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UNIFORM LOCALES AND THEIR CONSTRUCTIVE ASPECTS

GRAHAM MANUELL

Abstract. Much work has been done on generalising results about uniform spaces
to the pointfree context. However, this has almost exclusively been done using classical
logic, whereas much of the utility of the pointfree approach lies in its constructive theory,
which can be interpreted in many different toposes. Johnstone has advocated for the
development of a constructive theory of uniform locales and wrote a short paper on the
basic constructive theory via covering uniformities, but he never followed this up with a
discussion of entourage uniformities or completions.
We present a more extensive constructive development of uniform locales, including both
entourage and covering approaches, their equivalence, completions and some applications
to metric locales and localic algebra.
Some aspects of our presentation might also be of interest even to classically minded
pointfree topologists. These include the definition and manipulation of entourage uni-
formities using the internal logic of the geometric hyperdoctrine of open sublocales and
the emphasis on pre-uniform locales. The latter leads to a description of the completion
as the uniform reflection of the pre-uniform locale of Cauchy filters and a new result
concerning the completion of pre-uniform localic rings, which can be used to easily lift
addition and multiplication on Q to R (or Qp) in the pointfree setting.

0. Introduction
Thirty years ago in [13] Johnstone took the first steps in a constructive development of the
theory of uniform locales. This was promised to be the first in a series of papers on the
topic, but the later papers never materialised and no one else has taken up the mantle.

Still the classical theory of uniform locales (and uniform spaces) has continued unabated
and it would be as useful as ever to have access to these techniques in the constructive
setting, where the results we prove have greater applicability by being interpretable in any
topos with natural numbers object.

This paper can be thought of as a somewhat belated sequel to [13] (in addition to
making some minor corrections and modifications to the theory developed there). We have
nonetheless attempted to keep our development self-contained within reason, though the
original paper still provides a useful source of counterexamples (which we do not discuss)
and a more exploratory account of what the theory should be.

We describe uniform locales in terms of both entourages and covers and prove their
equivalence before developing the theory of uniform completions. Our account is somewhat
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atypical in how strong a focus it places on pre-uniform locales. This provides an easy
route to proving completeness and cocompleteness of the category UnifLoc of uniform
locales by factoring the forgetful functor UnifLoc → Loc into a reflective subcategory
UnifLoc ↪→ PUnifLoc, a topological functor PUnifLoc → OLoc and coreflective
subcategory OLoc ↪→ Loc. It also allows us to phrase the relationship between the
classifying locale of all Cauchy filters and the completion in terms of the uniform reflection.

However, the true motivation for this approach is revealed in the final section where we
discuss a few important examples of uniform locales and make some first applications to
localic algebra. Here it seems to be important to be able to take completions of pre-uniform
locales, since the uniform reflection might not preserve products, while its composite with
the completion always does. This is apparent already in the example of completing the
rational numbers to give the localic ring of real numbers.

We also provide a constructive proof of the classically known result that an overt localic
group is complete with respect to its two-sided uniformity. Further properties of uniform
locales, such as total boundedness, will be left for a later paper.

Let me end this section by drawing the reader’s attention to some other related work
in formal topology that I became aware of after starting to write this paper. In [15], Kawai
describes the completion a uniform space as formal topology. He uses the gauge approach
to uniform spaces, and as I understand it, what are called (generalised) uniform spaces
there are closer to what are sometimes called (quasi-)gauge spaces and have different
morphisms. The paper [6] also considers a notion of uniform formal topologies using gauges,
but the notion of completeness considered there depends on the (global) points of the
formal topology and thus appears to be weaker than the usual definition of completeness
for uniform locales.

Finally, Kawai mentions in [15] that the PhD thesis of Fox [7] also discusses uniform
formal topologies, though unfortunately I was unable to obtain a copy of this thesis until
very recently. The thesis is worth reading. Fox defines uniform formal topologies in terms
of covers, describes their relation to metric formal topologies and gauges and defines a
uniform completion. Thus, despite not discussing entourages there is some overlap with
the current paper. Nonetheless, our approach is significantly different and I believe that
the locale-theoretic framework used in this paper will be more easily understandable to a
wider audience than the approach via formal topology used by Fox.

1. Background
We assume a basic knowledge of (at least the classical theory of) frames and locales. See [19]
for a good introduction, which also has a nice account of the classical situation regarding
uniform frames and locales. Background on uniform spaces is not strictly necessary, but
can be found in standard general topology textbooks such as [22].

We denote the category of locales by Loc and the category of frames by Frm. We
will usually start with a locale X and write OX for its associated frame. We maintain a
strict notational distinction between these to avoid confusion between an open a ∈ OX
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and an element of x of X in the internal logic (described below). If f : X → Y is a locale
morphism, we write f ∗ for the corresponding frame map and f∗ for its right adjoint. If f ∗

has a left adjoint, we will write this as f!.
We do not assume the reader has any great familiarity with constructive pointfree

topology and will attempt to provide a brief introduction below. A reasonably extensive
introduction to the topic can be found in the background chapter of [17] and further
information can be found in [14, Part C]. The constructive theory of metric locales is
described in [9].

Some understanding of category theory is also assumed. We make some use of the
theory of topological functors, a good account of which can be found in [1]. We will also
use the internal logic of a geometric hyperdoctrine, the basic idea of which we describe
below. A slightly longer overview can again be found in the background of [17], but for a
more careful and thorough introduction see [20].

1.1. Positivity, overtness and hyperdoctrines. Constructively, the initial frame
is the lattice of truth values Ω, though this is no longer necessarily isomorphic to the
two-element set {⊤,⊥}. When using constructive logic, we do not have access to double
negation elimination and so it is best to phrase definitions in a ‘positive’ way (without
using negations) since negations can be difficult to get rid of once they are introduced. An
example of this is can be seen in the relevant importance of nonempty versus inhabited
sets. At set X is inhabited if ∃x ∈ X. This is more useful than the weaker condition that
X ̸= ∅, since we have access to the element x to use in later arguments.

A similar concept appears in pointfree topology. An element a of a frame OX is said
to be positive (written a > 0) if whenever a ≤ ∨

A then the set A is inhabited. Classically,
this is equivalent requiring a ̸= 0, but constructively it is a stronger condition. We say the
locale X is positive if 1 > 0 in OX. If V is a sublocale of X we write V ≬ a to mean that
the restriction of a to V is positive. In particular, a ≬ b ⇐⇒ a ∧ b > 0.

A locale X is said to be overt if it has a base of positive elements. Some people also call
such locales locally positive or even open. Classically, every locale is overt. Constructively,
the condition is nontrivial, though it still holds for many locales that appear in practice.
A locale X is overt if and only if the unique map ! : X → 1 is open. In this case, the
left adjoint ∃ : OX → Ω of the associated frame map measures the positivity of elements:
∃(a) = ⊤ ⇐⇒ a > 0. Another characterisation gives that X is overt if the product
projection π2 : X × Y → Y is open for every locale Y . In this way it can be seen to be a
kind of ‘dual’ to compactness. Finally, we note that open sublocales of overt locales are
overt.

We write OLoc for the category of overt locales and locale morphisms. This is a
coreflective subcategory of Loc. (A proof of this fact can be found in [16], but the main idea
is that every locale has a largest overt sublocale.) Thus, OLoc is complete and cocomplete.
Moreover, it can be shown that OLoc is closed under finite products in Loc and that
OLoc has (epi, extremal mono)-factorisations where the extremal monomorphisms are
precisely the overt sublocale inclusions.

The obvious functor O : OLocop → Frm sending an overt locale to its frame of opens
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satisfies the necessary axioms to be a geometric hyperdoctrine (without equality). This
means that for every product projection π2 : X × Y → Y , the map O(π2) = π∗

2 has a left
adjoint ∃X satisfying the Frobenius reciprocity condition ∃X(a ∧ π∗

2(b)) = ∃X(a) ∧ b, and
moreover, the family of maps (∃X)Y : O(X×Y )→ OY is natural in Y (the Beck–Chevalley
condition). These hold because the projections are open maps, which is why we need
overtness.

This geometric hyperdoctrine allow us to interpret geometric logic in the category
OLoc, with predicates being given by opens. We can discuss equality judgements t =x⃗ t

′,
which state that terms (given by morphisms in the category) are equal, and sequents
φ ⊢x⃗ ψ where φ and ψ are formulae in the variables x⃗ involving finite conjunctions, possibly
infinitary disjunctions and existential quantification, which mean that the open defined
by φ is contained in that defined by ψ. In particular, this logic contains regular logic as
fragment and so we have a well-behaved calculus of open relations. For the details behind
the interpretation of logic in hyperdoctrines see [20], while more information about the
specific case of O : OLocop → Frm can be found in [17].

1.2. Strong density and weak closedness. Another important concept we will need
is that of strong density. A locale map f : X → Y is dense if f ∗(a) = 0 =⇒ a = 0. If X
and Y are overt locales, f is strongly dense (or fibrewise dense) if a > 0 =⇒ f ∗(a) > 0.
Strong density implies density, but the converse cannot be proved constructively. It is
strong density that is more important for the study of uniform locales.

We can express the condition for strong density in terms of ∃ as ∃(a) ≤ ∃f ∗(a). Then
taking right adjoints gives the equivalent condition that f∗!∗(p) ≤ !∗(p) for all p ∈ Ω. (This
definition even makes sense when X and Y are not overt, though we will not need this.)

Strongly dense maps form a factorisation system on OLoc together with the weakly
closed sublocales. In particular, every overt sublocale V ↪→ X has a weak closure
wk-cl(V ) ↪→ X, which is the largest sublocale in which it is strongly dense (and this is neces-
sarily overt). It can be shown that if V is an overt sublocale then V ≬ a ⇐⇒ wk-cl(V ) ≬ a.
Every closed sublocale is weakly closed, but all sublocales of discrete locales are weakly
closed, while all open sublocales of 1 are closed only if excluded middle holds.

With this weaker notion of closedness come weakened separation axioms. In particular,
we say a locale X is weakly Hausdorff if the diagonal is weakly closed. Defining a to be
weakly rather below b if wk-cl(a) ≤ b in the order of sublocales we also obtain a notion of
weak regularity. See [12] for more details.

1.3. Other miscellaneous results. As is well understood, the lattice of sublocales
of a locale X is a coframe SX. Moreover, this is functorial so that for f : X → Y we
have a coframe homomorphism Sf : SY → SX, which is obtained by pulling back along
f . This map then has a left adjoint (Sf)! : SX → SY which can be understood as taking
images. Now if V is an overt sublocale of X it can be shown that (Sf)!(V ) is overt and
(Sf)!(V ) ≬ a ⇐⇒ V ≬ f ∗(a).

We end this section by mentioning some results concerning products which will be of
use to us.



242 GRAHAM MANUELL

1.4. Lemma. Let f : X → Y and g : X ′ → Y ′ be strongly dense maps between overt locales.
Then their product f × g : X ×X ′ → Y × Y ′ is strongly dense.

Proof. Consider the following pullback diagrams.

X ×X ′

X

Y ×X ′

Y

π1

f ×X ′

f

π1

Y ×X ′

X ′

Y × Y ′

Y ′

π2

Y × g

g

π2

Since X ′ and Y are overt, the product projections π1 and π2 are open. But strongly dense
maps are stable under pullback along open maps (see [11, Lemma 1.9]) and hence f ×X ′

and Y × g are strongly dense. Thus, so is the composite f × g = (Y × g) ◦ (f ×X ′).

1.5. Lemma. Let f : X → Y and g : X ′ → Y ′ be locale morphisms. Then (f × g)∗(c) =∨{f∗(a)⊕ g∗(b) | a⊕ b ≤ c}.

Proof. See [4, Section 3, Lemma 2] (though the proof is not difficult).

2. Entourage uniformities
Uniform locales are probably most easily understood via the entourage approach. An
(open) entourage on a locale X can be thought of an open approximate equality relation
on X.

In order to have a good theory of open relations, we require a well-behaved notion of
existential quantification for open subobjects and we will therefore restrict our attention
to overt locales. Since O : OLocop → Frm is in particular a regular hyperdoctrine, we
may define composition of open relations E,F ∈ O(X ×X) in the internal logic by

F ◦ E = {(x, z) : X ×X | ∃y : X. (x, y) ∈ E ∧ (y, z) ∈ F}.

We can now use this to mimic the usual definition of a uniform space.

2.1. Definition. A pre-uniform locale is an overt locale X equipped with a filter E on
O(X ×X) such that for each E ∈ E,

• ⊢x : X (x, x) ∈ E,

• there is an Eo ∈ E such that (x, y) ∈ E ⊣⊢x,y : X (y, x) ∈ Eo,

• there is an F ∈ E such that F ◦ F ≤ E.
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We call E a uniformity and the elements of E entourages. We say a set B ⊆ E is a base
for the uniformity E if E is generated by B as an upset.

This is not yet what is usually called a uniform locale, since we have not assumed a
compatibility condition between the uniformity E and the ‘topology’ of X and so it is
possible for X to have a finer topology than that induced by E . In particular, X could be
a discrete locale in which case we recover the definition of a uniform space (but where we
do not think of X as being equipped with the usual uniform topology).

2.2. Definition. We define the uniformly below relation on the opens of a pre-uniform
locale (X, E) by

a ◁ b ⇐⇒ ∃E ∈ E . E ◦ (a⊕ a) ≤ b⊕ b.
Then a uniform locale is a pre-uniform locale (X, E) such that every b ∈ OX can be
expressed as

b =
∨
a◁b

a.

In this case the uniformity E is said to be admissible.
The following lemma provides an intuitive way to understand the uniformly below

relation using the internal logic.

2.3. Lemma. Let E be an entourage. We have E ◦ (a⊕ a) ≤ b⊕ b if and only if

y ∈ a ∧ (y, z) ∈ E ⊢y,z : X z ∈ b

in the internal logic. An equivalent expression is ∃y : X. y ∈ a ∧ (y, z) ∈ E ⊢z : X z ∈ b.

Proof. Let us start with the forward direction. In the internal logic the assumption
means ∃y : X. x ∈ a ∧ y ∈ a ∧ (y, z) ∈ E ⊢x,z : X x ∈ b ∧ z ∈ b. We can simply ignore
the x ∈ b part of the consequent and eliminate the existential quantification to obtain
x ∈ a ∧ y ∈ a ∧ (y, z) ∈ E ⊢x,y,z : X z ∈ b. But now substituting in y for x yields the
desired sequent.

For the converse, note that the assumption implies x ∈ a ⊢x : X x ∈ b by reflexivity
(taking z = y = x). Then this together with the assumption again easily gives the desired
statement. Finally, the second form easily seen to be equivalent to the first by the rules
for existential quantification.

The uniformly below relation satisfies many of the axioms of a strong inclusion on OX
(see [2]).

2.4. Lemma. Let (X, E) be a pre-uniform locale. Then the uniformly below relation
satisfies:

i) ≤ ◦◁ ◦ ≤ ⊆ ◁ ⊆ ≤,

ii) ◁ is a sublattice of OX ×OX,

iii) ◁ is interpolative — that is, ◁ ⊆ ◁ ◦◁.
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Proof. i) For the first inclusion, suppose a′ ≤ a ◁ b ≤ b′. Then E ◦ (a⊕ a) ≤ b⊕ b for
some E ∈ E , and hence we easily find E ◦ (a′ ⊕ a′) ≤ E ◦ (a⊕ a) ≤ b⊕ b ≤ b′ ⊕ b′, so that
a′ ◁ b′, as required.

We actually already proved the second inclusion in Lemma 2.3 using reflexivity and
the equivalent description of the uniformly below relation given there.

ii) It is easy to see that 0 ◁ 0 and 1 ◁ 1. It then suffices to show a ◁ b and a ◁ b′

implies a ◁ b ∧ b′ and that a ◁ b and a′ ◁ b implies a ∨ a′ ◁ b.
For the former, we have E ◦ (a⊕a) ≤ b⊕ b and E ′ ◦ (a⊕a) ≤ b′⊕ b′ for some E,E ′ ∈ E .

Thus, (E∧E ′)◦ (a⊕a) ≤ (E ◦ (a⊕a))∧ (E ′ ◦ (a⊕a)) ≤ (b∧b′)⊕ (b∧b′). Since E∧E ′ ∈ E ,
we may conclude that a ◁ b ∧ b′.

For the latter, we have E ◦ (a⊕ a) ≤ b⊕ b and E ′ ◦ (a′⊕ a′) ≤ b⊕ b for some E,E ′ ∈ E .
By taking the meet we may assume E = E ′ without loss of generality. Thus, by Lemma 2.3
we have y ∈ a ∧ (y, z) ∈ E ⊢y,z : X z ∈ b and y ∈ a′ ∧ (y, z) ∈ E ⊢y,z : X z ∈ b and so we
may conclude (y ∈ a ∧ (y, z) ∈ E) ∨ (y ∈ a′ ∧ (y, z) ∈ E) ⊢y,z : X z ∈ b. The equivalent
form of E ◦ ((a ∨ a′)⊕ (a ∨ a′)) ≤ b⊕ b then follows by distributivity, as required.

iii) Suppose a ◁ b. Then E ◦ (a ⊕ a) ≤ b ⊕ b for some E ∈ E . Take F ∈ E such
that F ◦ F ≤ E and set c = {z : X | ∃y : X. y ∈ a ∧ (y, z) ∈ F}. Again by the
characterisation in Lemma 2.3, we have a ◁ c. Moreover, F ◦ (c ⊕ c) ≤ b ⊕ b if and
only if ∃y : X. ∃x : X. x ∈ a ∧ (x, y) ∈ F ∧ (y, z) ∈ F ⊢z : X z ∈ b. This is equivalent to
∃x : X. x ∈ a ∧ (x, z) ∈ F ◦F ⊢z : X z ∈ b, which holds since F ◦F ◦ (a⊕a) ≤ E ◦ (a⊕a) ≤
b⊕ b. Thus, c ◁ b and ◁ interpolates.

Morphisms of uniform locales can be defined straightforwardly.

2.5. Definition. A morphism of (pre-)uniform locales f : (X, E)→ (Y,F) is a morphism
of locales f : X → Y such that (f × f)∗(F ) ∈ E for all F ∈ F .

2.6. Lemma. If f : (X, E)→ (Y,F) is a morphism of pre-uniform locales, then f ∗ preserves
the uniformly below relation.

Proof. Suppose a ◁ b in Y . Then there is an F ∈ F such that F ◦ (a ⊕ a) ≤ b ⊕ b.
Applying f ∗ ⊕ f ∗ we have (f ∗ ⊕ f ∗)(F ◦ (a ⊕ a)) ≤ f ∗(b) ⊕ f ∗(b). Note that in the
internal logic (x, z) ∈ (f ∗ ⊕ f ∗)(F ◦ (a⊕ a)) holds if and only if ∃y : Y. (f(x), y) ∈ a⊕ a ∧
(y, f(z)) ∈ F . This is implied by ∃y′ : X. (f(x), f(y′)) ∈ a ⊕ a ∧ (f(y′), f(z)) ∈ F and
hence (f ∗ ⊕ f ∗)(F ) ◦ (f ∗(a)⊕ f ∗(a)) ≤ (f ∗ ⊕ f ∗)(F ◦ (a⊕ a)) ≤ f ∗(b)⊕ f ∗(b). Therefore,
since (f ∗ ⊕ f ∗)(F ) ∈ E we have f ∗(a) ◁ f ∗(b).

2.7. Proposition. The category PUnifLoc of pre-uniform locales is topological over
OLoc.

Proof. Consider a family of pre-uniform locales (Xi, Ei) and locale morphisms fi : Y → Xi

where i ∈ I. We claim that there is an initial lift (Y, E). Here we define E to be the filter
generated by (fi × fi)∗(Ei) for each Ei ∈ Ei and each i ∈ I.

Note that this is indeed a uniformity. First observe that (fi × fi)∗(Ei) always satisfies
the reflexivity condition and that this condition is stable under finite meets. It is also
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easy to see that the symmetry condition is inherited from the Ei uniformities. Finally,
consider a general entourage E = ∧

j∈J(fj × fj)∗(Ej) ∈ E where J is a finite subset of
I. For each Ej there is a Fj ∈ Ej such that Fj ◦ Fj ≤ Ej. Then as we saw before,
(fj × fj)∗(Fj) ◦ (fj × fj)∗(Fj) ≤ (fj × fj)∗(Fj ◦ Fj) ≤ (fj × fj)∗(Ej), and therefore setting
F = ∧

j∈J(fj × fj)∗(Fj) ∈ E we have F ◦ F ≤ E. Thus, the final axiom of an entourage is
satisfied.

It is now routine to check that (Y, E) satisfies the necessary property in order to be a
universal lift.

By a general result, limits in PUnifLoc can be computed as the limits of the underlying
overt locales equipped with the initial uniformity with respect to the limiting cone.
Moreover, the existence of initial structures implies the existence of final structures. Then
colimits can be computed dually and we obtain the following corollary.

2.8. Corollary. The category PUnifLoc is complete and cocomplete.
The following result allows the category UnifLoc of uniform locales to inherit some of

the good behaviour of the category of pre-uniform locales. We state it here for convenience,
but since it will be easier to prove with covering uniformities, we postpone the proof until
Section 3.

2.9. Proposition. Uniform locales form a reflective subcategory of the category pre-
uniform locales.

2.10. Corollary. The category UnifLoc is complete and cocomplete.
We can also use this approach to define the notion of a uniform embedding.

2.11. Definition. A morphism of (pre-)uniform locales is a uniform embedding if it is
an initial locale embedding — that is, if it is initial with respect to the topological functor
PUnifLoc→ OLoc and its underlying locale morphism is an extremal monomorphism.
By general principles, these maps are precisely the extremal monomorphisms in PUnifLoc.

Explicitly, we have that if (X, E) is a pre-uniform locale and i : S ↪→ X is an overt
sublocale, then i is a uniform embedding if and only if the S is equipped with the uniformity
{(i× i)∗(E) | E ∈ E}. Moreover, it is easy to see that in this case S is a uniform locale
whenever X is.

3. Covering uniformities
In pointfree topology it is more common to describe uniform locales via uniform covers
and this is the approach taken by Johnstone in [13]. However, as pointed out in [18],
all definitions of uniform spaces or locales via covers that I have been able to find
[21, 10, 22, 8, 13, 19] are incorrect. Classically the error is a minor one, since it only
manifests for uniformities on the empty set (or the initial locale), but constructively it is
more important. I explain this error after the definitions below.
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3.1. Definition. A covering downset C on a locale X is a downset on OX such that∨
C = 1. We say a covering downset is strong if it is generated by its positive elements.

3.2. Definition. Given a locale X, an overt sublocale V of X and a covering downset
U ⊆ OX, the star of V with respect to U is defined by st(V, U) = ∨{u ∈ U | V ≬ u}. In
particular, this yields a notion of star of an open a ∈ OX when X is overt. For a covering
downset U on an overt locale we set U⋆ = ↓{st(u, U) | u ∈ U}.

3.3. Lemma. Let V and U be as defined as above. Then V ≤ wk-cl(V ) ≤ st(V, U) under
the ordering of sublocales.

Proof. First note that since V ≬ a ⇐⇒ wk-cl(V ) ≬ a, we have st(V, U) = st(wk-cl(V ), U)
and hence it is enough to prove V ≤ st(V, U).

We write the frame quotient map associated to V as a 7→ a ∩ V . To prove the result
we will show st(V, U) ∩ V = 1 in OV .

Since U is a cover, we have ∨
U = 1 in OX. Applying the quotient map then gives∨{u ∩ V | u ∈ U} = 1 in OV . Now since V is overt, we may replace this join by a similar

one consisting only of positive elements ∨{u ∩ V | u ∈ U, u ∩ V > 0}. But u ∩ V > 0 in V
if and only if V ≬ u in X and hence this join is in turn equal to (∨{u ∈ U | V ≬ u}) ∩ V ,
which is simply st(V, U) ∩ V . Thus, we have shown st(V, U) ∩ V = 1, as required.

3.4. Definition. A pre-uniform locale via covers is an overt locale X equipped with a
filter U of covering downsets such that for every U ∈ U there exists a strong V ∈ U such
that V ⋆ ⊆ U .

3.5. Remark. Where the usual definitions of covering uniformities go wrong is that they
omit the strength condition on V . Without it, {{0}} and the powerset of {0} would
be distinct valid uniformities on the trivial locale in disagreement with the entourage
approach. Johnstone [13] notices that this strength condition is important and calls a
uniformity proper if it satisfies it, but does not require it for every uniformity, nor does he
require (pre-)uniform locales to be overt in general. (Johnstone also fails to require that a
uniformity be inhabited, but I imagine this was just an mistake in the writeup.)

Nonetheless, it is easy to modify an otherwise valid covering uniformity to ensure that
the strength condition holds. It is not hard to see that a collection B of covering downsets
that is a base for a filter which satisfies every property of a covering uniformity aside from
the strength condition can be made into a base for a true uniformity by simply replacing
each B ∈ B with ↓{u ∈ B | u > 0}.

3.6. Definition. We define the uniformly below relation on the opens of a pre-uniform
locale via covers (X,U) by

a ◁ b ⇐⇒ ∃U ∈ U . st(a, U) ≤ b.

Then as before, a uniform locale via covers is a pre-uniform locale via covers (X,U) such
that every b ∈ OX can be expressed as b = ∨

a◁b a.



UNIFORM LOCALES AND THEIR CONSTRUCTIVE ASPECTS 247

As is well-known classically, the definition of uniformities via covers is equivalent to
the entourage approach discussed in Section 2.

3.7. Definition. A morphism of (pre-)uniform locales via covers f : (X,U)→ (Y,V) is
a morphism of locales f : X → Y such that ↓f ∗[V ] ∈ U for all V ∈ V.

3.8. Theorem. There is an isomorphism of categories between the category of pre-uniform
locales via entourages and the category of pre-uniform locales via covers (which commutes
with the forgetful functor into OLoc).

Proof. Let (X,U) be a pre-uniform locale via covers. We define an entourage uniformity
U on X with basic entourages of the form U = ∨{u⊕ u | u ∈ U} for each strong covering
downset U ∈ U . It is easy to see that U ∩ V ≤ U ∧ V and so this is indeed a filter base.
We now confirm that the three axioms hold.

First observe that if ∆: X → X×X is the diagonal map, ∆∗(U) = ∨{u∧u | u ∈ U} = 1,
since U is a cover. But this is precisely what the reflexivity axiom is saying in the internal
logic.

Next we note that each of these basic entourages is fixed under the automorphism of
X ×X sending (x, y) to (y, x) in the internal logic. It follows easily that the symmetry
condition holds for the resulting filter of entourages.

Finally, we require for each basic entourage U an entourage F ∈ U such that F ◦F ≤ U .
We claim that if V is a strong covering downset such that V ⋆ ⊆ U , then V is such
an F . Suppose (x, z) ∈ V ◦ V in the internal logic. This means there is a y : X such
that (x, y) ∈ V and (y, z) ∈ V . But V = ∨{v ⊕ v | v ∈ V } and so we may assume
x, y ∈ v and y, z ∈ v′ for some v, v′ ∈ V . Thus, we have reduced the claim to the
proving sequent x ∈ v ∧ z ∈ v′ ∧ ∃y : X. y ∈ v ∧ v′ ⊢x,z : X (x, z) ∈ U . But this
sequent just means that v ⊕ v′ ≤ U whenever v ≬ v′. In that case, v, v′ ≤ st(v, V ). So
v ⊕ v′ ≤ st(v, V )⊕ st(v, V ) ≤ ∨

w∈V st(w, V )⊕ st(w, V ) = V ⋆ ≤ U and the claim follows.
We now show that the map (X,U) 7→ (X,U) is functorial. We need only show that

if f ∗ : OY → OX sends uniform covers to uniform covers, then it sends entourages to
entourages. It is enough to show this for basic entourages. Suppose V is a basic entourage
on Y . We have (f×f)∗(V ) = ∨{f ∗(v)⊕f ∗(v) | v ∈ V } = ∨{u⊕u | u ∈ ↓f ∗[V ]} = ↓f ∗[V ],
which is a (basic) entourage on X.

Now let (X, E) be a pre-uniform locale (via entourages). We define a covering uniformity
Ê with basic covering downsets of the form Ê = ↓{u ∈ OX | u > 0, u⊕ u ≤ E} for each
E ∈ E . As above, reflexivity gives that 1 = ∨{u ∧ u′ | u⊕ u′ ≤ E} ≤ ∨{u | u⊕ u ≤ E}.
Then by overtness, we may restrict this join to the positive elements and so Ê is indeed a
cover. Again, it is easy to see that Ê ∧ E ′ ≤ Ê ∩ Ê ′ and so Ê is a filter base. To see that
Ê is a covering uniformity, it just remains to show the ‘star-refinement’ axiom.

Let Ê be a basic covering downset in Ê . We must find a strong covering downset V
in Ê such that V ⋆ ⊆ Ê. By using the final ‘transitivity’ axiom of entourage uniformities
twice we have that there is an F ∈ E such that F ◦ F ◦ F ≤ E. We claim that F̂ is a V
satisfying the above condition.
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To see this, first note that F̂ is strong by construction. To show F̂ ⋆ ⊆ Ê, it is enough
to show that for all v ∈ F̂ , st(v, F̂ ) ≤ u for some positive u such that u ⊕ u ≤ E.
In particular, we can show st(v, F̂ ) ⊕ st(v, F̂ ) ≤ E. (We may restrict to v > 0 since
F̂ is strong and then st(v, F̂ ) ≥ v > 0.) Further expanding the definitions, we have
st(v, F̂ ) = ∨{v′ ∈ OX | v′ > 0, v′ ⊕ v′ ≤ F, v ≬ v′} and so the desired inequality reduces
to v′ ⊕ v′′ ≤ E for all v′, v′′ such that v′ ⊕ v′, v′′ ⊕ v′′ ≤ F , v ≬ v′ and v ≬ v′′. We now
use the internal logic. Take x ∈ v′ and y ∈ v′′. There exist x′ ∈ v ∧ v′ and y′ ∈ v ∧ v′′.
Now since x, x′ ∈ v′, we have (x, x′) ∈ F . Similarly, (y′, y) ∈ F . But recall that v ∈ F̂ , so
that v ⊕ v ≤ F . Thus since x′, y′ ∈ v, we also have (x′, y′) ∈ F . So by the definition of
relational composition, we have (x, y) ∈ F ◦ F ◦ F ≤ E. Therefore, F̂ ⋆ ⊆ Ê and Ê is a
covering uniformity.

As before, we show that (X, E) 7→ (X, Ê) is functorial by proving that f ∗ : OY → OX
sends uniform covers to uniform covers whenever it sends entourages to entourages. Let F̂
be a basic uniform covering downset on Y . To show that this is sent to a uniform cover we
require that Ê ⊆ ↓f ∗[F̂ ] for some entourage E on X. We will take E = (f ×f)∗(F ′) for an
entourage F ′ on Y to be chosen later. So we require ↓{u | u > 0, u⊕ u ≤ (f × f)∗(F ′)} ⊆
↓{f ∗(v) | v > 0, v⊕ v ≤ F}. Explicitly, for a positive u such that u⊕u ≤ (f ×f)∗(F ′), we
require a positive v such that v ⊕ v ≤ F and u ≤ f ∗(v). To find such a v we might try to
take v as small as possible such that u ≤ f ∗(v). If f ∗ had a left adjoint f! we could achieve
this by taking v = f!(u). In general this is not possible. However, we can approximate
this by taking image of u as a sublocale (which always exists) and then using the star
operation to find an open containing this. In this way we set v = st((Sf)!(u), F̂ ′). Then
f ∗(v) = f ∗(st((Sf)!(u), F̂ ′)) = st(u, ↓f ∗[F̂ ′]) ≥ u, as desired. Also note that (Sf)!(u) is
positive as the image of the positive open u and hence v > 0. It remains to show v⊕v ≤ F .

This can be shown in a similar way to the proof of the star-refinement axiom above.
Expanding the definitions, we must show that given w,w′ such that w ⊕ w ≤ F ′ and
w′ ⊕ w′ ≤ F ′ and such that u ≬ f ∗(w) and u ≬ f ∗(w′), we can conclude w ⊕ w′ ≤ F . In
the internal logic, we take x ∈ w and y ∈ w′. Then ∃x′ : X. x′ ∈ u ∧ f(x′) ∈ w and
∃y′ : X. y′ ∈ u ∧ f(y′) ∈ w′. Recall u ⊕ u ≤ (f × f)∗(F ′) and so we have (x, f(x′)) ∈
w ⊕ w ≤ F ′, (f(x′), f(y′)) ∈ F ′ and (f(y′), y) ∈ F ′. Thus, (x, y) ∈ F ′ ◦ F ′ ◦ F ′. Now we
can choose F ′ to satisfy F ′ ◦ F ′ ◦ F ′ ≤ F and so we are done.

We have thus constructed functors from the category of pre-uniform locales via covers to
the pre-uniform locales via entourages and back. Moreover, it is clear that these commute
with the forgetful functor into OLoc. It remains to show that these are inverses and it is
enough to show this on objects.

Consider a covering uniformity U on X. Then Û has a base consisting of covering
downsets of the form Û = ↓{v ∈ OX | v > 0, v ⊕ v ≤ ∨{u⊕ u | u ∈ U}} for each uniform
covering downset U ∈ U . We may restrict to strong U , in which case it is clear that U ⊆ Û

and hence Û ⊆ U .
On the other hand, suppose v is one of the generators of Û . Then v > 0 so v ≬ 1 = ∨

U
and hence v ≬ u′ for some u′ ∈ U . We then have v ⊕ (v ∧ u′) ≤ ∨{u⊕ (u ∧ u′) | u ∈ U}
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and applying (π1)! we find v ≤ ∨{u ∈ U | u ≬ u′} = st(u′, U) ∈ U⋆. Therefore, Û ⊆ U⋆. It
follows that U ⊆ Û and hence U = Û , as required.

Finally, suppose E is an entourage uniformity on X. Then !Ê has a base of entourages
of the form !Ê = ∨{u⊕ u | u ∈ OX, u > 0, u⊕ u ≤ E} for each entourage E ∈ E . It is
clear that !Ê ≤ E and hence E ⊆!Ê .

For the other direction, let F be an entourage such that F ◦ F ≤ E and let G =
F ∧ F o ∈ E . Suppose u ⊕ u′ ≤ G, where we may assume u, u′ > 0 without loss of
generality. We have u ⊕ u′ ≤ G ≤ F and u′ ⊕ u ≤ Go ≤ F . Now in the internal logic,
consider x, z ∈ u. Since u′ > 0, we have ∃y : X. y ∈ u′. Thus, (x, y) ∈ u ⊕ u′ ≤ F and
(y, z) ∈ u′ ⊕ u ≤ F . It follows that (x, z) ∈ F ◦ F ≤ E. So we have shown u ⊕ u ≤ E.
Similarly, u′⊕ u′ ∈ E and hence (u∨ u′)⊕ (u∨ u′) = u⊕ u∨ u⊕ u′ ∨ u′⊕ u∨ u′⊕ u′ ≤ E.
Thus, u⊕ u′ ≤ (u ∨ u′)⊕ (u ∨ u′) ≤!Ê and we can conclude that G ≤!Ê. It follows that
!Ê ≤ E and hence !Ê = E , as required.

3.9. Remark. We can also describe uniform embeddings in terms of covers. If (X,U) and
(Y,V) are pre-uniform locales and i : X ↪→ Y is a locale embedding, then i is a uniform
embedding if and only if the covers ↓{u ∈ i∗[V ] | u > 0} for V ∈ V give a base for U .

Now in order to relate the entourage and covering approaches to uniform locales, we
must understand the relationship between their uniformly below relations.

3.10. Lemma. With the definitions from the previous theorem, if E is an entourage and
E ◦ (a⊕ a) ≤ b⊕ b then st(a, Ê) ≤ b. If U is a uniform covering downset and st(a, U) ≤ b,
then U ◦ (a⊕ a) ≤ b⊕ b. Therefore, the uniformly below relation defined from an entourage
uniformity and that defined by its corresponding covering uniformity coincide.

Proof. Suppose E ◦ (a⊕ a) ≤ b⊕ b. Recall that in the internal logic this is equivalent to
∃y : X. y ∈ a ∧ (y, z) ∈ E ⊢z : X z ∈ b. We also have st(a, Ê) = ∨{u ∈ Ê | a ≬ u} = ∨{u |
u ⊕ u ≤ E, a ≬ u}. Consider u ∈ OX such that u ⊕ u ≤ E and a ≬ u. Then if z ∈ u in
the internal logic, we can take y ∈ a ∧ u and conclude that z ∈ b. So u ≤ b and hence
st(a, Ê) ≤ b, as required.

Now suppose st(a, U) ≤ b. Then for any u ∈ U such that a ≬ u, we have u ≤ b. We
must show y ∈ a ∧ (y, z) ∈ U ⊢y,z : X z ∈ b where U = ∨{u⊕ u | u ∈ U}. By the join and
existential quantification rules it is enough to show ∃y : X. y ∈ a ∧ (y, z) ∈ u⊕u ⊢z : X z ∈ b
for each u ∈ U . But this is just the assumption expressed in the internal logic and so we
are done.

Now combining Theorem 3.8 and Theorem 3.10 we obtain the following result.

3.11. Theorem. The isomorphism of categories from Theorem 3.8 restricts to one between
uniform locales via entourages and uniform locales via covers.

We can now provide the proof of Proposition 2.9, which states that UnifLoc is a
reflective subcategory of PUnifLoc, using the covering approach.
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Proof of Proposition 2.9. Given a pre-uniform locale X = (X,U), we can consider
the set R ⊆ OX of elements b such that b = ∨

a◁b a. We claim that R is a subframe of
OX.

This is most easily understood by showing the map r : b 7→ ∨
a◁b a is a conucleus —

that is, a meet-preserving interior operator. Certainly, r is monotone and deflationary. For
idempotence, we consider a ◁ b. Then there is a c such that a ◁ c ◁ b and so a ◁ c ≤ r(b).
Hence, r(b) ≤ r(r(b)) and r is idempotent.

We have r(1) = 1, since 1 ◁ 1. We must show r(b) ∧ r(b′) ≤ r(b ∧ b′). It suffices to
consider a ◁ b and a′ ◁ b′ and show that a ∧ a′ ◁ b ∧ b′. But this is immediate from part
(ii) of Lemma 2.4. Thus, r is indeed a conucleus and its set of fixed points R is a subframe.

We define ΥX to be the locale with underlying frame R equipped with the final
uniformity from the locale map given by R ↪→ OX. This uniformity can be described
explicitly as {U ⊆ R | ↓i[U ] ∈ U} where i is the subframe inclusion. It is easy to see this
is indeed the final uniformity once we know it is a uniformity at all. The only nontrivial
condition to check is that for each U ⊆ R such that ↓i[U ] ∈ U there is a strong cover
V such that ↓i[V ] ∈ U and V ⋆ ⊆ U . Since i is injective and hence strongly dense we
know that a > 0 in R if and only if i(a) > 0 in OX. Thus, there is no difference between
strength or the star operation with respect to the subframe versus the parent frame and
so it is enough to show that covers of the from ↓i[U ] give a base for U .

Let V be a uniform cover of X and consider the downset V ′ = {u | u ◁ v ∈ V }. Take
a uniform cover W such that W ⋆ ⊆ V . Then for w ∈ W , we have w ≤ st(w,W ) ∈ V
and hence w ∈ V ′. Thus, W ⊆ V ′ and so V ′ is a uniform cover. But note that ∨

u◁v u
lies in R by idempotence of r and set U = ↓{∨u◁v u | v ∈ V } ⊆ R. It is now clear that
V ′ ⊆ ↓i[U ] ⊆ V and so U is uniform cover of ΥX and the covers of the form ↓i[U ] form a
base for U .

The above arguments also quickly imply that the uniformly below relations on R and
OX agree. Thus, the uniformity on ΥX is admissible by the construction of R.

We claim that the epimorphism of pre-uniform locales υX : X → ΥX induced by i
is the unit of an adjunction between Υ and the inclusion functor from UnifLoc into
PUnifLoc. Consider the following diagram in PUnifLoc where Y is a uniform locale.
We must show f ♭ exists. (It is unique since υX is epic.)

ΥX

X Y

υX
f ♭

f

Since υX is final, it is sufficient to check this factorisation on the level of the underlying
locale maps. So we only need to show that the image of the frame homomorphism f ∗ lies
in R ⊆ OX.
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As Y is a uniform locale, every element of OY satisfies b = ∨
a◁b a. Applying f ∗ we

obtain f ∗(b) = ∨
a◁b f

∗(a) ≤ ∨
a′◁f∗(b) a

′ ∈ R, where the inequality holds since a ◁ b =⇒
f ∗(a) ◁ f ∗(b). The result follows.

We end this section with some more basic results about uniform locales. The following
result was already observed by Johnstone in [13].

3.12. Proposition. Uniform locales are weakly regular.

Proof. By Lemma 3.3 we know that a ◁ b implies that a is weakly rather below b. Thus,
weak regularity follows from the admissibility condition.

3.13. Remark. In fact this gives somewhat more. Classically under the assumption of
the Axiom of Dependent Choice, uniform locales are not just regular, but completely
regular. Without Dependent Choice (but still using classical logic) complete regularity is
too strong a condition. However, there is a variant of completely regularity, called strong
regularity in [3], which still holds. A frame is strongly regular if every element b can be
expressed as b = ∨

a◁b a for some interpolative relation ◁ contained in ≺. This is implied
by complete regularity, and is equivalent to it given Dependent Choice. Moreover, using
classical logic, a locale is uniformisable if and only if it is strongly regular. The terminology
becomes rather unfortunate in our setting: since the uniformly below relation interpolates,
the above proof shows that every uniform locale is ‘strongly weakly regular’.

3.14. Corollary. Strongly dense uniform maps are epic in UnifLoc.

Proof. The proof proceeds exactly like the familiar one for Hausdorff spaces/locales.
A full characterisation of uniformisable locales appears to be difficult and we do not

attempt it here. However, the following proposition does improve on Johnstone’s result
that completely regular (overt) locales are uniformisable.

3.15. Proposition. Strongly regular overt locales are uniformisable.

Proof. Let X be an overt locale and let ◁ be an interpolative relation contained in ≺
witnessing its strong regularity. We will take our subbasic uniform covering downsets to
be ↓{a∗, b} for a ◁ b. Note that these are indeed covers since a ◁ b implies a ≺ b.

We claim that the covers of the form ↓{u ∈ ∧
i∈I Ci | u > 0}, where I is finite and each

Ci is one of these subbasic covers, constitute a base for an admissible covering uniformity
on X. To show this gives a uniformity it suffices to find for each subbasic cover ↓{a∗

0, a1} a
finite set S of subbasic covers such that (∧

S)⋆ ⊆ ↓{a∗
0, a1}. We use the interpolativity of ◁

to obtain a0 ◁ a 1
3
◁ a 2

3
◁ a1 and consider C = ↓{a∗

0, a 1
3
} ∩ ↓{a∗

1
3
, a 2

3
} ∩ ↓{a∗

2
3
, a1}. Writing

each ↓{x, y} as ↓x∪↓y and using distributivity we find that C = ↓{a 1
3
, a∗

0∧a 2
3
, a∗

1
3
∧a1, a

∗
2
3
}.

Observe that the first two elements a 1
3

and a∗
0 ∧ a 2

3
are disjoint from the last element a∗

2
3
,

while the last two elements are disjoint from the first one. Thus, when x is one of the
first two elements we have st(x,C) ≤ a 1

3
∨ (a∗

0 ∧ a 2
3
)∨ (a∗

1
3
∧ a1) ≤ a1 and when x is one of
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the last two elements we have st(x,C) ≤ (a∗
0 ∧ a 2

3
) ∨ (a∗

1
3
∧ a1) ∨ a∗

2
3
≤ a∗

0. So we do have
C⋆ ⊆ ↓{a∗

0, a1} as required.
Finally, we show admissibility. Suppose a ◁ b. Then {a∗, b} is a uniform cover and we

have st(a, {a∗, b}) ≤ b and hence a is uniformly below b. Admissibility then follows from
the assumption that b = ∨

a◁b a.

4. Completion
We are now in a position to discuss completeness of uniform locales. The definition is
similar to the classical case except we use weak closedness and strong density instead of
ordinary closedness and density.

4.1. Definition. A uniform locale X is complete if it is universally weakly closed in the
sense that whenever it occurs as a uniform sublocale of a uniform locale, it is a weakly
closed sublocale. Equivalently, it is complete if every strongly dense uniform embedding
X ↪→ Y is an isomorphism.

Every uniform locale has a completion — that is, a (unique) complete uniform locale in
which it is strongly densely uniformly embedded. As in the spatial setting, the completion
may be constructed by means of Cauchy filters.

4.2. Definition. A Cauchy filter on a uniform locale (X,U) is a filter F on OX such
that

• F only contains positive elements,

• F contains an open from every uniform cover.

We say a Cauchy filter F is regular if for every a ∈ F there is a b ∈ F such that b ◁ a.
The regular Cauchy filters on X will be the points of the completion of X. Thus,

we consider the classifying locale CX of the theory of regular Cauchy filters on X. This
classifying locale is given by a presentation with a generator [a ∈ F ] for each a ∈ OX and
the following relations:

i) [1 ∈ F ] = 1,

ii) [a ∧ b ∈ F ] = [a ∈ F ] ∧ [b ∈ F ],

iii) [a ∈ F ] ≤ ∨{1 | a > 0},

iv) ∨
u∈U [u ∈ F ] = 1 for each U ∈ U ,

v) [a ∈ F ] ≤ ∨
b◁a[b ∈ F ].
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By the universal property of the classifying locale, the identity morphism on CX corresponds
to a ‘CX-indexed regular Cauchy filter on X’ sending a ∈ OX to [a ∈ F ] ∈ OCX. There
is also a locale embedding γ : X ↪→ CX given by the frame homomorphism [a ∈ F ] 7→ a
(corresponding to the identity X-indexed regular Cauchy filter on X). In fact, it is not
hard to see that the former map is the right adjoint of the latter. (For the nontrivial
direction, write a general element of OCX as ∨

α[aα ∈ F ] and break the inequality up into
a part for each α.) Condition (iii) then implies that γ∗!∗(p) ≤ !∗(p) for all p ∈ Ω and hence
γ is strongly dense.

It will also be useful to define the classifying locale CX of all Cauchy filters on X. The
presentation is similar to that of CX, but without the regularity condition (v). As above,
we have a canonical strongly dense embedding b : X ↪→ CX defined by b∗ : [a ∈ F ] 7→ a
and whose right adjoint is a CX-indexed Cauchy filter on X sending a to [a ∈ F ]. Of
course, we have b∗ = γ∗ρ∗ and ρ∗b∗ = γ∗ where ρ is the natural embedding CX ↪→ CX.

We can use b∗ to define a pre-uniform structure on CX.

4.3. Lemma. Let (X,U) be a uniform locale. The downsets of the form ↓b∗[U ] for U ∈ U
form a base for a covering uniformity on CX. Moreover, b : X ↪→ CX is a strongly dense
uniform embedding.

Proof. First note that CX is overt, since X is overt and b : X → CX is strongly dense.
The above downsets indeed are covers by condition (iv). It is also easy to see that they

form a filter base.
For the star-refinement axiom, consider ↓b∗[U ]. There is a strong V ∈ U such that

V ⋆ ≤ U . We claim (↓b∗[V ])⋆ ⊆ ↓b∗[U ]. It suffices to show st(b∗(v),b∗[V ]) ≤ b∗(st(v, V )) ∈
↓b∗[U ] for all v ∈ V . Consider w ∈ V such that b∗(v) ≬ b∗(w). Since b is strongly dense,
we then have v ∧ w = b∗b∗(v ∧ w) = b∗(b∗(v) ∧ b∗(w)) > 0 and hence v ≬ w. Thus,
w ≤ st(v, V ) so that b∗(w) ≤ b∗(st(v, V )) and the claim follows.

Finally, since b∗ is a section of b∗, it preserves positive elements. To see this explicitly,
suppose a ∈ OX is positive and b∗(a) ≤ ∨

A. Applying b∗ we have a = b∗b∗(a) ≤ ∨
b∗[A].

Hence b∗[A] is inhabited and so is A. Thus, b∗(a) is positive. It follows that b∗[V ] as
defined above is strong since V is. Thus, we have shown that we do have a base for
a uniformity on CX. The map b is then a uniform embedding by construction, since
b∗b∗ = idOX .

We obtain a uniform structure on CX in a similar way.

4.4. Corollary. Let (X,U) be a uniform locale. The downsets of the form ↓γ∗[U ] for
U ∈ U form a base for an admissible covering uniformity on CX. Moreover, γ : X ↪→ CX
is a strongly dense uniform embedding.

Proof. As above we have that CX is overt, since X is overt and γ : X → CX is strongly
dense. Now since ρ∗b∗ = γ∗, the downsets ↓γ∗[U ] form a base for the uniformity on CX
inherited as a sublocale of CX. Furthermore, γ is a uniform embedding as before.

It only remains to show admissibility. As we showed above for b we have that
st(γ∗(v), γ∗[V ]) ≤ γ∗(st(v, V )). Applying γ∗ we then see that st(v, V ) ≤ u implies
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st(γ∗(v), γ∗[V ]) ≤ γ∗(u) and so v ◁ u in OX implies γ∗(v) ◁ γ∗(u) in OCX. It is
enough to show admissibility for the basic opens γ∗(u) = [u ∈ F ] and by condition (v) we
have γ∗(u) ≤ ∨

v◁u γ∗(v) ≤ ∨
γ∗(v)◁γ∗(u) γ∗(v), as required.

The uniformity on CX is not in general admissible, while the uniformity on CX is.
The following proposition explains the relationship between these pre-uniform locales.

4.5. Proposition. The uniform locale CX is the uniform reflection of CX. Moreover,
the frame homomorphism corresponding to the unit υCX : CX → CX is left adjoint to ρ∗.

Proof. We claim there is a well-defined frame map r : OCX → OCX sending [a ∈ F ]
to ∨

b◁a[b ∈ F ]. By part (ii) of Lemma 2.4 we see it satisfies relations (i) and (ii) and it
satisfies (iii) simply due to the similar relation on OCX. For condition (iv) we can use
that star-refinement axiom to show that {b | b ◁ a ∈ U} is a uniform cover whenever U is.
Finally, relation (v) holds since ◁ interpolates.

We now show that r is left adjoint to ρ∗. It is clear that ρ∗r = idOCX by condition (v)
on OCX. On the other hand, rρ∗([a ∈ F ]) = ∨

b◁a[b ∈ F ] ≤ [a ∈ F ] and so rρ∗ ≤ idOCX ,
as required.

By the universal property of the uniform reflection, the image of r : OCX → OCX
lies in the the subframe OΥCX of elements B such that B ≤ ∨

A◁B A. We must show
that every such element lies in the image of r.

Suppose B ≤ ∨
A◁B A. Then since the elements [a ∈ F ] form a base, we have

B ≤ ∨
[a∈F ]◁B[a ∈ F ]. Now suppose [a ∈ F ] ◁ B. Then st([a ∈ F ],b∗[U ]) ≤ B for

some uniform cover U on X. Explicitly, st([a ∈ F ],b∗[U ]) = ∨
u∈U, a≬u[u ∈ F ]. Now

let V be a uniform cover such that V ⋆ ≤ U and take v ∈ V such that v ≬ a. Then
st(a ∧ v, V ) ≤ st(v, V ) ∈ U , and clearly st(a ∧ v, V ) ≬ a, so that [st(a ∧ v, V ) ∈ F ] ≤
st([a ∈ F ],b∗[U ]) ≤ B. Thus, [a∧ v ∈ F ] ◁ [b ∈ F ] ≤ B for some b ∈ OX and so we have
[a ∧ v ∈ F ] ≤ ∨

[c∈F ]◁[b∈F ]≤B[c ∈ F ] ≤ ∨
[b∈F ]≤B

∨
c◁b[c ∈ F ] = rρ∗(B), where the second

inequality holds since b∗ preserves the uniformly below relation.
Taking the join over all such v we then find ∨

v∈V, v≬a[a ∧ v ∈ F ] ≤ rρ∗(B). Now note
that ∨

v∈V, v≬a[a ∧ v ∈ F ] = ∨
v∈V [a ∧ v ∈ F ] = [a ∈ F ] ∧ ∨

v∈V [v ∈ F ] = [a ∈ F ] where the
first equality follows from condition (iii) for CX, the second equality is from condition
(ii) and the third equality is from condition (iv). Therefore, [a ∈ F ] ≤ rρ∗(B) and so
rρ∗(B) ≤ B ≤ ∨

[a∈F ]◁B[a ∈ F ] ≤ rρ∗(B). Thus, B is in the image of r as required.

4.6. Remark. The adjunction of the frame homomorphisms above gives ρ ⊣ υCX in Loc.
This can be understood as a pointfree manifestation of the fact that regular Cauchy filters
are the same as minimal Cauchy filters, with the composite ρυCX associating each Cauchy
filter to the smallest Cauchy filter contained in it.

We now observe that C and C are functorial.

4.7. Proposition. The construction of the locale of Cauchy filters gives rise to a functor
C: UnifLoc→ PUnifLoc. Furthermore, the maps b : X → CX assemble into a natural
transformation from the inclusion UnifLoc ↪→ PUnifLoc to C.
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Proof. Let f : X → Y be a morphism of uniform locales. Recall that bX
∗ : OX → OCX

is an CX-indexed Cauchy filter on X, from which it easily follows that bX
∗ f

∗ is an
OCX-indexed Cauchy filter on Y . By the universal property of CY we obtain a frame
homomorphism from OCY to OCX. Explicitly this sends [a ∈ F ] to [f ∗(a) ∈ F ]. We
define Cf to be a corresponding locale map.

It is now easy to see this definition respects identities and composition and that b is
natural.

4.8. Corollary. Similarly, the construction of the regular Cauchy filter locale yields a
functor C : UnifLoc→ UnifLoc and the maps γ : X → CX give a natural transformation
from the identity to C.

Proof. Simply set C = Υ ◦ C and note that γ is equal to Υb (up to isomorphism).
We shall now attempt to show CX is the completion of X. To see this we note that

some of the results that we have seen to hold for γ actually hold for any strongly dense
uniform embedding. We will proceed in a similar manner to [19, Chapter VIII] for the
next few results. Let us begin by proving an analogue of Corollary 4.4.

4.9. Lemma. If j : (X,U) ↪→ (Y,V) is a strongly dense embedding of pre-uniform locales,
then the downsets of the form ↓j∗[U ] for U ∈ U form a base for V.

Proof. We first observe that the downsets ↓j∗[U ] are V-uniform covering downsets. Since
j is a uniform embedding, every U ∈ U contains ↓j∗[V ] for some V ∈ V. We then have
↓j∗[U ] ⊇ ↓j∗j

∗[V ] ⊇ V and hence ↓j∗[U ] ∈ V .
Now take V ∈ V. There is a W ∈ V such that W ⋆ ⊆ V . Then ↓j∗[W ] ∈ U and we

claim ↓j∗j
∗[W ] ⊆ V . An element of j∗j

∗[W ] is of the form j∗j
∗(w) for w ∈ W . Note that

if j∗j
∗(w) ≬ a, then by strong density of j we have j∗(w) = j∗j∗j

∗(w) ≬ j∗(a), which in
turn means w ≬ a. Thus, the open sublocale j∗j

∗(w) is contained in wk-cl(w). But w ∈ W
satisfies st(w,W ) ≤ v for some v ∈ V . Now by Lemma 3.3 we have j∗j

∗(w) ≤ wk-cl(w) ≤ v
and hence j∗j

∗(w) ∈ V , as claimed.
Now recall that the right adjoint γ∗ is an indexed regular Cauchy filter. In fact, this is

true of every strongly dense uniform embedding, which helps explain why there is a link
between Cauchy filters and completeness in the first place.

4.10. Lemma. Let j : (X,U) ↪→ (Y,V) be a strongly dense embedding of uniform locales.
Then the right adjoint j∗ : OX → OY is an Y -indexed regular Cauchy filter.

Proof. Since j∗ preserves meets it satisfies conditions (i) and (ii) and strong density
means j∗(a) ≤ !∗∃(a) and hence condition (iii) holds.

To see condition (iv) holds recall that j is a uniform embedding and so each uniform
covering downset U ∈ U satisfies U ⊇ ↓j∗[V ] for some V ∈ V . We then have ∨

u∈U j∗(u) ≥∨
v∈V j∗(j∗(v)) ≥ ∨

v∈V v = 1, as required.
Now note that if b ◁ j∗(a), then j∗(b) ◁ j∗j∗(a) = a and hence j∗(a) = ∨

b◁j∗(a) b ≤∨
j∗(b)◁a b ≤

∨
j∗(b)◁a j∗j

∗(b) ≤ ∨
b′◁a j∗(b′), which is the regularity condition (v).
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We are now able to prove that CX is, in a sense, the largest uniform locale into which
X can be strongly densely embedded.

4.11. Proposition. Let j : X ↪→ Y be any strongly dense embedding of uniform locales.
Then γ : X ↪→ CX factors uniquely through j to give a strongly dense uniform embedding
k : Y ↪→ CX.

Proof. By Lemma 4.10 we have that j∗ : OX → OY is an indexed regular Cauchy
filter. Then by the universal property of CX this gives a locale map k : Y → CX whose
corresponding frame homomorphism is defined by [a ∈ F ] 7→ j∗(a). This indeed composes
with j∗ to give γ∗, since j∗j∗ = idOX .

Pulling back a basic uniform cover on CX along k gives ↓{k∗γ∗(u) | u ∈ U} for U a
uniform cover on X. But note that k∗γ∗ = j∗ and so applying Lemma 4.9 to j these give
a base of uniform covers of Y . Hence k is uniform and initial. Now to show that k is a
uniform embedding it remains to prove k∗ is surjective. Observe that if b ◁ a in OY then
b ≤ ∨{v ∈ V | v ≬ b} ≤ a for some basic uniform cover V of Y and hence each a ∈ OY is
a join of elements of the form k∗γ∗(u). Consequently, k∗ is indeed surjective. Finally, k is
strongly dense since γ is and the map k is unique since j is epic by Corollary 3.14.

It follows that CX is indeed the completion of X.

4.12. Theorem. The uniform locale CX is the unique completion of X.

Proof. We first show that CX is complete. Suppose e : CX ↪→ Y is a strongly dense
uniform embedding. Then by Proposition 4.11 we have that eγ factors through γ to give
a uniform map f : Y → CX such that γ = feγ. But γ is strongly dense and hence epic, so
that fe = idCX and e is a split monomorphism. But e is also an epimorphism and thus an
isomorphism. Therefore, CX is complete.

Now we show uniqueness. Suppose e′ : X ↪→ C is a completion of X. Then by
Proposition 4.11 there is a strongly dense uniform embedding f ′ : C ↪→ CX such that
f ′e′ = γ. This is an isomorphism by the completeness of C.

4.13. Theorem. Complete uniform locales form a reflective subcategory CUnifLoc of
UnifLoc with C as the reflector and γ as the unit.

Proof. By Theorem 4.12, CX is complete. Moreover, γY is an isomorphism for a complete
uniform locale Y , since γY is a strongly dense uniform embedding. Thus, any uniform
map f : X → Y factors through γX to give γ−1

Y Cf . Finally, this factorisation is unique
since γY is epic.

We will occasionally wish to talk about the completion of a pre-uniform locale. This
may be defined simply as the completion of its uniform reflection. On the other hand,
the definition of CX works equally well when X is only a pre-uniform locale and its
fundamental properties still go through. With no essential modification the proof of
Proposition 4.5 then shows that ΥCX ∼= CΥX in this general situation. Moreover, we
have γΥXυX = υCXbX .

Even with this generalised notion of completion we have the following result.



UNIFORM LOCALES AND THEIR CONSTRUCTIVE ASPECTS 257

4.14. Proposition. The completion of pre-uniform locales preserves finite products.

Proof. The terminal pre-uniform locale is already a complete uniform locale, since
reflective subcategories are closed under limits in the parent category.

To show that CΥ preserves binary products, it suffices to show that the canonical
map from Υ(X × Y ) to CΥX × CΥY is a strongly dense uniform embedding. The latter
is complete, since as a reflective subcategory, complete uniform locales are closed under
products.

Certainly the unit υX : X → ΥX is strongly dense since it is an epimorphism of locales.
Also, we already know that γΥX : ΥX → CΥX is strongly dense. Therefore, the composite
γΥXυX : X → CΥX is strongly dense (and similarly for Y ). It then follows that the
product map X × Y → CΥX ×CΥY is strongly dense. This factors through the unit map
υX×Y : X × Y → Υ(X × Y ) to give the map in question. Now as required, this map is
strongly dense since it is the second factor of a strongly dense map.

The functoriality of C means that uniform maps between pre-uniform locales lift to
(uniform) maps between their completions. However, these are not the only maps that lift
to (not-necessarily-uniform) maps between the completions.

4.15. Lemma. A general locale map f : X → Y between pre-uniform locales lifts to give
a (unique) locale map f̃ : CΥX → CΥY such that f̃γΥXυX = γΥY υY f if and only if
(γΥX)∗(υX)∗f

∗ sends uniform covers to covers.

Proof. The reverse direction of the proof proceeds as in the proof of Proposition 4.7.
The composite map (γΥX)∗(υX)∗f

∗ is an CX-indexed Cauchy filter on Y and thus lifts
to give a frame homomorphism from OCY to OCX. Then the universal property of the
uniform reflection of CY (together with the isomorphism ΥCX ∼= CΥX) gives the desired
lift f̃ : CΥX → CΥY .

For the forward direction consider the following calculation.

(γΥX)∗(υX)∗f
∗υ∗

Y γ
∗
ΥY = (γΥX)∗(υX)∗υ

∗
Xγ

∗
ΥX f̃

∗ ≥ f̃ ∗

Certainly, the frame homomorphism f̃ ∗ sends all covers to covers and hence so does
(γΥX)∗(υX)∗f

∗υ∗
Y γ

∗
ΥY . But we also know that (γΥY )∗ and (υY )∗ preserve uniform covers and

hence (γΥX)∗(υX)∗f
∗υ∗

Y γ
∗
ΥY (γΥY )∗(υY )∗ = (γΥX)∗(υX)∗f

∗υ∗
Y (υY )∗ sends uniform covers

to covers. Now in the proof of Proposition 2.9 we showed uniform covers of the form
↓υ∗

Y (υY )∗[U ] form a base for the uniformity on Y and hence (γΥX)∗(υX)∗f
∗ also sends

uniform covers to covers, as required.
This can also be expressed in terms of entourages.

4.16. Corollary. A locale map f : X → Y between pre-uniform locales lifts to a locale
map f̃ : CΥX → CΥY as above if and only if (γΥXυX × γΥXυX)∗(f × f)∗ sends entourages
on Y to reflexive relations on CΥX.
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Proof. We must simply show that (γυ × γυ)∗(f × f)∗ sends entourages to reflexive
relations if and only if γ∗υ∗f

∗ sends uniform covers to covers.
The proof of the forward direction proceeds almost exactly as in the proof that the map

(X, E) 7→ (X, Ê) is functorial in Theorem 3.8 (and using u ≤ γ∗υ∗f
∗(v) ⇐⇒ υ∗γ∗(u) ≤

f ∗(v) as appropriate).
Conversely, suppose γ∗υ∗ sends uniform covers to covers. Using the same notation as

in Theorem 3.8 (and applying Lemma 1.5) we have

∆∗(γυ × γυ)∗(f × f)∗(V ) =
∨
{γ∗υ∗(a) ∧ γ∗υ∗(b) | a⊕ b ≤ (f × f)∗(V )}

=
∨
{γ∗υ∗(c) | c⊕ c ≤ (f × f)∗(V )}

=
∨
{γ∗υ∗(c) | c⊕ c ≤

∨
{f ∗(v)⊕ f ∗(v) | v ∈ V }}

≥
∨
{γ∗υ∗(c) | c ≤ f ∗(v), v ∈ V }

=
∨
{γ∗υ∗f

∗(v) | v ∈ V }
=

∨
(↓γ∗υ∗f

∗[V ])
= 1.

Thus, (γυ × γυ)∗(f × f)∗ indeed sends entourages to reflexive relations, as required.
It is sometimes convenient to be able to describe the completion of a (pre-)uniform

locale X in terms of basic opens and basic uniformities on X instead of all elements of
OX. This was done in the metric case by Henry in [9]. We conclude this section with a
discussion of how to do this in our setting.

Let X be a locale and let B be a collection of covers of X by positive opens such that
{↓C | C ∈ B} is a base for a covering uniformity U on X. Set B = ⋃B.

Note that every element of OΥX is a join of elements of B. For a ∈ OΥX we have
a ≤ ∨

b◁a b. Now b ◁ a means b ≤ st(b, C) = ∨{c ∈ C | c ≬ b} ≤ a for some C ∈ B and so
a ≤ ∨{c | C ∈ B, c ∈ C, b ∈ OX, st(b, C) ≤ a, c ≬ b} ≤ a.

By replacing each element c of each C ∈ B by ∨
c′◁c c

′ we may assume without loss of
generality that B ⊆ OΥX and hence that B is a base for OΥX.

4.17. Proposition. Given X, B and B as defined above, the completion CΥX has an
alternative presentation with a generator [b ∈ FB] for each b ∈ B and the following
relations:

a) [a ∈ FB] ≤ [b ∈ FB] for a ≤ b,

b) [a ∈ FB] ∧ [b ∈ FB] ≤ ∨
c∈B∩↓a∩↓b[c ∈ FB],

c) ∨
c∈C [c ∈ FB] = 1 for each C ∈ B,

d) [a ∈ FB] ≤ ∨
b∈B, b◁a[b ∈ FB].
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Proof. We first note that every generator [a ∈ F ] in the original presentation for CX
satisfies [a ∈ F ] = ∨

b∈B∩↓a[b ∈ F ]. To see this, recall that [a ∈ F ] ≤ ∨
a′◁a[a′ ∈ F ] by

regularity and that a′ ◁ a means st(a′, C) ≤ a for some C ∈ B. Then by Cauchiness we
have [a′ ∈ F ] ≤ [a′ ∈ F ]∧∨

c∈C [c ∈ F ] = ∨
c∈C [a′ ∧ c ∈ F ]. Putting these together, we find

[a ∈ F ] ≤
∨
{[a′ ∧ c ∈ F ] | C ∈ B, c ∈ C, a′ ∈ OX, st(a′, C) ≤ a}.

Now by properness (that is, condition (iii) for the presentation) we can restrict the join to
the elements [a′ ∧ c ∈ F ] such that a′ ≬ c. But a′ ≬ c and c ∈ C give c ≤ st(a′, C) ≤ a and
hence [a ∈ F ] ≤ ∨{[c ∈ F ] | C ∈ B, c ∈ C, c ≤ a} ≤ ∨

c∈B∩↓a[c ∈ F ], as claimed.
We can use this to show the generators [b ∈ F ] for b ∈ B indeed satisfy the above

relations required for [b ∈ FB]. That (a) and (b) hold is immediate from (ii) and the claim
above, while relation (c) follows from (iv). Finally, relation (d) follows from the regularity
condition (v) and the above claim.

It remains to define [a ∈ F ] in terms of [b ∈ FB] show that relations (i)–(v) for the
original presentation follow from (a)–(d). The claim suggests defining [a ∈ F ] to be∨

b∈B∩↓a[b ∈ F ]. Condition (i) says that ∨
b∈B[b ∈ FB] = 1, which holds by (c) and the fact

that, as a base, B is inhabited. The “≤” direction of (ii) follows from (a), while for the “≥”
direction follows from (b). Condition (iii) comes from the fact that every b ∈ B is positive.
Finally, (iv) and (v) follow from (c) and (d) respectively.

5. Examples and applications
In this section we discuss the relationship between metric and uniform locales and some
applications of uniform locales to localic algebra.

5.1. Metric locales. Classically, perhaps the most important example of uniform
spaces is given by metric spaces. As one might expect, in the constructive setting metric
locales also have uniform structures. Our definition of metric locales follows that of Henry
in [9].

Metric locales take values in the nonnegative extended upper reals←−−R∞
≥0 — the classifying

locale of extended upper Dedekind cuts on the set of positive rationals Q+. Explicitly,
a presentation of O←−−R∞

≥0 has a generator [0, q) for each q ∈ Q+ subject to the relations
[0, q) = ∨

p<q[0, p).

5.2. Definition. A pre-metric locale is an overt locale X equipped with a locale map
d : X ×X →←−−R∞

≥0 such that in the internal logic we have

• d(x, x) = 0 (x : X),

• d(x, y) = d(y, z) (x, y : X),

• d(x, z) ≤ d(x, y) + d(y, z) (x, y, z : X),
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where ≤ is interpreted as the reverse of the order enrichment.
If (X, d) is a metric locale, we now attempt to define a uniformity Ed on X with basic

entourages of the form Eq = d∗([0, q)) for each q ∈ Q+.

5.3. Lemma. This indeed gives a pre-uniform locale (X, Ed).
Proof. Since Ep ≤ Eq for p ≤ q, it is clear that the basic entourages Eq form a filter base.
For the reflexivity condition, we know that in the internal logic we have d(x, x) = 0 < q
and hence (x, x) ∈ Eq, as required. The symmetry condition follows from the fact that
Eq is symmetric by the symmetry condition on d. Finally, we will show Eq/2 ◦ Eq/2 ≤ Eq.
In the internal logic, (x, z) ∈ Eq/2 ◦ Eq/2 means ∃y : X. (x, y) ∈ Eq/2 ∧ (y, z) ∈ Eq/2.
That is, d(x, y) < q/2 and d(y, z) < q/2. By the triangle inequality it follows that
d(x, z) ≤ d(x, y) + d(x, y) < q/2 + q/2 = q. Thus, (x, z) ∈ Eq and we have shown the
desired inclusion.

This construction also interacts well with morphisms of pre-metric spaces.

5.4. Definition. A map f : X → Y between pre-metric locales is nonexpansive if we have
⊢x,y : X dY (f(x), f(y)) ≤ dX(x, y) in the internal logic — that is, if EX

q ≤ (f × f)∗(EY
q )

for all q ∈ Q+.
From this definition it is clear that a nonexpansive map is uniform with respect to

the induced pre-uniformities. Thus, the association of the above metric uniformity to a
metric locale to a uniform locale gives a forgetful functor from the category PMetLoc
of pre-metric locales and nonexpansive maps to PUnifLoc, which commutes with the
obvious forgetful functors into OLoc.

There is a relation ◁q on pre-metric locales, the definition of which is precisely equivalent
to a ◁q b ⇐⇒ (a⊕a)◦Eq ≤ b⊕b. Then the definition of ◁ by a ◁ b ⇐⇒ ∃q ∈ Q+. a ◁q b
coincides with the usual uniformly below relation for the metric uniformity.

5.5. Definition. A metric locale is a pre-metric locale X for which a = ∨
b◁a b for all

a ∈ OX. By the above discussion, this is clearly the equivalent to the metric uniformity
being admissible.

Thus, the forgetful functor PMetLoc→ PUnifLoc restricts to a functor U from the
category MetLoc of metric locales to UnifLoc.

Finally, we note that the completion of a metric locale described in [9] agrees with
the completion of the underlying uniform locale in the sense that the following diagram
commutes.

MetLoc CMetLoc

UnifLoc CUnifLoc

U U

C

C
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5.6. Localic groups. Another important class of examples of uniform spaces is given by
topological groups. In our setting we will see that every overt localic group has a natural
uniform structure.

By localic group we simply mean an internal group in Loc. More explicitly, this means
we have a locale G and maps ε : 1 → G, ι : G → G and µ : G × G → G satisfying the
group axioms.

5.7. Remark. Localic groups are the pointfree analogue of topological groups. However,
even though classically every T0 topological group is Tychonoff and hence sober, not every
topological group is the spectrum of a localic group, since a product of two locales can
diverge from that of the corresponding spaces. The difference between the two theories
can be understood in terms of uniform structures: every localic group satisfies a certain
completeness condition (as shown in [4] in the classical setting).

5.8. Definition. Let G be an overt localic group. The left uniformity on G is given by
the following set of basic entourages: for each open neighbourhood of the identity u we
define Lu to be {(x, y) : G×G | x−1y ∈ u} in the internal logic.

The right uniformity is similar with Ru = {(x, y) : G×G | xy−1 ∈ u}. The two-sided
uniformity is the join of these in the lattice of uniformities. It has a base consisting of the
entourages Tu = {(x, y) : G×G | x−1y ∈ u ∧ xy−1 ∈ u}.

5.9. Lemma. These all define admissible uniformities on G.

Proof. We will show this for the left uniformity. The proof for the right uniformity is
similar and the result for the two-sided uniformity follows from the results for the other
two uniformities.

First note that {Lu | ε∗(u) = ⊤} is a filter base, since Lu∧v = Lu ∧ Lv. We have
that each basic entourage Lu is reflexive, since x−1 · x = 1 ∈ u. For the symmetry
condition it is enough to show Lo

u = Lι∗(u) and this holds since x−1y ∈ u if and only if
y−1x = (x−1y)−1 ∈ ι∗(u).

For the transitivity condition, we must find an open neighbourhood of the identity v
such that Lv ◦Lv ≤ Lu. In the internal logic, we have 1 · 1 = 1 ∈ u and so ⊢ (1, 1) ∈ µ∗(u).
Since elements of the form a⊕ b form a base for O(G×G), there are a and b such that
(1, 1) ∈ a ⊕ b ≤ µ∗(u). Setting v = a ∧ b it follows that 1 ∈ v and v ⊕ v ≤ µ∗(u). Now
take (x, y) and (y, z) in Lv. Then x−1y, y−1z ∈ v ≤ µ∗(u). Multiplying these we then have
x−1z ∈ u and so (x, z) ∈ Lu. Thus, we have shown Lv ◦ Lv ≤ Lu as required.

Finally, we demonstrate admissibility. We first observe that if ε∗(u) = ⊤ and a⊕ u ≤
µ∗(b), then (a⊕a)◦Lu ≤ b⊕b. To see this it suffices to show y ∈ a ∧ y−1z ∈ u ⊢y,z : G z ∈ b
by Lemma 2.3. Suppose y ∈ a and y−1z ∈ u. Then (y, y−1z) ∈ a ⊕ u ≤ µ∗(b), so that
z = yy−1z ∈ b, as required.

In particular, we have shown that if ε∗(u) = ⊤ and a⊕ u ≤ µ∗(b), then a ◁ b. So to
show admissibility, it suffices to prove that b ≤ ∨{a ∈ OG | ε∗(u) = ⊤, a⊕u ≤ µ∗(b)}. But
the axiom x · 1 = x means that (OG⊕ ε∗)µ∗ is the canonical isomorphism OG ∼= OG⊕Ω
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and so

b⊕⊤ = (OG⊕ ε∗)µ∗(b)
= (OG⊕ ε∗)

(∨
{a⊕ u | a⊕ u ≤ µ∗(b)}

)
=

∨
{a⊕ ε∗(u) | a⊕ u ≤ µ∗(b)}

=
∨
{a⊕⊤ | ε∗(u) = ⊤, a⊕ u ≤ µ∗(b)}

and the desired result follows.
As before we see this assignment of uniformities is functorial.

5.10. Lemma. Every homomorphism f : G→ H of localic groups is uniform with respect
to the left, right or two-sided uniformities.

Proof. Simply observe that (f × f)∗(Lu) = Lf∗(u) and similarly for Ru and Tu.
Thus, we obtain three functors L, R and T from the category OLocGrp of overt

localic groups to UnifLoc which each commute with the forgetful functors to OLoc.
We can now proceed as in [4] to show that an overt locale localic group is complete

with respect to its two-sided uniformity.

5.11. Lemma. The multiplication µ : G×G→ G on an overt localic group lifts to a map
µ̃ : CG×CG→ CG on the completion with respect to the left, right or two-sided uniformity.

Proof. Let us first show this for the completion with respect to the left uniformity. By
Proposition 4.14 and Corollary 4.16 it suffices to show that (γG × γG)∗µ

∗ sends entourages
to reflexive relations. Here (γG × γG)∗µ

∗(c) = ∨{[a ∈ F ]⊕ [b ∈ F ] | a⊕ b ≤ µ∗(c)} and so
for each open neighbourhood of the identity u we must show∨

{[a ∈ F ]⊕ [b ∈ F ] | a⊕ b⊕ a⊕ b ≤ (µ× µ)∗(Lu)} = 1.

Note that in the internal logic the inequality in above join says that

x, x′ ∈ a ∧ y, y′ ∈ b ⊢x,y,x′,y′ : G y−1x−1x′y′ ∈ u. (∗)

Consider b ‘sufficiently small’ in the sense that b⊕ b ≤ Lv for some v to be determined
and set w = {z : G | ∃ỹ, ỹ′ : b. ỹ−1zỹ′ ∈ v} in the internal logic. Note that ⊢ 1 ∈ w.

Now take a ∈ OG such that a⊕ a ≤ Lw. Note that since Lv and Lw are entourages
taking the join of [a ∈ F ]⊕ [b ∈ F ] over all such a and b gives∨

{[a ∈ F ]⊕ [b ∈ f ] | a⊕ a ≤ Lwb
, b⊕ b ≤ Lv} =

∨
{1⊕ [b ∈ f ] | b⊕ b ≤ Lv} = 1.

This will imply that the desired join is also 1 once we show that these choices for a and
b satisfy condition (∗) above. Expanding the definition of a we have x, x′ ∈ a ⊢x,x′ : G

∃ỹ, ỹ′ : b. ỹ−1x−1x′ỹ′ ∈ v, which is close to the desired condition. We must just ensure that
each y and y′ in b are close to the given ỹ and ỹ′.
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Indeed, if x, x′ ∈ a and y, y′ ∈ b then we know there exist ỹ, ỹ′ ∈ b such that
(xỹ, x′ỹ′) ∈ Lv. But also, y, ỹ ∈ b implies (y, ỹ) ∈ Lv, which in turn gives (xy, xỹ) ∈ Lv.
Similarly, (x′ỹ′, x′y′) ∈ Lv. Combining these we find (xy, x′y′) ∈ Lv ◦ Lv ◦ Lv. Choosing
Lv so that Lv ◦ Lv ◦ Lv ≤ Lu then yields the desired result.

Thus, we have shown (γG × γG)∗µ
∗ sends the entourages Lu to reflexive relations.

Entirely dually, the entourages Ru for the right uniformity are also sent to reflexive
relations.

To prove a similar result for the basic two-sided entourages Tu = Lu ∧Ru, we consider
both b ⊕ b ≤ Tv and a ⊕ a ≤ Twb

as above, as well as a′ ⊕ a′ ≤ Tv′ and b′ ⊕ b′ ≤ Tw′
a′

as for the right uniformity. Then the join of [a ∧ a′ ∈ F ] ⊕ [b ∧ b′ ∈ F ] over all such a,
a′, b and b′ is again a cover, since it is the meet of two covers. Finally, for x, x′ ∈ a ∧ a′

and y, y′ ∈ b ∧ b′, we find (xy, x′y′) ∈ Lu as above and dually (xy, x′y′) ∈ Ru. Thus,
(xy, x′y′) ∈ Lu ∧ Ru = Tu. Thus, ∨{[a ∈ F ] ⊕ [b ∈ F ] | a ⊕ b ⊕ a ⊕ b ≤ (µ × µ)∗(Tu)} is
also 1 and (γG × γG)∗µ

∗ sends two-sided entourages to reflexive relations. Hence µ lifts to
the completion with respect to the two-sided uniformity.

5.12. Theorem. Every overt localic group G is complete with respect to its two-sided
uniformity.

Proof. By the previous lemma the multiplication G lifts to the completion CG. Moreover,
the inversion map ι simply exchanges left and right entourages, so it uniformly continuous
with respect to the two-sided uniformity and hence clearly also lifts to the completion.
Of course, the unit lifts too. Since Gn is a strongly dense sublocale of (CG)n, the group
axioms hold on a strongly dense sublocale of CG. But since CG is uniformisable, it is
weakly Hausdorff and so the sublocale on which the axioms hold is weakly closed. Thus,
they must hold everywhere.

It follows that CG is a localic group and G is a strongly dense localic subgroup. But it
is well-known that an overt subgroup of a localic group is weakly closed (see [11] for a
constructive proof). Thus, G ∼= CG and G is complete.

5.13. Real numbers and the completion of rings. Another important application
of completions is the construction of the localic ring of reals as the completion of the ring
of rational numbers. The rationals are best viewed as a discrete locale Q. This has a
pre-uniform structure which can be given by the usual Euclidean metric or directly from a
base of entourages of the form Eq = {(x, x′) ∈ Q×Q | |x− x′| < q} for q ∈ Q+.

We can use Proposition 4.17 to obtain a presentation for the completion of Q. An
appropriate set B of basic uniform covers consists of Cq = ↓{(p, p+ q) ⊆ Q | p ∈ Q} for
q ∈ Q+ and where (r, s) denotes the interval of rationals lying strictly between r and s
(for r < s). The resulting presentation of CΥQ has generators ((r, s)) for r < s ∈ Q and
the relations:

• ((r, s)) ∧ ((r′, s′)) = ((r ∨ r′, s ∧ s′)) for r, r′ < s, s′,

• ((r, s)) ∧ ((r′, s′)) = 0 otherwise,



264 GRAHAM MANUELL

• ∨
p∈Q((p, p+ q)) = 1 for q > 0,

• ((r, s)) ≤ ∨
r<r′<s′<s((r′, s′)).

It is easy to see this is isomorphic to the usual frame of reals OR as presented in terms
of Dedekind cuts (with generators ℓq and uq meaning q is in the lower or upper cut
respectively) via frame homomorphisms sending ((r, s)) to ℓr ∧ us in the one direction and
sending ℓr to ∨

s>r((r, s)) and us to ∨
r<s((r, s)) in the other direction. A proof of a similar

equivalence can be found in [19, Chapter XIV, Proposition 1.2.1].
Now let us discuss the lifting of the ring operations to R. We note that the uniformity

on Q is translation invariant.

5.14. Definition. A uniformity on a localic abelian group G is translation invariant if it
has a base of entourages E such that (x, y) ∈ E ⊢x,y,z : G (x+ z, y + z) ∈ E.

For translation-invariant entourage E we always have (x, y) ∈ E ⊣⊢x,y : G (x−y, 0) ∈ E
(by taking z = ±y). Now since u := {z : G | (z, 0) ∈ E} is an open neighbourhood of
the identity, each basic entourage in a translation-invariant uniformity is of the form Tu

(the three group uniformities coincide for abelian G). In this way, a translation-invariant
uniformity can be specified by giving a collection of open neighbourhoods of the identity.

The operations of a localic abelian group always respect translation-invariant pre-
uniform structures.

5.15. Lemma. Let E be a translation-invariant uniformity on a localic abelian group G.
Then the operations of G are uniformly continuous with respect to E.
Proof. Inversion is uniformly continuous by commutativity and it is trivial that the
unit is uniformly continuous. For the addition we consider an entourage E ∈ E and
take a symmetric entourage F ∈ E such that F ◦ F ≤ E. To show addition is uniformly
continuous it is enough to show that (x, x′), (y, y′) ∈ F ⊢x,x′,y,y′ : G (x + y, x′ + y′) ∈ E.
But if (x, x′), (y, y′) ∈ F then (x+ y, x′ + y) ∈ F and (x′ + y, x′ + y′) ∈ F by translation
invariance. Thus, (x+ y, x′ + y′) ∈ F ◦ F ≤ E as required.

5.16. Remark. This yields an analogue of Lemma 5.11 restricted to abelian groups, but
for general translation-invariant uniformities. In fact, the restriction to the abelian case is
not necessary. If we define a notion of left- or right-translation-invariant uniformity on a
non-abelian group G, then a simple modification of the proof of Lemma 5.11 shows that
the multiplication on G lifts to the ‘pre-uniform completion’ of G with respect to any such
uniformity — and for any uniformity with a base of entourages of the form Tu.

5.17. Corollary. The (pre-uniform) completion with respect to a translation-invariant
uniformity preserves the abelian group structure of G. Moreover, this gives a reflection from
the category of translation-invariant pre-uniform localic abelian groups onto the category
of localic abelian groups (with their canonical group uniformities).

Thus, in particular the additive structure on Q extends to R. That the entire ring
structure extends to R is a consequence of the following general result, which is a pointfree
analogue of [5, III, §6.5, Proposition 6].
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5.18. Proposition. Let R be a localic ring equipped with a pre-uniform structure that
is translation invariant with respect to its additive group. Furthermore, suppose the
multiplication µ× : R × R → R is ‘continuous at 0’ with respect to the pre-uniform
structure in the sense that whenever Tu is an entourage, there is an entourage Tv such that
v⊕v ≤ µ∗

×(u). Then CΥR has the structure of a localic ring and the map γΥRυR : R→ CΥR
is a localic ring homomorphism.

Proof. It suffices to show that the multiplication lifts to the completion. Similarly to
before, by Corollary 4.16 it is enough to show∨

{[υ∗(a) ∈ F ]⊕ [υ∗(b) ∈ F ] | a⊕ b⊕ a⊕ b ≤ (µ× × µ×)∗(Tu)} = 1

for each basic entourage Tu. Note that the inequality can be expressed in the internal
logic as x, x′ ∈ a ∧ y, y′ ∈ b ⊢x,y,x′,y′ : G xy − x′y′ ∈ u. Now consider the following sequence
of equalities.

xy − x′y′ = xy − xy′ + xy′ − x′y′

= x(y − y′) + (x− x′)y′

= (x̃+ x− x̃)(y − y′) + (x− x′)(ỹ + y′ − ỹ)
= x̃(y − y′) + (x− x̃)(y − y′) + (x− x′)ỹ + (x− x′)(y′ − ỹ)

By the uniform continuity of addition there is a u′ such that Tu′ is an entourage and
whenever each of these terms lies in u′ their sum xy − x′y′ lies in u.

Consider a ∈ OR such that a ⊕ a ≤ Tv for some entourage Tv to be determined
later. Note that ∨{[υ∗(a) ∈ F ] | a ⊕ a ≤ Tv} = 1 since Tv is an entourage. We set
w = {z : R | z ∈ v ∧ ∃x̃ : a. x̃z ∈ u′} and note that ⊢ 1 ∈ w. Now take b ⊕ b ≤ Tw. As
before we find that the join of [υ∗(a) ∈ F ]⊕ [υ∗(b) ∈ F ] over all such a and b is 1. In the
internal logic, if x, x′ ∈ a and y, y′ ∈ b we have x− x′, y− y′ ∈ v and some x̃ ∈ a such that
x̃(y − y′) ∈ u′.

We also wish to show (x− x̃)(y− y′) ∈ u′. We know x− x̃ ∈ v and y− y′ ∈ v. Now we
use ‘continuity at 0’ to choose v such that v ⊕ v ≤ µ∗

×(u′), which gives the desired result.
Similarly, a dual choice of a and b gives that the other two terms lie in u′. Taking

the meet of these two choices of a and b then means all of the terms lie in u′ and hence
xy − x′y′ ∈ u. Thus, the result follows as in Lemma 5.11.

5.19. Corollary. The ring structure on Q lifts to a ring structure on R.

Proof. By the above it suffices to show the multiplication on Q is ‘continuous at 0’.
This amounts to showing for each ε ∈ Q+ there is a δ ∈ Q+ such that if |x|, |y| < δ then
|xy| < ε. We can now simply take δ = min(ε, 1) so that |xy| = |x||y| < δ2 ≤ ε · 1 = ε.

5.20. Remark. We can also show in an entirely analogous way (using the p-adic absolute
value) that the p-adic uniformity on Q is translation invariant and continuous at 0 and
hence there is an induced localic ring structure on the resulting locale of p-adic numbers.
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