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CONNECTING GENERALIZED PRIESTLEY DUALITY TO
HOFMANN-MISLOVE-STRALKA DUALITY

G. BEZHANISHVILI, L. CARAI, P. J. MORANDI

Abstract. We connect Priestley duality for distributive lattices and its generalization
to distributive meet-semilattices to Hofmann-Mislove-Stralka duality for semilattices.
Among other things, this involves consideration of various morphisms between algebraic
frames. We also show how Stone duality for boolean algebras and generalized boolean
algebras fits as a particular case of the general picture we develop.
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1. Introduction

The celebrated Stone duality [Sto36] establishes a dual equivalence between the categories
of boolean algebras and what we now call Stone spaces (zero-dimensional compact Haus-
dorff spaces). Since Stone’s groundbreaking work, numerous dualities have been developed
for various categories of algebras. Stone himself generalized his duality for boolean alge-
bras to distributive lattices [Sto37]. The resulting dual spaces are now known as spectral
spaces and play an important role in algebraic geometry as Zariski spectra of commutative
rings.

In [Pri70, Pri72] Priestley developed another duality for distributive lattices by means
of certain ordered Stone spaces, which became known as Priestley spaces. They form
a subcategory of the category of ordered topological spaces studied by Nachbin [Nac65]
and have numerous applications in diverse areas such as natural dualities [CD98], for-
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mal concept analysis [GW99, DP02], computer science [Pan13, Geh16], and modal logic
[Gol89, CJ99].

There are various generalizations of Priestley duality. It was extended to all lattices
by Urquhart [Urq78] (see also [Har92, Har97, HD97, Plo08, GvG14, MJ14a]). Duality
theory for distributive lattices with operators and the theory of their canonical extensions
was developed in [Gol89, GJ94, GJ04], and it was further generalized to lattices with
operators in [GH01] (see also [MJ14b]). Our main interest is in generalized Priestley
duality for distributive semilattices developed in [BJ08, BJ11] and [HP08]. Our aim is
to connect this duality, as well as Priestley and Stone dualities, to the Pontryagin-style
duality for semilattices developed by Hofmann, Mislove, and Stralka [HMS74], which we
will refer to as HMS duality.

The classic Pontryagin duality (see, e.g., [HR94, Sec. 24]) states that the category
of locally compact abelian groups is self-dual. As a corollary, the categories of abelian
groups and compact Hausdorff abelian groups are dual to each other, as are the cate-
gories of torsion abelian groups and Stone abelian groups (see [HR94, Sec. 24] or [Joh82,
Ch. VI(3,4)]). A version of Pontryagin duality for semilattices by Hofmann, Mislove,
and Stralka [HMS74] states that the categories of meet-semilattices and Stone meet-
semilattices are dual to each other. Since Stone meet-semilattices are exactly the algebraic
lattices, at the object level this result is a reformulation of an earlier result of Nachbin
[Nac49] (see also Birkhoff and Frink [BF48]) that there is a 1-1 correspondence between
semilattices and algebraic lattices. The restriction of this duality to the distributive case
yields that the categories of distributive semilattices and distributive algebraic lattices
are equivalent. This provides an important link to pointfree topology [Joh82, PP12] since
distributive algebraic lattices are exactly the algebraic frames.

There are various morphisms to consider between distributive meet-semilattices, which
give rise to various morphisms between algebraic frames. The study of the resulting
categories is one of our aims. In addition, we show that prime and pseudoprime elements
of algebraic lattices, which have been extensively studied in domain theory in connection
with continuous lattices [GHK+03], can be used to analyze the spectra of prime and
optimal filters of distributive meet-semilattices that play a crucial role in generalized
Priestley duality. It is this analysis that connects generalized Priestley duality to HMS
duality.

By a meet-semilattice we mean a poset in which all finite meets exist, including the
empty meet. Thus, a meet-semilattice M has a top element, but M may not have a
bottom element. By HMS duality, the category MS of meet-semilattices is dual to the
category StoneMS of Stone meet-semilattices (that is, topological meet-semilattices whose
topology is a Stone topology). Since Stone meet-semilattices are exactly the algebraic
lattices, working with left adjoints of StoneMS-morphisms yields the category AlgLatSup
of algebraic lattices and maps between them that preserve arbitrary joins and compact
elements (see [GHK+03, p. 272]). Thus, HMS duality yields that MS is equivalent to
AlgLatSup (see [GHK+03, p. 274]). This equivalence is obtained by the functors

F : MS → AlgLatSup and K : AlgLatSup → MS.
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The functor F sends each M ∈ MS to the algebraic lattice of its filters ordered by
inclusion. The functor K sends each L ∈ AlgLatSup to the meet-semilattice of its compact
elements ordered by the dual of the restriction of the order on L.

Let DMS be the full subcategory of MS consisting of distributive meet-semilattices. As
we pointed out above, distributive algebraic lattices are exactly the algebraic frames, and
we denote by AlgFrmSup the full subcategory of AlgLatSup consisting of algebraic frames.
We point out that morphisms in AlgFrmSup preserve arbitrary suprema, but may not be
frame homomorphisms. Restricting the equivalence of MS and AlgLatSup to the distributive
case yields that DMS is equivalent to AlgFrmSup (see Corollary 2.6).

A generalization of Priestley duality to distributive meet-semilattices was developed
in [BJ08, BJ11]. The key ingredient of this duality is the notion of an optimal filter of
M ∈ DMS, which is best described by means of the distributive envelope of M . We present
two versions of generalized Priestley duality, for distributive meet-semilattices with and
without a bottom element. When the bottom is present, a DMS-morphism may or may
not preserve it. This results in two dualities for bounded distributive meet-semilattices
and generalized Priestley spaces (see Theorem 3.7). Each generalizes to a duality between
distributive meet-semilattices and pointed generalized Priestley spaces with appropriate
morphisms (see Theorem 3.11 and Corollary 3.13).

Our main observation in connecting generalized Priestley duality to HMS duality is
that the categories AlgFrmSup and PGPS are dual to each other. This we do by constructing
the contravariant functors

V a : PGPS → AlgFrmSup and Y : AlgFrmSup → PGPS.

The functor V a is a version of the upper Vietoris functor, which is constructed by working
with admissible closed upsets of pointed generalized Priestley spaces (see Definition 4.1).
The functor Y is constructed by working with pseudoprime and prime elements of alge-
braic frames. In Theorem 4.29 we prove that the functors V a and Y establish the duality
of PGPS and AlgFrmSup. This together with the equivalence of AlgFrmSup and DMS yields
the duality of DMS and PGPS. We also show how these results restrict to the bounded
case.

It is natural to consider several stronger notions of morphisms between algebraic
frames. Recalling that our morphisms preserve arbitrary suprema and compact elements,
obvious choices are to consider those morphisms that preserve all finite infima (resp.
nonempty finite infima) of compact elements or only those finite infima of compact ele-
ments that are compact. The latter correspond to those DMS-morphisms that preserve
existing finite suprema (resp. existing nonempty finite suprema), which is equivalent to the
inverse image of an optimal filter being optimal (see Remark 5.34). The former are simply
frame homomorphisms that preserve compact elements, and correspond to those DMS-
morphisms that pull prime filters back to prime filters (see Lemma 5.33). We characterize
the PGPS-morphisms that correspond to these classes of morphisms between algebraic
frames, thus yielding a series of duality results, which in particular imply the results of
[BJ08, BJ11] and [HP08].



1940 G. BEZHANISHVILI, L. CARAI, P. J. MORANDI

We also show how Stone and Priestley dualities fit in the general picture developed
in this paper. We consider Priestley duality for distributive lattices with and without
bottom. The latter involves working with pointed Priestley spaces. On the frame side,
the bounded case requires working with coherent frames; that is, algebraic frames in which
all finite meets of compact elements are compact (see Theorem 6.5). The non-bounded
case requires working with arithmetic frames; that is, algebraic frames where nonempty
finite meets of compact elements are compact, but the frame itself may not be compact
(see Theorem 6.14). Similarly, we consider two versions of Stone duality, for boolean
algebras and for generalized boolean algebras. For the latter we work with pointed Stone
spaces. On the frame side, boolean algebras give rise to Stone frames (see Theorem 7.3),
while generalized boolean algebras to locally Stone frames (see Theorem 7.13). As a
special case we derive the dualities of Halmos [Hal56] and Cignoli et. al. [CLP91].

The following diagram summarizes the connection between HMS duality and general-
ized Priestley duality. The horizontal arrows below the labeled arrows are their restric-
tions. The arrows ↣ represent being a subcategory while the arrows ↪→ being equivalent
to a subcategory. The blue color indicates the results obtained in this paper. The cor-
responding diagrams summarizing a similar picture for various categories of distributive
lattices and boolean algebras are given at the ends of Sections 6 and 7, respectively.

PGPS AlgFrmSup DMS

GPS KAlgFrmSup BDMS

PGPSS AlgFrmFInf DMSFSup

GPSPS KAlgFrmFInf BDMSFSup

PGPSST AlgFrmFInfB DMSFSupB

GPSS KAlgFrmFInfB BDMSFSupB

PGPSP AlgFrm DMSP

GPSP KAlgFrm BDMSP

V a

Y

K

F

Figure 1: Connecting generalized Priestley duality and HMS duality

The tables below describe the categories listed in Figure 1. The order of the categories
in each table corresponds to the diagram from top to bottom.



CONNECTING PRIESTLEY DUALITY TO HOFMANN-MISLOVE-STRALKA DUALITY1941

Categories of pointed generalized Priestley spaces
Category Morphisms Location
PGPS generalized Priestley morphisms Def. 3.8
PGPSS strong Priestley morphisms Def. 5.8(2)
PGPSST PGPSS-morphisms s.t. f [X−] ⊆ Y − when m,n are isolated "
PGPSP PGPSS-morphisms s.t. f [X0] ⊆ Y0 Def. 5.22

Categories of generalized Priestley spaces
Category Morphisms Location
GPS generalized Priestley morphisms Def. 3.6
GPSPS partial strong Priestley morphisms Def. 5.16(2)
GPSS strong Priestley morphisms Def. 5.5(2)
GPSP GPSS-morphisms s.t. f [X0] ⊆ Y0 Def. 5.22

Categories of algebraic frames
Category Morphisms Location
AlgFrmSup maps preserving suprema and compact elements Def. 2.5(2)
AlgFrmFInf AlgFrmSup-morphisms satisfying (FInf) Def. 5.3(1)
AlgFrmFInfB bounded AlgFrmFInf-morphisms "
AlgFrm frame homomorphisms preserving compact elements Def. 5.20

Categories of compact algebraic frames
Category Morphisms Location
KAlgFrmSup AlgFrmSup-morphisms Def. 2.9(2)
KAlgFrmFInf AlgFrmFInf-morphisms Def. 5.3(2)
KAlgFrmFInfB AlgFrmFInfB-morphisms "
KAlgFrm AlgFrm-morphisms Def. 5.30(1)

Categories of distributive meet-semilattices
Category Morphisms Location
DMS meet-semilattice homomorphisms Def. 2.5(1)
DMSFSup DMS-morphisms preserving existing nonempty finite sups Def. 5.1(1)
DMSFSupB bounded DMSFSup-morphisms Def. 5.1(2)
DMSP DMS-morphisms satisfying (P) Def. 5.26

Categories of bounded distributive meet-semilattices
Category Morphisms Location
BDMS DMS-morphisms Def. 2.9(1)
BDMSFSup DMSFSup-morphisms Def. 5.1(1)
BDMSFSupB DMSFSupB-morphisms Def. 5.1(2)
BDMSP DMSP-morphisms Def. 5.30(2)
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2. Hofmann-Mislove-Stralka duality

We recall that a meet-semilattice is a poset M in which meets of finite subsets exist. In
particular, M has a top element, which we denote by 1M or 1 if the context is clear. A
meet-semilattice homomorphism is a map α : M1 → M2 preserving all finite meets. In
particular, α(1M1) = 1M2 .

A topological meet-semilattice is a meet-semilattice M such that M is also a topological
space in which the meet operation is continuous. If the topology on M is a Stone topology,
then we call M a Stone meet-semilattice.

2.1. Definition.

(1) Let MS be the category of meet-semilattices and meet-semilattice homomorphisms.

(2) Let StoneMS be the category of Stone meet-semilattices and continuous meet-semi-
lattice homomorphisms.

Hofmann, Mislove, and Stralka [HMS74] developed a duality between MS and StoneMS
that is reminiscent of Pontryagin duality. We will refer to it as HMS duality. There are
two contravariant functors establishing this duality. The functor MS → StoneMS sends
M ∈ MS to the Stone meet-semilattice homMS(M, 2), and the functor StoneMS → MS
sends L ∈ StoneMS to homStoneMS(L, 2). Since meet-semilattice homomorphisms M → 2
correspond to filters of M , we can alternatively work with filters of M , which is more
convenient for our purposes. We thus define the functors establishing HMS duality as
follows.

For M ∈ MS, let Filt(M) be the poset of filters of M ordered by inclusion. For a ∈ M
let σ(a) = {F ∈ Filt(M) | a ∈ F}, and topologize Filt(M) by the subbasis

{σ(a) | a ∈ M} ∪ {σ(b)c | b ∈ M}.

Then Filt(M) is a Stone meet-semilattice. Moreover, if α : M1 → M2 is an MS-morphism,
then α−1 : Filt(M2) → Filt(M1) is a StoneMS-morphism. This defines a contravariant
functor Filt : MS → StoneMS.

To define a contravariant functor in the other direction, for L ∈ StoneMS let ClopFilt(L)
be the poset of clopen filters of L ordered by inclusion. Then ClopFilt(L) is a meet-
semilattice in which finite meets are finite intersections (and L is the top element). More-
over, if α : L1 → L2 is a StoneMS-morphism, then α−1 : ClopFilt(L2) → ClopFilt(L1) is
an MS-morphism. This defines a contravariant functor ClopFilt : StoneMS → MS, which
together with Filt yields HMS duality:

2.2. Theorem. [HMS74, Thm. 3.9] MS is dually equivalent to StoneMS.

As we pointed out in the introduction, Stone meet-semilattices are exactly the alge-
braic lattices. To see this, we recall that an element k of a complete lattice L is compact
if k ≤

∨
S implies k ≤

∨
T for some finite T ⊆ S, and that L is algebraic if the poset

K(L) of compact elements of L is join-dense in L (meaning that each element of L is a
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join of compact elements). By HMS duality, each Stone meet-semilattice is isomorphic
to Filt(M) for some M ∈ MS. Clearly Filt(M) is a complete lattice, where meet is set-
theoretic intersection and join is the filter generated by the union. Moreover, compact
elements of Filt(M) are precisely the principal filters ↑a (see [HMS74, Prop. 3.8]), which
clearly join-generate Filt(M). Thus, each Stone meet-semilattice is an algebraic lattice.

Conversely, if L is an algebraic lattice, we consider the topology λ on L generated by
the subbasis

{↑k | k ∈ K(L)} ∪ {(↑l)c | l ∈ K(L)}.

Since {↑k | k ∈ K(L)} is a basis for the Scott topology [GHK+03, Cor. II-1.15], λ is the
Lawson topology [GHK+03, Def. III-1.1]. Therefore, λ is a Stone topology [GHK+03,
Thm. III-1.10], and with this topology, L ∈ StoneMS [GHK+03, Thm. III-2.8].

Let α : L1 → L2 be a map between Stone meet-semilattices. By [HMS74, Thm. II.3.25],
α is a StoneMS-morphism iff α preserves arbitrary infima and directed suprema. But, α
preserves arbitrary infima iff it has a left adjoint β : L2 → L1, which then preserves
arbitrary suprema. Moreover, α preserves directed suprema iff β preserves compact ele-
ments [GHK+03, Cor. IV-1.12]. We thus obtain that StoneMS is dually isomorphic to the
following category:

2.3. Definition. Let AlgLatSup be the category of algebraic lattices and maps between
them preserving arbitrary suprema and compact elements.

The above observation together with Theorem 2.2 yields the following version of HMS
duality for meet-semilattices:

2.4. Corollary. [GHK+03, p. 274] MS is equivalent to AlgLatSup.

It is this version that we will mainly be working with in this paper. As we pointed
out in the introduction, the object level of this equivalence goes back to Nachbin [Nac49,
Thm. 1] (see also [BF48, Thm. 2]). However, Nachbin worked with join-semilattices and
the corresponding algebraic lattices of ideals. Since we are working with meet-semilattices,
our functor from MS to AlgLatSup is the filter functor. We next describe explicitly how it
acts on morphisms.

Let α : M1 → M2 be an MS-morphism. The left adjoint of α−1 : Filt(M2) → Filt(M1)
is the map ℓ : Filt(M1) → Filt(M2) which sends F ∈ Filt(M1) to

ℓ(F ) =
∧

{G ∈ Filt(M2) | F ⊆ α−1(G)} =
∧

{G ∈ Filt(M2) | α[F ] ⊆ G}

=
∧

{G ∈ Filt(M2) | ↑α[F ] ⊆ G} = ↑α[F ].

Let F : MS → AlgLatSup be the functor that sends each M ∈ MS to Filt(M) ∈ AlgLatSup
and each MS-morphism α : M1 → M2 to the AlgLatSup-morphism ℓ : Filt(M1) → Filt(M2).

The functor in the other direction is the compact element functor K : AlgLatSup → MS
which sends each algebraic lattice L to the poset K(L) of compact elements of L ordered
by the dual ≥ of the restriction of ≤ to K(L). Since (K(L),≤) is a sub-join-semilattice
of L, (K(L),≥) is a meet-semilattice, where the top element is 0 (the bottom element
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of L). Again, our approach is dual to that of Nachbin [Nac49] who worked with the
join-semilattice (K(L),≤).

The functor K : AlgLatSup → MS sends an AlgLatSup-morphism α : L1 → L2 to its
restriction K(L1) → K(L2). This is well defined since α sends compact elements to
compact elements, and it is an MS-morphism because a finite join of compact elements is
compact, α preserves suprema, and we work with ≥ on K(L1) and K(L2).

We conclude this section by observing that the equivalence of Corollary 2.4 restricts
to the distributive case. Recall that a meet-semilattice M is distributive if whenever
a, b, c ∈ M with a ∧ b ≤ c, there are a′, b′ ∈ M with a ≤ a′, b ≤ b′, and a′ ∧ b′ = c.

a′ b′

c

a b

a ∧ b

It is well known that M is distributive iff Filt(M) is a distributive lattice (see, e.g.,
[Grä11, p. 167] for the dual result that a join-semilattice is distributive iff the lattice of
its ideals is distributive).

We recall [PP12, p. 10] that a complete lattice L is a frame if it satisfies the join
infinite distributive law a ∧

∨
S =

∨
{a ∧ s | s ∈ S} for each a ∈ L and S ⊆ L. An

algebraic frame is a frame that is an algebraic lattice. It is well known (see, e.g., [Joh82,
p. 309]) that a distributive algebraic lattice is a frame.

2.5. Definition.

(1) Let DMS be the full subcategory of MS consisting of distributive meet-semilattices.

(2) Let AlgFrmSup be the full subcategory of AlgLatSup consisting of algebraic frames.

As a consequence of Corollary 2.4 we obtain:

2.6. Corollary. DMS is equivalent to AlgFrmSup.

As we pointed out in the introduction, Sup in the subscript indicates that morphisms
in AlgFrmSup preserve arbitrary suprema, but they may not be frame homomorphisms.
Note that AlgFrmSup-morphisms preserve 0 but may not preserve 1.

2.7. Definition.

(1) A DMS-morphism α : M1 → M2 is bounded if whenever M1 and M2 are bounded,
then α(0) = 0. Let DMSB be the wide subcategory of DMS whose morphisms are
bounded.

(2) An AlgFrmSup-morphism α : L1 → L2 is bounded if whenever L1 and L2 are com-
pact, then α(1) = 1. Let AlgFrmSupB be the wide subcategory of AlgFrmSup whose
morphisms are bounded.
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For an algebraic frame L, since K(L) is ordered by ≥, K(L) has a bottom iff L is
compact. Therefore, for algebraic frames L1 and L2, an AlgFrmSup-morphism α : L1 → L2

is an AlgFrmSupB-morphism iff its restriction α : K(L1) → K(L2) is a DMSB-morphism.
Thus, the following is an immediate consequence of Corollary 2.6.

2.8. Corollary. DMSB is equivalent to AlgFrmSupB.
We recall that a meet-semilattice M is bounded if it has a bottom, and that a frame

L is compact if the top element of L is compact.

2.9. Definition.

(1) Let BDMS be the full subcategory of DMS and BDMSB the full subcategory of DMSB

whose objects are bounded meet-semilattices.

(2) Let KAlgFrmSup be the full subcategory of AlgFrmSup and KAlgFrmSupB the full sub-
category of AlgFrmSupB whose objects are compact algebraic frames.

As an immediate consequence of Corollaries 2.6 and 2.8, we obtain:

2.10. Corollary.

(1) BDMS is equivalent to KAlgFrmSup.

(2) BDMSB is equivalent to KAlgFrmSupB.

3. Priestley duality and its generalizations

In this section we recall Priestley duality and its generalizations. We start by briefly
describing Priestley duality. For a bounded distributive lattice M , let XM be the set of
prime filters of M ordered by inclusion, and let φ : M → ℘(XM) be the map given by
φ(a) = {x ∈ XM | a ∈ x}. We topologize XM by letting

{φ(a) | a ∈ M} ∪ {φ(b)c | b ∈ M}

be a subbasis for the topology. Then XM is a compact space such that if x, y ∈ XM with
x ̸≤ y, then there is a clopen upset U of XM containing x and missing y. Such spaces are
called Priestley spaces.

3.1. Definition.

(1) Let DL be the category of bounded distributive lattices and bounded lattice homomor-
phisms.

(2) Let PS be the category of Priestley spaces and continuous order-preserving maps.

We then have a contravariant functor DL → PS which sends M to XM and a DL-
morphism α : M1 → M2 to α−1 : XM2 → XM1 . We also have a contravariant functor
PS → DL which sends X ∈ PS to the lattice ClopUp(X) of clopen upsets of X and a
PS-morphism f : X → Y to the DL-morphism f−1 : ClopUp(Y ) → ClopUp(X). These
functors establish Priestley duality:
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3.2. Theorem. [Pri70, Pri72] DL is dually equivalent to PS.

We will be interested in the generalization of Priestley duality to distributive meet-
semilattices established in [BJ08, BJ11] (see also [HP08] for a similar duality for distribu-
tive join-semilattices, but with more restrictive morphisms). There are two versions of
this duality for BDMS and DMS. We first describe the duality for BDMS from which we
derive the duality for DMS.

Let X be a Priestley space. For a closed set C ⊆ X, let maxC be the set of maximal
points and minC the set of minimal points of C. It is well known that for every x ∈ C
there are y ∈ maxC and z ∈ minC such that z ≤ x ≤ y.

Let X0 be a fixed dense subset of X. We call a clopen upset U of X admissible if
max(X \U) ⊆ X0. Let A (X) be the set of admissible clopen upsets of X. For x ∈ X set
Ix = {U ∈ A (X) | x /∈ U}.

3.3. Definition. A generalized Priestley space is a tuple X = ⟨X, τ,≤, X0⟩ satisfying

(1) ⟨X, τ,≤⟩ is a Priestley space;

(2) X0 is a dense subset of X;

(3) X0 is order-dense in X (meaning that for each x ∈ X there is y ∈ X0 with x ≤ y);

(4) x ∈ X0 iff Ix is directed;

(5) for all x, y ∈ X, we have x ≤ y iff ∀U ∈ A (X), x ∈ U =⇒ y ∈ U .

3.4. Remark.

(1) By Definition 3.3(3), maxX ⊆ X0. Thus, ∅ ∈ A (X), so ∅ ∈ Ix, and hence Ix is
nonempty for each x ∈ X.

(2) If X0 = X, then A (X) = ClopUp(X), so Conditions (2)–(5) of Definition 3.3 become
redundant, and hence X becomes a Priestley space.

Let R ⊆ X×Y be a relation between sets X and Y . For U ⊆ Y we follow the standard
notation in modal logic and write □RU = {x ∈ X | R[x] ⊆ U}.

3.5. Definition. A generalized Priestley morphism between generalized Priestley spaces
X, Y is a relation R ⊆ X × Y satisfying

(1) If x ̸R y, then there is U ∈ A (Y ) with R[x] ⊆ U and y /∈ U .

(2) If U ∈ A (Y ), then □RU ∈ A (X).

We call R total if R−1[Y ] = X.

This gives rise to two categories.
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3.6. Definition. Let GPS be the category of generalized Priestley spaces and generalized
Priestley morphisms, and let GPST be the wide subcategory of GPS whose morphisms are
total.

The identity morphism on X ∈ GPS is ≤ and the composition S ∗R of two morphisms
R ⊆ X × Y and S ⊆ Y × Z is defined by

x (S ∗R) z ⇐⇒ ∀U ∈ A (Z), x ∈ □R□SU =⇒ z ∈ U.

We then have the following generalization of Priestley duality:

3.7. Theorem. [BJ11, Sec. 6] BDMS is dually equivalent to GPS and BDMSB is dually
equivalent to GPST.

The contravariant functors establishing these dual equivalences are constructed as
follows. The functor A : GPS → BDMS sends X ∈ GPS to A (X) and a GPS-morphism
R ⊆ X × Y to □R : A (Y ) → A (X). The relation R is total iff □R preserves the bottom,
so we obtain the restriction A : GPST → BDMSB.

To define the contravariant functor X : BDMS → GPS we recall the definitions of
prime and optimal filters of M ∈ BDMS. A filter P of M is prime if F1 ∩ F2 ⊆ P
implies F1 ⊆ P or F2 ⊆ P for any F1, F2 ∈ Filt(M). To define optimal filters, we
require the definition of the distributive envelope D(M) of M . Let BDMSFSupB be the
wide subcategory of BDMS whose morphisms preserve existing finite suprema. Then the
forgetful functor U : DL → BDMSFSupB has a left adjoint D : BDMSFSupB → DL, and we
call D(M) the distributive envelope of M . There are various constructions of D(M) (see
[CH78], [BJ11, Sec. 3], or [HP08, Thm. 1.3]). What matters to us is that M embeds
into D(M) and we identify M with its image in D(M). Then a filter F of M is optimal
if F = P ∩ M for some prime filter P of D(M). Thus, optimal filters of M are the
restrictions of prime filters of D(M) to M . For other characterizations of optimal filters
we refer to [BJ11, Sec. 4].

Let Opt(M) be the set of optimal filters of M . Then the set Pr(M) of prime filters of
M is contained in Opt(M). We order Opt(M) by inclusion, and topologize it by letting

{φ(a) | a ∈ M} ∪ {φ(b)c | b ∈ M}

be a subbasis for the topology τ , where φ(a) = {x ∈ Opt(M) | a ∈ x}. This yields the
generalized Priestley space X (M) := ⟨Opt(M), τ,⊆,Pr(M)⟩.

If α : M1 → M2 is a BDMS-morphism, we define Rα ⊆ Opt(M2)×Opt(M1) by x Rα y
if α−1(x) ⊆ y and let X (α) = Rα. We have that Rα is total iff α(0) = 0. This defines
the functor X : BDMS → GPS and its restriction X : BDMSB → GPST, and the functors
A ,X establish the dual equivalences of Theorem 3.7.

To generalize this to a duality for DMS, we will work with pointed generalized Priestley
spaces. This approach is similar to the one undertaken in [BMR17, Sec. 3] where Esakia
duality for Heyting algebras was generalized to a duality for brouwerian algebras.
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3.8. Definition. We call a tuple (X,m) = ⟨X, τ,≤, X0,m⟩ a pointed generalized Priest-
ley space if

(1) ⟨X, τ,≤⟩ is a Priestley space;

(2) m is the unique maximum of X;

(3) X0 is a dense subset of X \ {m};

(4) X0 is order-dense in X \ {m};

(5) x ∈ X0 iff Ix is nonempty and directed;

(6) x ≤ y iff ∀U ∈ A (X), x ∈ U =⇒ y ∈ U .

Let PGPS be the category of pointed generalized Priestley spaces and generalized Priestley
morphisms.

3.9. Remark. We recall that a pointed Stone space is a pair (X, p) where X is a Stone
space and p ∈ X. Thus, every Stone space can be made into a pointed Stone space. On
the other hand, for a generalized Priestley space X to be made into a pointed generalized
Priestley space, X must have a unique maximum. Nevertheless, GPS is equivalent to a
full subcategory of PGPS, as we detail in the next remark.

3.10. Remark. By Definition 3.8, m /∈ X0, so ∅ /∈ A (X) and Im = ∅. In fact, Ix = ∅
iff x = m. Moreover, m is an isolated point iff {m} is the bottom of A (X). The full
subcategory of PGPS consisting of those (X,m) where m is an isolated point is equivalent
to GPS. The equivalence is obtained as follows. If (X,m) ∈ PGPS and m is isolated, then
X− := X \ {m} is a generalized Priestley space. Also, if (X,m), (Y, n) ∈ PGPS with m,n
isolated and R ⊆ X × Y is a PGPS-morphism, then R− := R ∩ (X− × Y −) is a GPS-
morphism. Conversely, let X ∈ GPS. If X+ is obtained from X by adding a new isolated
top and (X+)0 := X0, then X+ ∈ PGPS. Also, if R ⊆ X × Y is a GPS-morphism, then
R+ := R∪ (X+×{n}) is a PGPS-morphism. Thus, we obtain two functors which yield an
equivalence of GPS and the full subcategory of PGPS consisting of those (X,m) ∈ PGPS
in which m is an isolated point.

The contravariant functor from PGPS to DMS is defined the same way as the con-
travariant functor A above and we use the same letter to denote it. The only difference is
that if (X,m) is a pointed generalized Priestley space, then ∅ /∈ A (X). Moreover, A (X)
is bounded iff {m} ∈ A (X), which happens iff m is an isolated point of X. If R ⊆ X×Y
is a generalized Priestley morphism with (X,m), (Y, n) ∈ PGPS, then A (R) = □R. The
only difference is that m ∈ □RU for each U ∈ A (Y ).

The contravariant functor from DMS to PGPS is defined by a slight modification of
the contravariant functor X . Again, we use the same letter to denote it. The main
difference is that if M ∈ DMS, then we work with XM = Opt(M) ∪ {M}, so M becomes
the unique maximum of XM . Then M has a bottom iff {M} is an isolated point of XM . If
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α : M1 → M2 is a DMS-morphism, then X (α) = Rα ⊆ XM2 ×XM1 . In this case, y Rα M1

for each y ∈ XM2 .
Consequently, A : PGPS → DMS and X : DMS → PGPS yield the following general-

ization of Theorem 3.7, a version of which was established in [BJ11, Thm. 9.2]:

3.11. Theorem. DMS is dually equivalent to PGPS.

3.12. Definition. Let PGPST be the wide subcategory of PGPS consisting of those PGPS-
morphisms R ⊆ X × Y such that if X−, Y − ∈ GPS, then R− ⊆ X− × Y − is total.

We have the following corollary of Theorem 3.11, which generalizes the duality of
Theorem 3.7 between BDMSB and GPST.

3.13. Corollary. DMSB is dually equivalent to PGPST.

Proof. Let α : M1 → M2 be a DMS-morphism with M1,M2 bounded. Then X−
M1

, X−
M2

∈
GPS (see Remark 3.10). It is sufficient to show that α is a DMSB-morphism iff R−

α is total.
First suppose that α is a DMSB-morphism, so α(0) = 0. If x ∈ Opt(M2), then 0 /∈ α−1(x)
since 0 /∈ x. Therefore, by [BJ11, Lem. 4.7], there is y ∈ Opt(M1) with α−1(x) ⊆ y. This
implies that R−

α [x] ̸= ∅. Conversely, let R−
α be total. If α(0) ̸= 0, then ↑α(0) is a proper

filter. Therefore, there is x ∈ Opt(M2) with ↑α(0) ∈ x. This implies that 0 ∈ α−1(x), so
α−1(x) = M1. Thus, R−

α [x] = ∅, and hence R−
α is not total. The obtained contradiction

proves that α(0) = 0.

4. Connecting generalized Priestley duality to HMS duality

In this section we connect generalized Priestley duality to HMS duality. To do so, we
define contravariant functors V a : PGPS → AlgFrmSup and Y : AlgFrmSup → PGPS and
prove that they establish a dual equivalence, yielding our main result. This together
with Corollary 2.6 gives Theorem 3.11. As a consequence, we derive Theorem 3.7 from
Corollary 2.10 and Corollary 3.13 from Corollary 2.8, thus obtaining the top layer of
Figure 1.

The functor V a. Let X := ⟨X, τ,≤, X0,m⟩ be a pointed generalized Priestley space.
We generalize the notion of an admissible clopen upset to an admissible closed upset of
X. Recall that U ∈ ClopUp(X) is admissible if max(X \ U) ⊆ X0. This is equivalent to
X \ U = ↓(X0 \ U), which motivates our definition of admissible closed upsets.

4.1. Definition. A closed upset C of a pointed generalized Priestley space X is admis-
sible if X \ C = ↓(X0 \ C). Let V a(X) be the set of admissible closed upsets of X.

4.2. Remark. The notation V a(X) is motivated by the fact that V a(X) is a version of
the upper Vietoris functor applied to X.

It is well known that in Priestley spaces, each closed upset is an intersection of clopen
upsets. This result generalizes to admissible closed upsets of pointed generalized Priestley
spaces.



1950 G. BEZHANISHVILI, L. CARAI, P. J. MORANDI

4.3. Lemma. A closed upset C of a pointed generalized Priestley space X is admissible
iff it is an intersection of admissible clopen upsets.

Proof. First suppose that C is an intersection of a family S of admissible clopen upsets.
Let x /∈ C. Then there is U ∈ S with x /∈ U . Since U is admissible, there is y ∈ X0 \ U
with x ≤ y. From y /∈ U and C ⊆ U it follows that y /∈ C. Therefore, X \C ⊆ ↓(X0 \C),
hence the equality. Thus, C is admissible.

Conversely, suppose that C is admissible and x /∈ C. Then there is y ∈ X0 \ C with
x ≤ y. For each z ∈ C we have z ̸≤ y. Therefore, there is an admissible clopen Uz with
z ∈ Uz and y /∈ Uz. Since C is closed, it is compact, and the Uz cover C. Thus, there are
z1, . . . , zn ∈ C such that C ⊆ Uz1 ∪ · · · ∪ Uzn . Clearly each Uzi is in Iy. Because y ∈ X0,
Iy is directed, so there is V ∈ Iy with each Uzi contained in V . Therefore, C ⊆ V and
y /∈ V . Since x ≤ y, y /∈ V , and V is an upset, we have x /∈ V . Thus, for each x /∈ C
there is an admissible clopen upset containing C and missing x. Consequently, C is an
intersection of admissible clopen upsets.

4.4. Lemma. If X ∈ PGPS, then (V a(X),⊇) ∈ AlgFrmSup and K(V a(X)) = A (X).

Proof. We first show that V a(X) is a complete lattice. We have X ∈ V a(X), so V a(X)
has a bottom. Let S ⊆ V a(X) and set C =

⋂
S . Then C is a closed upset. Lemma 4.3

yields that C is admissible, so C ∈ V a(X). But then C is the join of S in V a(X), and
hence V a(X) is a complete lattice.

We next show that V a(X) is distributive. Since the order on V a(X) is ⊇, it is enough
to show that (A∨B)∧C ⊇ (A∧C)∨(B∧C) for each A,B,C ∈ V a(X). We first show that
if x ∈ X0 \ ((A∨B)∧C), then x /∈ (A∧C)∨ (B ∧C). Since join in V a(X) is intersection
and meet is the least admissible closed upset containing the union, from x /∈ (A∨B)∧C
it follows that x /∈ (A ∩ B) ∪ C. Therefore, x /∈ (A ∪ C) ∩ (B ∪ C), and so x /∈ A ∪ C
or x /∈ B ∪ C. If x /∈ A ∪ C, Lemma 4.3 yields that there exist UA,x, UC,x ∈ A (X) such
that A ⊆ UA,x, C ⊆ UC,x, and x /∈ UA,x, UC,x. Since x ∈ X0 and UA,x, UC,x ∈ Ix, there is
Ux ∈ Ix with UA,x, UC,x ⊆ Ux, so A ∪ C ⊆ Ux. Similarly, if x /∈ B ∪ C, there is Vx ∈ Ix

such that B ∪ C ⊆ Vx. Thus, if x ∈ X0 \ ((A ∨ B) ∧ C), then x /∈ A ∧ C or x /∈ B ∧ C,
and hence x /∈ (A ∧ C) ∨ (B ∧ C). Since (A ∨ B) ∧ C is admissible, if y /∈ (A ∨ B) ∧ C,
then there is x ∈ X0 \ ((A∨B)∧C) such that y ≤ x, and so y /∈ (A∧C)∨ (B ∧C). This
proves that (A ∨B) ∧ C ⊇ (A ∧ C) ∨ (B ∧ C).

It is left to prove that (V a(X),⊇) is algebraic. By Lemma 4.3, C ∈ V a(X) is the
intersection of U ∈ A (X) containing it. Thus, it suffices to show that K(V a(X)) = A (X).
First, let U ∈ A (X). If U ≤

∨
S for some S ⊆ V a(X), then

⋂
S ⊆ U . Since X is

compact, there is a finite subset T of S with
⋂

T ⊆ U , so U ≤
∨

T . Therefore,
U ∈ K(V a(X)). Conversely, let C ∈ K(V a(X)). Since C =

⋂
{U ∈ A (X) | C ⊆ U}

and C is compact, there exist U1, . . . , Un ∈ A (X) such that C = U1 ∩ · · · ∩ Un. Thus,
C ∈ A (X), so K(V a(X)) = A (X). Consequently, (V a(X),⊇) is an algebraic frame.

The above lemma defines V a on objects. We next define V a on morphisms.
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4.5. Lemma. Let X, Y ∈ PGPS. If R ⊆ X ×Y is a generalized Priestley morphism, then
□R : V a(Y ) → V a(X) is a well-defined AlgFrmSup-morphism.

Proof. To see that □R is well defined, let C ∈ V a(Y ). Then C =
⋂
{U ∈ A (X) | C ⊆ U}

by Lemma 4.3. Since □R preserves arbitrary intersections,

□RC = □R

⋂
{U ∈ A (X) | C ⊆ U} =

⋂
{□RU | U ∈ A (X) and C ⊆ U},

which is an intersection of admissible clopen upsets. Thus, □RC ∈ V a(X) by Lemma 4.3.
Since joins in V a(X) are intersections, it is clear that □R preserves arbitrary joins. Finally,
by Lemma 4.4, compact elements of V a(X) are admissible clopen upsets. Therefore, □R

preserves compact elements by the definition of a generalized Priestley morphism. Thus,
□R is an AlgFrmSup-morphism.

4.6. Proposition. There is a contravariant functor V a : PGPS → AlgFrmSup which sends
X ∈ PGPS to V a(X) and a PGPS-morphism R to □R.

Proof. By Lemmas 4.4 and 4.5, V a is well defined. If R is the identity morphism on
X ∈ PGPS, then R is ≤. Therefore, for U ∈ V a(X), we have

□RU = {x ∈ X | R[x] ⊆ U} = {x ∈ X | ↑x ⊆ U} = U.

Thus, □R is the identity morphism on V a(X). Next, let R ⊆ X × Y and S ⊆ Y × Z
be PGPS-morphisms. We show that □R ◦ □S = □S∗R. Let C ∈ V a(Z). By Lemma 4.3,
C =

⋂
{U ∈ A (Z) | C ⊆ U}. Since for each U ∈ A (Z) we have □R□SU = □S∗RU (see

[BJ11, p. 106]) and □R,□S commute with arbitrary intersections, we obtain

□R□SC =
⋂

{□R□SU | U ∈ A (Z) and C ⊆ U}

=
⋂

{□S∗RU | U ∈ A (Z) and C ⊆ U} = □S∗RC.

Thus, □R ◦□S = □S∗R, and hence V a is a contravariant functor.

The functor Y . Let L be a complete lattice. We recall (see, e.g., [GHK+03, p. 50])
that the way below relation on L is defined by a ≪ b if, for each S ⊆ L, from b ≤

∨
S it

follows that a ≤
∨

T for some finite T ⊆ S. We also recall (see, e.g., [GHK+03, p. 54])
that a complete lattice L is continuous if b =

∨
{a ∈ L | a ≪ b} for each b ∈ L. Since

a ∈ L is compact iff a ≪ a, for a ∈ K(L), we have a ≤ b iff a ≪ b. Therefore, every
algebraic lattice is a continuous lattice.

Let p ∈ L \ {1}. We recall that p is (meet-)prime if a ∧ b ≤ p implies a ≤ p or b ≤ p.
In distributive lattices prime elements are exactly (meet-)irreducible elements, where p
is irreducible if a ∧ b = p implies a = p or b = p. Next, recall that p is pseudoprime if
for each n ≥ 1, from a1 ∧ · · · ∧ an ≪ p it follows that ai ≤ p for some i (see [GHK+03,
Prop. I-3.25]).

4.7. Definition. For a complete lattice L, let P(L) be the set of prime elements and
PP(L) the set of pseudoprime elements of L.
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4.8. Definition. For an algebraic frame L, let YL = PP(L) ∪ {1}.

As we pointed out in Section 2, the topology λ generated by the subbasis

{↑k | k ∈ K(L)} ∪ {(↑l)c | l ∈ K(L)}

turns L into a Stone meet-semilattice. This, in particular, implies that ⟨L, λ,≤⟩ is a
Priestley space. We restrict the topology and order on L to YL. We then have:

4.9. Lemma. If L is an algebraic frame, then ⟨YL, λ,≤⟩ is a Priestley space.

Proof. Since L is a Priestley space, it suffices to show that YL is a closed subset of L.
Let a ∈ L \ YL. Then a ̸= 1 and a /∈ PP(L). Therefore, there are b1, . . . , bn ∈ L with
b1 ∧ · · · ∧ bn ≪ a and bi ̸≤ a for each i. Because L is an algebraic lattice, there are
ki ∈ K(L) with ki ≤ bi but ki ̸≤ a. Clearly k1 ∧ · · · ∧ kn ≪ a. Since a =

∨
(↓a ∩ K(L)),

there are t1, . . . , tp ∈ ↓a ∩ K(L) with k1 ∧ · · · ∧ kn ≤ t1 ∨ · · · ∨ tp. Let t = t1 ∨ · · · ∨ tp.
Then t ∈ ↓a ∩ K(L) and k1 ∧ · · · ∧ kn ≤ t. Therefore, ↑t ∩ (↑k1)c ∩ · · · ∩ (↑kn)c is an open
neighborhood of a. Moreover, if x ∈ ↑t ∩ (↑k1)c ∩ · · · ∩ (↑kn)c, then k1 ∧ · · · ∧ kn ≤ t ≤ x
and k1, . . . , kn ̸≤ x. Since t is compact, k1 ∧ · · · ∧ kn ≤ t ≤ x implies k1 ∧ · · · ∧ kn ≪ x.
Thus, k1∧ · · · ∧ kn ≪ x but ki ̸≤ x for each i. Since x ̸= 1, we conclude that x /∈ YL. This
implies that ↑t∩ (↑k1)c ∩ · · · ∩ (↑kn)c is an open neighborhood of a that misses YL. Thus,
YL is a closed subset of L.

4.10. Remark. The proof of Lemma 4.9 does not require that L is a frame. It only
requires that L is an algebraic lattice.

We next show that the tuple ⟨YL, λ,≤,P(L), 1⟩ is a pointed generalized Priestley space.
For this we need the following lemma. The proof of (1) can for example be found in
[GHK+03, Cor. I-3.10]. We include the proof of (2) because we were unable to find a
reference for it.

4.11. Lemma. Let L be an algebraic frame.

(1) If a, b ∈ L with a ̸≤ b, then there is p ∈ P(L) with a ̸≤ p and b ≤ p.

(2) Let U be a clopen upset of L. Then U = ↑k1 ∪ · · · ∪ ↑kn for some ki ∈ K(L).

Proof. (1). In a continuous lattice each element is a meet of irreducible elements (see,
e.g., [GHK+03, Cor. I-3.10]). Since every algebraic lattice is continuous and irreducible
elements are prime in distributive lattices, the result follows.

(2). We first show that U =
⋃
{↑k | k ∈ K(L) ∩ U}. Let a ∈ U . Since U is an upset,

↑a ⊆ U , so ↑a∩U c = ∅. Because L is an algebraic lattice, ↑a =
⋂
{↑k | k ∈ K(L), k ≤ a}.

Therefore, U c ∩
⋂
{↑k | k ∈ K(L), k ≤ a} = ∅. Since U c is closed, compactness of

L shows there are k1, . . . , kn ∈ K(L) with ki ≤ a and U c ∩ ↑k1 ∩ · · · ∩ ↑kn = ∅. If
k = k1 ∨ · · · ∨ kn, then k ∈ K(L), k ≤ a, and ↑k = ↑k1 ∩ · · · ∩ ↑kn, so ↑k ⊆ U . Thus,
U =

⋃
{↑k | k ∈ K(L) ∩ U}, as desired. Since U is closed, hence compact, this union is a

finite union, completing the proof.
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4.12. Lemma. P(L) is dense in PP(L) = YL \ {1}.
Proof. Since {↑k | k ∈ K(L)} is closed under finite intersections,

{↑k ∩ (↑l1)c ∩ · · · ∩ (↑ln)c | k, l1, . . . , ln ∈ K(L)}
is a basis for the topology on YL. Therefore, it suffices to show that if k, l1, . . . , ln ∈ K(L)
and U = ↑k∩ (↑l1)c∩· · ·∩ (↑ln)c with U ∩PP(L) ̸= ∅, then U ∩P(L) ̸= ∅. Let q ∈ PP(L)
with q ∈ U . Then k ≤ q and each li ̸≤ q. If l1 ∧ · · · ∧ ln ≤ k, then l1 ∧ · · · ∧ ln ≪ q since k
is compact. This contradicts q ∈ PP(L). Therefore, l1∧· · ·∧ ln ̸≤ k, so by Lemma 4.11(1)
there is p ∈ P(L) with k ≤ p and l1 ∧ · · · ∧ ln ̸≤ p, so each li ̸≤ p. Thus, p ∈ U , and hence
U ∩ P(L) ̸= ∅.

4.13. Lemma. Let U be a clopen upset of YL. Then U is admissible iff U = ↑k ∩ YL for
some k ∈ K(L).

Proof. First suppose that U = ↑k ∩ YL for some k ∈ K(L). If a ∈ YL \ U , then k ̸≤ a.
By Lemma 4.11(1), there is p ∈ P(L) with k ̸≤ p and a ≤ p. Thus, p ∈ P(L) \ U . This
shows that U is admissible.

Conversely, let U be admissible. Since U is a clopen upset of YL and YL is a closed
subspace of L, there is a clopen upset V of L with U = V ∩ YL (see [BH21, Lem. 4.4]).
By Lemma 4.11(2), there are ki ∈ K(L) with V = ↑k1 ∪ · · · ∪ ↑kn. Consequently, U =
(↑k1∪· · ·∪↑kn)∩YL. If k1∧· · ·∧kn /∈ U , then since U is admissible, there is p ∈ P(L)\U
with k1 ∧ · · · ∧ kn ≤ p. But then ki ≤ p for some i, yielding p ∈ U , which is false.
Therefore, k1 ∧ · · · ∧ kn ∈ U , and so ki ≤ k1 ∧ · · · ∧ kn for some i. Thus, ki ≤ kj for each
j, and hence U = ↑ki ∩ YL.

4.14. Lemma. For a, b ∈ YL we have a ≤ b iff ∀U ∈ A (YL), a ∈ U =⇒ b ∈ U .

Proof. Suppose that a ≤ b. Let U ∈ A (YL). Since U is an upset of YL, if a ∈ U , then
b ∈ U . Conversely, suppose that a ̸≤ b. Since K(L) is join-dense in L, there is k ∈ K(L)
with k ≤ a and k ̸≤ b. Let U = ↑k ∩ YL. Then U is admissible by Lemma 4.13, a ∈ U ,
and b /∈ U .

4.15. Lemma. For a ∈ YL we have that Ia is nonempty and directed iff a ∈ P(L).

Proof. Let a ∈ P(L). Then a ̸= 1, so there is k ∈ K(L) with k ̸≤ a. By Lemma 4.13,
↑k ∩ YL is admissible and does not contain a. Therefore, Ia is nonempty. To see it is
directed, let U, V ∈ Ia. Then there are k, l ∈ K(L) with U = ↑k ∩ YL and V = ↑l ∩ YL.
Therefore, k, l ̸≤ a, so k ∧ l ̸≤ a since a ∈ P(L). Thus, there is t ∈ K(L) with t ≤ k ∧ l
and t ̸≤ a. Then ↑t ∩ YL ∈ Ia and contains both U, V . This proves that Ia is directed.

Conversely, suppose that Ia is nonempty and directed. Since Ia is nonempty, there
is k ∈ K(L) with ↑k ∩ YL ∈ Ia by Lemma 4.13. Thus, k ̸≤ a, and so a ̸= 1. If a /∈ P(L),
then there are x, y ∈ L with x ∧ y ≤ a and x, y ̸≤ a. The latter implies that there
are k, l ∈ K(L) with k ≤ x, l ≤ y, and k, l ̸≤ a. Set U = ↑k ∩ YL and V = ↑l ∩ YL.
Then U, V ∈ Ia. Therefore, there is W ∈ Ia with U, V ⊆ W . By Lemma 4.13, there is
t ∈ K(L) with W = ↑t ∩ YL. But then t ≤ k, l, so t ≤ k ∧ l ≤ a, and hence W /∈ Ia. The
obtained contradiction proves that a ∈ P(L).
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4.16. Proposition. If L is an algebraic frame, then Y (L) := ⟨YL, λ,≤,P(L), 1⟩ is a
pointed generalized Priestley space.

Proof. By Lemma 4.9, ⟨YL, λ,≤⟩ is a Priestley space. It is clear that 1 is the unique
maximum of YL. By Lemma 4.12, P(L) is dense in YL \ {1}. By Lemma 4.11(1), P(L)
is order-dense in YL \ {1}. By Lemma 4.15, a ∈ P(L) iff Ia is nonempty and directed.
Finally, by Lemma 4.14, a ≤ b iff ∀U ∈ A (YL) (a ∈ U ⇒ b ∈ U). Thus, Y (L) is a pointed
generalized Priestley space.

We next turn to morphisms.

4.17. Definition. Let L1, L2 be algebraic frames and α : L1 → L2 an AlgFrmSup-morph-
ism. If r is the right adjoint of α, we define Rα ⊆ YL2 × YL1 by p Rα q if r(p) ≤ q
in L1.

4.18. Remark. It is not necessarily the case that if p ∈ YL2 , then r(p) ∈ YL1 . In
Lemma 5.11 we will show exactly when r[YL2 ] ⊆ YL1 .

4.19. Lemma. Let α : L1 → L2 be an AlgFrmSup-morphism. Then Rα ⊆ YL2 × YL1 is a
generalized Priestley morphism.

Proof. Let p ∈ YL2 and q ∈ YL1 with p ̸Rα q. Then r(p) ̸≤ q, so there is k ∈ K(L1) with
k ≤ r(p) and k ̸≤ q. If U = ↑k ∩ YL1 , then U is admissible by Lemma 4.13 and q /∈ U .
Let q′ ∈ Rα[p]. Then r(p) ≤ q′. Therefore, k ≤ q′, so q′ ∈ U . Thus, Rα[p] ⊆ U . This
shows that Rα satisfies Definition 3.5(1). To see that Rα also satisfies Definition 3.5(2),
suppose that U ∈ A (YL1). Then U = ↑k ∩ YL1 for some k ∈ K(L1) by Lemma 4.13.

4.20. Claim. □RαU = ↑α(k) ∩ YL2.

Proof. Suppose that p ∈ ↑α(k) ∩ YL2 . Then α(k) ≤ p, so k ≤ r(p). Let q ∈ YL1 with
p Rα q. Then r(p) ≤ q, so k ≤ q, and hence q ∈ U . Therefore, Rα[p] ⊆ U , yielding that
p ∈ □RαU . This proves that ↑α(k) ∩ YL2 ⊆ □RαU . If p /∈ ↑α(k) ∩ YL2 , then α(k) ̸≤ p,
so k ̸≤ r(p). By Lemma 4.11(1), there is q ∈ P(L1) with k ̸≤ q and r(p) ≤ q. Therefore,
p Rα q and q /∈ U . Thus, p /∈ □RαU , and so □RαU = ↑α(k) ∩ YL2 .

The claim together with Lemma 4.13 shows that □RαU ∈ A (YL2). Thus, Rα is a
generalized Priestley morphism.

4.21. Proposition. There is a contravariant functor Y : AlgFrmSup → PGPS which
sends L ∈ AlgFrmSup to Y (L) and an AlgFrmSup-morphism α to Rα.

Proof. Proposition 4.16 and Lemma 4.19 show that Y is well defined. If α is the identity
on L, then p Rα q iff r(p) ≤ q iff p ≤ q, so Rα is equal to ≤. Therefore, Y sends identity
morphisms to identity morphisms. To show that Y preserves composition, let α : L1 → L2

and β : L2 → L3 be AlgFrmSup-morphisms. Write R = Rβ, S = Rα, and T = Rβα. We
show that T = S ∗R.
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First suppose that x T z, so rβα(x) ≤ z, and hence rαrβ(x) ≤ z because rβα = rαrβ.
Let U be an admissible clopen upset of YL3 . By Lemma 4.13, U = ↑k ∩ YL3 for some
k ∈ K(L3). By Claim 4.20, □R□SU = □R(↑α(k) ∩ YL2) = ↑βα(k) ∩ YL1 . Therefore,

x ∈ □R□SU =⇒ βα(k) ≤ x =⇒ k ≤ rαrβ(x) ≤ z,

so z ∈ U . Thus, x (S ∗R) z.
Conversely, if x ̸T z, then there is U ∈ A (YL3) with T [x] ⊆ U and z /∈ U . We show

that x ∈ □R□SU . Let x R y and y S t. Then rβ(x) ≤ y and rα(y) ≤ t, so rαrβ(x) ≤ t.
Therefore, rβα(x) ≤ t, so x T t, and hence t ∈ T [x]. This yields t ∈ U . Thus, x ∈ □R□SU
as desired. Since z /∈ U , it is false that x (S ∗R) z. This shows that Rβα = Rα ∗ Rβ.
Consequently, Y is a contravariant functor.

Dual equivalence of AlgFrmSup and PGPS. We now show that the functors V a

and Y yield a dual equivalence of AlgFrmSup and PGPS. To do so, we produce natural
isomorphisms Υ: 1PGPS → Y ◦ V a and η : 1AlgFrmSup

→ V a ◦ Y .
Let X ∈ PGPS. Define εX : X → YV a(X) by εX(x) = ↑x for each x ∈ X.

4.22. Lemma. For X ∈ PGPS, we have:

(1) εX is well defined.

(2) εX is an order-isomorphism.

(3) εX is a homeomorphism.

(4) εX [X0] = (YV a(X))0.

Proof. (1). Let x ∈ X. For each y /∈ ↑x we have x ̸≤ y, so there is U ∈ A (X) with
x ∈ U and y /∈ U by Definition 3.8(6). Thus, ↑x =

⋂
{U ∈ A (X) | x ∈ U}, and hence

↑x ∈ V a(X).
We next show that ↑x ∈ YV a(X). If ↑x = X, then this is trivial. Otherwise, we show

that ↑x is pseudoprime. Suppose that Ci ∈ V a(X) with C1 ∧ · · · ∧ Cn ≪ ↑x. Since
↑x =

⋂
{U ∈ A (X) | x ∈ U}, recalling that V a(X) is ordered by ⊇, there is U ∈ A (X)

with C1 ∧ · · · ∧ Cn ≤ U ≤ ↑x. Therefore, x ∈ U ⊆ C1 ∧ · · · ∧ Cn. We claim that
x ∈ C1 ∪ · · · ∪ Cn. If not, then there are Vi ∈ A (X) with Ci ⊆ Vi and x /∈ V1 ∪ · · · ∪ Vn.
Thus, U ⊆ C1∧· · ·∧Cn ⊆ V1∧· · ·∧Vn. We show this implies that U ⊆ V := V1∪· · ·∪Vn.

We first show U ∩ X0 ⊆ V . Let y ∈ U ∩ X0. If y /∈ V , then Vi ∈ Iy for each
i. Since y ∈ X0, there is W ∈ Iy with V ⊆ W . Therefore, V1, . . . , Vn ⊆ W , and so
W ≤ V1, . . . , Vn, which implies W ≤ V1 ∧ · · · ∧ Vn. Thus, V1 ∧ · · · ∧ Vn ⊆ W , and hence
U ⊆ W . This is a contradiction since y ∈ U . Consequently, U ∩X0 ⊆ V .

Now, if U ̸⊆ V , then U ∩ V c is a nonempty open subset of X, and U ∩ V c ⊆ X \ {m}
since m ∈ V . Because X0 is dense in X \{m}, we have X0∩U ∩V c ̸= ∅. This contradicts
the inclusion U ∩ X0 ⊆ V . Therefore, U ⊆ V = V1 ∪ · · · ∪ Vn. But this is false since
x ∈ U . Thus, x ∈ C1 ∪ · · · ∪Cn, proving the claim. This implies that Ci ≤ ↑x for some i,
so ↑x ∈ YV a(X), and hence εX is well defined.
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(2). It is clear that εX is order preserving and order reflecting. Thus, εX is 1-1. To
see that it is onto, let C ∈ YV a(X). If C is the top of YV a(X), then C = ↑m, and hence
C = εX(m). Suppose that C is a pseudoprime. We show that minC is a singleton.
Otherwise for each distinct pair x, y ∈ minC there is Uxy ∈ A (X) with x ∈ Uxy and
y /∈ Uxy. Therefore, C ̸⊆ Uxy. The various Uxy cover C. By Lemma 4.3, C is an
intersection from A (X), so by compactness, there are V ∈ A (X) and distinct pairs
x1, y1, . . . , xn, yn ∈ minC with C ⊆ V ⊆ U1 ∪ · · · ∪ Un, where we write Ui for Uxiyi . In
V a(X) this says that U1 ∧ · · · ∧ Un ≤ V ≤ C. By Lemma 4.4, V ∈ K(V a(X)), implying
that U1 ∧ · · · ∧ Un ≪ C. Because C is a pseudoprime, this forces Ui ≤ C for some i, so
C ⊆ Ui. This is false by construction of the Ui. Therefore, minC = {x}, and so C = ↑x
for some x ∈ X. Thus, εX is onto, hence an order-isomorphism.

(3). Since X and YV a(X) are compact Hausdorff, by (2) it is sufficient to show that
εX is continuous. For this, since the topology on YV a(X) is generated by clopen upsets
and their complements, by Lemmas 4.11(2) and 4.13 it suffices to show that if V is an
admissible clopen upset of YV a(X), then ε−1

X (V ) is clopen. By Lemmas 4.4 and 4.13, there
is U ∈ A (X) with V = ↑U ∩ YV a(X) = {W ∈ YV a(X) | U ≤ W}. We have

εX(x)
−1(V ) = εX(x)

−1(↑U ∩ YV a(X)) = {x ∈ X | ↑x ∈ ↑U ∩ YV a(X)}
= {x ∈ X | U ≤ ↑x} = {x ∈ X | ↑x ⊆ U} = U.

Thus, εX is continuous, hence a homeomorphism.
(4). First let x ∈ X0. Then x ̸= m, so ↑x is not the top of V a(X). Suppose that

C,D ∈ V a(X) with C∧D ≤ ↑x, so x ∈ C∧D. If x /∈ C∪D, then there are U, V ∈ A (X)
with C ⊆ U , D ⊆ V , and x /∈ U ∪ V . Therefore, U, V ∈ Ix, so from x ∈ X0 it follows
that there is W ∈ Ix with U ∪ V ⊆ W . But C ∧D is the intersection of all U ′ ∈ A (X)
with C ∪ D ⊆ U ′. This contradicts x ∈ C ∧ D. Thus, x ∈ C or x ∈ D, so C ≤ ↑x or
D ≤ ↑x. Consequently, ↑x ∈ P(V a(X)) = (YV a(X))0.

Conversely, let C ∈ (YV a(X))0. Since εX is onto, C = ↑x for some x ∈ X. If x /∈ X0,
then either Ix = ∅ or Ix is not directed. If Ix = ∅, then x = m, so ↑x is the top
of V a(X), and hence not in (YV a(X))0, a contradiction. If Ix is not directed, then there
are U, V ∈ Ix but no larger admissible clopen upset misses x. Since the meet U ∧ V
in V a(X) is the intersection of all admissible clopen upsets containing U ∪ V , all such
contain x, and so x ∈ U ∧ V . Therefore, U ∧ V ≤ ↑x. This contradicts ↑x ∈ (YV a(X))0.
Thus, x ∈ X0.

4.23. Definition. Let X ∈ PGPS. Define ΥX ⊆ X × YV a(X) by x ΥX C iff εX(x) ≤ C
in V a(X).

To prove that Υ: 1PGPS → Y ◦ V a is a natural isomorphism, we require the following
two lemmas.

4.24. Lemma. Let X, Y ∈ PGPS and suppose that f : X → Y is an order-isomorphism
and homeomorphism with f [X0] = Y0. Define Rf ⊆ X × Y by x Rf y if f(x) ≤ y.

(1) Rf is a generalized Priestley morphism.
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(2) If g : Y → Z is another map satisfying the same hypotheses as f , then Rg◦f =
Rg ∗Rf .

(3) Rf is a PGPS-isomorphism.

Proof. (1) and (2) follow from the same proof as [BJ08, Lem. 9.3] since f is a strong
Priestley morphism (see Definition 5.5(2)). To see (3), for the identity morphism 1X : X →
X we have x R1X y iff x ≤ y, so R1X is equal to ≤, an identity morphism in PGPS. Since
f is an order-isomorphism and homeomorphism, Rf−1 is a generalized Priestley morphism
by (1), and it is the inverse of Rf by (2). Therefore, Rf is a PGPS-isomorphism.

4.25. Lemma. Let X ∈ PGPS. For U ∈ A (X) set V = ↑U ∩ YV a(X). Then V ∈
A (YV a(X)) and □ΥX

V = U .

Proof. That V ∈ A (YV a(X)) follows from Lemmas 4.4 and 4.13. Moreover,

□ΥX
V = {x ∈ X | ΥX [x] ⊆ V } = {x ∈ X | x ΥX C ⇒ C ∈ V }

= {x ∈ X | x ΥX C ⇒ C ⊆ U} = {x ∈ X | C ⊆ ↑x ⇒ C ⊆ U}
= {x ∈ X | ↑x ⊆ U} = U,

where the first equality on the last line holds since ↑x is admissible by Lemma 4.22(1).

4.26. Proposition. Let X ∈ PGPS. Then ΥX is a generalized Priestley morphism and
Υ: 1PGPS → Y ◦ V a is a natural isomorphism.

Proof. Let X ∈ PGPS. By Lemma 4.22, εX : X → YV a(X) is an order-isomorphism and
homeomorphism such that εX [X0] = (YV a(X))0. Therefore, ΥX is a PGPS-isomorphism by
Lemma 4.24.

It is left to show that Υ is natural. Let R ⊆ X×Y be a generalized Priestley morphism.
We must show that ΥY ∗ R = Y V a(R) ∗ ΥX . Since V a(R) = □R and Y V a(R) = R□R

,
we must show that ΥY ∗R = R□R

∗ΥX .

X Y

YV a(X) YV a(Y )

R

ΥX ΥY

R□R

Let x ∈ X and C ∈ YV a(Y ). By Lemma 4.25, quantifying V = ↑U ∩ YV a(Y ), we have

x (ΥY ∗R) C ⇔ (∀V )(x ∈ □R□ΥY
V ⇒ C ∈ V )

⇔ (∀U)(x ∈ □RU ⇒ C ⊆ U).

On the other hand, □R is an AlgFrmSup-morphism by Lemma 4.5. By Claim 4.20,
□R□R

V = (↑□RU) ∩ YV a(X). Therefore, applying Lemma 4.25, we obtain

x (R□R
∗ΥX) C ⇔ (∀V )(x ∈ □ΥX

□R□R
V ⇒ C ∈ V )

⇔ (∀U)(x ∈ □ΥX
((↑□RU) ∩ YV a(X)) ⇒ C ⊆ U)

⇔ (∀U)(x ∈ □RU ⇒ C ⊆ U).
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This shows that ΥY ∗R = R□R
∗ΥX , and hence Υ is a natural isomorphism.

We now turn to the natural isomorphism η : 1AlgFrmSup
→ V a◦Y . Let L be an algebraic

frame. Define ηL : L → V a(YL) by ηL(a) = ↑a ∩ YL. To prove that ηL is well defined, we
need the following generalization of Lemma 4.13.

4.27. Lemma. Let L be an algebraic frame and C a closed upset of YL. Then C is
admissible iff C = ↑a ∩ YL for some a ∈ L.

Proof. Suppose that C = ↑a ∩ YL for some a ∈ L. If q ∈ YL \ C, then a ̸≤ q. By
Lemma 4.11(1), there is p ∈ P(L) with a ̸≤ p and q ≤ p. Thus, C is admissible.
Conversely, suppose that C is admissible. By Lemmas 4.3 and 4.13,

C =
⋂

{↑k ∩ YL | k ∈ K(L), C ⊆ ↑k ∩ YL}.

Set S = {k ∈ K(L) | C ⊆ ↑k ∩ YL} and a =
∨
S. If p ∈ C, then p ∈ ↑k ∩ YL and so k ≤ p

for each k ∈ S. Therefore, a ≤ p, which gives p ∈ ↑a ∩ YL. For the reverse inclusion, let
p ∈ ↑a∩YL. Then a ≤ p, so k ≤ p for each k ∈ S. This yields p ∈

⋂
{↑k∩YL | k ∈ S} = C.

Thus, C = ↑a ∩ YL.

4.28. Proposition. Let L be an algebraic frame. Then ηL is an AlgFrmSup-morphism
and η : 1AlgFrmSup

→ V a ◦ Y is a natural isomorphism.

Proof. That ηL is well defined follows from Lemma 4.27. To see that ηL is an AlgFrmSup-
morphism, let S ⊆ L and a =

∨
S. Then ↑a =

⋂
{↑s | s ∈ S}, so

ηL(a) = ↑a ∩ YL =
⋂

{↑s ∩ YL | s ∈ S} =
∨

{↑s ∩ YL | s ∈ S} =
∨

{ηL(s) | s ∈ S}.

Therefore, ηL preserves arbitrary joins. To see it preserves compact elements, let k ∈ K(L).
Then ηL(k) = ↑k ∩ YL, which is compact by Lemmas 4.4 and 4.13. Therefore, ηL is an
AlgFrmSup-morphism. It is clearly 1-1, and is onto by Lemma 4.27. Thus, ηL is an
isomorphism.

To show naturality, let α : L1 → L2 be an AlgFrmSup-morphism with right adjoint r.
Then Rα ⊆ YL2 × YL1 is given by p Rα q if r(p) ≤ q.

L1 L2

V a(YL1) V a(YL2)

α

ηL1
ηL2

□Rα

Let a ∈ L1. Then ηL2(α(a)) = ↑α(a) ∩ YL2 . Also,

□RαηL1(a) = □Rα(↑a ∩ YL1) = {x ∈ YL2 | Rα[x] ⊆ ↑a ∩ YL1}
= {x ∈ YL2 | (∀q ∈ YL1)(r(x) ≤ q ⇒ a ≤ q)}.

By Lemma 4.11(1), r(x) =
∧
(↑r(x) ∩ P(L)). Therefore,

□RαηL1(a) = {x ∈ YL2 | a ≤ r(x)} = {x ∈ YL2 | α(a) ≤ x} = ↑α(a) ∩ YL2 .

Thus, □RαηL1(a) = ↑α(a) ∩ YL2 . This proves naturality, and hence η is a natural isomor-
phism.
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Propositions 4.6, 4.21, 4.26, and 4.28 yield our main result.

4.29. Theorem. The contravariant functors V a and Y establish a dual equivalence be-
tween AlgFrmSup and PGPS.

Putting Theorem 4.29 and Corollary 2.6 together yields Theorem 3.11. But we can
say more:

4.30. Theorem. The functors establishing the duality of Theorem 3.11 are the composi-
tions of the functors of Theorem 4.29 and Corollary 2.6.

Proof. Let M ∈ DMS and L = F (M). By [BJ13, Rem. 3.2] and [BJ11, Prop. 4.8],
pseudoprime elements of L are precisely the optimal filters of M . Therefore,

Y F (M) = YL = PP(L) ∪ {M} = Opt(M) ∪ {M} = X (M).

If α : M1 → M2 is a DMS-morphism, then as we saw in Section 2, F (α) is the left adjoint of
α−1, and hence α−1 is the right adjoint of F (α). Therefore, it follows from the definitions
of X (α) and Y F (α) that they coincide. In the opposite direction, if X ∈ PGPS, then
K V a(X) = A (X) by Lemma 4.4. If R ⊆ X × Y is a generalized Priestley morphism,
then V a(R) = □R and K V a(R) is the restriction of □R to K V a(Y ) = A (Y ), which is
exactly A (R). This shows that X = Y ◦ F and A = K ◦ V a.

DMS AlgFrmSup

PGPS

F

X K

YA

V a

We conclude this section by discussing what happens when we restrict our attention
to bounded distributive meet-semilattices and compact algebraic frames. Let X ∈ PGPS.
As we pointed out in Remark 3.10, A (X) is bounded iff m is an isolated point of X. By
Corollary 2.10(1), this is equivalent to V a(X) being compact. By Remark 3.10, the full
subcategory of PGPS consisting of those X ∈ PGPS in which m is isolated is equivalent
to GPS. Thus, the diagram above restricts to the categories BDMS, KAlgFrmSup, and
GPS, which further restricts to BDMSB, KAlgFrmSupB, and GPST by Corollary 2.10(2) and
Theorem 3.7.

The restrictions of the functors F ,K do not require any modification. The functors
A ,X are modified as in Theorem 3.7. The functor V a is the same, but this time defined
on GPS. Because of this, ∅ ∈ V a(X) for each X ∈ GPS. In fact, the maps C 7→ C ∩X
and D 7→ D ∪ {m} are inverse isomorphisms between V a(X) and V a(X+), under which
∅ corresponds to {m} (see Remark 3.10).

Finally, we need to slightly modify Y . Indeed, if L is a compact algebraic frame,
then 1 is an isolated point of YL. Therefore, PP(L) ∈ GPS. Also, if α is an KAlgFrmSup-
morphism, then R−

α is a GPS-morphism (see Remark 3.10). Thus, we can modify Y by
sending L to PP(L) and α to R−

α . Using the same letter Y for this modified functor, we
arrive at the following:
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4.31. Corollary. The functors of Theorem 4.30 restrict to yield an equivalence and
dual equivalence of:
(1) KAlgFrmSup, BDMS, and GPS.

(2) KAlgFrmSupB, BDMSB, and GPST.
Putting Theorem 4.29 and Corollaries 2.6 and 4.31(1) together yields the top layer of

Figure 1.

5. Various morphisms between algebraic frames

So far we worked with the maps between algebraic frames that preserve arbitrary suprema
and compact elements. This resulted in the category AlgFrmSup, which is equivalent to
DMS (Corollary 2.6) and dually equivalent to PGPS (Theorem 4.29). The equivalence
and dual equivalence of their bounded versions was established in Corollary 4.31. As we
pointed out in the introduction, there are several stronger notions of morphism between
algebraic frames that are natural to consider. In this section we turn our attention to those
and the corresponding morphisms between generalized Priestley spaces, thus obtaining
the bottom three layers of Figure 1.

Strong Priestley morphisms.

5.1. Definition.

(1) Let DMSFSup be the wide subcategory of DMS whose morphisms preserve all existing
nonempty finite suprema, and let BDMSFSup be the full subcategory of DMSFSup whose
objects are bounded.

(2) Let DMSFSupB be the wide subcategory of DMSFSup whose morphisms are bounded,
and let BDMSFSupB be the full subcategory of DMSFSupB whose objects are bounded.

5.2. Remark. In [BJ08, BJ11] morphisms of BDMSFSupB are called sup-homomorphisms.
Let L1, L2 be algebraic frames and α : L1 → L2 an AlgFrmSup-morphism. Since we work

with the dual orders on K(L1) and K(L2), the restriction α|K(L1) is a DMSFSup-morphism
iff the following condition is satisfied:

If ∅ ̸= S ⊆ K(L1) is finite and
∧

S ∈ K(L1), then α
(∧

S
)
=
∧

α[S]. (FInf)

5.3. Definition.

(1) Let AlgFrmFInf be the wide subcategory of AlgFrmSup whose morphisms satisfy (FInf),
and let AlgFrmFInfB be the wide subcategory of AlgFrmFInf whose morphisms are
bounded.

(2) Let KAlgFrmFInf be the full subcategory of AlgFrmFInf and KAlgFrmFInfB the full sub-
category of AlgFrmFInfB consisting of compact algebraic frames.

As an immediate consequence of Corollaries 2.6, 2.8, 2.10, and the above observation,
we obtain:
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5.4. Theorem.

(1) AlgFrmFInf is equivalent to DMSFSup.

(2) AlgFrmFInfB is equivalent to DMSFSupB.

(3) KAlgFrmFInf is equivalent to BDMSFSup.

(4) KAlgFrmFInfB is equivalent to BDMSFSupB.

We next describe the corresponding categories of generalized Priestley spaces utilizing
the notion of strong Priestley morphisms from [BJ08, BJ11].

5.5. Definition. Let X, Y be generalized Priestley spaces.

(1) A generalized Priestley morphism R ⊆ X×Y is functional if R[x] has a least element
for each x ∈ X. Let GPSF be the wide subcategory of GPS consisting of functional
generalized Priestley morphisms.

(2) An order-preserving map f : X → Y is a strong Priestley morphism if U ∈ A (Y )
implies f−1(U) ∈ A (X). Let GPSS be the category of generalized Priestley spaces
and strong Priestley morphisms.

The categories GPSF and GPSS consist of the same objects. If R ⊆ X × Y is a
functional generalized Priestley morphism, then sending x to the least element of R[x]
defines a strong Priestley morphism fR : X → Y . Conversely, if f : X → Y is a strong
Priestley morphism, then Rf ⊆ X × Y defined by x Rf y iff f(x) ≤ y is a functional
generalized Priestley morphism. Moreover,

fS∗R = fS ◦ fR, Rg◦f = Rg ∗Rf , R = RfR , and f = fRf
.

We thus obtain:

5.6. Theorem. [BJ08, Prop. 9.5] The categories GPSF and GPSS are isomorphic.

In [BJ08, Thm. 9.6] it was shown that GPSS is dually equivalent to BDMSFSupB. This
together with Theorem 5.4(4) yields:

5.7. Corollary. The category KAlgFrmFInfB is equivalent to BDMSFSupB and dually equi-
valent to GPSS.

The notions of functional generalized Priestley morphism and strong Priestley mor-
phism directly generalize to the pointed case. Let (X,m) and (Y, n) be pointed generalized
Priestley spaces with m,n isolated. If R ⊆ X × Y is a functional Priestley morphism,
then R− may not be functional since R−[x] could be empty for some x ∈ X−. Similarly, if
f : X → Y is a strong Priestley morphism, then the restriction f− : X− → Y − may only
be a partial function. For R− to be functional, and hence for f− to be a total function,
an additional condition is required. We thus arrive at the following wide subcategories
of PGPS consisting of two kinds of functional generalized Priestley morphisms, and their
corresponding categories of pointed generalized Priestley spaces and strong Priestley mor-
phisms.
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5.8. Definition.

(1) Let PGPSF be the wide subcategory of PGPS consisting of functional morphisms,
and let PGPSFT be the wide subcategory of PGPSF whose morphisms R ⊆ X × Y
additionally satisfy x ̸= m implies R[x] ̸= {n} provided m,n are isolated.

(2) Let PGPSS be the category of pointed generalized Priestley spaces and strong Priestley
morphisms, and let PGPSST be the wide subcategory of PGPSS whose morphisms
f : X → Y additionally satisfy f [X−] ⊆ Y − provided m,n are isolated.

5.9. Remark. The subscript F abbreviates functional, S abbreviates strong, and T ab-
breviates total because a PGPSS-morphism f is a PGPSST-morphism iff f− : X− → Y − is
a total function provided m,n are isolated.

We point out that identity morphisms in PGPSS and PGPSST are identity functions and
composition is usual function composition. As a direct generalization of [BJ08, Prop. 9.5],
we obtain:

5.10. Proposition.

(1) PGPSF is isomorphic to PGPSS.

(2) PGPSFT is isomorphic to PGPSST.

To describe the corresponding categories of distributive meet-semilattices and algebraic
frames, we require the following two lemmas.

5.11. Lemma. Let α : L1 → L2 be an AlgFrmSup-morphism and r : L2 → L1 its right
adjoint. The following are equivalent.

(1) α is an AlgFrmFInf-morphism.

(2) r[YL2 ] ⊆ YL1.

(3) r : YL2 → YL1 is a strong Priestley morphism whose corresponding functional gener-
alized Priestley morphism is Rα.

Proof. (1)⇒(2). Let p ∈ YL2 . Since r preserves arbitrary meets, r(1) = 1, so we may
assume that p ∈ PP(L2). If r(p) = 1, there is nothing to prove. Suppose that r(p) ̸= 1.
We prove that r(p) ∈ PP(L1). Let a1, . . . , an ∈ L1 with a1 ∧ · · · ∧ an ≪ r(p). Since L1 is
algebraic, there is k ∈ K(L1) with a1 ∧ · · · ∧ an ≤ k ≤ r(p). We show that ai ≤ r(p) for
some i. If not, then there are compact li with li ≤ ai and li ̸≤ r(p). Since l1 ∧ · · · ∧ ln ≤ k
and L1 is distributive, (l1 ∨ k) ∧ · · · ∧ (ln ∨ k) = k. Thus, the meet of l1 ∨ k, . . . , ln ∨ k
exists in K(L1), so α(k) = α(l1 ∨ k) ∧ · · · ∧ α(ln ∨ k) by (1). Since α preserves joins and
L2 is distributive,

α(k) =
n∧

i=1

(α(li) ∨ α(k)) =

(
n∧

i=1

α(li)

)
∨ α(k).
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Therefore, α(l1) ∧ · · · ∧ α(ln) ≤ α(k). Since k ≤ r(p) implies α(k) ≤ p and α(k) ∈ K(L2),
we have α(l1)∧ · · · ∧ α(ln) ≪ p. Because p ∈ PP(L2), it follows that α(li) ≤ p for some i.
Consequently, li ≤ r(p) for some i. The obtained contradiction proves that r(p) ∈ PP(L1).

(2)⇒(3). Let p ∈ YL2 . By (2), r(p) ∈ YL1 . Since q ∈ Rα[p] iff r(p) ≤ q, we see that
r(p) is the least element of Rα[p]. Thus, Rα is functional, and r is its corresponding strong
Priestley morphism.

(3)⇒(1). Let S ⊆ K(L1) be nonempty finite and
∧
S ∈ K(L1). Since α is order

preserving, α(
∧

S) ≤
∧

α[S]. Suppose that
∧
α[S] ̸≤ α(

∧
S). By Lemma 4.11(1),

there is p ∈ P(L2) with
∧

α[S] ̸≤ p and α(
∧
S) ≤ p. This yields

∧
S ≤ r(p). Since∧

S ∈ K(L1), we see that
∧

S ≪ r(p), so s ≤ r(p) for some s ∈ S since r(p) = 1 or
r(p) ∈ PP(L1). Therefore, α(s) ≤ p, and so

∧
α[S] ≤ p. The obtained contradiction

proves that
∧

α[S] ≤ α(
∧

S), hence the equality. Thus, α is an AlgFrmFInf-morphism.

5.12. Lemma. Let L1 and L2 be compact algebraic frames, α : L1 → L2 an AlgFrmSup-
morphism, and r : L2 → L1 its right adjoint. The following are equivalent.

(1) α is an AlgFrmFInfB-morphism.

(2) r[YL2 ] ⊆ YL1 and r(p) ̸= 1 for each p ∈ PP(L2).

(3) r : YL2 → YL1 is a strong Priestley morphism whose corresponding functional gener-
alized Priestley morphism is Rα and Rα[p] ̸= {1} for each p ∈ PP(L2).

Proof. (1)⇒(2). By Lemma 5.11, r[YL2 ] ⊆ YL1 . Since L1, L2 are compact and α is a
AlgFrmFInfB-morphism, we have α(1) = 1. If p ∈ PP(L2) with r(p) = 1, then α(1) ≤ p, so
p = 1, which is false. Therefore, r(p) ̸= 1.

(2)⇒(3). By Lemma 5.11, r is a strong Priestley morphism whose corresponding
functional generalized Priestley morphism is Rα. If p ∈ PP(L2), then r(p) ̸= 1 by (2).
Therefore, by Lemma 4.11(1), there is q ∈ P(L1) with r(p) ≤ q. Consequently, q ∈ Rα[p],
and so Rα[p] ̸= {1}.

(3)⇒(1). By Lemma 5.11, α is an AlgFrmFInf-morphism. It then suffices to show that
α(1) = 1. If α(1) ̸= 1, then there is p ∈ P(L2) with α(1) ≤ p. This yields 1 ≤ r(p),
so Rα[p] = {1}, contradicting (3). Therefore, α(1) = 1, and thus α is an AlgFrmFInfB-
morphism.

Lemmas 5.11 and 5.12 give the following:

5.13. Theorem.

(1) The duality of Theorem 4.29 between PGPS and AlgFrmSup restricts to a duality
between PGPSF and AlgFrmFInf and yields a duality between PGPSS and AlgFrmFInf .

(2) The duality also restricts to a duality between PGPSFT and AlgFrmFInfB and yields a
duality between PGPSST and AlgFrmFInfB.
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Proof. (1). Let X be a pointed generalized Priestley space. Then ΥX is a functional mor-
phism since the least element of ΥX [x] is εX(x) by the definition of ΥX and Lemma 4.22(1).
Therefore, ΥX is a PGPSF-isomorphism. In addition, if L is an algebraic frame, then it fol-
lows from the proof of Proposition 4.28 that ηL is a poset isomorphism. Therefore, it is an
AlgFrmFInfB-isomorphism. From these observations, Proposition 5.10(1), and Lemma 5.11
it follows that the duality of Theorem 4.29 restricts to a duality between PGPSF and
AlgFrmFInf .

(2). The proof is similar to that of (1) except that Lemma 5.12 is used instead of
Lemma 5.11.

As a consequence of Theorems 5.4 and 5.13, we obtain:

5.14. Corollary.

(1) AlgFrmFInf is equivalent to DMSFSup and dually equivalent to PGPSS.

(2) AlgFrmFInfB is equivalent to DMSFSupB and dually equivalent to PGPSST.

5.15. Remark. If α : L1 → L2 is an AlgFrmFInf-morphism, then Y (α) = Rα. Applying
Lemma 5.11, the corresponding strong Priestley morphism is the right adjoint r to α re-
stricted to YL2 . Therefore, we may view that Y : AlgFrmFInf → PGPSS acts on morphisms
by sending α to r : YL2 → YL1 .

If R ⊆ X × Y is a PGPSS-morphism, then V a(R) = □R. Let f be the strong Priest-
ley morphism corresponding to R. Then □RC = f−1(C) for each C ∈ V a(Y ) (see
[BJ08, Lem. 9.2]). Thus, we may view that V a : PGPSS → AlgFrmFInf acts on mor-
phisms by sending a strong Priestley morphism f to f−1. Similar observations apply to
Y : AlgFrmFInfB → PGPSST and V a : PGPSST → AlgFrmFInfB.

We next restrict the dualities of Theorem 5.13 to compact algebraic frames. As is
customary, by a partial function from X to Y we mean a function from a subset of X to
Y . We denote such partial function by f : X 99K Y .

5.16. Definition.

(1) Let X, Y ∈ GPS. A partial strong Priestley morphism between X and Y is a partial
function f : X 99K Y whose domain is a clopen downset of X such that U ∈ A (Y )
implies X \ f−1(Y \ U) ∈ A (X).

(2) Let GPSPS be the category of generalized Priestley spaces and partial strong Priestley
morphisms.

5.17. Proposition. GPSPS is equivalent to the full subcategory of PGPSS consisting of
generalized Priestley spaces with isolated maxima.
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Proof. By Remark 3.10, GPS is equivalent to the full subcategory of PGPS whose ob-
jects have isolated maxima. Let (X,m) and (Y, n) be generalized Priestley spaces with
m,n isolated. As in the remark, set X− = X \ {m} and Y − = Y \ {n}. By Propo-
sition 5.10(1), functional morphisms between X and Y correspond to strong Priestley
morphisms. Therefore, it is enough to show that the latter correspond to partial strong
Priestley morphisms between X− and Y −.

Let f : X → Y be a strong Priestley morphism. Set C = f−1(Y −). Then f : C → Y −

is a well-defined function, and we show that f : X− 99K Y − is a partial strong Priestley
morphism. First, C is a clopen downset of X since Y − is a clopen downset of Y and f is
a continuous order-preserving function. It is then a clopen downset of X− since m /∈ C.
Let U ∈ A (Y −). Then V := U ∪ {n} ∈ A (Y ) and we have

X− \ f−1(Y − \ U) = {x ∈ X− | x /∈ f−1(Y − \ U)}
= {x ∈ X− | x /∈ C or x ∈ C & f(x) ∈ U}
= {x ∈ X− | f(x) = n or f(x) ∈ U}
= {x ∈ X− | f(x) ∈ V }
= X− ∩ f−1(V ) ∈ A (X−)

because f−1(V ) ∈ A (X). Therefore, f : X− 99K Y − is a partial strong Priestley mor-
phism.

Conversely, let f : X− 99K Y − be a partial strong Priestley morphism, and let C be the
domain of f . Extend f to a function g : X → Y by setting g(x) = n for each x ∈ X \ C.
Since f is order preserving and n is the top of Y , we see that g is order preserving. To
show that g is a strong Priestley morphism, let V ∈ A (Y ). Set U = V \ {n} ∈ A (Y −).
We have X− \ f−1(Y − \ U) = (X− \ C) ∪ f−1(U). Therefore,

g−1(V ) = {x ∈ X | g(x) ∈ V } = g−1(n) ∪ g−1(U)

= {m} ∪ (X− \ C) ∪ f−1(U)

= {m} ∪ (X− \ f−1(Y − \ U)) ∈ A (X)

since X− \f−1(Y − \U) ∈ A (X−). Thus, g is a strong Priestley morphism. Consequently,
GPSPS is equivalent to the full subcategory of PGPSS consisting of generalized Priestley
spaces with isolated maxima.

As an immediate consequence of Proposition 5.17 we obtain:

5.18. Theorem. The duality of Theorem 5.13 between PGPSS and AlgFrmFInf restricts to
a duality between GPSPS and KAlgFrmFInf .

This together with Theorem 5.4(3) gives:

5.19. Corollary. The category KAlgFrmFInf is equivalent to BDMSFSup and dually equiv-
alent to GPSPS.

Putting Corollaries 5.7, 5.14, and 5.19 together yields the middle two layers of Figure 1.
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Strong Priestley morphisms preserving prime elements. To obtain the
bottom layer of Figure 1, we turn to the most natural category of algebraic frames,
in which morphisms are frame homomorphisms preserving compact elements (that is,
AlgFrmSup-morphisms preserving finite infima).

5.20. Definition. Let AlgFrm be the wide subcategory of AlgFrmSup whose morphisms
preserve finite infima.

5.21. Remark. Clearly AlgFrm is also a wide subcategory of AlgFrmFInfB.

We next describe the wide subcategory of PGPSST that is dually equivalent to AlgFrm.

5.22. Definition. Let PGPSP denote the wide subcategory of PGPSS whose morphisms
f : X → Y satisfy f [X0] ⊆ Y0, and define GPSP similarly.

5.23. Remark. Let f : X → Y be a PGPSP-morphism and suppose that m,n are isolated.
Then {m} ∈ A (X), so max(X \ {m}) ⊆ X0, which implies that maxX− ⊆ X0. Let
x ∈ X−. By Definition 3.8(4), there is z ∈ X0 with x ≤ z. Therefore, f(x) ≤ f(z), and
f(z) ∈ Y0 by hypothesis. Consequently, f(x) ̸= n. Thus, f [X−] ⊆ Y −, and hence PGPSP

is a wide subcategory of PGPSST.

5.24. Lemma. Let α : L1 → L2 be an AlgFrmSup-morphism and r : L2 → L1 its right
adjoint. The following are equivalent.

(1) α is a frame homomorphism.

(2) r : YL2 → YL1 is a strong Priestley morphism and r[P(L2)] ⊆ P(L1).

(3) Let S be a finite subset of K(L1) and k ∈ K(L2) with k ≤
∧
α[S]. Then there is

c ∈ K(L1) with c ≤
∧

S and k ≤ α(c).

Proof. (1)⇒(3). Let S be a finite subset of K(L1) and k ∈ K(L2) with k ≤
∧
α[S].

By (1), k ≤ α(
∧

S). Since k is compact, α(
∧
S) =

∨
{α(c) | c ∈ K(L1), c ≤

∧
S}, and

the join is directed, there is c ∈ K(L1) with c ≤
∧
S and k ≤ α(c).

(3)⇒(2). We first show that if S ⊆ K(L1) is finite with
∧
S ∈ K(L1), then α(

∧
S) =∧

α[S]. The inequality α(
∧

S) ≤
∧
α[S] holds since α is order preserving. Let k ∈ K(L2)

with k ≤
∧

α[S]. By (3), there is c ∈ K(L1) with c ≤
∧
S and k ≤ α(c). Therefore,

k ≤ α(c) ≤ α(
∧

S). Since
∧

α[S] is the join of the compact elements below it, we see
that

∧
α[S] ≤ α(

∧
S), hence the equality. This by Lemma 5.12 implies that r is a strong

Priestley morphism.
We next show that if p ∈ P(L2), then r(p) ∈ P(L1). By the previous paragraph,

α(1) = α(
∧

∅) =
∧

α[∅] = 1. Therefore, p ̸= 1 implies that r(p) ̸= 1. Let a, b ∈ L1

with a ∧ b ≤ r(p). Then α(a ∧ b) ≤ p. Suppose that α(a) ∧ α(b) ̸≤ p. Then there is
k ∈ K(L2) with k ≤ α(a) ∧ α(b) and k ̸≤ p. By (3), there is c ∈ K(L1) with c ≤ a ∧ b
and k ≤ α(c). Therefore, α(c) ̸≤ p, so c ̸≤ r(p). This contradicts c ≤ a ∧ b ≤ r(p). Thus,
α(a) ∧ α(b) ≤ p, so α(a) ≤ p or α(b) ≤ p because p ∈ P(L2). Consequently, a ≤ r(p) or
b ≤ r(p), and hence r(p) ∈ P(L1).
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(2)⇒(1). It is sufficient to show that α preserves binary meets and α(1) = 1. Let
a, b ∈ L1. Then α(a ∧ b) ≤ α(a) ∧ α(b) since α is order preserving. Suppose that
α(a) ∧ α(b) ̸≤ α(a ∧ b). By Lemma 4.11(1), there is p ∈ P(L2) with α(a) ∧ α(b) ̸≤ p
and α(a ∧ b) ≤ p. This implies that a ∧ b ≤ r(p). By (2), a ≤ r(p) or b ≤ r(p). Thus,
α(a) ≤ p or α(b) ≤ p, and hence α(a) ∧ α(b) ≤ p. The obtained contradiction shows that
α(a) ∧ α(b) ≤ α(a ∧ b), hence the equality. If α(1) ̸= 1, then there is p ∈ P(L2) with
α(1) ≤ p. By (2), 1 ≤ r(p) ∈ P(L1), a contradiction. Thus, α(1) = 1.

5.25. Theorem. The duality of Theorem 5.13(2) between PGPSST and AlgFrmFInfB re-
stricts to a duality between PGPSP and AlgFrm.

Proof. Let X be a pointed generalized Priestley space. By Lemma 4.22, εX is a PGPSP-
isomorphism. In addition, if L ∈ AlgFrm, then ηL is a poset isomorphism, so a frame
isomorphism. Thus, Lemma 5.24 yields that the duality of Theorem 5.13(2) between
PGPSST and AlgFrmFInfB restricts to a duality between PGPSP and AlgFrm.

Lemma 5.24(3) suggests the following definition. To simplify notation, we denote the
set of upper bounds of a subset S of a poset by Su.

5.26. Definition. We denote by DMSP the wide subcategory of DMS whose morphisms
α : M1 → M2 satisfy the following condition:

If S ⊆ M1 is finite and x ∈ α[S]u, then ∃c ∈ Su : α(c) ≤ x. (P)

5.27. Remark. The subscript P in the above definition is motivated by Lemma 5.33(2)
where we show that α is a DMSP-morphism iff α pulls prime filters back to prime filters.

5.28. Lemma. DMSP is a wide subcategory of DMSFSupB.

Proof. Let α : M1 → M2 be a DMSP-morphism. Let ∅ ̸= S be a finite subset of M1

such that
∨

S exists in M1. Since α is order preserving,
∨
α[S] ≤ α(

∨
S). Let x ∈ α[S]u.

Since α is a DMSP-morphism, there is c ∈ Su such that α(c) ≤ x. Therefore,
∨
S ≤ c,

so α(
∨

S) ≤ α(c), and hence α(
∨
S) ≤ x. Thus, α(

∨
S) =

∨
α[S], and so α is a

DMSFSup-morphism. To see that it is a DMSFSupB-morphism, suppose that M1,M2 are
bounded. Setting S = ∅, (P) implies that for x = 0 there is c ∈ M2 with α(c) ≤ 0. This
forces α(c) = 0, and therefore, α(0) = 0. Consequently, DMSP is a wide subcategory of
DMSFSupB.

Putting Theorems 5.4(1), 5.25 and Lemmas 5.24, 5.28 together yields:

5.29. Theorem. AlgFrm is equivalent to DMSP and dually equivalent to PGPSP.

5.30. Definition.

(1) Let KAlgFrm be the full subcategory of AlgFrm consisting of compact algebraic frames.

(2) Let BDMSP be the full subcategory of DMSP consisting of bounded distributive meet-
semilattices.

As an immediate consequence of Theorem 5.29 we obtain:
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5.31. Theorem. KAlgFrm is equivalent to BDMSP and dually equivalent to GPSP.

Putting Theorems 5.29 and 5.31 together yields the bottom layer of Figure 1. We point
out that BDMSP is a proper subcategory of BDMSFSupB (see Example 5.32). This contrasts
with the bounded distributive lattice case, where the full subcategories of BDMSFSupB and
BDMSP consisting of lattices are equal (see Remark 6.18).

5.32. Example. Let M be the distributive meet-semilattice shown below.

0

a b

1

...

Set F = M \ {a, b, 0} and define α : M → M by

α(x) =

{
1 if x ∈ F,

x if x ∈ {a, b, 0}.

Then α is a DMSFSupB-morphism. We show that α is not a DMSP-morphism. For, let
x ∈ F with x < 1. If S = {a, b}, then x ∈ α[S]u, but since Su = F , there is no c ∈ Su with
α(c) ≤ x. Therefore, Condition (P) does not hold, and hence α is not a DMSP-morphism.
This shows that BDMSP is a proper wide subcategory of BDMSFSupB. Corollary 5.19 and
Theorem 5.31 then show that KAlgFrm is a proper wide subcategory of KAlgFrmFInfB and
GPSP is a proper wide subcategory of GPSS.

We conclude this section by pointing out that Theorem 5.31 yields the duality result
of Hansoul and Poussart [HP08]. To see this, we recall that a nonempty downset I of a
meet-semilattice M is an ideal if a, b ∈ I implies ↑a ∩ ↑b ∩ I ̸= ∅. It is easy to see that I
is an ideal iff for each finite subset S of I, we have

⋂
s∈S ↑s ∩ I ̸= ∅. As usual, an ideal I

is proper if I ̸= M and a proper ideal I is prime if a ∧ b ∈ I implies a ∈ I or b ∈ I.

5.33. Lemma. Let M1,M2 ∈ DMS and α : M1 → M2 be a DMS-morphism. The following
are equivalent.

(1) α is a DMSP-morphism.

(2) If P is a prime filter of M2, then α−1(P ) is a prime filter of M1.

(3) If I is an ideal of M2, then α−1(I) is an ideal of M1.
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Proof. (1)⇒(2). Let P be a prime filter of M2. Then α−1(P ) is a filter of M1. By (1)
and Lemma 5.28, α is a DMSFSupB-morphism. Because P is proper, there is x ∈ M2 \ P .
Set S = α−1(↓x). Then x ∈ α[S]u. By (P), there is c ∈ Su with α(c) ≤ x. Consequently,
α(c) /∈ P , so c /∈ α−1(P ), and hence α−1(P ) is a proper filter. To see it is prime, suppose
that F,G are filters of M1 with F ∩ G ⊆ α−1(P ). Then ↑α[F ], ↑α[G] are filters of M2.
We show that ↑α[F ] ∩ ↑α[G] ⊆ P . Let x ∈ ↑α[F ] ∩ ↑α[G]. Then α(a), α(b) ≤ x for
some a ∈ F and b ∈ G. By (1), there is c ∈ M1 with a, b ≤ c and α(c) ≤ x. Therefore,
c ∈ F ∩G, so α(c) ∈ P . This yields x ∈ P , as desired. Thus, since P is prime, ↑α[F ] ⊆ P
or ↑α[G] ⊆ P , so F ⊆ α−1(P ) or G ⊆ α−1(P ). Consequently, α−1(P ) is a prime filter of
M1.

(2)⇒(3). We first show that the pullback of a prime ideal is a prime ideal. If I is
a prime ideal of M2, then M2 \ I is a prime filter (see, e.g., [BJ11, Prop. 2.3]). By (2),
α−1(M2 \ I) is a prime filter of M1. Since α−1(M2 \ I) = M1 \ α−1(I), we conclude
that α−1(I) is a prime ideal of M1. Finally, by the prime filter theorem for distributive
meet-semilattices (see, e.g., [Grä11, p. 168] for the dual statement for distributive join-
semilattices), each ideal is an intersection of prime ideals, and hence the pullback of an
ideal is an ideal.

(3)⇒(1). Suppose that S is a finite subset of M1 and x ∈ M2 with α(s) ≤ x for each
s ∈ S. Since ↓x is an ideal of M2, (3) implies that α−1(↓x) is an ideal of M1. Therefore,
because S ⊆ α−1(↓x), there is c ∈ α−1(↓x) with s ≤ c for each s ∈ S. Thus, α is a
DMSP-morphism.

5.34. Remark. Let α : M1 → M2 be a DMSFSupB-morphism. An argument similar to
[BJ08, Lem. 9.7] shows that α is a DMSFSupB-morphism iff the α-preimage of an optimal
filter is an optimal filter. On the other hand, Lemma 5.33 shows that α is a DMSP-
morphism iff the α-preimage of a prime filter is a prime filter. This shows how morphisms
in DMSFSupB and DMSP compare to each other in the language of prime and optimal
filters.

5.35. Remark. Since distributive meet- and join-semilattices are order-duals of each
other, it follows from Lemma 5.33 that BDMSP is isomorphic to the category of distributive
join-semilattices considered in [HP08]. Thus, [HP08, Thm. 1.12] is a consequence of
Theorem 5.31 and [BJ08, Prop. 13.6].

6. Priestley duality from the perspective of HMS duality

In this section we show how Priestley duality fits in the general picture we developed
in this paper. We recall [Joh82, Sec. II.3] that an algebraic frame L is coherent if finite
meets of compact elements are compact. Therefore, L is coherent iff K(L) is a bounded
sublattice of L. In particular, each coherent frame is compact.

6.1. Definition. Let CohFrm be the full subcategory of KAlgFrm consisting of coherent
frames.
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The restriction of the functor K to CohFrm lands in DL. Conversely, if a distributive
meet-semilattice is a bounded lattice, then F (M) is a coherent frame because K F (M)
consists of principal upsets and ↑a∨ ↑b = ↑a∩ ↑b = ↑(a∨ b). Thus, K and F restrict to
yield an equivalence of CohFrm and DL, and we arrive at the following well-known result,
which is the pointfree version of Stone duality for distributive lattices:

6.2. Theorem. [Joh82, p. 65] CohFrm is equivalent to DL.

6.3. Remark. Johnstone [Joh82], like Nachbin [Nac49], worked with the ideal functor
rather than the filter functor. Also, Johnstone worked with the category CohLoc of co-
herent locales, the objects of which are the same as those of CohFrm, but the morphisms
of CohLoc are the right adjoints of morphisms in CohFrm.

6.4. Lemma.

(1) Let L ∈ AlgFrm. If L ∈ CohFrm, then PP(L) = P(L).

(2) Let X ∈ GPS. If X = X0, then V a(X) is the set of closed upsets of X, and hence
V a(X) ∈ CohFrm.

Proof. (1). Since P(L) ⊆ PP(L), we only need to prove the other inclusion. Let p ∈
PP(L) and a, b ∈ L with a ∧ b ≤ p. If a, b ̸≤ p, then there are k, l ∈ K(L) with k ≤ a,
l ≤ b, and k, l ̸≤ p. We have k ∧ l ≤ a ∧ b ≤ p. Since L is coherent, k ∧ l ∈ K(L), so
k ∧ l ≤ p implies k ∧ l ≪ p. Because p ∈ PP(L), either k ≤ p or l ≤ p. The obtained
contradiction proves that p ∈ P(L).

(2). Let X0 = X. Then all clopen upsets and closed upsets are admissible. Therefore,
A (X) is all clopen upsets and V a(X) is all closed upsets, and hence A (X) is a bounded
sublattice of V a(X). Since K V a(X) = A (X) by Lemma 4.4, we conclude that V a(X)
is a coherent frame.

Let ⟨X, τ,≤⟩ be a Priestley space. Then ⟨X, τ,≤, X⟩ is a generalized Priestley space.
Moreover, a map between Priestley spaces is a Priestley morphism iff it is a GPSP-
morphism between the corresponding generalized Priestley spaces. Thus, we may view
PS as a full subcategory of GPSP.

6.5. Theorem. CohFrm is dually equivalent to PS.

Proof. We have that CohFrm is a full subcategory of KAlgFrm and we may view PS
as a full subcategory of GPSP. Therefore, by Lemma 6.4 the dual equivalence between
KAlgFrm and GPSP of Theorem 5.31 restricts to a dual equivalence between CohFrm and
PS.

Putting Theorems 6.2 and 6.5 together yields Priestley duality:

6.6. Theorem. CohFrm is equivalent to DL and dually equivalent to PS.
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6.7. Remark. The functors establishing the duality of DL and PS are the compositions
of the functors establishing the equivalence of DL and CohFrm and the duality of CohFrm
and PS. Indeed, if M ∈ DL, then the Priestley space XM of M is equal to P(F (M)). If
α is a DL-morphism, it follows from the proof of Theorem 4.30 that X (α) = Y F (α).
Therefore, X = Y ◦ F . In the opposite direction, if X ∈ PS, then ClopUp(X) = A (X),
which is K(V a(X)) by Lemma 4.4. Moreover, if f is a PS-morphism, then V a(f) = f−1

by Remark 5.15 and K V a(f) is the restriction of f−1 to A (X) which is A (f). Thus,
A = K ◦ V a.

We next show how to view the duality for distributive lattices with top but possibly
without bottom from this perspective. This can be done by working with pointed Priestley
spaces.

Various morphisms between pointed Priestley spaces.

6.8. Definition. Let X = ⟨X, τ,≤, X0,m⟩ ∈ PGPS. If X0 = X \ {m}, then we call X
a pointed Priestley space. Let PPS be the full subcategory of PGPS consisting of pointed
Priestley spaces, and define PPSS, PPSST, and PPSP similarly.

We also introduce arithmetic frames in analogy with arithmetic lattices [GHK+03,
p. 117]. Arithmetic frames are also known as M-frames (see, e.g., [IM09, p. 2]).

6.9. Definition. We call an algebraic frame L arithmetic if

a, b ∈ K(L) =⇒ a ∧ b ∈ K(L).

Note that coherent frames are simply compact arithmetic frames.

6.10. Definition. Let ArFrm be the full subcategory of AlgFrm consisting of arithmetic
frames, and define ArFrmSup, ArFrmFInf , and ArFrmFInfB similarly.

6.11. Theorem. ArFrmSup is dual to PPS, ArFrmFInf is dual to PPSS, ArFrmFInfB is dual
to PPSST, and ArFrm is dual to PPSP.

Proof. Let L be an arithmetic frame. Observe that the proof of Lemma 6.4(1) only uses
that L is arithmetic, so it yields that Y (L) is a pointed Priestley space. Next, let X be
a pointed Priestley space. Then A (X) is all nonempty clopen upsets and V a(X) is all
nonempty closed upsets of X. Therefore, the same argument as in Lemma 6.4(2) yields
that V a(X) is an arithmetic frame. It is left to apply Theorems 4.29, 5.13, and 5.25.

6.12. Definition. Let DL−M, DL−, DL−B , and DL−P be the full subcategories of DMS,
DMSFSup, DMSFSupB, and DMSP, respectively, whose objects are lattices.

6.13. Remark. Objects in each of DL−M, DL−, DL−B , and DL−P are distributive lattices
with top, but possibly without bottom. Morphisms of DL−M are meet-semilattice homo-
morphisms, morphisms of DL− are lattice homomorphisms, morphisms of DL−B are lattice
homomorphisms which preserve bottom when it exists, and morphisms of DL−P are lattice
homomorphisms which pull prime filters back to prime filters.
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We point out that not every DL−B -morphism is a DL−P -morphism. For example, let M
be a decreasing chain with top but no bottom, and let α : M → M be defined by α(a) = 1
for each a ∈ M . Then α is a DL−B -morphism but not a DL−P -morphism.

For an algebraic frame L, we have that L is arithmetic iff K (L) is a distributive
lattice (possibly without bottom), which happens iff Y (L) is a pointed Priestley space.
Therefore, putting Theorems 5.4, 5.29, and 6.11 together yields:

6.14. Theorem.

(1) ArFrmSup is equivalent to DL−M and dually equivalent to PPS.

(2) ArFrmFInf is equivalent to DL− and dually equivalent to PPSS.

(3) ArFrmFInfB is equivalent to DL−B and dually equivalent to PPSST.

(4) ArFrm is equivalent to DL−P and dually equivalent to PPSP.

Various morphisms between Priestley spaces.

6.15. Definition.

(1) Let PSR be the category of Priestley spaces with generalized Priestley morphisms.

(2) Let PSPS be the category of Priestley spaces with partial strong Priestley morphisms.

6.16. Remark.

(1) By restricting the equivalence of Proposition 5.17, we obtain that PSR is equivalent
to the full subcategory of PPS and PSPS to the full subcategory of PPSS consisting
of Priestley spaces with isolated maxima.

(2) The full subcategory of PPSST consisting of pointed Priestley spaces with isolated
maxima is equivalent to PS. To see this, if f : X → Y is a PPSST-morphism, then
f−1(n) = {m}. Therefore, its restriction f− : X− → Y − is a PS-morphism. Such
morphisms automatically satisfy f [X0] ⊆ Y0 since X0 = X \ {m} and Y0 = Y \ {n},
so are PPSP-morphisms. Consequently, PS is also equivalent to the full subcategory
of PPSP consisting of pointed Priestley spaces with isolated maxima.

6.17. Definition.

(1) Let CohFrmSup and CohFrmFInf be the full subcategories of ArFrmSup and ArFrmFInf ,
respectively, consisting of coherent frames.

(2) Let DLM and DLL be the full subcategories of BDMS and BDMSFSup, respectively,
whose objects are lattices.
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6.18. Remark. Objects of DLM and DLL are bounded distributive lattices. Morphisms
of DLM are meet-semilattice homomorphisms and morphisms of DLL are lattice homo-
morphisms (not necessarily preserving bottom). Observe that the full subcategories of
BDMSFSupB and BDMSP consisting of lattices are both equal to DL. To see this, it is clear
that morphisms of BDMSFSupB preserve finite joins and 0, so are DL-morphisms. Since
BDMSP is a wide subcategory of BDMSFSupB, we also obtain that BDMSP-morphisms are
DL-morphisms. Similarly, the full subcategory of ArFrmFInfB consisting of coherent frames
is equal to CohFrm.

An arithmetic frame L is coherent iff K (L) is a bounded distributive lattice, which
happens iff Y (L) is a pointed Priestley space with isolated top. Therefore, Theorem 6.14
and Remark 6.16 yield:

6.19. Theorem.

(1) CohFrmSup is equivalent to DLM and dually equivalent to PSR.

(2) CohFrmFInf is equivalent to DLL and dually equivalent to PSPS.

6.20. Remark. The dual equivalence between DLM and PSR was first established in
[CLP91], but the authors worked with join-preserving rather than meet-preserving maps
between bounded distributive lattices.

Putting Theorems 6.6, 6.14, and 6.19 together yields Figure 2. The tables after the
figure describe the listed categories.

PPS ArFrmSup DL−M

PSR CohFrmSup DLM

PPSS ArFrmFInf DL−

PSPS CohFrmFInf DLL

PPSST ArFrmFInfB DL−B

PS CohFrm DL

PPSP ArFrm DL−P

PS CohFrm DL

V a

Y

K

F

Figure 2: Connecting Priestley duality and HMS duality
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Categories of pointed Priestley spaces
Category Morphisms Location
PPS PGPS-morphisms Def. 6.8
PPSS PGPSS-morphisms "
PPSST PGPSST-morphisms "
PPSP PGPSP-morphisms "

Categories of Priestley spaces
Category Morphisms Location
PSR GPS-morphisms Def. 6.15
PSPS GPSS-morphisms "
PS PS-morphisms Def. 3.1(2)

Categories of arithmetic frames
Category Morphisms Location
ArFrmSup AlgFrmSup-morphisms Def. 6.10
ArFrmFInf AlgFrmFInf-morphisms "
ArFrmFInfB AlgFrmFInfB-morphisms "
ArFrm AlgFrm-morphisms "

Categories of coherent frames
Category Morphisms Location
CohFrmSup AlgFrmSup-morphisms Def. 6.17(1)
CohFrmFInf AlgFrmFInf-morphisms "
CohFrm AlgFrm-morphisms Def. 6.1

Categories of distributive lattices
Category Morphisms Location
DL−M DMS-morphisms Def. 6.12
DL− DMSFSup-morphisms "
DL−B DMSFSupB-morphisms "
DL−P DMSP-morphisms "

Categories of bounded distributive lattices
Category Morphisms Location
DLM DMS-morphisms Def. 6.17(2)
DLL DMSFSup-morphisms "
DL DL-morphisms Def. 3.1(1)

7. Stone duality for generalized boolean algebras via HMS duality

We conclude the paper by discussing how to view Stone duality for boolean algebras and
generalized boolean algebras from this perspective.
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7.1. Definition.

(1) Let BA be the category of boolean algebras and boolean homomorphisms.

(2) Let Stone be the category of Stone spaces and continuous maps.

We may view BA as a full subcategory of DL and Stone as a full subcategory of PS.
For a frame L, we recall that the pseudocomplement of a ∈ L is

a∗ =
∨

{x ∈ L | a ∧ x = 0}

and that a is complemented if a∨a∗ = 1. Then L is zero-dimensional if the complemented
elements are join-dense in L.

7.2. Definition. [Ban89] A Stone frame is a compact zero-dimensional frame. Let
StoneFrm be the category of Stone frames and frame homomorphisms.

Since in Stone frames compact elements are exactly complemented elements, every
Stone frame is coherent, and every frame homomorphism between Stone frames preserves
compact elements. Thus, StoneFrm is a full subcategory of CohFrm, and we obtain Stone
duality for boolean algebras as a consequence of Theorem 6.6:

7.3. Theorem. [Sto36, Ban89] BA is equivalent to StoneFrm and dually equivalent to
Stone.

Proof. It is well known that B ∈ BA implies F (B) ∈ StoneFrm and L ∈ StoneFrm
implies K (L) ∈ BA. Thus, the equivalence between DL and CohFrm (see Theorem 6.2)
restricts to an equivalence between BA and StoneFrm.

We next show that the dual equivalence between CohFrm and PS (see Theorem 6.5)
restricts to a dual equivalence between StoneFrm and Stone. For this it is enough to observe
that from L ∈ StoneFrm it follows that the order on P(L) is equality, and that X a Stone
space implies V a(X) is a Stone frame. For the latter, since K V a(X) = A (X) = Clop(X),
we see that V a(X) is zero-dimensional, hence a Stone frame. For the former, let L be a
Stone frame and p, q ∈ P(L) with p < q. Then q ̸≤ p, so there is k ∈ K(L) with k ≤ q and
k ̸≤ p. The latter together with k∧k∗ ≤ p implies that k∗ ≤ p ≤ q. Therefore, k∨k∗ ≤ q.
Since L is a Stone frame, k is complemented, so k ∨ k∗ = 1. Thus, q = 1, a contradiction.
Consequently, the order on P(L) is equality.

Various morphisms between generalized boolean algebras. We recall
that a generalized boolean algebra is a distributive lattice M with bottom such that [0, a]
is a boolean algebra for each a ∈ M . Since we work with distributive lattices with top,
we consider the order-dual of M . Therefore, by a generalized boolean algebra M we mean
a distributive lattice M with top such that [a, 1] is a boolean algebra for each a ∈ M .

7.4. Definition. Let GBAM, GBA, GBAB, and GBAP be the full subcategories of DL−M,
DL−, DL−B , and DL−P , respectively, whose objects are generalized boolean algebras.
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7.5. Remark. Objects in each of GBAM, GBA, GBAB, and GBAP are generalized boolean
algebras. Morphisms of GBAM are meet-semilattice homomorphisms and morphisms of
GBA are lattice homomorphisms (not necessarily preserving bottom). Morphisms of GBAB

are lattice homomorphisms that preserve bottom when it exists and morphisms of GBAP

are lattice homomorphisms which pull prime filters back to prime filters.

We next generalize Stone frames as follows (see, e.g., [BK23]).

7.6. Definition. A locally Stone frame is an algebraic zero-dimensional frame.

7.7. Remark. It is easy to see that a frame L is a locally Stone frame iff compact
complemented elements are join-dense in L.

Clearly Stone frames are compact locally Stone frames. It is also straightforward to
see that each locally Stone frame is an arithmetic frame.

7.8. Definition. Let LStoneFrmSup, LStoneFrmFInf , LStoneFrmFInfB, and LStoneFrm be
the full subcategories of ArFrmSup, ArFrmFInf , ArFrmFInfB, and ArFrm, respectively, whose
objects are locally Stone frames.

We next define pointed Stone spaces as special pointed Priestley spaces.

7.9. Definition. A pointed Stone space is a pointed Priestley space (X,m) such that ≤
restricts to the identity on X−.

7.10. Remark. A standard definition of a pointed Stone space is that it is a Stone space
X with a designated point m ∈ X (see Remark 3.9). The definition above is different
in that we make m the maximum of X. This definition fits nicer in the more general
picture of pointed Priestley spaces developed in this paper. It also makes sense from the
perspective of Stone duality for generalized boolean algebras. Indeed, if we order the dual
space XM of a generalized boolean algebra M by inclusion, then M is the maximum of
XM .

7.11. Definition. Let PStone be the full subcategory of PPS whose objects are pointed
Stone spaces, and define PStoneS, PStoneST, and PStoneP similarly.

7.12. Remark. Objects of PStone, PStoneS, PStoneST, and PStoneP are pointed Stone
spaces. Morphisms of PStone are PPS-morphisms and hence are relations. Morphisms
of PStoneS are strong Priestley morphisms. If (X,m) is a pointed Stone space, then
U ∈ A (X) iff U is a clopen subset of X containing m. Consequently, a PStoneS-morphism
f : (X,m) → (Y, n) is a continuous function with f(m) = n. A PStoneS-morphism f is
a PStoneST-morphism provided f−1(n) = {m} when m,n are isolated. In this case f
restricts to a continuous function from X− to Y −. Thus, Stone is equivalent to the full
subcategory of PStoneST consisting of pointed Stone spaces with isolated top, as well as
to the corresponding full subcategory of PStoneP.

An arithmetic frame L is locally Stone iff K (L) is a generalized Boolean algebra,
which happens iff Y (L) is a pointed Stone space with an isolated maximum. Therefore,
Theorem 6.14 and Remark 7.12 yield:
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7.13. Theorem.

(1) LStoneFrmSup is equivalent to GBAM and dually equivalent to PStone.

(2) LStoneFrmFInf is equivalent to GBA and dually equivalent to PStoneS.

(3) LStoneFrmFInfB is equivalent to GBAB and dually equivalent to PStoneST.

(4) LStoneFrm is equivalent to GBAP and dually equivalent to PStoneP.

Various morphisms between boolean algebras.

7.14. Definition.

(1) Let BAM and BAL be the full subcategories of DLM and DLL, respectively, whose
objects are boolean algebras.

(2) Let StoneFrmSup and StoneFrmFInf be the full subcategories of ArFrmSup and ArFrmFInf ,
respectively, whose objects are Stone frames.

(3) Let StoneR and StonePS be the full subcategories of PSR and PSPS, respectively, whose
objects are Stone spaces.

7.15. Remark.

(1) Objects in both BAM and BAL are boolean algebras. Morphisms of BAM are meet-
semilattice homomorphisms and those of BAL are lattice homomorphisms (which
may not preserve bottom).

(2) By restricting the equivalence of Remark 6.16(1), we obtain that StoneR is equivalent
to the full subcategory of PStone and StonePS to the full subcategory of PStoneS
consisting of pointed Stone spaces with isolated maxima.

(3) By Remark 6.16(2), the full subcategories of PStoneST and PStoneP consisting of
pointed Stone spaces with isolated maxima are equivalent to Stone.

Let L ∈ LStoneFrmSup. Then L is a Stone frame iff K (L) is a boolean algebra, which
happens iff Y (L) is a Stone space. Therefore, Theorem 7.13 yields:

7.16. Theorem.

(1) StoneFrmSup is equivalent to BAM and dually equivalent to StoneR.

(2) StoneFrmFInf is equivalent to BAL and dually equivalent to StonePS.
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7.17. Remark. The dual equivalence between BAM and StoneR was first established in
[Hal56], but Halmos worked with join-preserving rather than meet-preserving maps be-
tween boolean algebras.

Putting together Theorems 7.13 and 7.16 yields Figure 3, which is similar to Figure 2.
The tables after the figure describe the listed categories.

PStone LStoneFrmSup GBAM

StoneR StoneFrmSup BAM

PStoneS LStoneFrmFInf GBA

StonePS StoneFrmFInf BAL

PStoneST LStoneFrmFInfB GBAB

Stone StoneFrm BA

PStoneP LStoneFrm GBAP

Stone StoneFrm BA

V a

Y

K

F

Figure 3: Connecting Stone duality and HMS duality

Categories of pointed Stone spaces
Category Morphisms Location
PStone PGPS-morphisms Def. 7.11
PStoneS PGPSS-morphisms "
PStoneST PGPSST-morphisms "
PStoneP PGPSP-morphisms "

Categories of Stone spaces
Category Morphisms Location
StoneR PGPS-morphisms Def. 7.14(3)
StoneS PGPSST-morphisms "
Stone PGPSP-morphisms Def. 7.1(2)
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Categories of locally Stone frames
Category Morphisms Location
LStoneFrmSup AlgFrmSup-morphisms Def. 7.8
LStoneFrmFInf AlgFrmFInf-morphisms "
LStoneFrmFInfB AlgFrmFInfB-morphisms "
LStoneFrm AlgFrm-morphisms "

Categories of Stone frames
Category Morphisms Location
StoneFrmSup AlgFrmSup-morphisms Def. 7.14(2)
StoneFrmFInf AlgFrmFInf-morphisms "
StoneFrm frame homomorphisms Def. 7.2

Categories of boolean algebras
Category Morphisms Location
GBAM DMS-morphisms Def. 7.4
GBA DMSFSup-morphisms "
GBAB DMSFSupB-morphisms "
GBAP DMSP-morphisms "

Categories of generalized boolean algebras
Category Morphisms Location
BAM DMS-morphisms Def. 7.14(1)
BAL DMSFSupB-morphisms "
BA boolean homomorphisms Def. 7.1(1)
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