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NOTIONS OF ENRICHED PURITY

JIŘÍ ROSICKÝ AND GIACOMO TENDAS

Abstract. We introduce enriched notions of purity depending on the left class E of a
factorization system on the base V of enrichment. Ordinary purity is given by the class
of surjective mappings in the category of sets. Under specific assumptions, covering
enrichment over quantale-valued metric spaces, ω-complete posets, and quasivarieties,
we characterize the (λ, E)-injectivity classes of locally presentable V-categories in terms
of closure under a class of limits, λ-filtered colimits, and (λ, E)-pure subobjects.
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1. Introduction

The concept of purity originated in the theory of abelian groups ([23]) and it is now well
established both for modules ([22]) and in model theory in general ([29]). The monograph
[2] made purity a key concept of the theory of accessible categories. For instance, given
a locally λ-presentable category K, it makes possible to characterize classes of objects
injective with respect to a family of morphisms whose domains and codomains are λ-
presentable, as classes closed under products, λ-directed colimits, and λ-pure subobjects
(see [27]). Model-theoretically, this is a characterization of classes of models axiomatizable
by regular theories in the logic Lλλ of λ-ary formulas.
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Recently, the theory of enriched accessible categories matured ([17, 18]) but purity
has remained unenriched. The first attempt to develop enriched purity was done in
[28] for metric enriched categories. In [24], it was shown that in Banach spaces pure
morphisms coincide with the well-established concept of an ideal. Our aim is to introduce
enriched purity over a general base V , prove that most of the basic properties transfer to
the enriched setting, and show that it makes possible to characterize enriched injectivity
classes.

Recall that a morphism f : K //L in a λ-accessible category is λ-pure provided that
in each commutative diagram

A B

K L

g

v

f

u

where A and B are λ-presentable, there is a morphism t : B //K, such that tg = u (see [2,
2.27]). Equivalently, given u : A //K then the existence of v : B //L such that vg = fu,
implies the existence of t : B //K with tg = u. Since the existence of a morphism can
be reformulated using surjectivity in the category Set of sets, ordinary purity stems from
the class E of surjections in Set.

Building on [15], our enriched purity will depend on a chosen class E of morphisms in
V which, in addition, arises as the left class of a factorization system. In metric-enriched
categories these are the dense morphisms.

In Sections 3 and 4 we propose two definition of (λ, E)-pure morphisms. The first
one is stronger than the second but, under mild conditions, they coincide. These behave
like λ-pure morphisms in ordinary categories; for instance we will see that they are left-
cancellable, stable under composition, and satisfy many of the same properties as their
unenriched counterpart. Moreover, they make possible the characterization of (λ, E)-
injectivity classes (this enriched concept of injectivity was introduced in [15]).

In metric-enriched categories, we get the notions of purity from [28] and the character-
ization of approximate λ-injectivity classes (that is, (λ, dense)-injectivity classes) proved
in [28]. In additive categories, when considering the class of regular epimorphisms, en-
riched and unenriched purity coincide, as do enriched and unenriched injectivity classes:
this is the case whenever we enrich over a symmetric monoidal quasivariety ([16]) with a
regular projective unit. However, things change when considering, for instance, categories
enriched over the symmetric monoidal category DGAb of differentially graded abelian
groups, and still considering the class E of the regular epimorphisms. Here, it became
clear that ordinary purity could not be used to characterize such injectivity classes; the
main obstacle being that, unlike in the previous situation, the unit of DGAb is not
regular projective. We shall see that the corresponding DG-enriched notion of purity
does not coincide with the ordinary one, and is in fact the missing piece needed in the
characterization of DG-injectivity.
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Our main result characterizing (λ, E)-injectivity classes is discussed in Section 5 and
is based on the assumption that the class E itself is a (special) injectivity class in the
ordinary category of arrows V→

0 . This allows us to capture surjections (Remark 3.4),
dense morphisms of (quantale-valued) metric spaces and Banach spaces, dense maps of
ω-complete posets, as well as regular epimorphisms in quasivarieties, all in the same
general framework. Beside this, and some minor other assumptions, we shall also need a
class of objects G ⊆ V such that powers by G satisfy a stability condition with respect to
maps in E . Then we can prove:
Theorem 5.5. Under the assumptions above, the (λ, E)-injectivity classes in a locally λ-
presentable V-category K are precisely the classes closed under λ-filtered colimits, products,
powers by G, and (λ, E)-pure subobjects.

For V = Met,CMet,Ban or ω-CPO with E consisting of the dense maps, then
G = {I} is the singleton determined by the monoidal unit (so that powers by G are
trivial); instead, when V = DGAb and E is formed by the regular epimorphisms, then
G = {Pn}n∈Z is given by the suspensions and de-suspensions of the mapping cone of the
unit (Example 8.4).

As a consequence of the theorem above, we prove (Corollary 5.8) that enriched or-
thogonality classes in locally presentable V-categories arise as examples of E-injectivity
classes, a well-known fact in ordinary category theory [2, Chapter 4.A].

We will discuss applications of Theorem 5.5 in the setting of categories enriched over
quantale-valued metric spaces in Section 6, for categories enriched over ω-complete poses
in Section 7, and for categories enriched over symmetric monoidal quasivarieties in Sec-
tion 8. In this latter case, we can also characterize (λ, E)-pure morphisms as λ-filtered
colimits of E-split monomorphisms, generalizing the analogous result for ordinary cate-
gories [2, 2.30].

While in this paper we already answer important questions about the relevance of en-
riched purity, there are still many open problems that wait to be addressed. For instance,
when working with categories of structures of some relational language, ordinary pure
morphisms correspond to the model theoretical notion of morphisms elementary with re-
spect to positive-primitive formulas [2, 5.15]. A first glance at an enriched counterpart
is given in Appendix A. However, a general answer cannot be provided at this stage for
the simple reason that enriched counterparts of these logical concepts have not yet been
defined. We believe that a thorough study of enriched purity will be essential for the
development of enriched notions of languages and models, thus covering an outstanding
gap in the literature.

2. Background

Our base of enrichment will be a symmetric monoidal closed, complete and cocomplete
category V = (V0, I,⊗); the internal-hom is denoted by [−,−] and makes V into a V-
category. We follow [12] for standard results about enrichment; in particular we shall
make use of the notions of conical limits and colimits, and of powers and copowers, both
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arising as instances of the more general weighted limits and colimits.
Consider a V-category K and an ordinary functor H : C // K0 into the underlying

ordinary category of K; this corresponds to a V-functor CV //K from the free V-category
on C. When C is small, the (conical) limit of H in K is the data of an object limH ∈ K
together with isomorphisms in V

K(K, limH) ∼= limK(K,H−)

that are V-natural in K ∈ K, where on the right-hand-side we have the ordinary limit
in V0. It follows that limH, when it exists, is also the limit of H in K0; moreover limH
corresponds to the limit of H weighted by ∆I : CV // V (see [12, 3.51]).

Given an object X ∈ V and K ∈ K, the power of K by X is the data of an object
X ⋔ K ∈ K together isomorphisms in V

K(L,X ⋔ K) ∼= [X,K(L,K)]

that are V-natural in L ∈ K. Dually, we denote by X ·K the copower of K by X. Note
that when K = V , we have X ⋔ K ∼= [X,K] and X ·K ∼= X ⊗K.

Local presentability will also be a key concept in the following sections. For ordinary
locally presentable categories our standard reference is [2]. In the enriched setting the
concept was introduced by Kelly [13]: given a V-category K with (conical) λ-filtered
colimits, we say that K ∈ K is λ-presentable (in the enriched sense) if K(K,−) : K // V
preserves λ-filtered colimits. We denote by Kλ the full subcategory of K spanned by the
λ-presentable objects; this is closed in K under λ-small conical colimits and copowers by
objects in Vλ.

We say that K is locally λ-presentable as a V-category if it is cocomplete (it has
all conical colimits and all copowers), Kλ is (essentially) small, and every object of K
can be written as a λ-filtered colimit of λ-presentable objects. If the unit I of V0 is
locally λ-presentable in the ordinary sense, then the underlying category of every locally
λ-presentable V-category is locally λ-presentable and (Kλ)0 = (K0)λ.

For the remainder of this paper we shall assume our base of enrichment V to be locally
λ-presentable as a closed category [13], meaning that V0 is locally λ-presentable, I is λ-
presentable and the λ-presentable are closed under tensor product (in particular V is then
locally λ-presentable as a V-category). In that context, many results from the ordinary
theory of local presentability extend to the enriched context; see [13] for details.

Finally, (orthogonal) factorization systems will be central in the definition of our en-
riched notions of purity. Following [10] we will say that a factorization system (E ,M) on
a category K is proper if every element of E is an epimorphism and every element of M
a monomorphism. By [10, 2.1.4], when the factorization system is proper its is true that
whenever a composite fg ∈ E then also f ∈ E ; we will make use of this property quite
often.

In Section 5 we will assume our fixed factorization system (E ,M) on V to be enriched
in the sense of [19]. This means that the class E is closed in V→ under all copowers (if
e ∈ E and X ∈ V , then X ⊗ e ∈ E), or equivalently that M is closed in V→ under all
powers (if m ∈ M and X ∈ V , then [X,m] ∈ M).
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3. Enriched purity

We fix V to be locally λ-presentable as a closed category and (E ,M) to be factorization
system on V0. In this section we introduce the first of two concepts of enriched purity
and prove several properties that this satisfies.

3.1. Notation. Let K be a V-category and (E ,M) a factorization system on V . Consider
morphisms f : K // L and g : A // B in K. We denote by P(g, L) be the (E ,M)
factorization

K(B,L) P(g, L) K(A,L)

of the map K(g, L) in V . Let then P(g, f) be the pullback of P(g, L) along K(A, f),
together with the induced map r : K(B,K) // P(g, f) as depicted below.

K(B,K) K(B,L)

K(A,K) K(A,L)

P(g, f) P(g, L)

K(B, f)

r′

K(A, f)

K(g,K)

r

3.2. Definition. We say that f : K //L is E-pure with respect to g if the map r above
lies in E . We say that f is (λ, E)-pure if it is E-pure with respect to every g : A //B with
A and B λ-presentable.

Remark 3.3 below gives a possibly more intuitive interpretation of the notion just
introduced. In (1) of Example 3.5 below we show that, over Set, we get the standard
notion of purity. The reader can also look at a model theoretic characterization of purity
from Appendix A in terms of elementary morphisms. We will spell-out in Sections 6, 7,
and 8 what purity looks like for the bases of enrichment we are most interested in.

3.3. Remark. Since the elements of M are stable under pullback, the map r above lies
in E if and only if P(g, f) is the (E ,M)-factorization of K(g,K). Thus f : K // L is
(λ, E)-pure if and only if:

for every g : A //B, with A and B λ-presentable,
the (E ,M)-factorization of K(g,K) is obtained by pulling back the

(E ,M)-factorization of K(g, L) along K(A, f).

3.4. Remark. Following [25], a morphism f : V //W in V is called surjective if V0(I, f)
is a surjection of sets. A map is called injective if it satisfies the unique right lifting
property with respect to surjections. Quite often, (surjective, injective) forms a proper
factorization system on V (see [25]).
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3.5. Examples.

1. Consider V such that (surjective, injective) is a factorization system, and note that
by [25, 3.4], injective maps are monomorphisms. Under Notation 3.1, it follows that
V0(I,P(g, L)) is the (epi, mono) factorization of K0(g, L), so that

V0(I,P(g, L)) = {h ∈ K0(A,L) | ∃ v ∈ K0(B,L) with h = vg}

and hence, since V0(I,−) preserves pullbacks,

V0(I,P(g, f)) = {u ∈ K0(A,K) | ∃ v ∈ K0(B,L) with fu = vg}.

Then, f is E-pure with respect to g, if and only if V0(I, r) is surjective, if and only if:

for any u : A //K and v : B // L with fu = vg,
there exists t : B //K such that tg = u.

As a consequence, E-purity in K coincides with ordinary purity in K0. In particular,
for V = Set we obtain the usual notion of pure morphisms.

2. Given V , consider the factorization system (E ,M) = (V→,V∼=), where V∼= is the class
of all isomorphisms and V→ the class of all morphisms. Then, every morphism f is
V→-pure with respect to any g : A // B; indeed, the map r : K(B,K) // P(g, f) of
Notation 3.1 always lies in V→.

3. Consider instead the factorization system (E ,M) = (V∼=,V→) on V , so that E is
the class of all isomorphisms. Given f : K // L and g : A // B, it follows that
P(g, L) ∼= K(B,L) and therefore

P(g, f) ∼= K→(g, f)

is the hom-object in the V-category of arrows K→. Then f is V∼=-pure with respect
to g if and only if

K(B,K) ∼= K→(g, f);

looking at the underlying categories, this implies in particular that for every pair
u : A //K and v : B //L, such that fu = vg, there is a unique t : B //K such that
ft = v and tg = u.

For K locally λ-presentable, (λ,V∼=)-pure morphisms then coincide with the isomor-
phisms. On the one hand, isomorphisms are always V∼=-pure with respect to any
morphism. Conversely, assume that f is (λ,V∼=)-pure, and write it as a λ-directed
colimit of morphisms fi : Ki

// Li between λ-presentable objects (see [2, 1.55(1)]);
then for any i we can consider the square
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Ki Li

K L

fi

vi

f

ui

where (ui, vi) is part of the colimiting cocone of f . By V∼=-purity of f , for any i there
exists a unique ti : Li

// K such that fti = vi and tifi = ui. It is easy to see that
the (ti, vi) also define a colimiting cocone for f in V→. Therefore f is a colimit of the
isomorphisms 1Li

: Li
// Li, and thus f itself is an isomorphism.

4. Let CMet be the category of complete metric spaces and nonexpanding maps, where
we allow distances∞. Here, we have the proper factorization system (dense, isometry)
— see [3, 3.16(2)].

Under this factorization system, given g and f as above, P(f, g) is the sub-metric
space of K(A,K) consisting of those u : A //K such that

for every ε > 0 there exists v : B // L for which
fu ∼ε vg (that is, d(fu, vg) ≤ ε)

Then f is E-pure with respect to g if and only if for any u ∈ P(f, g) as above and for
any ε > 0, there exists t : B //K such that tg ∼ε u.

A priori this doesn’t correspond to a notion of purity studied for metric-enriched
categories. However, we will see in the more general setting of Section 6, that this is
an equivalent reformulation of the notions considered in [28].

5. In the category Met of metric spaces and nonexpanding maps, we have two factoriza-
tion systems: (dense, closed isometry) and (surjective, isometry) — see [3, 3.16]. The
first one yields the same concept of purity described in (4) above, while the second
one gives the usual (unenriched) concept of purity, as in (1).

Observe that surjections in CMet are the usual surjective maps but (surjective, in-
jective), as defined in Remark 3.4, does not form a factorization system. For instance
the morphism N // { 1

n
|n ∈ N} ∪ {0} (sending n to 1

n
), where the domain is discrete

and the codomain has the usual metric, does not factorize.

6. Let V = Gra be the cartesian closed category of directed graphs (possibly) without
loops. Consider the (regular epi, mono) factorization system. Given f : K //L, this is
pure in the enriched sense if for any morphism g : A //B between finitely presentable
objects, and any vertices u ∈ K(A,K) and v ∈ K(B,L) for which vg = fu, there
exists a vertex t ∈ K(B,K) such that tg = u. Since not every vertex is a morphism in
the underlying category (only the vertices with a loop are such), the notion of enriched
purity is not the ordinary one on the underlying category; this is essentially because
the unit is not regular projective.
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7. Let V = DGAb be the category of chain complexes with the (regular epi, mono)
factorization. The notion of E-purity does not coincide with the ordinary one, as we
see in more detail in Section 8.

8. Let V = Ban be the category of Banach spaces over C with linear maps of norm
at most 1. This is symmetric monoidal closed with ⊗ given by the projective tensor
product, and internal hom [K,L] is the space consisting of all bounded linear operators
from K to L (see [5, 6.1.9h]). Note that the monoidal unit C is a strong generator:
Ban(C,−) is the unit-ball functor, and an operator is an isomorphism in Ban if and
only if it is a bijection on the unit balls.

Here, we can consider the (epi, strong mono) factorization system, which by [21,
1.15 & 2.3] coincides with the (dense, isometry) factorization system; this induces a
notion of purity similar to that of Met — see in particular Examples 3.22 and 4.19.

We can also consider the (strong epi, mono) factorization system. It follows from [21,
2.7 & 2.10] that regular and strong epimorphisms in Ban coincide. Moreover, they are
just the surjective operators, or equivalently, the operators T for which Ban0(C, T )
is surjective ([21] shows that strong/regular epimorphisms are surjective, but since
homming-out of a strong generator reflects strong epimorphisms, then also every sur-
jective operator is a strong epimorphism). Since I = C, these coincide with the surjec-
tions from Remark 3.4. Thus the notion of purity corresponding to this factorization
system coincides with the ordinary one on the underlying category.

3.6. Remark. If λ ≤ λ′ then (λ′, E)-pure morphisms are (λ, E)-pure.
In the ordinary setting, λ-pure morphisms are closed under composition and satisfy the

left-cancellation property (see [2] after 2.28). The same holds for (λ, E)-pure morphisms,
as we now see:

3.7. Proposition. A composition of two (λ, E)-pure morphisms is (λ, E)-pure.

Proof.Consider two (λ, E)-pure morphisms f1 : K //L and f2 : L //M , and a morphism
g : A //B between λ-presentable objects. Let f = f2f1. In the diagram below

K(B,K) K(B,L)

P(g, f) P(g, f2) P(g,M)

K(A,K) K(A,L)

K(B,M)

K(A,M)

(a) (b)

r r2

K(A, f1) K(A, f2)

the squares (a), (b), and (a + b) are pullbacks. By E-purity of f2, the map r2 lies in
E and thus P(g, f2) coincides with the (E ,M)-factorization of K(g, L). In other words
P(g, f2) ∼= P(g, L). Then, since (a) is a pullback, P(g, f) is also the pullback of P(g, L) ↣
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K(A,L) along K(A, f1); thus P(g, f) ∼= P(g, f1) and r ∼= r1. Since f1 is (λ, E)-pure this
means that r is in E , as required.

3.8. Proposition. If (E ,M) is proper, then (λ, E)-pure morphisms are left-cancellable;
that is, if f = f2f1 is (λ, E)-pure then f1 is (λ, E)-pure.

Proof. Let f = f2f1 be (λ, E)-pure. Then there is a morphism s : P(g, f1) // P(g, f)
induced by the universal property of the pullback defining P(g, f); this s makes the
diagram below commute,

K(B,K) P(g, f1)

P(g, f) K(A,K)

r1

s
r

where r1 denotes the dashed map from Notation 3.1 corresponding to f1. Since the
morphisms into K(A,K) are in M, so is s. Moreover, since the factorization system is
proper and r is in E , also s is in E . Therefore r is an isomorphism and r1 is in E ; thus f1
is (λ, E)-pure.

Another property of λ-pure morphism that extends to our enriched notion, is their
closure under λ-filtered colimits. We do not know whether a result like [2, Proposi-
tion 2.30(ii)], expressing every λ-pure morphism in a locally λ-presentable category as a
λ-filtered colimit of split monomorphisms, can be obtained in this generality. However,
something can be achieved when we enrich over quasivarieties, see Proposition 8.22.

3.9. Proposition. If M is closed under λ-filtered colimits in V→, then any λ-filtered
colimit of (λ, E)-pure morphisms in K→ is (λ, E)-pure.

Proof. Let f : K // L be a λ-filtered colimit in K→ of some (λ, E)-pure morphisms
fi : Ki

// Li, and consider any g : A //B in Kλ. Since K(A,K) is the λ-filtered colimit
of K(A,Ki) and K(B,K) is the λ-filtered colimit of K(B,Ki), the map

K(g,K) : K(B,K) //K(A,K)

is the λ-filtered colimit of the maps

K(g,Ki) : K(B,Ki) //K(A,Ki);

the same applies for L in place of K. Now, by (λ, E)-purity of each fi, the (E ,M)-
factorization of each K(g,Ki) is given by the object P(g, fi), see Remark 3.3. By orthog-
onality of the factorization system, we obtain a λ-filtered diagram on the P(g, fi) whose
colimit X(g, f) ∈ V induces the (E ,M)-factorization of K(g,K); this is because both E
and M are closed under λ-filtered colimits in K→. But λ-filtered colimits commute with
pullbacks in V ; thus X(g, f) is also the pullback along K(A, f) of the colimit of P(g, Li) .
Since this colimit coincides with P(g, L) then X(g, f) ∼= P(g, f) and thus f is (λ, E)-pure
with respect to g.
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As a consequence we can show that under some mild assumptions, in a locally λ-
presentable V-category the ordinary notion of purity is always stronger than the enriched
one:

3.10. Corollary. If (E ,M) is proper and M is closed under λ-filtered colimits in V→,
then every ordinary λ-pure morphism in a locally λ-presentable K is (λ, E)-pure.

Proof. Let f be an ordinary λ-pure morphism in K0. Then we can write f as a λ-
filtered colimit of split monomorphisms in K→ by [2, Proposition 2.30]. Now, every split
monomorphism is (λ, E)-pure by Proposition 3.8 since identities are always (λ, E)-pure.
Thus f itself is (λ, E)-pure by Proposition 3.9 above.

Next we study preservation of purity by V-functors.

3.11. Proposition.Any right adjoint V-functor F : K //L preserving λ-filtered colimits
sends (λ, E)-pure morphisms in K to (λ, E)-pure morphisms in L.

Proof. Let L : L //K be the left adjoint to F ; since F preserves λ-filtered colimits then
L preserves the λ-presentable objects. Consider now a (λ, E)-pure morphism f : K // L
in K and any morphism g : A //B in L between λ-presentable objects. Then L(g, FL) ∼=
K(Lg, L) and L(A,Ff) ∼= K(LA, f), so that

P(g, FL) ∼= P(Lg, L) and P(g, Ff) ∼= P(Lg, f)

as well as rg,Ff
∼= rLg,f in V→, where indices denote to which pair of morphisms No-

tation 3.1 applies. Now, since A and B are λ-presentable in L, the morphism Lg has
λ-presentable domain and codomain in K; thus we can apply the (λ, E)-purity of f in K
to deduce that rLg,f lies in E . Since that is isomorphic to rg,Ff , the (λ, E)-purity of Ff
follows.

As a corollary we obtain that homming out of λ-presentable objects, as well as taking
powers by them, preserves (λ, E)-purity:

3.12. Corollary. Let f : K // L be a (λ, E)-pure morphism in a V-category K with
copowers; then:

1. K(C, f) is (λ, E)-pure in V for any C ∈ Kλ;

2. if K also has powers, C ⋔ f is (λ, E)-pure in K for any C ∈ Vλ.

Proof. (1) It follows by Proposition 3.11 above since K(C,−) preserves λ-filtered colimits
and has a left adjoint (−) · C : V //K.

(2) Similarly, the V-functor C ⋔ (−) : K //K preserves λ-filtered colimits (since C is
λ-presentable) and has a left adjoint C · (−) : K // K. Thus purity is preserved thanks
to Proposition 3.11 above.
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In the proposition below we denote by Eλ the set of arrows in E whose domain and
codomain are λ-presentable in V , and by E⊥

λ the class of morphisms which are right
orthogonal to every morphism in Eλ.

3.13. Proposition. Assume that E⊥
λ = M and that [e,X] ∈ M whenever e ∈ E and

X ∈ V. Then for any (λ, E)-pure f : K // L in a locally λ-presentable V-category K, we
have that K(C, f) ∈ M for any C ∈ K.

Proof. Since M is closed under limits in V→, it is enough to prove the result for C ∈ Kλ.
Furthermore, by Corollary 3.12 above, it is enough to show that any (λ, E)-pure morphism
f : K // L in V lies in M.

By the hypotheses on M, to prove that f ∈ M it is enough to show that it is right
orthogonal to every morphism in Eλ; for that it suffices to prove that the square below is
a pullback.

[B,K] [B,L]

[A,K] [A,L]

[B, f ]

[e, L]

[A, f ]

[e,K]

Since f is (λ, E)-pure, the (E ,M)-factorization of [e,K] is given by P(e, f). But [e,K] is
in M by hypothesis, then [B,K] ∼= P(e, f). Similarly, since [e, L] is in M by hypothesis,
[B,L] ∼= P(g, L). It then follows by the definition of P(g, f) that [B,K] is the pullback
of [A, f ] along [g, L].

3.14. Remark. The equality E⊥
λ = M holds whenever the closure of Eλ in E under

λ-filtered colimits is E itself (because E is closed under colimits). That is the case for
example when M is closed under λ-filtered colimits in V→ and Vλ is closed under (E ,M)-
factorizations in V .

3.15. Remark.

1. If V is a regular locally λ-presentable category and Vλ is regularly embedded in V ,
the assumptions of 3.13 hold for the (regular epi, mono) factorization system since
the class of monomorphisms are closed under λ-filtered colimits in V→ and [e,X] is a
monomorphisms whenever e is a (regular) epimorphism.

2. The assumptions of 3.13 are also valid in CMet for E = dense. The fact that (ω, E)-
pure morphisms are isometries, which follows from 3.13, was proved in [24, 4.11].

3. Proposition 3.13 above does not hold in general for any factorization system. If we
take E = K→ and M = K∼=(see 3.5(2), then any morphism is (λ, E)-pure but K(C, f)
is an isomorphism for any C ∈ K if and only if f is. This factorization system satisfies
E⊥
λ = M, but not the requirement that [e,X] ∈ M for any e ∈ E and X ∈ V .
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Below, following [15], we say that a limit of some shape is E-stable if E is closed under
such limits in V→.

3.16. Proposition. The class of (λ, E)-pure morphisms in a V-category K is stable
under E-stable (conical) limits in K→.

Proof. Assume that f : K // L is the E-stable limit of some (λ, E)-pure morphisms
fi : Ki

// Li in K→. For any g : A //B between λ-presentable objects, we can consider
the diagram of Notation 3.1 applied to fi and g:

K(B,Ki) K(B,Li)

K(A,Ki) K(A,Li)

P(g, fi) P(g, Li)

K(B, fi)

r′i

K(A, fi)

K(g,Ki)

ri

Since the factorization system (E ,M) is functorial, E and M are stable under E-stable
limits, pullbacks commute with all limits, and the representables preserve all limits, it
follows that the componentwise limit of the diagram above in V , is exactly the diagram
displayed in Notation 3.1 for f and g. It follows in particular that

r : K(B,K) // P(g, f)

is the E-stable limit of the ri’s. But each ri lies in E , by purity of fi; thus also r lies in E
and f is (λ, E)-pure.

Recall that, given a collection Ai, i ∈ I of objects of a locally presentable category K
and an ultrafilter U on the set I, then the ultraproduct

∏
U Ai is defined as the colimit of

the directed diagram induced by the products
∏

i∈U Ai, where U ranges through U , and
the projections

∏
i∈U Ai

//
∏

i∈U ′ Ai, where U
′ ⊆ U (see, e.g., [2]).

3.17. Corollary. Let (E ,M) be proper and E and M be respectively closed under prod-
ucts and filtered colimits in V→. Then in a locally finitely presentable V-category K:

1. the class of (ω, E)-pure morphisms is closed under ultraproducts;

2. for any K ∈ K the inclusion dK : K //KU , of K into its ultrapower by an ultrafilter
U , is (ω, E)-pure;

3. f : K //L is (ω, E)-pure if and only if the ultrapower fU : KU //LU is (ω, E)-pure,
for some ultrafilter U .
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Proof. (1). The ultraproduct of a family of morphisms (fi)i in K can be computed
as a filtered colimit of products of subfamilies of the (fi)i. Thus it is enough to apply
Proposition 3.16 above and Proposition 3.9.

(2). The inclusion dK : K //KU is a filtered colimit of split monomorphisms, thus it
is pure in the ordinary sense. By Corollary 3.10 the inclusion is also (ω, E)-pure.

(3). If f : K //L is (ω, E)-pure then so is fU by point (1). Conversely, if fU is (ω, E)-
pure then also the composite fUdK is by point (2) and Proposition 3.7. But fUdK = dLf ;
therefore f is (ω, E)-pure by Proposition 3.8.

Next we recall the notion of E-injectivity class from [15, Section 2]: given a morphism
f : A //B in a V-category K, we say that X ∈ K is f -injective over E if the map

K(f,X) : K(B,X) −→ K(A,X)

lies in E . Given a set of morphisms H in K, we denote by InjEH the full subcategory of K
spanned by the object which are f -injective over E for any f ∈ H. We call E-injectivity
class any full subcategory of K arising that way; if the morphisms in H have λ-presentable
domain and codomain, we call InjEH a (λ, E)-injectivity class.

Then we can prove the following result. Note that below we use the term “subobject”
when referring to the closure property under (λ, E)-pure morphism even though such
morphisms need not be monomorphic in general; we do this since that is the standard
way of phrasing the closure property.

3.18. Proposition. Every (λ, E)-injectivity class InjEH in a complete and cocomplete
V-category K is closed under:

1. E-stable limits;

2. λ-filtered colimits;

3. (λ, E)-pure subobjects; that is, if f : K //L is (λ, E)-pure and L ∈ InjEH, then also
K ∈ InjEH.

Proof. (1) is given by [15, Proposition 2.6] and (2) by [15, Proposition 2.7] since E , being
part of a factorization system, is closed in V→ under all conical colimits.

(3) Take a (λ, E)-pure morphism f : K //L with L ∈ InjEH. Let g : A //B be in H,
which is then between λ-presentable objects.

By E-injectivity of L with respect to g, the map K(g, L) is in E , so that P(g, L) ∼=
K(A,L). It follows that P(g, f) ∼= K(A,K), it being the pullback of P(g, L) alongK(A, f).
Therefore the map r appearing in the definition of (λ, E)-purity (Notation 3.1) coincides
with

K(g,K) : K(B,K) //K(A,K).

Since f is a (λ, E)-pure morphism, K(g,K) lies in E and hence K is E-injective with
respect to g.
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3.19. Remark. Point (3) of Proposition 3.18 was proved in CMet as [24, 6.4].

3.20. Remark. Suppose that (E ,M) is proper, M is closed under λ-filtered colimits in
V→, and that products are E-stable. Then every (λ, E)-injectivity class L in a locally
λ-presentable V-category K is an ordinary λ-injectivity class.

Indeed, by the proposition above L is closed under products, λ-filtered colimits and
λ-pure subobjects (see 8.12). Following [27], it is then a λ-injectivity class.

3.21. Remark. Let W = (W0, IW ,⊗W) be locally λ-presentable as closed category, and
V be a locally λ-presentable W-category. Assume moreover that V0 is endowed with
an enriched symmetric monoidal closed structure (V , IV ,⊗V) which makes it locally λ-
presentable as a closed category. Then the W-functor

U := V(IV ,−) : V //W

is continuous and preserves λ-filtered colimits; by local presentability of V and W , it has
a left adjoint F : W // V which is strong monoidal ([11, 2.1]).

Under these assumptions there is a change of base functor

U∗ : V-Cat //W-Cat,

which sends a V-category K to the W-category U∗K with the same objects as K and homs

(U∗K)(X, Y ) := UK(X, Y ),

so that K0 = (U∗K)0 and hence morphisms in K are the same as morphisms in U∗K. See
for instance [8, Section 6].

It is now easy to see that the following properties hold whenever V andW are equipped
with factorization systems (EV ,MV) and (EW ,MW) respectively:

1. if U(EV) ⊆ EW and U(MV) ⊆ MW , then EV-purity with respect to g in K implies
EW-purity with respect to g in U∗K;

2. if EV ⊇ U−1(EW) and MV ⊇ U−1(MW), then EW-purity with respect to g in U∗K
implies EV-purity with respect to g in K;

3. if EV = U−1EW and MV = U−1MW , then EV-purity with respect to g in K is
equivalent to EW-purity with respect to g in U∗K.

This follows directly from the definition of (λ, E)-purity (since U preserves pullbacks) by
applying U to the diagram of Notation 3.1. We leave the details to the reader as we will
not makes use this result in any of our Theorems.
Finally, since U preserves λ-filtered colimits, the λ-presentable objects of K and U∗K
coincide; thus, under the hypothesis of (3) above, a morphism is (λ, EV)-pure in K if and
only if it is (λ, EW)-pure in U∗K.
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3.22. Example. A direct application of the result above is obtained by considering Ban
as a CMet-category (see [3, Example 4.5(3)]); the induced CMet-functor U is the unit-
ball functor U : Ban //Met. Moreover, the (dense, isometry) factorization system on
Ban can be obtained, as in (3) above, by taking the preimage of the factorization system
(dense, isometry) in CMet.

It follows that a morphism f in a Ban-category K is (λ, dense)-pure if and only if it
is so in the CMet-category U∗K.

3.23. Remark. Following the nomenclature of [18] for accessible V-categories, we know
that an accessibly embedded full subcategory of a locally presentable V-category is acces-
sible if and only if it is closed under ordinary λ-pure subobjects for some λ (see [18, 3.23]
and [2, 2.36]). The same holds with respect to conical accessibility.

Let us consider now enriched purity. Under the hypothesis of Corollary 3.10 and using
Proposition 3.18 above, any accessibly embedded full subcategory of a locally presentable
V-category that is closed under (λ, E)-pure subobjects, for some λ, is accessible. We do
not know, however, whether the converse implication holds; that is, if every accessible
and accessibly embedded V-category in a locally presentable V-category is closed under
enriched pure subobjects.

4. A weaker notion

The following notation is needed for our second notion of purity.

4.1. Notation. Let K be a V-category and (E ,M) a proper factorization system in
V . Consider morphisms f : K // L and g : A // B in K. Let Q(g, f) be the (E ,M)
factorization

K→(g, f) Q(g, f) K(A,K)
p′ p′′

of the projection p : K→(g, f) //K(A,K) sending (u, v) to u. Let

q′ : K(B,K) //K→(g, f)

be induced by the universal property of the pullback defining K→(g, f) applied to K(g,K)
and K(B, f). Explicitly, this sends t : B // K to (tg, ft) : g // f . Let q = p′q′ :
K(B,K) //Q(g, f) so that we have the commutative diagram below.
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K→(g, f)

K(B,K)

K(B,L)

K(A,K) K(A,L)

Q(g, f)

q′

K(B, f)

K(g,K) p K(g, L)

K(A, f)

p′
q

p′′

4.2. Definition. We will say that f : K // L is barely E-pure with respect to g if the
map q above is in E . We say that f is barely (λ, E)-pure if it is is barely (λ, E)-pure with
respect to every g : A //B with A and B λ-presentable.

4.3. Example.When V = CMet and we take the factorization system (dense, isometry)
(see [3, 3.16(2)]). Then barely (λ, E)-pure morphisms coincide with the barely λ-pure
morphisms from [28]. Indeed, Q(f, g) consists of those u : A // K such that for every
ε > 0 there are u′ : A // K and v : B // L such that u ∼ε u

′ and fu′ = vg. Clearly,
if f is (λ, E)-pure then it is barely λ-ap-pure. Conversely, let f be barely λ-ap-pure and
consider u ∈ Q(f, g) and ε > 0. There are u′ : A //K and v : B //L such that u ∼ ε

2
u′

and fu′ = vg. There is t : B // A such that tg ∼ ε
2
u′. Hence tg ∼ε u.

4.4. Lemma. If (E ,M) is proper, every (λ, E)-pure morphism is barely (λ, E)-pure. Fur-
thermore, if E is stable under pullbacks in V, then (λ, E)-pure and barely (λ, E)-pure
morphisms coincide.

Proof. Let f : K // L be a (λ, E)-pure morphism in K and g : A // B a morphism in
Kλ. In the notation of 4.1, the universal property of the pullback defining P(g, f) induces
a map t : K→(g, f) // P(g, f) making the square below commute

K→(g, f) Q(g, f)

P(g, f) K(A,K)

p′

s
t

and, since p′ ∈ E there exists s in M as dashed above making the triangles commute. By
pre-composition with q′, we obtain that sq = r, and r is in E by (λ, E)-purity of f . Thus,
if (E ,M) is proper, then s is also in E and hence is an isomorphism. Therefore q is also
in E and f is barely (λ, E)-pure.

Assume now that E is stable under pullbacks in V . The map t can be seen as the
pullback of the morphism K(B,L) ↠ P(g, L) along P(g, f) //P(g, L) from Notation 3.1;
thus t is in E by hypothesis. The uniqueness of the (E ,M)-factorization then implies that
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s : Q(g, f) // P(g, f) above is an isomorphism. Thus f is (λ, E)-pure if and only if it is
barely (λ, E)-pure.

4.5. Remark. In Met and CMet, dense maps are not stable under pullbacks. Indeed,
consider the pullback

∅ N

{0} { 1
n
|n ∈ N} ∪ {0}

g

where g is from 3.5(3) and is dense. But ∅ // {0} is not dense.
Nevertheless, (λ, E)-pure and barely (λ, E)-pure are equivalent notions by 6.9.

4.6. Proposition. If E ⊆ E ′ and (E ′,M′) is proper, then every barely (λ, E)-pure mor-
phism is barely (λ, E ′)-pure.

Proof. We will follow Notation 4.1 with indices denoting the factorization system to
which they apply. If E ⊆ E ′ then M′ ⊆ M and thus there exists t : QE(g, f) //QE ′(g, f)
such that tp′E = p′E ′ . By properness of the factorization system, t ∈ E ′ and thus

qE ′ = p′E ′q′ = tp′Eq
′ = tqE

belongs to E ′ (note that q′ does not depend on E or E ′).

4.7. Remark. The property above is one that doesn’t seem to hold for the notion of
purity considered in the previous section. Nonetheless, it will be satisfied whenever the
two notions of purity coincide.

Next we can prove some results in the same spirit as those of the previous section.

4.8. Proposition. If (E ,M) is proper then barely (λ, E)-pure morphisms are left-cancell-
able; that is, if f2f1 is barely (λ, E)-pure then f1 is barely (λ, E)-pure.
Proof. We follow Notation 4.1. Let f2f1 be (λ, E)-pure and consider the factorizations

K→(g, fi)
p′i−−→ Q(g, fi)

p′′i−−→ K(A,K),

for i = 1, 2, and

K→(g, f)
p′−−→ Q(g, f)

p′′−−→ K(A,K)

where f = f2f1. Since (idK , f2) : f1 // f defines a morphism in K→, we have a map

K→(g, (idK , f2)) : K→(g, f1) //K→(g, f)

for which pK→(g, (idK , f2)) = p1. Thus there is an induced s : Q(g, f1) // Q(g, f) such
that

sp′1 = p′K→(g, (idK , f2))

and p′′s = p′′1. Moreover, sq1 = q and thus s is in E . Since it is also in M, s is an
isomorphism. Hence q1 is in E and thus f1 is (λ, E)-pure.
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4.9. Proposition. If M is closed under λ-filtered colimits in V→, then any λ-filtered
colimit of barely (λ, E)-pure morphisms in K→ is barely (λ, E)-pure.
Proof. Let f : K //L be a λ-filtered colimit in K→ of some barely (λ, E)-pure morphisms
fi : Ki

// Li, and consider any g : A //B in Kλ. Since A ∈ Kλ and g is a λ-presentable
object of K→, the projection p : K→(g, f) // K(A,Ki) is the λ-filtered colimit of the
projections pi : K→(g, fi) // K(A,K). Now, we obtain an induced λ-filtered diagram
on the Q(g, fi) whose colimit coincides with Q(g, f), since E and M are closed under
λ-filtered colimits in K→. It follows that the map q : K(B,K) // Q(g, f) is the colimit
of the maps qi : K(B,Ki) //Q(g, fi), which lie in E since every fi is (λ, E)-pure. Thus q
also lies in E and f is barely (λ, E)-pure.

Next we study preservation of bare (λ, E)-purity by V-functors:

4.10. Proposition.Any right adjoint V-functor F : K //L preserving λ-filtered colimits
sends barely (λ, E)-pure morphisms in K to barely (λ, E)-pure morphisms in L.
Proof. The proof is analogue to that of Proposition 3.11.

As a corollary we obtain that homming out of λ-presentable objects, as well as taking
powers by them, preserves bare (λ, E)-purity:

4.11. Corollary. Let f : K // L be a barely (λ, E)-pure morphism in a V-category K
with copowers; then:

1. K(C, f) is barely (λ, E)-pure in V for any C ∈ Kλ;

2. if K also has powers, C ⋔ f is barely (λ, E)-pure in K for any C ∈ Vλ.

Proof. Same arguments of Corollary 3.12, now relying on Proposition 4.10 above.

In the statement below we adopt the same notation of Proposition 3.13.

4.12. Proposition. Assume that E⊥
λ = M and that [e,X] ∈ M whenever e ∈ E and

X ∈ V. Then for any barely (λ, E)-pure f : K // L in a locally λ-presentable V-category
K, we have that K(C, f) ∈ M for any C ∈ K.

Proof. Since M is closed under limits in V→, it is enough to prove the result for C ∈ Kλ.
Furthermore, by Corollary 4.11 above, it is enough to show that any barely (λ, E)-pure
morphism f : K // L in V lies in M.

By the hypotheses on M, to prove that f ∈ M it is enough to show that it is right
orthogonal to every morphism in Eλ; for that it suffices to prove that the square below is
a pullback.

[B,K] [B,L]

[A,K] [A,L]

[B, f ]

[e, L]

[A, f ]

[e,K]
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Note that [e,K] is in M by hypothesis. Moreover [e,K] = p′′q with q ∈ E and p′′ ∈ M. It
follows that q ∈ M and hence is an isomorphism. On the other hand, p : V→(e, f) //[A,K]
is obtained by pulling back [e, L] which, again by hypothesis, is in M. Therefore p ∈ M
as well, and p′ is then an isomorphism. Thus q′ : [B,K] // V→(e, f) is an isomorphism
as well. This shows that the square above is a pullback, and hence that f ∈ M.

4.13. Remark. If the factorization system (E ,M) is proper, then Proposition 3.13 fol-
lows by the result above plus Lemma 4.4.

4.14. Definition. We say that a morphism s : K // L in a V-category K is an E-split
monomorphism if the map K(s,K) : K(L,K) //K(K,K) is in E .

4.15. Remark. The notion of E-split monomorphism should not be confused with that
of E-split epimorphism; this is a map s for which K(L, s) : K(L,K) //K(L,L) is required
to be in E .

4.16. Example.

1. If E is the class of surjections in the sense of 3.4 then E-split monomorphisms are
precisely the usual split monomorphisms.

2. For Met (or CMet) and E = dense, E-split monomorphisms coincide with ap-split
monomorphisms from [28].

4.17. Remark.

1. An E-split morphism s : K // L is barely E-pure with respect to itself. Indeed,
since pq′ = K(s,K), we get that p′′ is in E , hence it is an isomorphism. Thus q ∈ E .

2. The proof of 4.9 yields that, if M is closed under λ-filtered colimits in V→, then
any λ-filtered colimit of morphisms barely E-pure with respect to g is barely E-pure
with respect to g.

3. Assume that f is barely E-pure with respect to g and g′ // g is a morphism in K→.
We do not know whether f is then barely E-pure with respect to g′. It is valid in
all our examples and it implies that E-split morphisms are barely E-pure.

As in the previous section, next we talk about E-injectivity classes.

4.18. Proposition. If barely (λ, E)-pure and (λ, E)-pure morphisms coincide, then every
(λ, E)-injectivity class is closed under barely (λ, E)-pure subobjects.

Proof. Follows from Proposition 3.18.
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4.19. Example. In CMet with the (dense, isometry) factorization system, a morphism
is (λ, E)-pure if and only if it is barely (λ, E)-pure (see [24, Lemma 4.3] or Proposition 6.9).
Therefore, by the remark above plus Example 3.22, it follows that also when enriching
over Ban, with the (dense, isometry) factorization, the notions of (λ, E)-purity and bare
(λ, E)-purity coincide.

5. The characterization theorem

In this section, we will characterize (λ, E)-injectivity classes. To achieve this, we will need
the following assumptions about E .

5.1. Assumption.

• (E ,M) is an enriched and proper factorization system;

• M is closed under λ-filtered colimits in V→;

• E can be written as an injectivity class in V→ with respect to maps (!Z , y) as below

0 Z

X Y

!Z

d

y

!X

with X ∈ Kλ.

5.2. Example.

1. Surjections in V can be characterized as those maps which are injective with respect
to

0 I

I I

!

d = 1

y = 1

!

Indeed, for a morphism f : A //B, to give a map ! // f in V→ is the same as giving
an element b ∈ V0(I, B); then such b factorizes through the square above if and only
if there exists a ∈ V0(I, A) with fa = b.

2. Dense maps in CMet→ and Met→ can be characterized as those maps which are
injective with respect to the family
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0 1

1 2ϵ

!

d = i1

y = i0

!

for every ϵ > 0. Here 2ϵ is the metric space given by two points {0, 1} of distance ϵ,
and i0 and i1 are the two inclusions.
Arguing as above. For any f : A //B, a map ! //f corresponds to an element b ∈ B,
and such b factorizes through the square above if and only if there exists a ∈ A with
d(fa, b) < ϵ. Asking this for each ϵ > 0 is equivalent to requiring that f is dense.

3. Let Ban be the category of Banach spaces and linear maps of norm ≤ 1. Dense maps
in Ban→ can be characterized as those maps which are injective with respect to the
family

0 C

C F2ϵ

!

d = Fi1

y = Fi0

!

for every ϵ > 0. Here F is the left adjoint to the unit ball functor U : Ban //CMet
(see [26]). This follows from the fact that f is dense in Ban if and only if Uf is dense
in CMet. Recall that F1 = C.

4. Let ω-CPO be the cartesian closed category of posets with joins of non-empty ω-
chains and maps preserving joins of non-empty ω-chains. A morphism f : A //B in
ω-CPO is called dense if B is the closure of f [A] under joins of ω-chains; these form
the left part of a factorization system (dense, embedding) – see [1, A.7]. Dense maps
can be characterized as those morphism which are injective in ω-CPO→ with respect
to

0 ω · 1

1 ω + 1

!

d

y

!1

where ω+1 is the successor of ω seen as an ordinal (this is obtained from ω by freely
adding the join of all elements), y sends the only element of 1 to the top element of
ω + 1, and d sends the countable anti-chain ω · 1 to the chain ω ⊆ ω + 1.
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To see this, consider f : A //B; then (as before) a map !1 //f is an element b ∈ B, and
such b factorizes through the square above if and only if there exists a family (an)n∈ω
in A (that is, a map ω · 1 // A) such that (fan)n∈ω is a chain in B and

∨
n fan = b.

This is exactly expressing that f is dense. See Section 7 fo the corresponding notions
of purity.

5. Regular epimorphisms in a λ-quasivariety V coincide with those maps e for which
V0(P, e) is surjective for every λ-presentable regular projective P in V (see Section 8).
Thus, the class of regular epimorphisms in V→ can be characterized as that of those
maps injective with respect to the family

0 P

P P

!

d = 1

y = 1

!

for any λ-presentable and regular projective P .

5.3. Lemma. Let K be a locally λ-presentable V-category. If Assumption 5.1 holds, the
following conditions are equivalent for any f : K // L in K:

(i) f is barely (λ, E)-pure;

(ii) there exists a λ-filtered family D ⊆ K→ whose colimit is f and such that f is barely
E-pure with respect to each morphism from D.

Proof. (i) ⇒ (ii). By definition of bare (λ, E)-purity and since K is locally λ-presentable,
it is enough to choose D to be any λ-filtered family of λ-presentable objects of K→ with
colimit f .

(ii) ⇒ (i). Fix a family D = {fi : Ki
// Li}i∈I as in condition (ii) and consider

any g : A // B between λ-presentable objects. We will use notation 4.1 with indices i’s
denoting the fi to which they apply. Then K(B,K) ∼= colimiK(B,Ki) and K→(g, f) ∼=
colimiK→(g, fi). Moreover, since M and E are closed under λ-filtered colimits in V→, also
Q(g, f) ∼= colimiQ(g, fi) and q ∼= colimqi. We need to show that q : K(B,K) //Q(g, f)
lies in E .

For that, write E as an injectivity class H-inj in V→ as in the initial assumption. Thus,
we are required to show that q is injective with respect to each map (!, y) : !X // d in H.

Consider then a morphism (!, v) : !X // q, since X is λ-presentable and Q(g, f) is the
λ-filtered colimit of the Q(g, fi) it follows that v factors as a map vi : X //Q(g, fi), for
a fixed i. We can then construct the following commutative diagram:
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0 K(Li, K)⊗K→(g, fi) K(B,K)

X Q(fi, f)⊗Q(g, fi) Q(g, f)

!

!X qfi ⊗ p′i

v′

M

q

N

!

v

whereM is induced by first applying the projection K→(g, fi) //K(B,Li) and then com-
posing, and similarly N is induced through the factorization system by the composition
maps in K and K→. Finally, the map v′ is given by tensoring the composite of the col-
imiting map I //K(fi, f) and p

′
i : K(fi, f) //Q(fi, f) with vi (and composing with the

isomorphism X ∼= I ⊗X).
Now, qfi : K(Li, K) //Q(fi, f) is in E since f is barely E-pure with respect to fi, and

p′i : K→(g, fi) //Q(g, fi) is in E by definition. Since the factorization system is enriched,
it follows that qfi ⊗ p′i is also in E . Thus the pair (!, v′) factors through (!, y); composing
this with (M,N) we obtain a factorization of (!, v) through (!, y). This shows that q is
injective with respect to (!, y), and hence that q ∈ E .

5.4. Corollary. If Assumption 5.1 holds, then every E-split morphism is barely (λ, E)-
pure.

Proof. Let s : K // L be E-split; then s is barely E-pure with respect to itself by
Remark 4.17(2). Thus the family D := {s} satisfies condition (ii) above, making s barely
(λ, E)-pure.

We are ready to prove a characterization theorem for (λ, E)-injectivity classes. This
will be applied in the three very different settings of categories enriched over quantale-
metric spaces (Section 6), categories enriched over ω-directed posets (Section 7), and
categories enriched over λ-quasivarieties (Section 8).

5.5. Theorem. Suppose that Assumption 5.1 holds and that

(i) barely (λ, E)-pure and (λ, E)-pure morphisms coincide;

(ii) there is G ⊆ V such that powers by G are E-stable and whenever V0(G, e) is surjective
for any G ∈ G, then e ∈ E.

Then the (λ, E)-injectivity classes in a locally λ-presentable V-category K are precisely the
classes closed under λ-filtered colimits, products, powers by G, and (λ, E)-pure subobjects.
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Proof. Since E is an injectivity class, it is closed in V→ under products. Thus the
necessity follows from 3.18.

Conversely, let A be closed under products, λ-filtered colimits, and (λ, E)-pure sub-
objects in K. Since A is closed also under λ-pure subobjects by Corollary 3.10, its
underlying category A0 is a λ-injectivity class of K0 by [27, Theorem 2.2]. Thanks to
[16, Theorem 3.3] we then obtain a functor R : K0

// K0 preserving λ-filtered colimits
and a natural transformation r : 1K0

//R such that each component rK : K //RK is an
ordinary weak reflection of K into A0.

Now we move back to the enriched setting and consider the set H of all those maps
g : A //B between λ-presentable objects such that every object of A is E-injective with
respect to them. We shall prove that A = InjH.

The fact that A ⊆ InjH is true by definition. Consider then K ∈ InjH together with
its ordinary weak reflection rK : K //RK into A. To conclude it is enough to show that
rK is (λ, E)-pure, so that K ∈ A by the assumptions on A. For this, we use Lemma 5.3.

WriteK ∼= colimKi as a λ-filtered colimit of λ-presentable objects in K with colimiting
maps xi : Ki

//K; since R preserves λ-filtered colimits then RK ∼= colimRKi and rK ∼=
colim rKi

in the category of arrows K→. Now, by writing each RKi as a λ-filtered colimit

sj : L
i
j

//RKi

of λ-presentable objects, we get that each rKi
is a λ-filtered colimit of morphisms hij :

Ki
// Li

j in Ki ↓ K via certain sij : L
i
j

//RKi. It follows that the family

D := {hij : Ki
// Li

j}i,j

is λ-directed, contained in K→
λ , and has colimit rK . By Lemma 5.3, to conclude it is

enough to show that rK is E-pure with respect to each hj.
Since rKi

= sjh
i
j and rKi

is an ordinary weak reflection, every object from A is injective
in the ordinary sense with respect to hij; that is K0(h

i
j, A) is surjective for any A ∈ A.

Since by hypothesis A is closed under powers by G, it follows that for any A ∈ A and
G ∈ G the maps

V0(G,K(hij, A))
∼= K0(h

i
j, G ⋔ A)

are surjective. By (ii) this means that K(hij, A) ∈ E , and thus every object from A is
E-injective with respect to hij. Therefore K is E-injective with respect to hij; that is,
K(hij, K) is in E . Now, following Notation 4.1 for g := hij and f = rK we have the
following commutative triangle

K(Li
j, K) K(Ki, K)

Q(hij, rK)

K(hi
j ,K)

q p′′

where p′′ is in M. Since K(hij, K) is in E , also p′′ is in E . Hence p′′ is an isomorphism,
and therefore q is in E . Consequently, rK is E-pure with respect to each hij, as claimed.
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5.6. Example. Let V = Ban with (E ,M) = (dense, isometry); then: E satisfies As-
sumptions 5.1, the two notions of purity coincide (by Example 4.19), and G := {C}
satisfies condition (ii) above.

Therefore we can apply Theorem 5.5 and obtain the following characterization: the
(λ, E)-injectivity classes in a locally λ-presentableBan-categoryK are precisely the classes
closed under λ-filtered colimits, products, and (λ, E)-pure subobjects.

In the same spirit as E-injectivity we can consider orthogonality: given a morphism
f : A //B in a V-category K, we say that X ∈ K is f -orthogonal if the map

K(f,X) : K(B,X) −→ K(A,X)

is an isomorphism. This is the same as considering E-injectivity with respect to E = V∼=;
note, however, that we shall not fix such choice of E when considering E-purity below.

Given a set of morphisms H in K, we denote by H⊥ the full subcategory of K spanned
by the object which are f -orthogonal for any f ∈ H. We call orthogonality class any full
subcategory of K arising that way; if the morphisms in H have λ-presentable domain and
codomain, we call H⊥ a λ-orthogonality class. See [12, Chapter 6] where the enriched
concept was first considered.

5.7. Proposition. Every λ-orthogonality class H⊥ in a complete and cocomplete V-
category K is closed under:

1. all limits;

2. λ-filtered colimits.

If moreover, E⊥
λ = M and [e,X] ∈ M whenever e ∈ E and X ∈ V, then H⊥ is also closed

under

(3) (λ, E)-pure subobjects.

Proof. Points (1) and (2) follows from Propositions 2.6 and 2.7 of [15].
For (3), assume that f : K // L is (λ, E)-pure and that L ∈ H⊥. For any g : A //B

in H, following Notation 3.1, we obtain that P(g, L) ∼= K(A,L) (since K(g, L) is an
isomorphism), and hence that P(g, f) ∼= K(A,K). Thus, the E-purity of f with respect
to g implies that K(g,K) lies in E . But by Proposition 3.13 we know that K(B, f) and
K(A, f) are in M, so that K(g,K) is in M too. It follows that K(g,K) is an isomorphism
and hence that K ∈ H⊥.

As a consequence of the main theorem of this section we obtain:

5.8. Corollary. Assume that E⊥
λ = M and [e,X] ∈ M whenever e ∈ E and X ∈ V. If

the hypotheses of Theorem 5.5 are satisfied, then every λ-orthogonality class in a locally
λ-presentable V-category K is a (λ, E)-injectivity class.

Proof. Follows immediately from Proposition 5.7 above and Theorem 5.5.
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5.9. Remark. Given a set of maps H in K, ordinarily there is an explicit way of con-
structing (using pushouts) another collection H′ for which

H⊥ = InjH′,

see [2, Remark 4.4.1]. It is not clear to us if such an argument would work in the enriched
setting for a given factorization system (E ,M) satisfying the hypotheses of the corollary
above.

6. Purity over quantale-valued metric spaces

Under a quantale Q we will mean a complete lattice (Q,≤) with a commutative monoid
structure (Q,+, 0) where 0 is the least element of Q such that

x+
∧
j∈J

yj =
∧
j∈J

(x+ yj)

for every x, yj ∈ Q, j ∈ J . Given a, b ∈ Q we say that a is totally above b, and write
a ≻ b, if: for every subset S ⊆ Q such that a ≥

∧
S there exists s ∈ S such that b ≥ s.

Let now ⇑ (a) = {x ∈ Q|x ≻ a}; a value quantale is a quantale Q such that

a =
∧

⇑ (a)

for every a ∈ Q and, moreover, a ∧ b ≻ 0 whenever a, b ≻ 0 (see [9, 7]).

6.1. Definition. Let Q be a value quantale. A Q-metric space is a set X equipped with
a map d : X ×X //Q satisfying the following conditions for all x, y, z ∈ X:

1. d(x, x) = 0,

2. d(x, y) = d(y, x),

3. d(x, z) ≤ d(x, y) + d(y, z), and

4. d(x, y) = 0 ⇒ x = y.

A map f : X //Y is non-expanding if d(fx, fy) ≤ d(x, y) for all x, y ∈ X. The resulting
category is denoted by Q-Met.

6.2. Examples. (1) Metric spaces are Q-valued metric spaces for Q = ([0,∞],≤,+).
(2) Ultrametric spaces are Q-quantales for Q = ((0,∞],≤,∨).
(3) Probabilistic metric spaces are Q-metric spaces where Q is the value quantale of

distance distribution functions. These are left continuous maps f : [0,∞] // [0, 1], i.e.,
maps such that

f(x) =
∨
y<x

f(y).
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In particular, f(0) = 0. The order on Q is the opposite of the pointwise order and the
operation is

(f + g)(x) =
∨

y+z≤x

max{f(y) + g(z)− 1, 0}.

(see [9], or [6, 1.2(4)]).

The tensor product X ⊗ Y of Q-valued metric spaces is given by the set X × Y with
the distance

d((x1, y1), (x2, y2)) = d(x1, x2) + d(y1, y2).

The tensor unit I is the one-element Q-metric space. The internal hom [X, Y ] is the
Q-metric space on the set Q-Met(X, Y ) with distance

d(f, g) =
∨
x∈X

d(fx, gx).

6.3. Proposition. Q-Met is a symmetric monoidal closed category.

Proof. Clearly ⊗ is symmetric and I is a unit for it. Consider a nonexpanding map
f : X ⊗ Y // Z. Since

d(f(x, y1), f(x, y2)) ≤ d((x, y1), (x, y2)) = d(x, x) + d(y1, y2) = d(y1, y2),

the maps f(x,−) : Y // Y are nonexpanding. Moreover, since

d(f(x1,−), f(x2,−)) =
∨
y∈Y

d(f(x1, y), f(x2, y)) ≤
∨
y∈Y

d((x1, y), (x2, y))

=
∨
y∈Y

(d(x1, x2) + d(y, y)) = d(x1, x2),

the map f̃ : X // [Y, Z] such that f̃x = f(x,−) is nonexpanding.
Conversely, consider a nonexpanding map g : X // [Y, Z] and take g̃ : X ⊗ Y // Z

such that g̃(x, y) = g(x)(y). Since

d(g̃(x1, y1), g̃(x2, y2)) = d(g(x1)(y1), g(x2)(y2))

≤ d(g(x1)(y1), g(x1)(y2)) + d(g(x1)(y2), g(x2)(y2))

≤ d(y1, y2) +
∨
y∈Y

d(g(x1)(y), g(x2)(y))

= d(y1, y2) + d(g(x1), g(x2))

≤ d(y1, y2) + d(x1, x2) = d((x1, y1), (x2, y2)),

the map g̃ is nonexpanding. This defines a natural bijection between maps X ⊗ Y // Z
and X // [Y, Z].
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6.4. Proposition. Q-Met is a locally presentable category.

Proof. Q-metric spaces can be seen as sets equipped with binary relations Rq, q ∈ Q
such that

1. (∀x, y)(R0(x, y) ↔ x = y),

2. (∀x, y)(Rq(x, y) → Rq(y, x)) for all q ∈ Q,

3. (∀x, y)(Rp(x, y) → Rq(x, y)) for all p ≤ q

4. (∀x, y, z)(Rp(x, z) ∧Rq(z, y) → Rp+q(x, y)), for all p, q ∈ Q, and

5. (∀x, y)(
∧
j∈J

Rqj(x, y) → Rq(x, y)) where q =
∧
j∈J

qj.

The result follows from [2, 5.30].

6.5. Remark. Following [2, 5.30], Q-Met is locally λ-presentable whenever λ > |Q|. It
even suffices that λ > |S| where S is a set of elements s > 0 such that 0 =

∧
S. Then

q =
∧
s∈S

q + s and we only use the corresponding conjunctions in (5).

Directed colimits of Q-metric spaces are calculated in the same way as in metric spaces
(see [3, 2.4]): given a directed diagram {Ki}i, the cocone ki : Ki

//K is colimiting if and
only if it is jointly surjective and

d(ki(x), ki(y)) =
∧
j≥i

d(kij(x), kij(y)).

A map f : X // Y is an isometry if d(fx, fy) = d(x, y) for all x, y ∈ X. Following
6.5, isometries are closed under directed colimits in (Q-Met)→.

6.6. Remark. A key property of value quantales is that for every q ≻ 0 there is p ≻ 0
such that q ≻ 2p (see [9, 2.9]). This makes possible to define a topology on a Q-metric
space (X, d) as follows (see [9, 4.1]). For x ∈ X and q ≻ 0, the open ball Bq(x) is the set
{y ∈ X|q ≻ d(x, y)}. Now, a set U ⊆ X is open if for every x ∈ U there is q ≻ 0 such
that Bq(x) ⊆ U .

A nonexpanding map f : X // Y will be called dense if for every y ∈ Y and every
q ≻ 0 there is x ∈ X such that q ≻ d(fx, y). These are precisely maps dense in the induced
topologies. We have an enriched and proper factorization system (dense, closed isometry)
in Q-Met. Moreover, the class E of dense maps is an injectivity class in (Q-Met)→ with
respect to maps

0 1

1 2q

!

d = i1

y = i0

!

for every q ≻ 0. Here 2q is the Q-metric space with two points of distance q (see 5.2(2)).
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6.7. Remark. It follows that Q-Met satisfies Assumption 5.1 for the regular cardinal λ
given by Remark 6.5, for E = dense and M = closed isometry. Moreover E contains the
surjections.

Given a Q-Met enriched category K and morphisms f, f ′ : K //L, we write f ∼q f
′

for q ≻ 0 if d(f, f ′) ≤ q. A q-commutative square

A B

K L

g

v

f

u

is a square such that fu ∼q vg. In this setting the notion of q-pushout that we introduce
below is relevant: this will play a key role in the proof of Proposition 6.9. Like in [3],
q-pushouts can be seen as weighted (ℵ1-small) colimits.

6.8. Definition. Let q ≻ 0. A q-commutative square

A B

C D

f

ḡ

f̄

g

is called an q-pushout if for every q-commutative square

A B

C D′

f

g′

f ′

g

there is a unique morphism t : D //D′ such that tf = f ′ and tg = g′.

Let us now consider the notions of purity induced in this setting. We start with the
barely (λ, E)-pure morphisms of Definition 4.2. Given f : K // L in a Q-Met category
K and g : A // B in Kλ, the object Q(g, f) of Notation 4.1 is the sub-Q-metric space of
K(A,K) consisting of those u : A //K such that for every q ≻ 0 there are u′ : A //K
and v : B // L such that u ∼q u

′ and fu′ = vg. Arguing as in Example 4.3 we obtain
that f : K // L is barely (λ, E)-pure if for every q ≻ 0 and every commutative square

A B

K L

g

v

f

u
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with A and B λ-presentable, there exists t : B //K such that tg ∼q u. Therefore this
generalizes the notion of barely λ-ap-pure morphism of [28].

The (λ, E)-pure morphisms of Definition 3.2 do not correspond directly to a notion
of purity studied in the past, as pointed out in Example 3.5(2) for V = CMet. Given
f : K // L and g : A // B in a Q-Met category K, the object P(g, f) of Notation 3.1
is the sub-Q-metric space of K(A,K) consisting of those u : A //K such that for every
q ≻ 0 there exists v : B // L for which fu ∼q vg. Then f is E-pure with respect to g if
and only if for any u ∈ P(f, g) as above and for any q ≻ 0, there exists t : B //K such
that tg ∼q u.

A third notion that we could consider is a direct generalization to this setting of the
weakly λ-ap pure morphisms of [28]. We say that a morphism f : K // L in a Q-Met
category K is weakly (λ, E)-pure if and only if for every q ≻ 0 and every q-commutative
square

A B

K L

g

v

f

u

with A and B λ-presentable, there exists t : B //K such that tg ∼2q u.
These three notions are actually all equivalent, as we see in the result below that

extends [24, 4.2].

6.9. Proposition. Let K be a locally λ-presentable category enriched over Q-Met and
f : K // L be a morphism in K. The following are equivalent:

1. f is weakly (λ, E)-pure;

2. f is (λ, E)-pure;

3. f is barely (λ, E)-pure.

Proof. (1) ⇒ (2) is straightforward since every u ∈ P(g, f) can be completed to a q-
commutative square as in the definition of weak (λ, E)-purity, while (2) ⇒ (3) is given by
Lemma 4.4.

(3) ⇒ (1). Let f be barely (λ, E)-pure and consider a q-commutative square

A B

K L

g

v

f

u

with A and B λ-presentable. Consider a q-pushout as below;
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A B

A C

g

gq

g

idA

then there is a unique morphism t : C // L such that tg = fu and tgq = v. Thus we get
the following commutative square

A C

K L

g

t

f

u

and, since λ-presentable objects are closed under weighted finite colimits, C is λ-present-
able and thus there exists w : C //K such that wg ∼q u. Hence

wgqg ∼q wg ∼q u

and wgqg ∼2q u, showing that f is weakly (λ, E)-pure.

As a consequence we can characterize (λ, E)-injectivity classes:

6.10. Theorem. The (λ, E)-injectivity classes in a locally λ-presentable Q-Met category
K are precisely classes closed under λ-filtered colimits, products, and (λ, E)-pure subob-
jects.

Proof. This is a consequence of Theorem 5.5 since Assumption 5.1 is satisfied by Re-
mark 6.7, the notions of purity coincide by Proposition 6.9 above, and we can choose
G := {1} since surjections are dense.

7. Purity over ω-complete posets

We fix as the base of enrichment the cartesian closed category ω-CPO of posets with joins
of non-empty ω-chains and maps preserving joins of such (as in Example 5.2(4)). This
is locally ℵ1-presentable as a closed category where ℵ1-presentable objects are countable
cpo’s, so we consider λ ≥ ℵ1.

The factorization system we consider is given by (dense, embedding) as in Exam-
ple 5.2(4). Note that this is a proper factorization system, it is enriched (if e is dense,
then so is also X × e for any X ∈ ω-CPO), and the class of embeddings is closed under
ℵ1-filtered colimits in ω-CPO→. Thus Assumption 5.1 is satisfied.

Following Notation 3.1 for f : K // L and g : A // B the object P(f, g) consists of
those u : A //K for which there exists (vi : B //L)i∈ω such that (vig)i∈ω is a chain and
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fu =
∨
vig. (Note that this does not mean that fu = vg, for some v, because (vi)i∈ω does

not need to be a chain.) It follows that f : K // L is E-pure with respect to g : A // B
if:

for any u : A //K together with a family (vi : B // L)i∈ω
such that (vig)i∈ω is a chain and fu =

∨
vig,

then
there exists (tj : B //K)j∈ω such that (tjg)j is a chain and u =

∨
tjg.

Similarly, following Notation 4.1 for f : K // L and g : A // B as above, the object
Q(f, g) consists of those u : A //K for which there exists (ui : A //K, vi : B // L)i∈ω
such that (ui)i∈ω is a chain, fui = vig, and u =

∨
ui. It follows that f : K // L is barely

E-pure with respect to g : A //B if:

for any u : A //K together with a family (ui : A //K, vi : B // L)i∈ω,
such that (ui)i∈ω is a chain, fui = vig, and u =

∨
ui,

then
there exists (tj : B //K)j∈ω such that (tjg)j is a chain and u =

∨
tjg.

As in the previous section, we shall prove that (λ, E)-pure and barely (λ, E)-pure
morphisms coincide by showing that that correspond to a third (weaker) notion of purity.
Before achieving that, we need to introduce a generalized notion of pushout:

7.1. Definition. The ω-pushout of a map g : A // B along f : A // C in a ω-CPO-
category K is an object D together with maps ḡ : C // D and f̄i : B // D, for i ∈ ω,
such that:

• the composites (f̄ig)i∈ω define a chain in K(A,D),

• ḡf =
∨
f̄ig,

and which is universal among the tuples (E, h : C //E, (ki : B //E)i∈ω) with the above
properties: for any such tuple there exists a unique map v : D // E with h = vḡ and
ki = vf̄i for any i ∈ ω.

7.2. Remark. The ω-pushout defined above can be compute as an ℵ1-small weighted
colimit in K. Indeed, consider the free ω-CPO-category C on the category

⋆1 ⋆2

⋆3

and the weight M : Cop //ω-CPO defined by sending the opposite of the diagram above
to
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ω · 1

1 ω + 1

d

y

with the same notations we used in Example 5.2(4) to define the dense maps as an
injectivity class.

Then, to give g : A // B and f : A // C in K is the same as giving an enriched
functor H : C // K, and it is easy to see that the ω-pushout of g along f coincides with
the weighted colimit M ∗H.

We are now ready to prove the two notions of purity coincide (like in 6.9):

7.3. Proposition. Let K be a locally λ-presentable category enriched over ω-CPO and
f : K // L be a morphism in K. The following are equivalent:

1. f is (λ, E)-pure;

2. f is barely (λ, E)-pure;

3. for any g : A //B between λ-presentable objects and any commutative square

A B

K L

g

v

f

u

There exists (ti : B //K)i∈ω such that (tig)i∈ω is a chain and u =
∨
tig.

Proof. (1) ⇒ (2) follows from Lemma 4.4, and (2) ⇒ (3) is trivial since it is enough to
apply the bare (λ, E)-purity of f to the constant family (ui, vi) = (u, v).

(3) ⇒ (1). Following the definition of (λ, E)-purity, we need to consider g : A // B
between λ-presentable objects, a map u : A //K, and a family vi : B //L such that vig
is a chain and fu =

∨
vig.

Consider now the ω-pushout of g along 1A in K; this is an object D together with maps
ḡ : A //D and hi : B //D, for i ∈ ω, such that (hig)i∈ω is a chain and ḡ =

∨
hig. By

the universal property of the ω-pushout applied to the tuple (L, fu, (vi)i∈ω) there exists
a map v̄ : D // L making the square

A D

K L

ḡ

v̄

f

u
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commute. Now, by applying (3) to ḡ (which is still a map between λ-presentable objects
because D is an ℵ1-small weighted colimit of λ-presentable objects) we find a family
ti : D //K, for i ∈ ω, such that (tiḡ)i is a chain and u =

∨
tiḡ. It follows that

u =
∨
i

tiḡ =
∨
i

ti(
∨
j

hjg) =
∨
i

∨
j

(tihj)g =
∨
i

(tihi)g

where the last equality is given by the standard diagonal argument for joins of chains in
posets. In conclusion, the family (tihi)i∈ω witnesses the (λ, E)-purity of f , showing (1).

As a consequence we can characterize (λ, E)-injectivity classes for ω-CPO-enriched
categories:

7.4. Theorem. The (λ, E)-injectivity classes in a locally λ-presentable ω-CPO category
K are precisely classes closed under λ-filtered colimits, products, and (λ, E)-pure subob-
jects.

Proof.This is a consequence of Theorem 5.5 since Assumption 5.1 is satisfied, the notions
of purity coincide by Proposition 7.3 above, and we can choose G := {1} since surjections
are dense.

8. Purity over quasivarieties

In this section we consider enrichment over λ-quasivarieties as in [16]; we recall the defi-
nition of symmetric monoidal λ-quasivariety below:

8.1. Definition. Let V = (V0,⊗, I) be a symmetric monoidal closed category. We say
that V is a symmetric monoidal λ-quasivariety if:

1. V0 has a regular generator P made of λ-presentable and regular projective objects
(that is, V0 is a λ-quasivariety);

2. the unit I is λ-presentable;

3. if P,Q ∈ P then P ⊗Q is λ-presentable and regular projective.

In particular, such a V is also locally λ-presentable as a closed category in the sense
of Kelly [13] (see [16, Remark 4.15]). Following [4, Proposition 30], a regular generator as
in (1) can be weakened to be just a strong generator.

Since every λ-quasivariety is a regular category, it is endowed with the factorization
system (E ,M) where E is the class of regular epimorphisms and M that of monomor-
phisms. We consider then the notion of purity induced by this factorization system.
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8.2. Examples. The following are all examples of symmetric monoidal finitary quasiva-
rieties, some were already mentioned in Examples 3.5:

1. Set, where the induced factorization system induces the standard notion of purity;

2. MGra, the cartesian closed category of oriented multigraphs with loops;

3. Gra, the cartesian closed category of directed graphs (possibly) without loops;

4. SetG, the cartesian closed category of G-sets for a finite group G;

5. Ab, the category of abelian groups, as well as the category R-Mod of R-modules,
for a commutative ring R;

6. GAb, the category of graded abelian groups;

7. DGAb, the category of differentially graded abelian groups.

In (1),(2),(5), and (6) the unit of the monoidal structure is regular projective, so the
notion of E-purity will correspond to the ordinary one by Proposition 8.12 below. This
does not hold in the other examples. We will keep DGAb as our prototypical example of
quasivariety with non regular projective unit, and will provide clarifications on how the
various notions introduced below can be interpreted in the setting of DG-categories.

To better understand the notion of (λ, E)-purity in this context, we need to introduce
some notation.

8.3. Definition. Given a V-category K and an object P ∈ V , we call a map

f : P //K(X, Y )

a P -morphism from X to Y , and denote it by (f, P ) : X // Y .

When P = I we recover the standard notion of morphism f : X //Y in the underlying
category K0.

8.4. Example. In the monoidal category DGAb of chain complexes, consider the chain
complex Pn which has Z in degree n and n − 1, with differential dn = id, and which is
trivial in every other degree. In [20] these Pn are called SnLZ. It is easy to see that
to give a morphism Pn

// A in DGAb is the same as specifying an element x ∈ An in
degree n.
Then, according to the nomenclature in [20], a Pn-morphism in a DG-category K is a
protomorphism of degree n. It is easy to see that the set of all Pn’s is a regular generator
of DGAb made of finitely presentable and regular projective objects (in fact, this is a
dense generator by [20, 3.10]).
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8.5. Remark. The morphisms above were considered in [30] to express every V-category
as a category enriched over [Vop,SET], for an opportune universe enlargement SET of
Set. In particular, the definition below can be seen as part of the composition rule in
[Vop,SET]-categories.

Morphisms and P -morphisms can be composed as follows:

8.6. Definition. Given a P -morphism (u, P ) : X // Y and a morphism g : Y // Z in
a V-category K, the composite of (u, P ) and g is the P -morphism

(gu, P ) : P
∼=−→ I ⊗ P

g⊗u

−−−→ K(Y, Z)⊗K(X, Y )
◦−→ K(X,Z).

Similarly, given a morphism g : X //Y and a P -morphism (u, P ) : Y //Z, the composite
of g and (u, P ) is the P -morphism

(ug, P ) : P
∼=−→ P ⊗ I

u⊗g

−−−→ K(Y, Z)⊗K(X, Y )
◦−→ K(X,Z).

8.7. Remark. Equivalently, in the first case, (gu, P ) can be defined as the composite

P
u−→ K(X, Y )

K(X,g)

−−−→ K(X,Z).

Similarly for (ug, P ). However, the approach given above makes clear the relationship
with Remark 8.18.

Thanks to this we can talk about commutative squares involving P -morphisms:

8.8. Definition. We say that the square below commutes

Y Y ′

X X ′

f

(u, P ) (v, P )

g

if (fu, P ) = (vg, P ).

Note that, to give a commutative square as above is the same as giving a map
P //K→(g, f); then (u, P ) and (v, P ) can be recovered by taking the two projections out
of K→(g, f).

We are now ready to give a characterization of E-purity in terms of P -morphisms.

8.9. Proposition. A morphism f : K //L in a V-category K is (λ, E)-pure if and only
if for any commutative square

K L

A B

f

(u, P ) (v, P )

g

with A,B ∈ Kλ and P ∈ P, there exists (t, P ) : B //K such that (tg, P ) = (u, P ).
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Proof. A morphism f : K // L is barely (λ, E)-pure if and only if for any g : A // B
in Kλ, the map q : K(B,K) // Q(g, f) of Notation 4.1 is a regular epimorphism. Since
P is a strong generator of regular projective objects, this holds if and only if V0(P, q) is
a surjection of sets for any P ∈ P . Now, Q(g, f) is defined as the (E ,M) factorization of
the first projection

π1 : K→(g, f) //K(A,K);

thus V0(P,Q(g, f)) is the standard image factorization of the function V0(P, π1). It follows
that V0(P,Q(g, f)) can be described as the set of those P -morphisms (u, P ) : A //K which
can be completed to a commutative square as depicted in the statement.

In conclusion, the map V0(P, q) is surjective if and only if for any (u, P ) as above there
exists (t, P ) : B //K such that (tg, P ) = (u, P ).

8.10. Proposition. Let K be a V-category. The following are equivalent for a morphism
f : K // L in K:

1. f is (λ, E)-pure.

2. Assuming powers by P exist in K, the morphism P ⋔ f is λ-pure in the ordinary
sense for any P ∈ P.

3. Assuming copowers by P exist in K, for any commutative square

K L

P · A P ·B

f

u′ v′

P · g

with g : A //B in Kλ and P ∈ P, there exists t : P ·B //K such that t◦(P ·g) = u′.

Proof. Since maps P · A // B in K correspond to morphisms P // K(A,K) in V , to
give a square as in (3) is the same as giving a commutative square involving P -morphisms
as in Proposition 8.9 above. Therefore (1) ⇔ (3) follows immediately.

For (1) ⇔ (2) it is again enough to notice that, acting by transposition, a square as
in Proposition 8.9 is the same as a commutative square

P ⋔ K P ⋔ L

A B

P ⋔ f

u v

g

and a lifting for the square in Proposition 8.9 is the same as a lifting for the square above.
Thus (1) is equivalent to P ⋔ f being λ-pure in the ordinary sense for every P ∈ P .
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8.11. Remark. It follows that our (ω, E)-pure morphisms are the same as the P-pure
morphisms of [16, Definition 6.4].

When K is locally λ-presentable the first part of the statement below follows from
Corollary 3.10.

8.12. Proposition. Let K be a V-category with copowers by P. Then every ordinary
λ-pure morphism f : K // L in K is (λ, E)-pure. If the unit I of V is regular projective,
then every (λ, E)-pure morphism is ordinarily λ-pure.

Proof. If f : K // L is ordinarily λ-pure then it satisfies point (3) of Proposition 8.10
since copowers by finitely presentable objects of V are still finitely presentable. Therefore
f is (λ, E)-pure.

If the unit I is regular projective, then we can assume it to be an element of P (we can
always take P to be the set of all the finitely presentable and regular projective objects).
Thus, f ∼= I ⋔ f is ordinarily λ-pure by Proposition 8.10.

8.13. Example. When V = Ab is the category of abelian groups, the unit Z is regular
projective; thus the enriched notion of E-purity coincides with the ordinary one, which
was already studied by Prest in the context of definable additive category and model
theory [22].

Recall the notion of E-injectivity from Section 3. In this context it translates into the
following: given a V-category K, an object X is E-injective with respect to h : A //B in
K if

K(h,X) : K(B,X) //K(A,X)

is a regular epimorphism. In other words, if for any (f, P ) : A //X, with P ∈ P , there
exists (g, P ) : B //X such that (gh, P ) = (f, P ).

We can now prove the following theorem characterizing enriched E-injectivity classes.
This will generalize [16, Proposition 6.8] characterizing such classes only for those V with
a regular projective unit.

8.14. Theorem. Let V be a symmetric monoidal λ-quasivariety endowed with the (regu-
lar epi, mono) factorization system. For a locally λ-presentable V-category K, the (λ, E)-
injectivity classes of K are precisely the full subcategories of K closed under products,
powers by P, λ-filtered colimits, and (λ, E)-pure subobjects.

Proof. Note that Assumption 5.1 is satisfied, and that a morphism is (λ, E)-pure if and
only if it is barely (λ, E)-pure Lemma 4.4 since regular epimorphisms are stable under
pullbacks in V . Moreover, a map e in V is a regular epimorphism if and only if V0(P, e)
is surjective for any P ∈ P (since P forms a regular generator), and powers by P are
E-stable by [16, Remark 4.15].

Thus we can apply Theorem 5.5 for G := P and obtain the desired characterization of
(λ, E)-injectivity classes.
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8.15. Remark. Note that, in presence of λ-filtered colimits and products, the existence
of powers by P implies that of powers by any regular projective objects of V . Indeed, if
X ∈ V is projective, it is a retract of coproducts of elements Pi of P [16, Proposition 4.8];
thus the power X ⋔ K of an object K in a V-category K will be a retract of the product
of the powers Pi ⋔ K.

8.16. Remark. Every E-injectivity class in K is an ordinary injectivity class in the
underlying category K0. However, the converse needs not hold in general since ordinary
injectivity classes may not have (enriched) absolute colimits, while they exist in every
E-injectivity class (since regular epimorphisms are closed under absolute colimits in V→).
Consider V = DGAb, and let Ck be the chain complex having Z/kZ in degree 0 and
−1, with differential d0 = id, and which is trivial in every other degree. To give a map
Ck

// A is the same as giving an element x ∈ A0 such that kx = 0. Let h : P0
// Ck be

the component-wise projection (where P0 was defined in Example 8.4); then the ordinary
injectivity class defined by h in DGAb is the full subcategory of all chain complexes A
such that kx = 0 for every x ∈ A0. This is not an E-injectivity class in DGAb since it is
not closed under suspensions (shifts of the degrees), which can be expressed as absolute
colimits (see [20]).

In the proof of result below, at some point we will need to see a morphism x : X //Y
as a P -morphism (x′, P ) : X // Y for some P ∈ P . When the unit is regular projective
this is trivial (since we can assume I ∈ P), but in general we need to argue differently.

8.17. Notation. Since V is a λ-quasivariety we can write the unit I as a regular quo-
tient of a coproduct of λ-presentable regular projective objects. Moreover, since I is
λ-presentable, we can assume such coproduct to be λ-small. But λ-small coproducts of
λ-presentable regular projective objects is still λ-presentable regular projective. It follows
that there exists a λ-presentable and regular projective object I∗ together with a regular
epimorphism

e : I∗ ↠ I.

We shall now fix such I∗ and e and, without loss of generality, assume that I∗ ∈ P (one
can always enlarge P to contain I∗).

8.18. Remark. Given I∗ as above, by pre-composing with e, every morphism in a V-
category K can be seen as a I∗-morphism.

As it happens in the case of ordinary morphisms (Definition 8.6), I∗-morphisms can
be composed with P -morphisms for any P ∈ P . Indeed, given P ∈ P , tensoring with e
gives a regular epimorphism

eP : P ⊗ I∗ // P

which, since P is regular projective, splits giving se : P // P ⊗ I∗ such that eP sP = 1P .
Now, given a I∗-morphism (g, I∗) : X //Y and a P -morphism (f, P ) : Y //X, we define
their composite as the P -morphism

(fg, P ) : P
se−→ P ⊗ I∗

f⊗g

−−−→ K(Y, Z)⊗K(X, Y )
◦−→ K(X,Z).
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Finally, note that the composite of a a morphism g : X //Y with a P -morphism (f, P ) :
Y // Z with is the same as the composite of the I∗-morphism (ge, I∗), induced by g
through e, with (f, P ); this is because sP is a section of eP .

8.19. Example. When V = DGAb we can take I∗ = P0 (as in Example 8.4) together
with its projection down to I. This allows us to see every morphism in a DG-category as
a protomorphism of degree 0.

Recall the notion of E-split monomorphism from Definition 4.14. Below we denote
by (1X , I

∗) : X // X the I∗-morphism obtained from the identity of X in the sense of
Remark 8.18.

8.20. Proposition. A morphism s : X // Y in a V-category K is an E-split monomor-
phism if and only if there exists (t, I∗) : Y //X for which

(ts, I∗) = (1X , I
∗)

in the sense of Definition 8.6.

Proof. Assume first that s : X // Y is an E-split monomorphism, so that K(s,X) is a
regular epimorphism. Then, since I∗ is regular projective, the function

V0(I
∗,K(s,X)) : V0(I

∗,K(Y,X)) // V0(I
∗,K(X,X))

is surjective. By taking an element that is mapped to (1X , I
∗) we find (t, I∗) : Y //X as

in the statement.
Conversely, suppose that there exist (t, I∗) : Y //X for which (ts, I∗) = (1X , I

∗); in
the setting of Remark 8.18 the equality can be rewritten as

(t(se), I∗) = (1X , I
∗)

where (se, I∗) is the I∗-morphism induced by precomposing s : I //K(X, Y ) with e : I∗ //I.
To prove that s is an E-split monomorphism it is enough to show that

V0(P,K(s,X)) : V0(P,K(Y,X)) // V0(P,K(X,X))

is surjective for any P ∈ P . Given (f, P ) : X //X in the codomain, we can consider the
P -morphism (ft, P ) : Y //X defined in Remark 8.18 above. By definition, V0(P,K(s,X))
sends (ft, P ) to the the composite

(ft, P ) ◦ (s, I) = (ft, P ) ◦ (se, I∗)
= (f, P ) ◦ (t(se), I∗)
= (f, P ) ◦ (1X , I∗)
= (f, P ),

where the first composition is in the sense of Definition 8.6 and the others are in the sense
of Remark 8.18. It follows that V0(P,K(s,X))is surjective, and thus K(s,X) is a regular
epimorphism and s an E-split monomorphism.
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8.21. Example. When V = DGAb an E-split monomorphism is just a protosplit
monomorphism in the sense of [20].

8.22. Proposition. If K is a locally λ-presentable V-category, then:
1. E-split morphisms are (λ, E)-pure;

2. λ-filtered colimits of (λ, E)-pure morphisms in K→ are (λ, E)-pure;

3. every (λ, E)-pure morphism in K is a λ-filtered colimit of E-split monomorphisms
in K→.

Proof. (1) follows from Corollary 5.4 and (2) is a consequence of Proposition 4.9 since
monomorphisms are closed under λ-filtered colimits in V→.

(3) We apply the same proof of [2, Proposition 2.30] with some changes where the
notion of E-split morphism is needed.

Given a (λ, E)-pure morphism f : A // B, we can write it as a λ-filtered colimit
in K→ of maps fi : Ai

// Bi between λ-presentable objects with connecting morphisms
(ui, vi) : fi // f . As usual, all the morphisms ui and vi can be seen as I∗-morphisms (by
pre-composing with e : I∗ // I), giving commutative squares as below.

A B

Ai Bi

f

(ui, I
∗) (vi, I

∗)

fi

Since f is (λ, E)-pure, we obtain I∗-morphisms (ti, I
∗) : Bi

// A for which (tif, I
∗) =

(ui, I
∗). Consider now the pushouts below.

A B̄i

Ai Bi

f̄i

ui ūi

fi

It is shown in [2, Proposition 2.30] that the colimit of the f̄i is still f ; thus we only need
to show that each f̄i is E-split.

We can see the identity on A as an I∗-morphism and hence, acting by transposition, as
a map 1̄A : A //I∗ ⋔ A; similarly each (ti, I

∗) corresponds to a morphism t̄i : Bi
//I∗ ⋔ A.

The fact that (tif, I
∗) = (ui, I

∗) means that the square below commutes.

A I∗ ⋔ A

Ai Bi

1̄A

ui t̄i

fi
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By the universal property of the pushout we obtain a morphism ḡi : B̄i
// I∗ ⋔ A such

that (in particular) 1̃A = ḡif̄i. Acting by transposition, ḡi corresponds to an I∗-morphism
(gi, I

∗) : B̄i
//A such that (1A, I

∗) = (gif̄i, I
∗). Thus each f̄i is an E-split monomorphism

by Proposition 8.20.

A. The canonical language

Fix a factorization system (E ,M) on V . In this section we consider a notion of language
on the underlying category of a given V-category as in [22, Chapter 18].

Given such a language L, an L-structure M is the data of an object MS in V for any
sort S in L, and a morphism Mf : MS

//MT for any function symbol f : S // T in L.

A.1. Definition. Let K be a locally λ-presentable V-category. The canonical language
L(Kλ) of K is the language with sorts sA the objects A of Kλ and function symbols
sf : sA // sB corresponding to morphisms f : B // A in Kλ.

A.2. Remark. Each object K of K defines an L(Kλ)-structure as follows: every sort
sA ∈ L(Kλ) is interpreted as the object K(A,K), and every function symbol sf ∈ L(Kλ)
as above is interpreted as the morphism K(f,K) : K(A,K) //K(B,K).

Given a language L, the atomic formulas are those of the form

ϕ(x, y) ≡ (f(x) = g(y))

with f : S //U , g : T //U , and x and y of sort S and T respectively. A primitive positive
formula (pp-formula) is one of the form

ψ(x) ≡ ∃y ϕ(x, y)

where each ϕ is a conjunction of atomic formulas.
For any L-structure M , we interpret atomic formulas ϕ(x, y) ≡ (f(x) = g(y)) as the

M-subobject of MS ×MT given by the (E ,M)-factorization of the map

Mf,g MS ×MT

∥ ϕ ∥M

h

E M

where Mf,g is the pullback of Mf along Mg and h is the morphism induced into the
product.

A.3. Remark. If the factorization system is proper then M contains all the regular
monomorphisms (see the dual of [10, 2.1.4])). Thus ∥ ϕ ∥M∼= Mf,g.

The interpretation of a conjunction ϕ1 ∧ · · · ∧ ϕn of atomic formulas is given by the
M-intersection of each ∥ ϕi ∥M . Finally, the interpretation of ψ(x) ≡ ∃y ϕ(x, y) is given
by the (E ,M)-factorization of the composite below.
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∥ ϕ ∥M MS ×MT MS

∥ ψ ∥M

π1

E M

A.4. Remark. Consider an object K in a locally λ-presentable K with its standard
L(Kλ)-structure. The interpretation of the atomic formula ϕ(x, y) ≡ (sf (x) = sg(y)), for
f : C // A and g : C //B in Kλ, is given by the (E ,M)-factorization of the map

K̂(f, g,K) K(A,K)×K(B,K)

∥ ϕ ∥K

h

E M

where K̂(f, g,K) is the pullback of K(f,K) along K(g,K) and h is the morphism induced
into the product.

Since E is closed under composition, the interpretation of a formula of the form ψ(x) ≡
∃y (sf (x) = sg(y)) is given by the (E ,M)-factorization of the map

K̂(f, g,K) K(A,K)

∥ ψ ∥K

ĝ

E M

where ĝ is the map opposite to K(g,K) in the pullback defining K̂(f, g,K). When f = 1A,
then ∥ ψ ∥K is the (E ,M)-factorization of the map K(g,K).

A.5. Definition. Let f : K // L be a morphism in a locally λ-presentable V-category
K. We say that f is elementary with respect to a pp-formula ψ in the language L(Kλ) if
the induced diagram

∥ ψ ∥K K(A,K)

∥ ψ ∥L K(A,L)

K(A, f)

is a pullback.

A.6. Proposition. Let K be a locally λ-presentable V-category and f : K // L be a
morphism in it. Then:

1. The map f is (λ, E)-pure if and only if it is elementary with respect to any pp-formula
of the form

ψ(x) ≡ ∃y (sh(x) = sg(y))

in L(Kλ).

2. If (E ,M) is proper, then f is (λ, E)-pure if and only if it is elementary with respect
to any pp-formula in L(Kλ).
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Proof. (1) First, consider g : A //B in Kλ and the pp-formula

ψ(x) ≡ ∃y (s1A(x) = sg(y)).

We obtain a commutative diagram

K(B,K)

K(B,L)

∥ ψ ∥K K(A,K)

∥ ψ ∥L K(A,L)

K(B, f) K(A, f)

where ∥ ψ ∥K and ∥ ψ ∥L are by definition the (E ,M)-factorizations of K(g,K) and
K(g, L) respectively, and the middle vertical arrow is induced by the factorization. Then
by definition we have ∥ ψ ∥L∼= P(g, L) as M-subobjects of K(A,L).

Now, f is (λ, E)-pure with respect to g if and only if the (E ,M)-factorization of
K(g,K) is given by P(g, f), if and only if ∥ ψ ∥K∼= P(g, f) as M-subobjects of K(A,K),
if and only if ∥ ψ ∥K is the pullback of ∥ ψ ∥L along K(A, f), if and only if f is elementary
with respect to ψ.

To conclude it is enough to show that every formula of the form

ϕ(x, y) ≡ (sh(x) = sg(y))

is equivalent in K to one
ϕ′(x, y) ≡ (s1A(x) = sh′(y))

involving an identity morphism, meaning that ∥ ϕ ∥X∼=∥ ϕ′ ∥X . Given ϕ as above, with
g : C // A and h : C // B, let D be the pushout of g along h in K, together with the
induced morphism h′ : A //D. Then D is still λ-presentable and ϕ is equivalent in K to
the formula ϕ′ with the h′ just defined. This is thanks to Remark A.4 and the fact that
K̂(g, h,X) ∼= K(D,X) for any X ∈ K.

(2) Let (E ,M) be proper, and consider now a general pp-formula

ψ(x) ≡ ∃y (ϕ1(x, y) ∧ · · · ∧ ϕn(x, y))

where ϕi(x, y) ≡ (sgi(x) = shi
(y)), with gi : Ci

// A and hi : Ci
//B in Kλ.

Consider the λ-presentable object C :=
∑

i≤nCi and the morphisms g : C // A and
h : C //B induced by the gi’s and the hi’s respectively. We wish to prove that ϕ1∧· · ·∧ϕn

is equivalent in K to
ϕ(x, y) ≡ (sg(x) = sh(y));

meaning that ∥ ϕ1 ∧ · · · ∧ ϕn ∥X∼=∥ ϕ ∥X as M-subobjects of K(A,X)×K(B,X), for any
X ∈ K. Note that, by Remark A.3, ∥ ϕi ∥X is the pullback of K(gi, X) along K(hi, X);
thus ∥ ϕ1 ∧ · · · ∧ ϕn ∥X , being obtained by pulling back all of the ∥ ϕi ∥X , coincides with
the pullback of K(g,X) along K(h,X), which is just ∥ ϕ ∥X . Now the result follows from
point (1).
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In the context of barely (λ, E)-pure morphisms we can prove the following:

A.7. Proposition. Let (E ,M) be proper and K be a locally λ-presentable V-category.

1. Any morphism that is elementary with respect to any pp-formula of the form

ψ(x) ≡ ∃y (sh(x) = sg(y))

in the language L(Kλ), is barely (λ, E)-pure.

2. If every barely (λ, E)-pure morphism is (λ, E)-pure, then a morphism is barely (λ, E)-
pure if and only it is elementary with respect to any pp-formula in the language
L(Kλ).

Proof. Follows from the previous proposition and Lemma 4.4.
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[26] J. Rosický, Are Banach spaces monadic?, Comm. Algebra 50 (2022), 268-274.
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