the circle back to our motivating result.

4.2.5. Corollary. Let T be a geometric theory (over a signature Σ) and M a model of
T in Set. Let (G, τ) be (the opposite of the) topological automorphism group of M . There
is a Galois connection,

{subgroups G′ ≤ G} ⇆ {complemented relational extensions of M},

whose fixed points on the left are closed subgroups, and whose fixed points on the right are
the maximal (complemented) equivariant extensions.



TOPOLOGICAL ENDOMORPHISM MONOIDS OF MODELS OF GEOMETRIC THEORIES 55

Proof. As we said in the Introduction, this ‘high-tech’ construction is not needed to
produce the Galois connection once we have explicit descriptions of the respective sides
thanks to Corollary 4.2.4, so we provide only a sketch.

The proof strategy mirrors that of Section 3.2. The major difference is that we must
exploit the fact that the relational extension is complemented to conclude that the classi-
fying topos of the resulting extension of T≃M is atomic, so that the topological automor-
phism group of M ′ is dense in its topological endomorphism monoid, and the respective
monoids have equivalent categories of actions by [15, Proposition 5.1].

5. Closing Remarks

5.1. Different toposes. We promised earlier that we would consider how this theory
generalizes. In particular, from a categorical logic perspective, it would be interesting to
remove the dependence on the category of sets. There are two places that Set appears in
this work.

First, we can consider models in a topos other than Set, say G. The factorization of
Section 3 can be adapted to this setting, as follows. For a geometric morphism ⌜M⌝ :
G → Set[T] corresponding to a model M of T in G, we can still define the monoid
N := End(⌜M⌝∗)op; the category of N -acts in G can be presented as a topos of internal
presheaves, PShG(N) := [γ∗(N)op,G] (where γ : G → Set is the global sections morphism
of G). There is still an essential surjection e : G → [γ∗(N)op,G]. The surjection-inclusion
and hyperconnected-localic factorizations need no modification, so we get a diagram:

G Set[T]

PShG(N) Set[TM ]

E

⌜M⌝

e

s

h

i

l

(11)

To recover the analogue of Theorem 3.1.6, we would on the one hand need to extract a pre-
sentation of the extension of TM classified by E using Theorem 2.3.2. On the other hand,
we would need to identify the correct variant of topology on N (or γ∗(N)) which corre-
sponds to hyperconnected morphisms out of G; the recent work of Hora [8] parametrizing
hyperconnected quotients of toposes should facilitate this. The argument for Theorem
3.2.1 similarly should lift without major structural changes.

However, we shall not attempt to explicitly derive these results here, since there are
many subtleties to consider. When discussing topologies, will it be sufficient to work with
ordinary topologies on N , or will some internal notion of topology in G be needed? What
is the right notion of continuity for topologies in this setting? Similarly, when considering
submonoids in the Galois correspondence, there may be strictly more internal monoids
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than external ones; is there a compatible notion of closure leading to a more refined Galois
connection? These questions will form the basis of future work.

Second, Set is implicitly playing the role of base topos. Generally speaking, we can
replace Set with a general (elementary) topos S and work in the bicategory TOP/S,
and all constructively valid results will continue to hold in this setting. The theory of
classifying toposes lifts to this setting, for instance, subject to the caveat that we extend
to S-geometric theories, in which disjunctions may be indexed by objects of S rather than
mere sets. Thus if we replace Set with S in everywhere, all of the results in Section 3 will
apply. Most notably, the monoid of endomorphisms of ⌜M⌝ : S → S[T] will be an internal
monoid in S. Putting these two generalizations together raises the question of whether we
can obtain a more refined factorization of any ⌜M⌝ : G → S[T] through the category of
actions of an internal monoid of endomorphisms in G rather than the ‘external’ S-monoid
of endomorphisms.

5.2. Duality for clones. For single-sorted relational theories, an important exten-
sion of the Galois correspondences discussed in this article is that for clones ; we refer
to the concise introduction in [10] for this section. The idea is that rather than mere
endomorphisms of a model M , one can consider polymorphisms.

For context, suppose T is a single-sorted relational theory and that M is a model
where that sort is interpreted as a set Ω (the domain ofM). A polymorphism ofM is a
finitary operation f : Ωk → Ωn which respects the relations ofM , in the sense that for each
relation symbol R definable in T (of arity m, say), if (x1,1, . . . , x1,m), . . . , (xk,1, . . . , xk,m)
are elements of the relation JRKM then so are the n rows of

(f(x1,1, . . . , x1,m), . . . , f(xk,1, . . . , xk,m)) .

Polymorphisms assemble into a category PM called the clone of M whose objects are
indexed by natural numbers, such that a polymorphism as above becomes a morphism
k → n. PM has finite products, since the diagonals and projection morphisms are poly-
morphisms by inspection. This means that PM is a cartesian operad or Lawvere
theory, and that we can reconstruct polymorphisms Ωk → Ωn from polymorphisms
Ωk → Ω.

5.2.1. Remark. As presented in [10], to formally view P as a clone we should ignore the
nullary operations; we will not go into enough detail here for this distinction to matter.

Clearly, any endomorphism of M is a polymorphism, and we have an inclusion of the
monoid N constructed earlier as a full subcategory of Pop. It should come as no surprise
that a central result in the theory of clones is the extension of the Galois connection
we have explored here to a connection between subclones of P and relational extensions
of M . This raises a number of questions. Can the factorization (4) be extended to
capture this Galois connection? Does this factorization remain expressible in terms of
topos theory? If so, does a notion of topology on operads (several are possible) capture
the closure and continuity conditions relevant for reconstructing the intermediate topos
in the factorization? It will be exciting to explore these possibilities in future work.



TOPOLOGICAL ENDOMORPHISM MONOIDS OF MODELS OF GEOMETRIC THEORIES 57

Acknowledgements. Thanks to Flavien Breuvart for valuable discussion related to the
early sections of this paper. Thanks to Eli Hazel for some essential references. Thanks to
participants in SYCO 11 at LIX, attendees at the Higher categories, polygraphs and ho-
motopy seminar at IRIF and attendees at the Stockholm logic seminar, for their respective
positive receptions of presentations of this work.

References
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Richard Blute, Université d’ Ottawa: rblute@uottawa.ca
John Bourke, Masaryk University: bourkej@math.muni.cz
Maria Manuel Clementino, Universidade de Coimbra: mmc@mat.uc.pt
Valeria de Paiva, Topos Institute: valeria.depaiva@gmail.com
Richard Garner, Macquarie University: richard.garner@mq.edu.au
Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu

Rune Haugseng, Norwegian University of Science and Technology: rune.haugseng@ntnu.no
Dirk Hofmann, Universidade de Aveiro: dirk@ua.pt
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