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FROM ABELIAN CATEGORIES TO 2-ABELIAN BICATEGORIES

ENRICO M. VITALE

Abstract. We show that, if A is an abelian category, then a certain bicategory of
fractions Arr(A)[Σ−1] of the 2-category Arr(A) of arrows in A is 2-abelian. On the
way, we study homotopy kernels and homotopy cokernels, their relationship with 2-limits
and bilimits, and how they pass through the general construction of the bicategory of
fractions. We also introduce two new factorization systems in Arr(A) and we use them
to describe the class Σ of “weak equivalences”.
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1. Introduction

Based on an extensive literature on symmetric categorical groups (see, for example, [14,
46, 47, 49, 33, 9, 8, 25, 45, 3, 12, 13, 20]), three solutions to the equation

abelian categories

abelian groups
=

???

symmetric categorical groups

have been proposed by Mathieu Dupont in his Ph.D. Thesis [15] and by Hiroyuki Nakaoka
in [38]. We will recall in Section 7 the definition of 2-abelian bicategory from [15]. (A
comparison among the three proposed solutions has been established in [39].) The main
example of 2-abelian bicategory clearly is the 2-category SCG of symmetric categorical
groups. The other examples discussed in [15, 38] (see also [29]) are all related to SCG.

In search of new examples of 2-abelian bicategories, the question has been posed
in [15] to construct a 2-abelian bicategory from any abelian category A in such a way
that the sub-bicategories of discrete or connected objects are equivalent to A. A partial
answer to this question has been proposed by Teimuraz Pirashvili in [42]: if the abelian
category A has enough projective objects, then the 2-category Arr(A) of arrows in A is 2-
abelian. A more general solution has been proposed by Mathieu Dupont in an unpublished
manuscript [16]: for any abelian category A, the bicategory whose objects are arrows in
A and whose arrows are butterflies (in the sense of Berang Noohi, see [40]) is 2-abelian.

Recall now that, for any semi-abelian category A, the bicategory of butterflies between
crossed modules in A provides the bicategory of fractions of crossed modules with respect
to weak equivalences (see [41, 2, 16, 44, 1] for this result and for some related results
in terms of anafunctors). Moreover, when A is abelian, crossed modules in A reduces
to arrows. Therefore, it turns out that the bicategory of arrows and butterflies in A
used in [16] is the bicategory of fractions of arrows with respect to weak equivalences.
This suggests the idea to revisit one of the main results of [16] in terms of bicategories of
fractions, which is the aim of the present paper. In addition, since in generalArr(A) is not
a 2-category but is always equipped with a structure of nullhomotopies, we work as far as
possible with kernels and cokernels relative to nullhomotpies. This is relevant especially for
the construction of three-step factorizations obtained in Subsection 4.2. Under adequate
assumptions (see Section 5, which is devoted to bilimits in Arr(A)), kernels and cokernels
in Arr(A) relative to nullhomotopies become bikernels and bicokernels, which are needed
to express the notion of 2-abelian bicategory.

To achieve our goal, we use seven different kinds of limits: Θ-kernels, strong Θ-kernels
and Θ-strong limits (where Θ denotes a structure of nullhomotopies), 2-limits, homotopy
limits and strong homotopy limits, and finally bilimits. This is why, in order to make
the paper as self-contained as possible, we start with a long review section where the
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various limits involved are recalled and compared. (In fact, I adopted this self-contained
philosophy throughout all the paper, and especially in Sections 3.1, 5.2 and 6.2. I hope
that the reader will forgive me for the length of the paper and appreciate to have at
hand all the needed material.) In the third section, after recalling some general facts
on bicategories of fractions, we complete the study of bilimits in bicategories of fractions
initiated in [27]. In the fourth section, we observe that, if A is a category with pullbacks
and pushouts, then the category Arr(A) is equipped with two factorization systems,
say (E1,M1) and (E2,M2), related to Θ-kernels and Θ-cokernels. The interest of these
factorization systems is that, if A has also a zero object, merging (E1,M1) and (E2,M2)
we can produce two different three-step factorizations of an arrow of Arr(A). Moreover,
in Section 6 we prove that, if A is abelian, then the middle step of both three-step
factorizations of an arrow lies in E1∩M2. Since the definition of 2-abelian bicategory is in
Puppe-exact style, this fact is a prelude to prove, in the final section, that the bicategory
of fractions Arr(A)[Σ−1], where Σ = E1 ∩M2, is 2-abelian if A is abelian.

N.B.: The composition of two arrows A
f // B

g // C will be written as f · g.

2. From homotopy kernels to bilimits

2.1. Categories with nullhomotopies, Θ-kernels and Θ-strong limits. We
recall from [22, 52, 26] the notion of category with a structure of nullhomotopies. Examples
and applications of categories with nullhomotopies are discussed in [37, 53]. Our object
of study, the category with nullhomotopies (Arr(A),Θ∆), is introduced in Example 2.1.6.
Other examples of interest for the present work will be introduced in Subsections 2.2 and
2.3.

2.1.1. Definition. A structure of nullhomotopies Θ on a category B is given by:

1) For every arrow g in B, a set Θ(g) whose elements are called nullhomotopies on g.

2) For every triple of composable arrows A
f // B

g // C h // D , a map

f ◦ − ◦ h: Θ(g)→ Θ(f · g · h)

in such a way that, for every φ ∈ Θ(g), one has

(a) (f ′ · f) ◦ φ ◦ (h · h′) = f ′ ◦ (f ◦ φ ◦ h) ◦ h′ whenever the compositions f ′ · f and
h · h′ are defined,

(b) idB ◦ φ ◦ idC = φ.

When f = idB or h = idC , we write φ ◦ h and f ◦ φ instead of idB ◦ φ ◦ h and f ◦ φ ◦ idC .

2.1.2. Condition. (From [23]) Let (B,Θ) be a category with nullhomotopies. The struc-
ture Θ satisfies the reduced interchange if, for any pair of composable arrows f :A → B
and g:B → C and for nullhomotopies α ∈ Θ(f) and β ∈ Θ(g), one has α ◦ g = f ◦ β.
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2.1.3. . The name of reduced interchange can be justified by the following analysis (see
also Remark 2.2.6). In any 2-category B, the usual interchange condition for 2-cells

A

f

""
h ⇑ α

⇑ γ
//

l

==B

g

""
kβ ⇑

δ ⇑
//

m

==C (γ ◦ δ) · (α ◦ β) = (γ · α) ◦ (δ · β)

implies the following conditions, where only reduced horizontal composition (that is, hor-
izontal composition between a 2-cell and an identity 2-cell) is involved:

1. reduced interchange : (α ◦ k) · (f ◦ β) = (h ◦ β) · (α ◦ g)

2. distributivities : (h ◦ δ) · (h ◦ β) = h ◦ (δ · β) , (γ ◦m) · (α ◦m) = (γ · α) ◦m
Conversely, if only reduced horizontal composition is allowed, one can define

α ◦ β = (α ◦ k) · (f ◦ β)
and the interchange condition follows from reduced interchange and distributivities. As-
sume now that B has zero object 0 and write 0AB = 0A · 0B:A → 0 → B for the zero
arrow. Assume also that the zero arrows absorbe nullhomotopies, in the sense that, for

all arrows A
f // B

g // C and for all 2-cells α: 0AB ⇒ f and β: 0BC ⇒ g one has

0AB ◦ β = 0AC and α ◦ 0BC = 0AC .

Then reduced interchange precisely gives Condition 2.1.2 by taking k = 0BC and h = 0AB.
Finally, observe that, in a 2-category with zero object, the conditions 0AB ◦ β = 0AC and
α ◦ 0BC = 0AC are themselves particular instances of Condition 2.1.2. Indeed, assuming
Condition 2.1.2 and using that the horizontal composition of two identities 2-cells gives
the identity 2-cell on the composite arrow, we have 0AB ◦ β = 0AB ◦ g = 0AB · g = 0AC and
α ◦ 0BC = f ◦ 0BC = f · 0BC = 0AC .

In any category with nullhomotopies (B,Θ), we can express the notions of (strong)
Θ-kernel and (strong) Θ-cokernel. We recall them following [37, 53].

2.1.4. Definition. Let g:B → C be an arrow in a category with nullhomotopies (B,Θ).

1. A homotopy cokernel of g with respect to Θ (or Θ-cokernel) is a universal triple

C(g) ∈ B, cg:C → C(g), γg ∈ Θ(g · cg)
This means that, for any other triple (D ∈ B, h:C → D,φ ∈ Θ(g · h)), there exists
a unique arrow h′: C(g)→ D such that cg · h′ = h and γg ◦ h′ = φ

2. A Θ-cokernel (C(g), cg, γg) is strong if, for any triple (D, h: C(g)→ D,φ ∈ Θ(cg ·h))
such that g ◦ φ = γg ◦ h, there exists a unique nullhomotopy φ′ ∈ Θ(h) such that
cg ◦ φ′ = φ.

3. The notion of (strong) Θ-kernel is dual of the notion of (strong) Θ-cokernel. The
notation is

N (g) ∈ B, ng:N (g)→ B, νg ∈ Θ(ng · g)
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2.1.5. . In order to make easier the comparison with other kinds of limits discussed in
this section, we recall from [37, 53] the cancellation properties satisfied by a Θ-cokernel.
Those for a Θ-kernel are dual.

1. Given arrows f :A → B and g, h: C(f) → C, if cf · g = cf · h and γf ◦ g = γf ◦ h,
then g = h.

2. Given arrows f :A → B and g: C(f) → C and nullhomotopies φ, ψ ∈ Θ(g) such
that cf ◦ φ = cf ◦ ψ, if the Θ-cokernel C(f) is strong and if Θ satisfies the reduced
interchange, then φ = ψ.

2.1.6. Example. For a given category A, objects and arrows of the category of arrows
Arr(A) are written as (g, g0): (B, b, B0)→ (C, c, C0), where

B
g //

b
��

C

c
��

B0 g0
// C0

commutes. As set of nullhomotopies Θ∆(g, g0) we take the set of diagonals:

Θ∆(g, g0) = {φ:B0 → C | b · φ = g, φ · c = g0}

In the situation of the following diagram

A
f //

a
��

B
g //

b
��

C h //

c
��

D

d
��

A0 f0
// B0 g0

//

φ
==

C0 h0
// D0

the composition is given by the formula (f, f0) ◦φ ◦ (h, h0) = f0 · φ · h. It is easy to check
that the reduced interchange 2.1.2 is satisfied.
Let us recall from [37] that, if A has pullbacks and pushouts, then Arr(A) has strong Θ∆-
kernels and strong Θ∆-cokernels. For an arrow (f, f0), they are depicted in the following
diagram, where A0 ×f0,b B is the pullback of f0 and b, A0 +a,f B is the pushout of a and
f, and the dashed arrows are the structural nullhomotopies

A
id //

⟨a,f⟩
��

A

a
��

f // B a′ //

b

��

A0 +a,f B

[f0,b]

��
A0 ×f0,b B b′

//

f ′0

33

A0 f0
//

f ′

33

B0 id
// B0

Finally, recall that in a category with nullhomotopies (B,Θ), an object A is Θ-trivial if
Θ(idA) ̸= ∅, and two objects A and B are Θ-orthogonal if Θ(f) = {∗} for all arrows
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f :A→ B. In (Arr(A),Θ∆), an object (A, a,A0) is Θ∆-trivial iff it is orthogonal (on both
sides) to any other object, and this is the case iff the arrow a:A→ A0 is an isomorphism.

The general notion of Θ-strong (co)limit in a category with nullhomotopies (B,Θ) has
been introduced in [53]. We need three special cases. We treat the case of colimits, the
situation for limits is dual.

2.1.7. Definition. Let (B,Θ) be a category with nullhomotopies.

1. An initial object ∅ of B is Θ-strong if Θ(∅ → X) = {∗} for every object X ∈ B.

2. A zero object 0 of B is Θ-strong if Θ(0→ X) = {∗} = Θ(X → 0) for all X ∈ B.

3. Consider the following commutative diagram, where the square is a pushout:

A
g //

f
��

C

f ′

��

y

��

B
g′ //

x 11

B +f,g C
[x,y]

((
D

The pushout is Θ-strong if, given φ ∈ Θ(x) and ψ ∈ Θ(y) such that f ◦ φ = g ◦ ψ,
there exists a unique [φ, ψ] ∈ Θ([x, y]) such that g′ ◦ [φ, ψ) = φ and f ′ ◦ [φ, ψ] = ψ.

2.1.8. . Here is the obvious cancellation property of a Θ-strong pushout with respect to
nullhomotopies: (with the notation of Definition 2.1.7) given an arrow h:B +f,g C → D
and nullhomotopies α, β ∈ Θ(h), if g′ ◦ α = g′ ◦ β and f ′ ◦ α = f ′ ◦ β, then α = β.

2.1.9. . To avoid any confusion, observe that, for a category with nullhomotopies (B,Θ),
to have a Θ-strong zero object does not imply that there is a unique nullhomotopy on the
zero arrow 0XY :X → Y. An easy counterexample is provided by (Arr(A),Θ∆) under the
assumption that A has a zero object 0. In this case, (0, id, 0) is a Θ∆-strong zero object
in Arr(A) and the commutative diagram

0

��

// X

��
X

φ
>>

// 0

shows that, for any object X ∈ A, the nullhomotopies on the zero arrow from the object
(0, 0→ X,X) to the object (X,X → 0, 0) correspond to the endomorphisms on X.
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2.1.10. Remark. It is possible to restate Definition 2.1.1 of nullhomotopy structure using
a variant of the category Arr(A), called twisted arrow category in [19] and category of
factorizations in [4]. Objects and arrows (f, f0): (A, a,A0) → (B, b, B0) are depicted by
the following commutative diagram

A

a
��

B
foo

b
��

A0 f0
// B0

With the obvious composition and identities, they form a category that we denote by
Arr⇆(A). Clearly, a structure of nullhomotopies Θ on a category A is nothing but a
functor

Θ:Arr⇆(A)→ Set

the action of Θ on an arrow (f, f0) being given by the map

Θ(f, f0) = f ◦ − ◦ f0: Θ(a)→ Θ(f · a · f0) = Θ(b)

(size conditions are not relevant here). In other words, nullhomotopy structures are the
non-linear version of the natural systems of abelian groups introduced in [4], as pointed
out to me by the referee. In fact, the whole 2-category of categories with nullhomotopies
introduced in [53] can be expressed using the Arr⇆-construction. For this, observe that
any functor F :A → B induces a functor F⇆:Arr⇆(A) → Arr⇆(B). Now, a morphism
of categories with nullhomotopies (F , {Fa}): (A,ΘA)→ (B,ΘB) in the sense of Definition
2.4 in [53] amounts to a functor F :A → B together with a natural transformation

Arr⇆(A) F⇆
//

ΘA %%

F•⇒

Arr⇆(B)

ΘByy
Set

Explicitly, the naturality of F• means that Fb(f ◦ φ ◦ f0) = F(f) ◦ Fa(φ) ◦ F(f0) for all
φ ∈ ΘA(a). As far as 2-morphisms are concerned, observe that any natural transformation
α:F ⇒ G:A → B induces a functor

α⇆:Arr⇆(A)→ Arr⇆(B)

which sends an arrow (f, f0): (A, a,A0)→ (B, b, B0) on the arrow

(F(f),G(f0)): (FA,αA · G(a) = F(a) · αA0 ,GA0)→ (FB,αB · G(b) = F(b) · αB0 ,GB0)

Moreover, the natural transformation α:F ⇒ G induces also two natural transformations

F ⋆ α:F⇆ ·ΘB ⇒ α⇆ ·ΘB , (F ⋆ α)(a) = ΘB(idFA, αA0)
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α ⋆ G:G⇆ ·ΘB ⇒ α⇆ ·ΘB , (α ⋆ G)(a) = ΘB(αA, idGA0)

Finally, a 2-morphism of categories with nullhomotopies

α: (F , {Fa})⇒ (G, {Ga}): (A,ΘA)→ (B,ΘB)

in the sense of Definition 2.4 in [53] amounts to a natural transformation α:F ⇒ G such
that the following diagram commutes

ΘA
F• +3

G•
��

F⇆ ·ΘB

F⋆α
��

G⇆ ·ΘB α⋆G
+3 α⇆ ·ΘB

Explicitly, this commutativity condition means that Fa(φ) ◦ αA0 = αA ◦ Ga(φ) for all
φ ∈ ΘA(a).

2.2. 2-categories, 2-limits and H-limits. With the following three examples, we
establish the link between categories with nullhomotopies and 2-categories. For the defi-
nition of 2-category, see Chapter 7 in [6].

2.2.1. Example. Let B be a 2-category.

1. Assume that the underlying category of B has a zero object. The category B can
be seen as a category with nullhomotopies by putting

Θ0(g:B → C) = {2-cells φ: 0BC ⇒ g}

The map Θ0(g) → Θ0(f · g · h) is given by horizontal composition with identities
2-cells. This makes sense because f · 0BC · h = 0AD for any f :A→ B and h:C → D.

2. More in general, let Z be an ideal of arrows in the underlying category of B. This
means that, if f and g are composable arrows and one of them is in Z, then the
composite f · g also is in Z. We get a nullhomotopy structure on B by putting

ΘZ(g:B → C) = {2-celles φ: s⇒ g | s ∈ Z}

The map ΘZ(g)→ ΘZ(f · g · h) is as above.

3. We can take as ideal Z the class of all arrows in B. The corresponding structure of
nullhomotopies ΘB provides an example of a structure which does not satisfy the
reduced interchange (Condition 2.1.2). Indeed, in this case the reduced interchange
would imply that, for any arrow f, there exists a unique 2-cell from f to f .

For a 2-functor between 2-categories, the general notion of 2-limit can be found in
Chapter 7 of [6]. In this paper we need the following particular cases (and their duals).
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2.2.2. Definition. Let B be a 2-category.

1. An initial object ∅ in B is 2-initial if it is ΘB-strong: for every object X ∈ B, there
is a unique 2-cell on the unique arrow ∅X : ∅ → X.

2. A zero object 0 in B is 2-zero if it is 2-initial and 2-terminal.

3. Consider a pushout diagram in B and two commutative squares f · x = g · y and
f · x′ = g · y′ together with the corresponding factorizations

A
g //

f
��

C

f ′

��

y

��

y′

��

B
g′ //

x′

44
x

11

B +f,g C
[x,y]

(([x′,y′]
(( D

The pushout is a 2-pushout if it is ΘB-strong: given 2-cells φ:x⇒ x′ and ψ: y ⇒ y′

such that f ◦ φ = g ◦ ψ, there exists a unique 2-cell [φ, ψ]: [x, y]⇒ [x′, y′] such that
g′ ◦ [φ, ψ] = φ and f ′ ◦ [φ, ψ] = ψ.

In a 2-category, it is possible to express also the notion of homotopy limit (H-limit,
for short). We consider the case of H-pushouts in a 2-category with invertible 2-cells.
Basically, the difference between 2-pushouts and H-pushouts is that a 2-pushout is also
an ordinary pushout in the underlying category, whereas this is not the case for (strong)
H-pushouts.

2.2.3. Definition. Let B be a 2-category with invertible 2-cells. Consider two arrows
with same domain f :A→ B and g:A→ C.

1. The diagram hereunder on the left is the H-pushout of f and g if, for every diagram
like the one hereunder on the right

A
g //

f
��

C

f ′

��
B

g′
//

⇒
θf,g

Q(f, g)

A
g //

f
��

C

y
��

B x
//

⇒φ

D

there exists a unique arrow [x, φ, y]:Q(f, g) → D such that g′ · [x, φ, y] = x and
f ′ · [x, φ, y] = y and θf,g ◦ [x, φ, y] = φ.

2. The H-pushout of f and g is strong if, given

A
g //

f
��

C

y
��

B x
//

⇒φ

D

A
g //

f
��

C

y′

��
B

x′
//

⇒
φ′

D
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and 2-cells α:x⇒ x′ and β: y ⇒ y′ such that φ · (g ◦ β) = (f ◦ α) ·φ′, there exists a
unique 2-cell [α, β]: [x, φ, y]⇒ [x′, φ′, y′] such that g′ ◦ [α, β] = α and f ′ ◦ [α, β] = β.

2’. Equivalently, the H-pushout of f and g is strong if, given two parallel arrows
h, k:Q(f, g) ⇒ D and 2-cells α: g′ · h ⇒ g′ · k and β: f ′ · h ⇒ f ′ · k such that
(θf,g ◦ h) · (g ◦ β) = (f ◦ α) · (θf,g ◦ k), there exists a unique 2-cell [α, β]:h⇒ k such
that g′ ◦ [α, β] = α and f ′ ◦ [α, β] = β.

3. The definition of (strong) H-pullback is dual. Here is the notation:

P(f, g) f ′ //

g′

��

B

g

��
A

f
//

⇒
πf,g

C

2.2.4. . A strong H-pushout satisfies the following cancellation property: given arrows
h, k:Q(f, g) ⇒ D and 2-cells λ:h⇒ k and µ:h⇒ k, if g′ ◦ λ = g′ ◦ µ and f ′ ◦ λ = f ′ ◦ µ,
then λ = µ.

2.2.5. . What about strong H-(co)products in a 2-category B with invertible 2-cells?

1. If one writes the definition of strong H-initial object in the same spirit of the Defi-
nition 2.2.3 of strong H-pushout, since the base diagram is empty one recovers the
definition of 2-initial object as given in point 1 of Definition 2.2.2. For the same
reason, strong H-terminal is the same as 2-terminal and strong H-zero is the same
as 2-zero.

2. As a consequence, if we define strong H-coproducts as strong H-pushouts of arrows
out from the 2-initial objects, we get 2-coproducts. Dually, strong H-products are
nothing but 2-products.

2.2.6. Remark. Consider once again a 2-category B with invertible 2-cells and with a
2-zero object 0. The reduced interchange (Condition 2.1.2) holds in (B,Θ0).
More precisely, in the situation

A

f

((

h

66⇑ α B

g

((

k

66⇑ β C

we have:

(a) α ◦ 0BC = 0AC and 0AB ◦ β = 0AC ,

(b) if h = 0AB and k = 0BC , then (a) gives the absorption conditions of 2.1.3,

(c) if h = 0AB and k = 0BC , then α ◦ g = f ◦ β, that is Condition 2.1.2.
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Proof. We prove the first of the two equations in (a), the proof of the second one is
similar.

α ◦ 0BC = α ◦ (0B ◦ 0C) = (α ◦ 0B) ◦ 0C = 0A ◦ 0C = 0AC

where the first and the last equality are because the horizontal composition of two identity
2-cells is the identity 2-cell on the composite arrow, the second equality is the associativity
of the horizontal composition, and the third equality is because the object 0 is 2-terminal.
Point (b) is just a special case of (a).
To prove (c), from (a) we have α◦g = (0AB ◦β) · (α◦g) = α◦β = (α◦0BC) · (f ◦β) = f ◦β.

2.2.7. . It is worthwhile to write explicitly the definition of strong H-cokernel and strong
H-kernel as special cases of Definition 2.2.3. The strong H-cokernel and the strong H-
kernel of an arrow f :A→ B are, respectively, the following strong H-pushout and strong
H-pullback

A
f //

0A

��

B

cf
��

0
0C(f)

//

⇒
γf

C(f)

N (f)
nf //

0N (f)

��

A

f
��

0
0B

//

⇒
νf

B

Let us do the job for the strong H-cokernel. Since a 2-zero object is, in particular, a zero
object in the usual sense, when we make explicit the conditions of Definition 2.2.3 for the
above strong H-pushout, we get the following conditions:

1. The diagram hereunder on the left is the H-cokernel of f :A → B if, for every
diagram like the one hereunder on the right

B
cf

!!
A

f
??

0AC(f)

//

⇑ γf

C(f)

B
x

  
A

f
??

0AD

//

⇑ φ

D

there is a unique arrow [x, φ]: C(f)→ D such that cf · [x, φ] = x and γf ◦ [x, φ] = φ.

2. The H-cokernel of f :A→ B is strong if, given

B
x

  
A

f
??

0AD

//

⇑ φ

D

B
x′

  
A

f
??

0AD

//

⇑ φ′

D

and a 2-cell α:x ⇒ x′ such that φ · (f ◦ α) = φ′, there exists a unique 2-cell
[α]: [x, φ]⇒ [x′, φ′] such that cf ◦ [α] = α.

2’. Equivalently, the H-cokernel of f :A → B is strong if, given arrows h, k: C(f) ⇒ D
and a 2-cell α: cf ·h⇒ cf ·k such that (γf ◦h) · (f ◦α) = γf ◦k, there exists a unique
2-cell [α]: k ⇒ k such that cf ◦ [α] = α.
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2.2.8. . Observe that, if in the above condition 2.2.7.2’ we take h = 0
C(f)
D , we recover the

condition to be Θ0-strong (see Example 2.2.1.1 for the structure Θ0). To check this fact,

we need the absorption rule γf ◦ 0C(f)D = 0AD which is guaranteed by Remark 2.2.6.(a). In
other words, the notion of strong H-cokernel coming from Definition 2.2.3 coincides with
the one of strong Θ0-cokernel coming from Definition 2.1.4 if the zero object is indeed a
2-zero object.

2.2.9. . The cancellation property of a strong H-cokernel is as follows: given parallel
arrows h, k: C(f) ⇒ D and 2-cells λ:h⇒ k and µ:h⇒ k, if cf ◦ λ = cf ◦ µ, then λ = µ.

2.3. Bicategories and bilimits. In this subsection, we adapt to bipushouts and bicok-
ernels what we did in Definition 2.2.3 and in item 2.2.7 for H-pushouts and H-cokernels.
We work in a bicategory with invertible 2-cells. Note that, thanks to coherence theorems
for bicategories, see [36] or [30], here and in the rest of the paper we treat bicategories as
2-categories, that is, coherence isomorphisms will not be written explicitly.

2.3.1. Definition. Let B be a bicategory with invertible 2-cells. An object ∅ ∈ B is
biinitial if, for any other object X ∈ B, there exists an arrow x: ∅ → X and, moreover,
for any pair of arrows x, x′: ∅⇒ X, there exists a unique 2-cell x:x⇒ x′.
The notion of biterminal object is dual. Bizero means biinitial and biterminal.

2.3.2. Definition. Let B be a bicategory with invertible 2-cells. Fix two arrows with
same domain f :A→ B and g:A→ C in B and consider the following diagrams

A
g //

f
��

C

f ′

��
B

g′
//

⇒
θf,g

Q(f, g)

A
g //

f
��

C

y
��

B x
//

⇒φ

D

The diagram on the left is a bipushout of f and g if it satisfies the two following conditions:

1. For any diagram like the one on the right, there exists a fill-in, that is, an arrow
[x, φ, y] and two 2-cells φx and φy as in

B
g′ //

x 11

Q(f, g)
[x,φ,y]
��

C
f ′oo

ymm

φx⇒

D

φy
⇐

such that the following diagram commutes

f · g′ · [x, φ, y]
θf,g◦[x,φ,y] +3 g · f ′ · [x, φ, y]

f · x φ
+3

f◦φx

KS

g · y

g◦φy

KS
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2. The fill-in is essentially unique: if

B
g′ //

x 11

Q(f, g)
[x,φ,y]′

��

C
f ′oo

ymm

φ′
x⇒

D

φ′
y

⇐

is another fill-in for the same diagram φ: f · x ⇒ g · y, then there exists a unique
2-cell φ: [x, φ, y]⇒ [x, φ, y]′ such that φx · (g′ ◦ φ) = φ′

x and φy · (f ′ ◦ φ) = φ′
y.

2’. Equivalently, given

A
g //

f
��

C

y
��

B x
//

⇒φ

D

A
g //

f
��

C

y′

��
B

x′
//

⇒
φ′

D

and 2-cells α:x ⇒ x′ and β: y ⇒ y′ such that φ · (g ◦ β) = (f ◦ α) · φ′, there exists
a unique 2-cell [α, β]: [x, φ, y] ⇒ [x′, φ′, y′] such that φx · (g′ ◦ [α, β]) = α · φx′ and
φy · (f ′ ◦ [α, β]) = β · φy′ .

2”. Equivalently, given two arrows h, k:Q(f, g) ⇒ D and 2-cells α: g′ · h ⇒ g′ · k and
β: f ′ ·h⇒ f ′ · k such that (θf,g ◦h) · (g ◦β) = (f ◦α) · (θf,g ◦ k), there exists a unique
2-cell [α, β]:h⇒ k such that g′ ◦ [α, β] = α and f ′ ◦ [α, β] = β.

The notion of bipullback is dual of that of bipushout. Here is the notation for the bipull-
back of two arrows with same codomain f :A→ C and g:B → C in B:

P(f, g) f ′ //

g′

��

B

g

��
A

f
//

⇒
πf,g

C

2.3.3. . Comparing Definition 2.2.3 and Definition 2.3.2, we see that a strong H-pushout
satisfies also the universal property of the bipushout. Clearly, the same holds also for
strong H-pullbacks and bipullbacks. This fact will be exploited in the sequel in order to
construct bi(co)limits in the bicategory of fractions starting from strong H-(co)limits in
the base category. This also explains why we use the same notation for strong H-(co)limits
and bi(co)limits.

2.3.4. . Some other comments on Definition 2.3.2:

1. The equivalence between conditions 2, 2’ and 2” in Definition 2.3.2 is a particular
case of a general argument: let B be a groupoid and E:A→ B a functor essentially
surjective on objects. Then E is fully faithful iff, for every object B ∈ B and
for every choice of pre-images (X, x:E(X) → B), (Y, y:E(Y ) → B), there exists a
unique arrow f :X → Y such that x = E(f) · y.
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2. The notions introduced in Definition 2.3.2 are relaxed if compared with the notion
of bilimit given in Chapter 7 of [6]. To recover the definition of bilimit in [6], one
should require that the 2-cell of the universal diagram is an identity. In fact, some
authors would use the prefix pseudo instead of bi in Definition 2.3.2.

3. A bipushout has the same cancellation property with respect to 2-cells than a strong
H-pushout (see item 2.2.4): given arrows h, k:Q(f, g) ⇒ D and 2-cells λ:h⇒ k and
µ:h⇒ k, if g′ ◦ λ = g′ ◦ µ and f ′ ◦ λ = f ′ ◦ µ, then λ = µ.

4. If B has a biinitial object or a bizero object, as special cases of bipushouts we get
bicoproducts and bicokernels. Dually, we get biproducts (not to be confused with
the bi-product X ⊕ Y in an additive category) and bikernels as special cases of
bipullbacks. Note that different choices of biinitial, biterminal or bizero objects give
rise to equivalent biuniversal constructions.

2.3.5. Remark. Despite what we have just said about the choice of a bizero object,
the case of bikernels and bicokernels deserves a bit more of attention. Contrary to what
happens with a 2-zero object, a bizero object does not satisfy the usual universal property
of the zero object in the underlying category. Therefore, in order to express the universal
property of the bicokernel in the same shape as the universal property of the strong H-
cokernel (see item 2.2.7), we have to choose in a coherent way a bizero object 0 and, for
every other object X ∈ B, two arrows 0X :X → 0 and 0X : 0 → X. Here, coherent means
just that 00 = id0 = 00 and 0X · 0X = id0 for every object X. These choices determine:

- for every pair of objects X, Y in B, a canonical arrow 0XY = 0X · 0Y :X → 0→ Y,

- for every arrow f :X → Y in B, unique 2-cells 0f : 0X ⇒ f · 0Y and 0f : 0Y ⇒ 0X · f,

- for every arrow f :X → Y and object Z ∈ B, canonical 2-cells 0f ◦ 0Z : 0XZ ⇒ f · 0YZ
and 0Z ◦ 0f : 0ZY ⇒ 0ZX · f.

Using the above convention, we can deduce some useful facts:

1. For every object X, we have 0idX = 0X = 0X0 and 0idX = 0X = 00X .

2. For every pair of objects X and Y, we have 00
X
Y = 0X and 00XY = 0Y .

3. For every pair of composable arrows f and g, we have 0f ·g = 0f · (f ◦ 0g) and
0f ·g = 0g · (0f ◦ g).

4. For every pair of composable arrows f and g and for every object D, we have
0f ·g ◦ 0D = (0f ◦ 0D) · (f ◦ 0g ◦ 0D) and 0D ◦ 0f ·g = (0D ◦ 0g) · (0D ◦ 0f ◦ g).

5. For every 2-cell A

f

((

h

66⇑ α B , we have 0h ·(α◦0B) = 0f and 0h ·(0A◦α) = 0f .

In particular, when h = 0AB, we have α ◦ 0B = 0f and 0A ◦ α = 0f .
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6. For every 2-cell A

f

((

h

66⇑ α B and for every object C, we have

0f ◦ 0C = (0h ◦ 0C) · (α ◦ 0BC) and 0C ◦ 0f = (0C ◦ 0h) · (0CA ◦ α). In particular, when
h = 0AB, we have 0f ◦ 0C = α ◦ 0BC and 0C ◦ 0f = 0CA ◦ α.

7. For every pair of 2-cells A

f

((

0AB

66⇑ α B

g

((

0BC

66⇑ β C , we have

(0A ◦ 0g) · (α ◦ g) = (0f ◦ 0C) · (f ◦ β).

Note that the equations in point 6 are the relaxed version of the absorption conditions
of 2.1.3, and the equation in point 7 is the relaxed version of the reduced interchange of
2.1.2.

Proof. Points 1, 2 and 3 are obvious using that 0 is either biterminal or biinitial.
Point 4 follows from point 3 using distributivity:

0f ·g ◦ 0D = (0f · (f ◦ 0g)) ◦ 0D = (0f ◦ 0D) · (f ◦ 0g ◦ 0D)

and similarly for the second equation.
Point 5 is obvious using that 0 is either biterminal or biinitial. The particular case follows
from the general case using point 2.
Point 6 follows from point 5 using distributivity:

0f ◦ 0C = (0h · (α ◦ 0D)) ◦ 0C = (0h ◦ 0C) · (α ◦ 0B ◦ 0C) = (0h ◦ 0C) · (α ◦ 0BC)

and similarly for the second equation. The particular case follows from the general case
using point 2.
The proof of point 7 is depicted in the following commutative diagram, where we use both
equations of point 6.

0AB · g
α◦g +3 f · g

0AB · 0BC

0AB◦β
`h

α◦β
6>

α◦0BC  (
0AC

0A◦0g

KS

id

6>

0f◦0C
+3 f · 0BC

f◦β

KS
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2.3.6. . Let B be a bicategory with invertible 2-cells. Assume that B has a bizero object.
As we have pointed out in item 2.3.4.4, the bicokernel and the bikernel of an arrow
f :A→ B are defined, respectively, by the following bipushout and bipullback

A
f //

0A

��

B

cf
��

0
0C(f)

//

⇒
γf

C(f)

N (f)
nf //

0N (f)

��

A

f
��

0
0B

//

⇒
νf

B

We can assume that a coherent choice of a bizero object 0 has been made and, using
Remark 2.3.5, we can make explicit the conditions defining the bicokernel (those for the
bikernel are dual). Consider the following diagrams:

B
cf

!!
A

f
??

0AC(f)

//

⇑ γf

C(f)

B
x

  
A

f
??

0AD

//

⇑ φ

D

The diagram on the left is a bicokernel of f if it satisfies the two following conditions:

1. For any diagram like the one on the right, there exists a fill-in, that is, an arrow
[x, φ] and a 2-cell φx as in

C(f)
[x,φ]

!!
B

cf
==

x
//

⇑ φx

D

such that the following diagram commutes

f · cf · [x, φ] f · xf◦φxks

0AC(f) · [x, φ]

γf◦[x,φ]

KS

0AD

φ

KS

0A◦0[x,φ]

ks

2. The fill-in is essentially unique: if

C(f)
[x,φ]′

!!
B

cf
==

x
//

⇑ φ′
x

D

is another fill-in for the same diagram φ: 0AD ⇒ f ·x, then there exists a unique 2-cell
φ: [x, φ]⇒ [x, φ]′ such that φx · (cf ◦ φ) = φ′

x.



1828 ENRICO M. VITALE

2’. Equivalently, given

B
x

  
A

f
??

0AD

//

⇑ φ

D

B
x′

  
A

f
??

0AD

//

⇑ φ′

D

and a 2-cell α:x ⇒ x′ such that φ · (f ◦ α) = φ′, there exists a unique 2-cell
[α]: [x, φ]⇒ [x′, φ′] such that φx · (cf ◦ [α]) = α · φx′ .

2”. Equivalently, given two arrows h, k: C(f) ⇒ D and a 2-cell α: cf · h ⇒ cf · k such
that (0A ◦ 0h) · (γf ◦ h) · (f ◦ α) = (0A ◦ 0k) · (γf ◦ k), there exists a unique 2-cell
[α]:h⇒ k such that cf ◦ [α] = α.

2.3.7. . A bicokernel has the same cancellation property with respect to 2-cells than a
strong H-cokernel (see item 2.2.9): given arrows h, k: C(f) ⇒ D and 2-cells λ:h⇒ k and
µ:h⇒ k, if cf ◦ λ = cf ◦ µ, then λ = µ.

2.3.8. Remark. Later on, we will need that bicokernels satisfy a relaxed version of the
condition 2 in Definition 2.1.4. Here it is: in the situation

A
f

//

0AC(f)

γf ⇓
''

B cf
//

0BD

⇓ λ
&&C(f)

k
// D

if (0A ◦ 0k) · (γf ◦ k) = (0f ◦ 0D) · (f ◦ λ), then there exists a unique 2-cell [λ]: 0
C(f)
D ⇒ k

such that (0cf ◦ 0D) · (cf ◦ [λ]) = λ.

Proof. Let us see how the above condition follows from condition 2” in item 2.3.6. In
2”, put h = 0

C(f)
D and α = (0cf ◦ 0D)−1 · λ. We have to show that α satisfies the condition

in 2”, which amounts to the commutativity of the following diagram:

0AD id
+3

0A◦0k

��

0A◦0
0
C(f)
D (0

0
f ·cf ◦0D

08

0f◦0D

(0

0AC(f) · 0
C(f)
D

γf◦0
C(f)
D +3 f · cf · 0C(f)D

0AC(f) · k γf◦k
+3 f · cf · k f · 0BDf◦λ

ks

f◦0cf ◦0D

KS

To check that the four regions commute use, from the top to the bottom, point 2, point
6 and point 4 of Remark 2.3.5 and the assumption on λ.
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2.3.9. Example. To end this section, we give an example which fits into the situation
discussed in Remark 2.3.5. The example is provided by the 2-category Grpd∗ of pointed
groupoids, lax pointed functors and pointed natural transformations. Objects are pairs
(A, I) with I a chosen object of the groupoid A. Arrows are pairs (F, F0): (A, I)→ (B, I)
with F :A → B a functor and F0: I → F (I) a chosen arrow. The composition of (F, F0)
and (G,G0) is (F · G,G0 · G(F0)). The 2-cells α: (H,H0) ⇒ (F, F0) are pointed natu-
ral transformations, that is, natural transformations α:H ⇒ F satisfying the condition
H0 · αI = F0. Despite the fact that Grpd∗ does not have a zero object (indeed, the one
arrow groupoid is bizero and terminal, but not initial), in Grpd∗ there is a canonical
arrow (0, idI): (A, I)→ (B, I), where 0:A→ B is the constant functor with value I.
Categorical groups and categorical crossed modules are special kinds of pointed groupoids
and they fit into the same pattern. This is the reason why, when working with categor-
ical groups and categorical crossed modules, one can adopt the version of bikernels and
bicokernels described in item 2.3.6, see for example [50, 18, 11].

3. Fractions

3.1. Generalities on the bicategory of fractions. In this section, we recall and
complete some general facts on bicategories of fractions, a tool introduced by Dorette
Pronk in [43] (see also [48]).

3.1.1. . If B is a bicategory with invertible 2-cells and if Σ is a class of arrows in B, the
bicatgeory of fractions of B with respect to Σ is the universal solution to the problem of
turning each element of Σ into an equivalence. The current notation is

PΣ:B → B[Σ−1]

This means that PΣ(w) is an equivalence for any w ∈ Σ and that any other morphism of
bicategories sharing such a property factorizes through PΣ in an essentially unique way.
As it is already the case for categories of fractions (see [21] or Chapter 5 in [6]), the
description of B[Σ−1] can be quite complicated, but it simplifies drastically if the class Σ
has some good properties. For the purpose of this paper, the main result from [43] is an
explicit description of the bicategory of fractions under the assumption that Σ has a right
calculus of fractions. We are not going to recall the definition of right calculus of fractions
because the example we are interested in satisfies a stronger condition introduced in [51]
under the name of bipullback congruence (see [5] for the original categorical version).

3.1.2. Remark. The condition on B that all 2-cells are invertible does not appear in [43].
This assumption on 2-cells makes a bit easier the construction of the bicategory of fractions
partially recalled in 3.1.5 and is part of the definition of 2-abelian bicategory (Definition
7.1.5). The price to pay is Lemma 3.1.8, which ensures that 2-cells in the bicategory of
fractions are invertible if they are invertible in the original bicategory. Lemma 3.2.1 holds
without the extra assumption on 2-cells and the same is true for Lemma 3.2.2, even if the
proof is to be adapted. What is less clear to me is what happens with some other notions



1830 ENRICO M. VITALE

of higher dimensional limits when we pass from a general bicategory to the bicategory of
fractions.

3.1.3. Definition. Let B be a bicategory with invertible 2-cells and Σ a class of arrows
in B. We say that Σ is a bipullback congruence if the following conditions are satisfied:

1) Σ contains the equivalences.

2) If there exists a 2-cell f ⇒ g, then f ∈ Σ iff g ∈ Σ.

3) If two of f, g and f · g are in Σ, then the third one also is in Σ.

4) Σ is stable under bipullbacks.

We say that Σ is a bipushout congruence if it satisfies conditions 1), 2) and 3) above and

4’) Σ is stable under bipushouts.

3.1.4. . In [51] is has been proved that, if B has the needed bipullbacks, then any bipull-
back congruence has a right calculus of fractions. Dually, if B has the needed bipushouts,
then any bipushout congruence has a left calculus of fractions.

3.1.5. . Here is (part of) the explicit description of PrΣ:B → Br[Σ−1] from [43]. We
assume that Σ has a right calculus of fractions. (If we assume that B has bipullbacks and
that Σ is a bipullback congruence, the description of the bicategory of fractions does not
change, but the computation of the vertical composition of 2-cells is a bit easier than in
[43].) We add an r (for right) to the exponent because we will need also the left version.

1. The objects of Br[Σ−1] are those of B.

2. An arrow (v, f):A → B in Br[Σ−1] is a span with v ∈ Σ and f an arbitrary arrow
in B:

I
v

��

f

��
A

(v,f)
// B

3. Composition of arrows in Br[Σ−1] is depicted in the following diagram, where the
existence of the square with w′ ∈ Σ comes from the right calculus of fractions (one
can chose as P any bipullback of f and w if Σ is a bipullback congruence)

P
w′

~~

f ′

  
I

v

��

f

  

⇓ φ J
w

~~

g

��
A

(v,f)
// B

(w,g)
// C
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4. A 2-cell (v, f)⇒ (w, g) in Br[Σ−1] is an equivalence class of 4-tuples (u1, u2, α1, α2)
as in the diagram hereunder on the left, with u1 · v ∈ Σ:

I
v

��

f

  
A α1⇓ E

u1

OO

u2
��

B⇓α2

J

w

__

g

>>

I
v

~~

f

  
A α′

1⇓ E ′

u′1

OO

u′2
��

B⇓α′
2

J

w

``

g

>>

E
u1

��

u2

  
I γ1⇑ F

r1

OO

r2
��

J⇓γ2

E ′
u′1

__

u′2

>>

Two 4-tuples (u1, u2, α1, α2) and (u′1, u
′
2, α

′
1, α

′
2) are equivalent if there exists a 4-

tuple (r1, r2, γ1, γ2) as above on the right, with r1 · u1 · v ∈ Σ and such that the
following diagrams commute

r1 · u1 · v
r1◦α1 +3 r1 · u2 · w

γ2◦w
��

r2 · u′1 · v

γ1◦v
KS

r2◦α′
1

+3 r2 · u′2 · w

r1 · u1 · f
r1◦α2 +3 r1 · u2 · g

γ2◦g
��

r2 · u′1 · f

γ1◦f

KS

r2◦α′
2

+3 r2 · u′2 · g

5. The identity 2-cell is represented by

I
v

��

f

��
A v⇓ I

id

OO

id
��

B⇓f

I

v

__

f

??

6. PrΣ:B → Br[Σ−1] can be defined as follows, since Σ contains the equivalences:

A

f

((

g

66⇓ α B 7→

A
id

��

f

��
A id⇓ A

id

OO

id
��

B⇓α

A
id

__

g

??

7. An arrow (v, f):A → B in Br[Σ−1] with both v and f in Σ is an equivalence with
quasi-inverse (f, v):B → A. In particular, for any v ∈ Σ, PrΣ(v) is an equivalence
with quasi-inverse (v, id). It follows that, for any arrow (v, f) in Br[Σ−1], we have

(v, f) ≃ PrΣ(v)−1 · PrΣ(f)

8. Finally, the extension F :Br[Σ−1]→ D of F :B → D along PrΣ is defined, on objects
and arrows, by

F (A
(v,f) // B) = FAF(v)−1

// FC F(f) // FB
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3.1.6. . Without entering into details, here is what we are going to use if the class Σ has
a left calculus of fractions or is a bipushout congruence:

1. Objects of Bl[Σ−1] are those of B.

2. An arrow (f, v):A→ B in Bl[Σ−1] is a cospan with v ∈ Σ and f an arbitrary arrow
in B:

I

A
(f,v)

//

f
??

B

v

__

3. P lΣ:B → Bl[Σ−1] can be defined as follows:

A

f

((

g

66⇓ α B 7→

B

id
��

A

f
??

g ��

α⇓ B B

id

``

id~~

⇓id

B

id

OO

3.1.7. . Observe that PrΣ:B → Br[Σ−1] and P lΣ:B → Bl[Σ−1] are two different descrip-
tions of the universal solution of the same problem. As a consequence, if Σ has a right
calculus of fractions and a left calculus of fractions, there is a biequivalence of bicategories
H:Br[Σ−1] → Bl[Σ−1] commuting with PrΣ and P lΣ. Passing through 3.1.1 and 3.1.6, the
biequivalence H can be described, on objects and arrows, by

H (A Ivoo f // B) = A
f ′ // Q(v, f) Bv′oo

where we can use the following pushout if Σ is a pushout congruence

I
f //

v

��

B

v′

��
A

f ′
//

⇒
θv,f

Q(v, f)

In Section 7, we will need the second part of the following simple lemma.

3.1.8. Lemma. Let B be a bicategory with invertible 2-cells and Σ a class of arrows with
a right calculus of fractions.

1. The 2-cells of Br[Σ−1] represented by (u1, u2, α1, α2) and (s · u1, s · u2, s ◦ α1, s ◦ α2),
where s is any arrow in Σ whose codomain is the domain of u1 and u2, are equal.

2. The 2-cells of Br[Σ−1] are invertible. Indeed, the inverse of a 2-cell represented by
(u1, u2, α1, α2) is represented by (u2, u1, α

−1
1 , α−1

2 ).
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Proof. 1. The equivalence between the two representatives is attested by the 4-tuple
(s, id, s · u1, s · u2).
2. To compute the vertical composition of (u1, u2, α1, α2) and (u2, u1, α

−1
1 , α−1

2 ) we can
choose the diagram

E
id //

id
��

E

u2
��

E u2
//

⇓ u2

J

and we get the 4-tuple (u1, u1, α1 · α−1
1 = u1 · v, α2 · α−1

2 = u1 · f). By the first part of the
Lemma, this 4-tuple represents the identity 2-cell.

3.2. Bipullbacks and bipushouts in the bicategory of fractions. We recall
here the main result from [27] together with the constructive part of the proof, which will
be needed later.

3.2.1. Lemma. Let B be a bicategory with invertible 2-cells and Σ a class of arrows in B.

1. If B has bipullbacks and if Σ has a right calculus of fractions, then Br[Σ−1] has
bipullbacks and PrΣ:B → Br[Σ−1] preserves bipullbacks.

2. If B has bipushouts and if Σ has a left calculus of fractions, then Bl[Σ−1] has bi-
pushouts and P lΣ:B → Bl[Σ−1] preserves bipushouts.

Proof. 1. Start with two arrows in Br[Σ−1] and consider the bipullback in B:

I
v

��

f

��
A

(v,f)
// B

J
w

��

g

��
C

(w,g)
// B

P(f, g) f ′ //

g′

��

J

g

��
I

f
//

⇒
πf,g

B

The bipullback in Br[Σ−1] is given by

P(f, g)
Pr
Σ(f

′)
//

Pr
Σ(g

′)

��

J
Pr
Σ(w) //

Pr
Σ(g)

��

C

(w,g)

��

⇒
PrΣ(πf,g)

≃

I

Pr
Σ(v)

��

Pr
Σ(f)

))

≃

A
(v,f)

// B



1834 ENRICO M. VITALE

And here is the analogous statement for biterminal and biinitial objects, a simple
result which has been “forgotten” in [27].

3.2.2. Lemma. Let B be a bicategory with invertible 2-cells and Σ a class of arrows in B.

1. Assume that Σ has a right calculus of fractions. If B has a biterminal object or a
biinitial object, then PrΣ preserves them.

2. Assume that Σ has a left calculus of fractions. If B has a biterminal object or a
biinitial object, then P lΣ preserves them.

Proof. 1. Let 0 be a biterminal object in B and fix an object X ∈ B. There exists
an arrow x:X → 0 in B, so that we get an arrow PrΣ(x):X → 0 in Br[Σ−1]. Let now
(w, g):X → 0 be another arrow in Br[Σ−1]. We get a 2-cell PrΣ(x) ⇒ (w, g) represented
by

X
id

~~

x

��
X w⇓ J

w

OO

id
��

0⇓α2

J

w

``

g

??

where α2:w · x ⇒ g is the unique 2-cell produced by the fact that 0 is biterminal in B.
Given another 2-cell PrΣ(x) ⇒ (w, g) represented by the diagram hereunder on the left,
the equality of the two 2-celles is attested by the diagram hereunder on the right

X
id

~~

x

��
X α′

1⇓ E ′

u′1

OO

u′2
��

0⇓α′
2

J

w

``

g

??

J
w

~~

id

  
X α′

1⇑ E ′

u′2

OO

id
��

J⇓u′2

E ′
u′1

``

u′2

??

Indeed, u′2 ·w ∈ Σ, one of the conditions on 2-cells at the end of 3.1.1.4 reduces to α′
1 = α′

1

and the other one is automatically satisfied because 0 is biterminal in B.
Let 0 be a biinitial object in B and fix an object X ∈ B. There exists an arrow x: 0→ X
in B, so that we get an arrow PrΣ(x): 0→ X in Br[Σ−1]. Let now (w, g): 0→ X be another
arrow in Br[Σ−1]. We get a 2-cell PrΣ(x)⇒ (w, g) represented by

0
id

��

x

��
0 α1⇓ 0

id

OO

u2
��

X⇓α2

J

w

^^

g

??
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where the arrow u2 and the (unique) 2-cells α1 and α2 are produced by the fact that 0 is
biinitial in B. Given another 2-cell PrΣ(x)⇒ (w, g) represented by the diagram hereunder
on the left, the equality of the two 2-celles is attested by the diagram hereunder on the
right

0
id

��

x

  
0 α′

1⇓ E ′

u′1

OO

u′2
��

X⇓α′
2

J

w

__

g

>>

0
id

��

u2

  
0 γ1⇑ 0

id

OO

r2
��

J⇓γ2

E ′
u′1

__

u′2

>>

where the arrow r2 and the (unique) 2-cells γ1 and γ2 are produced by the fact that 0 is
biinitial in B. Indeed, both the conditions on 2-cells at the end of 3.1.1.4 are automatically
satisfied because 0 is biinitial in B.

3.2.3. Corollary. Let B be a bicategory with invertible 2-cells. Assume that B has
bipullbacks, bipushouts and a bizero object. Let Σ be a class of arrows in B having a right
calculus of fractions and a left calculus of fractions.

1. Br[Σ−1] has bipullbacks, bipushouts and a bizero object. Moreover, PrΣ:B → Br[Σ−1]
preserves bipullbacks, bipushouts and the bizero object.

2. Bl[Σ−1] has bipullbacks, bipushouts and a bizero object. Moreover, P lΣ:B → Bl[Σ−1]
preserves bipullbacks, bipushouts and the bizero object.

Proof. Everything follows from Lemma 3.2.1, Lemma 3.2.2 and the fact that PrΣ and
P lΣ are connected by a biequivalence (see 3.1.7).

3.2.4. . For later use, let us describe explicitly the bikernel and the bicokernel of an arrow

I
v

��

f

��
A

(v,f)
// B

in Br[Σ−1]. We assume that a choice of a bizero object 0 and arrows 0X and 0X has been
done, as discussed in Remark 2.3.5.

1. Assume that B has bikernels and that Σ has a right calculus of fractions. Consider
a bikernel of f in B:

I
f

��
N (f)

nf

==

0
N (f)
B

//

⇑ νf

B
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Since, by Lemma 3.2.1.1 and Lemma 3.2.2.1, PrΣ:B → Br[Σ−1] preserves bikernels,
and bikernels are determined up to equivalence, a bikernel in Br[Σ−1] of (v, f) is
given by

A

(v,f)

��

I

Pr
Σ(v)

??

Pr
Σ(f)

))

⇑

N (f)

Pr
Σ(nf )

==

0
N (f)
B

//

⇑ Pr
Σ(νf )

B

(which, in fact, is a special case of the construction in the proof of Lemma 3.2.1).

2. Assume that B has bicokernels and that Σ has a right calculus of fractions and a
left calculus of fractions. Consider a bicokernel of f in B:

B
cf

!!
I

f
@@

0IC(f)

//

⇑ γf

C(f)

Since, by Lemma 3.2.1.2 and Lemma 3.2.2.2, PrΣ:B → Br[Σ−1] preserves bicoker-
nels, and bicokernels are determined up to equivalence, and keeping in mind the
biequivalence Br[Σ−1] ≃ Bl[Σ−1] of 3.1.7, a bicokernel in Br[Σ−1] of (v, f) is given
by

B

Pr
Σ(cf )

$$
⇒ ⇑Pr

Σ(γf )

A

(v,f)

::

Pr
Σ(v)

−1
//

0AC(f)

;;
I

Pr
Σ(f)

OO

0IC(f)

// C(f)

0P
r
Σ(v)−1

◦0C(f) ⇑

3. Observe that, if we call ψ:P r
Σ(f) ⇒ P r

Σ(v) · (v, f) and φ: (v, f) ⇒ P r
Σ(v)

−1 · P r
Σ(f)

the unlabelled 2-cells involved in the previous description of the bikernel and of
the bicokernel, then ψ and φ are related by ψ = (α ◦ P r

Σ(f)) · (P r
Σ(v) ◦ φ−1), where

α: idI ⇒ P r
Σ(v)·P r

Σ(v)
−1 is a 2-cell attesting that P r

Σ(v) and P
r
Σ(v)

−1 are quasi-inverse
equivalences.

4. Factorization systems in Arr(A)
4.1. Two-step factorizations.
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4.1.1. . From [35], we known that, with no assumption on A, always exists a free orthog-
onal factorization system in Arr(A). Here is the factorization of an arrow:

A
f //

a
��

B

b
��

A0 f0
// B0

(⋆)

⇒ A id //

a
��

A

a·f0=f ·b
��

f // B

b
��

A0 f0
// B0 id

// B0

The classes of arrows which determine this factorization can be described as:

E0 = {(f, f0) | f is an isomorhism } , M0 = {(f, f0) | f0 is an isomorphism }

If A has pushouts or pullbacks, the classes E0 and M0 enter in two other orthogonal
factorization systems. In this section, we discuss these factorization systems and their
relation with strong Θ∆-kernels and strong Θ∆-cokernels.

4.1.2. . First factorization system. We take as classes of arrows the following classes:

- E1 = {(f, f0) | (⋆) is a pushout }

- M1 = E0 = {(f, f0) | f is an isomorphism }

4.1.3. . Second factorization system. We take as classes of arrows the following classes:

- E2 =M0 = {(f, f0) | f0 is an isomorphism }

- M2 = {(f, f0) | (⋆) is a pullback }

We recall the definition of orthogonal factorization system as it appears in [24] (see
also Chapter 5 in [6]).

4.1.4. Definition. Two classes (E ,M) of arrows in a category A are an orthogonal
factorization system if they satisfy the following conditions:

1) Both classes are stable under composition with isomorphisms.

2) Each arrow of A can be factorized as an arrow in E followed by an arrow inM.

3) Orthogonality: for each solid commutative diagram with e ∈ E and m ∈M

A
e //

x
��

B

y
��

d

~~
C m

// D

there exists a unique arrow d such that e · d = x and d ·m = y.
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4.1.5. . For later use, let us recall that, if (E ,M) is an orthogonal factorization system,
then:

1. E andM contain identites and are closed under composition,

2. if f · g and f are in E , then g is in E ,

3. if f · g and g are inM, then f is inM.

4.1.6. Proposition. Let A be a category.

1. If A has pushouts, then (E1,M1) is an orthogonal factorization system in Arr(A).

2. If A has pullbacks, then (E2,M2) is an orthogonal factorization system in Arr(A).

Proof.The first condition in Definition 4.1.4 is easy to check for the four classes. As far as
the (E1,M1) and the (E2,M2) factorizations of an arrow (f, f0): (A, a,A0)→ (B, b, B0) are
concerned, they are obtained from the factorizations of the commutative square f ·b = a·f0
through, respectively, the pushout and the pullback as in the following diagrams:

A
f //

a

��

f

''
B id //

a′

��

B

b
��

A0
f ′

//

E1

f0

66A0 +a,f B
[f0,b]

//

M1

B0

A
⟨a,f⟩ //

a

��

f

((
A0 ×f0,b B

b′

��

f ′0 // B

b
��

A0 id
//

E2

f0

66A0 f0
//

M2

B0

We check the orthogonality condition for (E1,M1), that for (E2,M2) is dual and we omit
it. Consider the following solid commutative square in Arr(A), where the top face is a
pushout and g is an isomorphism:

A
f //

a

  
x

��

B
b

  
y

��

δ

zz

A0 f0
//

x0

��

B0

y0

��
δ0

zz

C
g //

c
  

D
d

  
C0 g0

// D0

We look for the dashed arrows δ and δ0 which have to satisfy the following conditions:

δ · g = y , f · δ = x , δ0 · g0 = y0 , f0 · δ0 = x0 , δ · c = b · δ0
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Since g is an isomorphism, from the fist condition we get necessarily δ = y · g−1. From the
fourth and the fifth conditions, we get f · δ · c = a · x0. Since the top face is a pushout,
this implies that there exists a unique δ0 such that b · δ0 = δ · c and f0 · δ0 = x0. It remains
to verify the second and the third conditions: for the second one, compose with g; for the
third one, precompose with b and f0.

4.1.7. . Recall that an orthogonal factorization system (E ,M) is proper if the arrows of E
are epis and the arrows ofM are monos. The factorization systems (E1,M1) and (E2,M2)
in Arr(A) are not proper, but they are “nullhomotopically proper” in the following sense
(here is the case of (E1,M1), the case of (E2,M2) is dual):

1. Given two composable arrows (A, a,A0)
(f,f‡) // (B, b, B0)

(g,g0) // (C, c, C0) and a null-

homotopy φ ∈ Θ∆((f, f0) · (g, g0)), if (f, f0) ∈ E1, then there exists a unique nullho-
motopy φ′ ∈ Θ∆(g, g0) such that (f, f0) ◦ φ′ = φ. In other words, the arrows in E1
are an example of what we could call strong Θ∆-epimorphisms.

2. Given two arrows (A, a,A0)
(f,f‡) // (B, b, B0)

(g,g0) // (C, c, C0) and two nullhomotopies

φ, ψ ∈ Θ∆((f, f0)), if φ ◦ (g, g0) = ψ ◦ (g, g0) and if (g, g0) ∈ M1, then φ = ψ. In
other words, the arrows inM1 are (not necessarily strong) Θ∆-monomorphisms.

4.1.8. . The fundamental link between, on one side, the factorization systems (E1,M1)
and (E2,M2) and, on the other side, Θ∆-cokernels and Θ∆-kernels in Arr(A) is easy
to see: just compare how an arrow is factorized (proof of Proposition 4.1.6) and how
Θ∆-cokernels and Θ∆-kernels are constructed in Example 2.1.6.

1. The (E1,M1) factorization of an arrow (f, f0): (A, a,A0)→ (B, b, B0) is the factor-
ization of (f, f0) through the Θ∆-kernel of the Θ∆-cokernel of (f, f0):

A
f //

a

��
f

!!

B

b

��

a′ // A0 +a,f B

[f0,b]

��
A0

f0 //

f ′

!!

B0 id
// B0

B
a′

��

id

==

A0 +a,f B

[f0,b]

==

2. The (E2,M2) factorization of an arrow (f, f0): (A, a,A0)→ (B, b, B0) is the factor-
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ization of (f, f0) through the Θ∆-cokernel of the Θ∆-kernel of (f, f0):

A id //

⟨a,f⟩
��

A

a

��

f //

⟨a,f⟩

!!

B

b
��

A0 ×f0,b B b′
// A0

f0 //

id

!!

B0

A0 ×f0,b B
b′

��

f ′0

==

A0

f0

==

Using 4.1.8, we can say something more on the four classes of arrows involved in the
factorisation systems of Arr(A).

4.1.9. Proposition. Let A be a category with pushouts and pullbacks and consider an
arrow (f, f0): (A, a,A0)→ (B, b, B0) in Arr(A).

1. The following conditions are equivalent:

(a) (f, f0) ∈ E1, that is, (∗) is a pushout,

(b) the object part of its Θ∆-cokernel is Θ∆-trivial.

2. The following conditions are equivalent:

(a) (f, f0) ∈M1, that is, f is an isomorphism,

(b) (f, f0) is a Θ∆-kernel,

(c) (f, f0) is the Θ∆-kernel of its Θ∆-cokernel.

3. The following conditions are equivalent:

(a) (f, f0) ∈ E2, that is, f0 is an isomorphism,

(b) (f, f0) is a Θ∆-cokernel,

(c) (f, f0) is the Θ∆-cokernel of its Θ∆-kernel.

4. The following conditions are equivalent:

(a) (f, f0) ∈M2, that is, (∗) is a pullback,

(b) the object part of its Θ∆-kernel is Θ∆-trivial.
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Proof. 1. This follows directly from the description of Θ∆-cokernels in Arr(A) and the
characterization of Θ∆-trivial objects, see Example 2.1.6.
2. The implication (c) ⇒ (b) is obvious and the implication (b) ⇒ (a) immediately
follows from the description of Θ∆-cokernel in Example 2.1.6. As far as the implication
(a) ⇒ (c) is concerned, if (f, f0) ∈ E2, then the M2 part of its (E2,M2)-factorization is
an isomorphism. Therefore, from 4.1.8.2 it follows that (f, f0) is the Θ∆-cokernel of its
Θ∆-kernel.

4.1.10. Corollary. Let A be a category with pushouts and pullbacks.

1. If (g, g0) ∈ E1, then the Θ∆-cokernel of a composite arrow (g, g0) · (f, f0) is the Θ∆-
cokernel of (f, f0). In particular, the Θ∆-cokernel of an arrow is the Θ∆-cokernel of
theM1-component of the arrow.

2. If (f, f0) ∈ M2, then the Θ∆-kernel of a composite arrow (g, g0) · (f, f0) is the Θ∆-
kernel of (g, g0). In particular, the Θ∆-kernel of an arrow is the Θ∆-kernel of the
E2-component of the arrow.

Proof. 1. This follows from 4.1.8.1 and Proposition 4.1.9.1. Alternatively, this facts can
also be deduced from 4.1.7.

4.2. Three-step factorizations.

4.2.1. . To prepare the abelian case, which will be studied in the next sections, we have
to analyze more the E1 and the M2 components of an arrow. We consider first the E1-
component: our aim is to further decompose it in two components, the first one lying in
E1∩E2 and the second one lying (in the abelian case) in E1∩M2. For this, we work as far
as possible in a category with nullhomotopies, before specializing to the case of Arr(A).
In this section, we will sometimes depict a nullhomotopy λ ∈ Θ(g) as

A

g

&&
88λ ⇑ B

Indeed, this is the situation of Example 2.2.1.1 if we see the dashed arrow as a zero arrow.

4.2.2. . Let (B,Θ) be a category with nullhomotopies satisfying the reduced interchange.
Assume the existence in B of Θ-kernels, strong Θ-cokernels and a Θ-strong initial object
0. As a preliminary step, fix an object X ∈ B. We denote by

εX : π1(X)→ X

the factorization of the unique arrow 0X : 0→ X through the Θ-cokernel of its Θ-kernel:

C(n0X ) = π1(X)
εX

&&N (0X)
n0X //

ν0X ⇑

55

γn0X
⇓

11

0
0X //

cn0X

88

X
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The object π1(X) is therefore the Θ-cokernel of an arrow whose codomain is the initial
object 0. The interest of this fact lies in the following result.

4.2.3. Lemma. Let (B,Θ) be as in 4.2.2 and let P be the Θ-cokernel of an arrow with
codomain 0. For any arrow g:P → Y, the arrow cg:Y → C(g) is a strong Θ-epimorphism
(see 4.1.7.1) and an epimorphism.

Proof. We start showing that cg is a strong Θ-epimorphism. Consider the situation
depicted by the following diagram

N n
//

⇓ γn
%%

0
cn=0P

// P g
//

γg ⇓
''

Y cg
//

⇓ φ
&&C(g)

h
// Z

We have to prove that there exists a unique nullhomotopy φ′ ∈ Θ(h) such that cg ◦φ′ = φ.
This will follow from the universal property of the strong Θ-cokernel C(g) if we can verify
the equation γg ◦ h = g ◦ φ. By 2.1.5.2, it is enough to check this equation precomposed
with cn: 0 → P. Now the equality cn ◦ γg ◦ h = cn · g ◦ φ holds because 0 is a Θ-strong
initial object.
Now we show that cg is an epimorphism. Consider the situation depicted by the following
diagram

N n
//

⇓ γn
%%

0
cn=0P

// P g
//

γg ⇓
''

Y cg
// C(g)

h //

k
// Z

and assume that cg · h = cg · k. By 2.1.5.1, to prove that h = k we have to prove that
γg ◦h = γg ◦k. By 2.1.5.2, it is enough to check this equation precomposed with cn: 0→ P
and we conclude as in the first part of the proof.

4.2.4. Lemma. Let (B,Θ) be as in 4.2.2. Fix an arrow f :A→ B in B and consider the
diagram

π1(N (f))
εN (f) //

γεN (f)·nf
⇑

//

N (f)
nf //

νf ⇓
&&

A

⇓ γf
''

cεN (f)·nf

��

f // B
cf // C(f)

C(εN (f) · nf ) wf

// N (cf )

ncf

OO

⇑ νcf

EE

There exists a unique arrow wf : C(εN (f) · nf ) → N (cf ) such that cεN (f)·nf
· wf · ncf = f

and cεN (f)·nf
· wf ◦ νcf = γf .
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Proof. By the universal property of the Θ-kernel N (cf ), there exists a unique arrow
f1:A → N (cf ) such that f1 · ncf = f and f1 ◦ νcf = γf . By the universal property of
the Θ-cokernel C(εN (f) · nf ), there exists a unique arrow tf : C(εN (f) · nf ) → B such that
cεN (f)·nf

· tf = f and γεN (f)·nf
◦ tf = εN (f) ◦ νf . Now observe that γf ∈ Θ(f · cf ) =

Θ(cεN (f)·nf
· tf · cf ). We can apply the first part of Lemma 4.2.3 by taking π1(N (f))

as P and εN (f) · nf as g. We obtain a unique nullhomotopy γ′f ∈ Θ(tf · cf ) such that
cεN (f)·nf

◦ γ′f = γf . By the universal property of N (cf ), we get a unique arrow wf such
that wf ·ncf = tf and wf ◦νcf = γ′f . Therefore, the square in the above diagram commutes:

cεN (f)·nf
· wf · ncf = cεN (f)·nf

· tf = f.

Moreover, the four triangles determined, inside the square, by f1 and tf , commute. The
only one which remains to check is cεN (f)·nf

· wf = f1. For this, it suffices to go back to
the definition of f1:

cεN (f)·nf
· wf · ncf = f and cεN (f)·nf

· wf ◦ νcf = cεN (f)·nf
◦ γ′f = γf .

Since, by the second part of Lemma 4.2.3, cεN (f)·nf
is an epimorphism, the arrow wf is

in fact characterized by the condition cεN (f)·nf
· wf = f1. Putting together this condition

with the conditions defining f1, we can conclude that wf is the unique arrow such that
cεN (f)·nf

· wf · ncf = f and cεN (f)·nf
· wf ◦ νcf = γf .

4.2.5. . Now we can specialize the previous construction in order to get a three-step
factorization of an arrow (f, f0): (A, a,A0) → (B, b, B0) of Arr(A). We assume that the
category A has zero object 0, pushouts and pullbacks. With compact notation, we get:

π1(N (f, f0))
εN (f,f0) // N (f, f0)

n(f,f0) // (A, a,A0)

cεN (f,f0)
·n(f,f0)

��

(f,f0) //

(f,f ′)

((

(B, b, B0)
c(f,f0) // C(f, f0)

C(εN (f,f0) · n(f,f0)) w(f,f0)

// N (c(f,f0))

nc(f,f0)

OO

In this case, the down arrow is in E1∩E2 by Lemma 4.2.6, the arrow w(f,f0) is in E1 because
its composition with the down arrow is the E1-component (f, f ′) of (f, f0) (use 4.1.5.2),
and the up arrow is inM1.
Let us point out that the notation used in 4.2.2 can be justified by the fact that, in the
special case given by B = Arr(A), ε is indeed the counit of the adjunction

A
Λ

//Arr(A)
Keroo Λ ⊣ Ker Λ(A) = (A, 0A, 0)

Explicitly, the counit

ε(A,a,A0): π1(A, a,A0) = Λ(Ker(A, a,A0))→ (A, a,A0)
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is theM2-component in of the unique arrow Λ(0)→ (A, a,A0), that is,

Ker(a)

��

ka // A

a

��
0 // A0

Finally, here is the formulation of Lemma 4.2.3 in the special case of (B,Θ) = (Arr(A),Θ∆).
We state it explicitly since its proof is particularly simple and illustrative.

4.2.6. Lemma. Let A be a category with zero object and cokernels. Any arrow in Arr(A)
with domain an object of the form Λ(X) has, as Θ∆-cokernel, an arrow in E1 ∩ E2.

Proof. Following Example 2.1.6, in the diagram hereunder the square on the right is the
Θ∆-cokernel of the square on the left

X

��

f // Y
qf //

y

��

Coker(f)

[0,y]

��
0 // Y0 id

// Y0

The square on the right is a pushout, that is, an arrow in E1. Moreover, all Θ∆-cokernels
are in E2.

4.2.7. . We sketch now the dual analysis for theM2 component of an arrow in Arr(A),
in order to get another three-step factorization. We treat directly the case of Arr(A)
and we leave to the reader the general discussion dual to that in 4.2.2, 4.2.3 and 4.2.4.
Assume that the category A has zero object, pushouts and pullbacks. We use the unit of
the adjonction

A
Γ

//Arr(A)
Cokeroo Coker ⊣ Γ Γ(A) = (0, 0A, A)

which, for a given object (A, a,A0) ∈ Arr(A), is given by the factorization through
the Θ∆-kernel of the Θ∆-cokernel of the unique arrow (A, a,A0) → Γ(0), that is, the
E1-component of such an arrow. It will be denoted by

η(A,a,A0): (A, a,A0)→ Γ(Coker(A, a,A0)) = π0(A, a,A0)

Explicitly, this is just
A

a

��

// 0

��
A0 qa

// Coker(a)
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The new three-step factorization of an arrow (f, f0) in Arr(A) is provided by the com-
mutative square in the following diagram:

N (f, f0)
n(f,f0) // (A, a,A0)

(f,f0) //

cn(f,f0)

��

(B, b, B0)
c(f,f0) // C(f, f0)

ηC(f,f0) // π0(C(f, f0))

C(n(f,f0)) w(f,f0)

//

(f ′0,f0)
66

N (c(f,f0) · ηC(f,f0))

nc(f,f0)
·ηC(f,f0)

OO

where the down arrow is in E2, the arrow w(f,f0) is inM2 and the up arrow is inM1∩M2

being the Θ∆-kernel of an arrow with codomain of the form Γ(X) (use the dual of Lemma
4.2.6).

5. Arr(A) : the additive case

5.1. The 2-dimensional structure of Arr(A).

5.1.1. . From [10, 32], we know that, if A is an additive category with finite limits, there
are equivalences

Arr(A) ≃ RG(A) ≃ Grpd(A)
where RG(A) is the category of reflexive graphs in A, and Grpd(A) is the 2-category
of internal groupoids in A. Transporting the 2-categorical structure from Grpd(A) to
Arr(A), we get the following structure:

1. A 2-cell (A, a,A0)

(g,g0)
,,

(f,f0)

22⇑ φ (B, b, B0) is an arrow φ:A0 → B, as in the fol-

lowing diagram, such that f + a · φ = g and f0 + φ · b = g0

A
g //

f
//

a
��

B

b
��

A0

g0 //

f0
//

φ

88

B0

In particular, if the domain (f, f0) of the 2-cell φ is the pair of zero arrows (0AB, 0
A0
B0
),

then φ is nothing but a nullhomotopy on (g, g0) in the sense of Example 2.1.6.

2. The vertical composition α · β of

(A, a,A0)
''⇑ β

⇑ α
//
77

(B, b, B0)

is α + β. The identity 2-cell on an arrow (f, f0): (A, a,A0) → (B, b, B0) is the zero
arrow 0A0

B :A0 → B. Note that 2-cells are invertible with respect to vertical compo-
sition: the inverse of α is −α.
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3. The horizontal composition α ◦ β of

(A, a,A0)

(g,g0)
,,

(f,f0)

22⇑ α (B, b, B0)

(k,k0)
++

(h,h0)

33⇑ β (C, c, C0)

is α·h+g0 ·β or, equivalently, f0 ·β+α·k. In particular, the horizontal composition of
a 2-cell with identities 2-cells corresponds to the formula (f, f0)◦φ◦(h, h0) = f0 ·φ·h
for nullhomotopies in Arr(A), and this even if the domain of φ is not a zero arrow.

5.1.2. . Let us point out two aspects of the 2-categorical structure of Arr(A) which will
be useful later.

1. The absorption conditions of 2.1.3 hold in Arr(A) not only with respect to nullho-
motopies, but with respect to arbitrary 2-cells. Explicitly, for all

(A, a,A0)

(g,g0)
,,

(f,f0)

22⇑ α (B, b, B0)

(k,k0)
++

(h,h0)

33⇑ β (C, c, C0)

we have
α ◦ 0(B,b,B0)

(C,c,C0)
= 0

(A,a,A0)
(C,c,C0)

= 0
(A,a,A0)
(B,b,B0)

◦ β

This remark fits into the general situation discussed in Remark 2.2.6 and, in an even
more general context, in Remark 2.3.5.

2. For any 2-cell (A, a,A0)

(f,f0)
,,

(id,id)

22⇑ φ (A, a,A0) with domain an identity arrow,

one has φ ◦ (f, f0) = (f, f0) ◦ φ. Indeed,

φ◦ (f, f0) = φ ·f = φ · (id+a ·φ) = φ+φ ·a ·φ = (id+φ ·a) ·φ = f0 ·φ = (f, f0)◦φ

Now that we dispose of a 2-categorical structure on Arr(A), we can look at equiva-
lences in Arr(A). We recall an easy lemma and a corollary, which express a well-known
homotopy invariance. (The notation used in the statement of the lemma is made explicit
in the proof.)

5.1.3. Lemma. Let A be an additive category with kernels and cokernels. If there exists
a 2-cell

(A, a,A0)

(g,g0)
,,

(f,f0)

22⇑ φ (B, b, B0)

in Arr(A), then K(f) = K(g) and C(f0) = C(g0).
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Proof. The whole situation is depicted by the following diagram, where the arrow φ
satisfies the conditions f + a · φ = g and f0 + φ · b = g0,

Ker(a)
K(g) //

K(f)
//

ka
��

Ker(b)

kb
��

A
g //

f
//

a
��

B

b
��

A0

g0 //

f0
//

φ

55

ca
��

B0

cb
��

Coker(a)
C(g0) //

C(f0)
// Coker(b)

It follows that

K(g) · kb = ka · g = ka · f + ka · a · φ = ka · f = K(f) · kb

ca · C(g0) = g0 · cb = f0 · cb + φ · b · cb = f0 · cb = ca · C(f‡)

From the first equation, we get K(g) = K(f) because kb is a monomorphism. From the
second equation, we get C(g0) = C(f0) because ca is an epimorphism.

5.1.4. Corollary. Let A be an additive category with kernels and cokernels. If we have
an equivalence

(f, f0): (A, a,A0)→ (B, b, B0)

in the 2-category Arr(A), then K(f): Ker(a) → Ker(b) and C(f0): Coker(a) → Coker(b)
are isomorphisms.

Proof. Consider an equivalence (f, f0): (A, a,A0) → (B, b, B0) in Arr(A) with quasi-
inverse (f ∗, f ∗

0 ): (B, b, B0)→ (A, a,A0). Using Lemma 5.1.3 to justify the second equality,
we have

K(f) ·K(f ∗) = K(f · f ∗) = K(idA) = idKer(a)

and similarly K(f ∗) ·K(f) = idKer(b), so that K(f) is an isomorphism. In the same way,
C(f0) is an isomorphism.

5.1.5. . The converse of Corollary 5.1.4 is not true, even if we assume A to be abelian.
This fact is at the heart of Section 7. Using the terminology which will be introduced in
Proposition 6.1.3, Corollary 5.1.4 can be restated saying that every equivalence in Arr(A)
is a weak equivalence.

Before going on with the study of H-limits inArr(A), which is the object of Subsection
5.2, we state the next result, which reinforces Proposition 3.10 in [53]. The proof is very
close to that of Proposition 3.10 in [53] and can be omitted.
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5.1.6. Proposition. Let A be an additive category.

1. If A has finite colimits, then finite colimits in Arr(A) are 2-colimits.

2. If A has finite limits, then finite limits in Arr(A) are 2-limits.

5.2. Strong H-limits in Arr(A). In this section, we start observing that, whenA is ad-
ditive with finite (co)limits, then the Θ∆–(co)kernels in Arr(A) are strong H-(co)kernels.
Then, we go further by constructing, always under the assumption that A is additive with
finite limits and finite colimits, strong H-pushouts and strong H-pullbacks in Arr(A).

5.2.1. Proposition. Let A be an additive category.

1. If A has pushouts, then Θ∆-cokernels in Arr(A) are strong H-cokernels.

2. If A has pullbacks, then Θ∆-kernels in Arr(A) are strong H-kernels.

Proof. 1. InArr(A), the condition 2.2.7.2 expressing the fact that a H-cokernel is strong
gives the following diagram, where the dashed arrow is the 2-cell we are looking for:

A
f //

a

��

B

b

��

a′ // A0 +a,f B

[f0,b]

��

g //
h

// C

c

��
A0

f ′
66

f0
// B0 id

//

ψ

55

B0

g0 //
h0

//

ψ′

;;

C0

The hypothesis on ψ are h0+ψ ·c = g0. and a
′ ·h+b ·ψ = a′ ·g. The compatibility between

γ(f,f0) and ψ gives f ′ ·h+ f0 ·ψ = f ′ · g. The condition c(f,f0) ◦ψ′ = ψ becomes id ·ψ′ = ψ,
so that it remains only to prove that we can see ψ as a 2-cell (h, h0) ⇒ (g, g0). The first
condition is h0 + ψ · c = g0, which is the first hypothesis on ψ. The second condition is
h+ [f0, b] · ψ = g and we check it precomposing with a′ and f ′:

- a′ · (h+[f0, b] ·ψ) = a′ ·h+a′ · [f0, b] ·ψ = a′ ·h+ b ·ψ = a′ · g, where the last equality
is the second hypothesis on ψ.

- f ′ · (h + [f0, b] · ψ) = f ′ · h + f ′ · [f0, b] · ψ = f ′ · h + f0 · ψ = f ′ · g, where the last
equality precisely is the compatibility condition.

The proof of part 2 is dual.
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5.2.2. . We are going to construct strong H-pullbacks and strong H-pushouts in Arr(A).
The strategy is as follows: from [51] and [26], we know how to construct strong H-pullbacks
in Grpd(A) if A is a category with finite limits. If we assume that A is also additive,
then we can translate the construction from Grpd(A) to Arr(A) via the equivalences
Grpd(A) ≃ RG(A) ≃ Arr(A). Finally, we dualize what we get in Arr(A) so to have a
description also for strong H-pushouts. Now some more details.

5.2.3. . Let b:B → B0 be an object in Arr(A), with A additive. Consider its image by
the denormalization functor D:Arr(A)→ RG(A):

D(B, b, B0) = B0 ⊕B
π1
��

[id;b]
��

B0

i1

>>

By pulling back b along the domain π1 and along the codomain [id; b] of the reflexive
graph D(B, b, B0), we get two arrows in Arr(A):

←−
δ : B ⊕B

b⊕id
��

π1 // B

b
��

B0 ⊕B π1
// B0

←−γ : B ⊕B
b⊕id

��

[id;id] // B

b
��

B0 ⊕B
[id;b]

// B0

Let us write
←−B for the domain (B⊕B, b⊕ id, B0⊕B) of

←−
δ and←−γ . The second projection

π2:B0 ⊕B → B can be interpreted as a 2-cell in Arr(A)

←−B

←−γ
++

←−
δ

33
⇑ π2 (B, b, B0)

5.2.4. Lemma. Let A be an additive category.

1. In the situation hereunder, for every 2-cell φ there exists a unique arrow ←−φ such
that ←−φ · ←−δ = (f, f0), ←−φ · ←−γ = (g, g0) and ←−φ ◦ π2 = φ

←−B

←−
δ

��

←−γ

��

π2
⇒

(A, a,A0)

(g,g0)
,,

(f,f0)

22

←−φ

<<

⇑ φ (B, b, B0)
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2. The following diagram is a strong H-pullback in Arr(A):

←−B
←−γ //

←−
δ
��

(B, b, B0)

id
��

(B, b, B0) id
//

⇒
π2

(B, b, B0)

Proof. 1. Here is the passage from the 2-cell φ to the arrow ←−φ :

A
f

//
g //

a
��

B

b
��

A0
f0

//
g0 //

φ

88

B0

7→ A

a
��

⟨f ;a·φ⟩ // B ⊕B
b⊕id
��

A0 ⟨f0;φ⟩
// B0 ⊕B

This is the unique possibility. Indeed, if an arrow

A

a
��

h=⟨h1;h2⟩ // B ⊕B
b⊕id
��

A0
h0=⟨h01;h02⟩

// B0 ⊕B

satisfies the requested conditions, one has:

- h · b⊕ id = a · h0 implies h2 = a · h02,

- (h, h0) ·
←−
δ = (f, f0) implies h1 = f and h01 = f0,

- and finally (h, h0) ◦ π2 = φ implies h02 = φ.

2. The first point of the present lemma precisely means that the diagram in the second
point is a H-pullback. It remains to show that it is strong. For this, consider

(A, a,A0)
(g,g0) //

(f,f0)

��

(B, b, B0)

id
��

(B, b, B0) id
//

⇒φ

(B, b, B0)

(A, a,A0)
(g′,g′0)//

(f ′,f ′0)
��

(B, b, B0)

id
��

(B, b, B0) id
//

⇒
φ′

(B, b, B0)

together with 2-cells α: (f, f0)⇒ (f ′, f ′
0) and β: (g, g0)⇒ (g′, g′0) such that α · φ′ = φ · β.

The unique 2-cell, say

(A, a,A0)

←−
φ′

))

←−φ
55⇑ µ ←−B

such that µ ◦←−δ = α and µ ◦←−γ = β is ⟨α; β−α⟩:A0 → B⊕B. Indeed, the first condition
on µ forces the first component of µ to be α, and the second condition on µ forces the
second component of µ to be β − α.
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We need the following fact from Section 2 in [26].

5.2.5. Lemma. In a 2-category B with invertible 2-cells, consider the following diagram

D ×h,g′ P(f, g) h′ //

g′′

��

P(f, g) f ′ //

g′

��

B

g

��
D

h
//

⇒
id

A
f

//

⇒πf,g

C

If the right-hand square is a strong H-pullback and the left-hand square is a 2-pullback,
then the total diagram is a strong H-pullback.

5.2.6. Corollary. If A is an additive category with finite limits, then Arr(A) has
strong H-pullbacks.

Proof. Thanks to Proposition 5.1.6, Lemma 5.2.4 and Lemma 5.2.5, the strong H-
pullback

P((f, f0), (g, g0))
(f,f0)′ //

(g,g0)′

��

(C, c, C0)

(g,g0)
��

(A, a,A0)
(f,f0)

//

⇒
π(f,f0),(g,g0)

(B, b, B0)

is obtained by the following diagram, whose solid part is, by construction, a limit (and
therefore a 2-limit) in Arr(A),

P((f, f0), (g, g0))
(g,g0)′

ss

←−π (f,f0),(g,g0)��

(f,f0)′

++
(A, a,A0)

(f,f0)
$$

←−B
←−
δ

xx

←−γ

&&

(C, c, C0)

(g,g0)
zz

(B, b, B0)

id
''

π2
⇒ (B, b, B0)

id
ww

(B, b, B0)

and π(f,f0),(g,g0) =
←−π (f,f0),(g,g0) ◦ π2.

5.2.7. . We pass now to strong H-pushouts in Arr(A). If A is an additive category, we
can associate to an object b:B → B0 of Arr(A) a coreflexive graph

B

i2
��

⟨b;id⟩
��

B0 ⊕B

π2

::



1852 ENRICO M. VITALE

and we can construct two arrows in Arr(A) via the following pushouts:

−→
δ : B

b
��

i2 // B0 ⊕B
id⊕b
��

B0 i2
// B0 ⊕B0

−→γ : B
b
��

⟨b;id⟩ // B0 ⊕B
id⊕b
��

B0 ⟨id;id⟩
// B0 ⊕B0

Let us write
−→B for the codomain (B0⊕B, id⊕ b, B0⊕B0) of

−→
δ and −→γ . The first injection

i1:B0 → B0 ⊕B can be interpreted as a 2-cell in Arr(A)

(B, b, B0)

−→γ
))

−→
δ

55⇑ i1
−→B

5.2.8. Lemma. Let A be an additive category.

1. In the situation hereunder, for every 2-cell φ there exists a unique arrow −→φ such
that

−→
δ · −→φ = (f, f0), −→γ · −→φ = (g, g0) and i1 ◦ −→φ = φ

−→B

−→φ

||

i1
⇒

(A, a,A0) ⇑ φ (B, b, B0)

(g,g0)
rr

(f,f0)

ll

−→γ

YY

−→
δ

EE

2. The following diagram is a strong H-pushout in Arr(A):

(B, b, B0)
id //

id
��

(B, b, B0)

−→γ
��

(B, b, B0) −→
δ

//

⇒
i1

−→B

Thanks to Proposition 5.1.6, Lemma 5.2.8, whose proof is left to the reader, and to
the dual of Lemma 5.2.5, whose formulation is also left to the reader, we can conclude to
the existence of strong H-pushouts in Arr(A).

5.2.9. Corollary. If A is an additive category with finite colimits, then Arr(A) has
strong H-pushouts.
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Proof. The strong H-pushout

(B, b, B0)
(g,g0) //

(f,f0)
��

(C, c, C0)

(f,f0)′

��
(A, a,A0)

(g,g0)′
//

⇒
θ(f,f0),(g,g0)

Q((f, f0), (g, g0))

is obtained by the following diagram, whose solid part is, by construction, a colimit (and
therefore a 2-colimit) in Arr(A),

(B, b, B0)

id

ww

id

''
(B, b, B0)

(f,f0)

zz

−→
δ

&&

i1
⇒ (B, b, B0)

−→γ

xx

(g,g0)

$$
(A, a,A0)

(g,g0)′ ++

−→B
−→
θ (f,f0),(g,g0)

��

(C, c, C0)

(f,f0)′ss
Q((f, f0), (g, g0))

and θ(f,f0),(g,g0) = i1 ◦
−→
θ (f,f0),(g,g0).

6. Arr(A) : the abelian case

6.1. Weak equivalences in Arr(A). The aim of this section is to show that, when
the base category A is abelian, in the three-step factorizations of an arrow of Arr(A)
obtained in 4.2.5 and 4.2.7, the middle term is a weak equivalence, that is, an element of
E1 ∩M2. For this, in 6.1.2 and 6.1.3, we collect and complete some known material on
abelian categories and organize it in a way convenient for the proof of Proposition 6.1.5.
We do not take care to state each single result in its greatest generality, since the overall
result needs A to be abelian and to work with this assumption makes the exposition
simpler.

6.1.1. . Starting from an arrow (f, f0): (A, a,A0) → (B, b, B0) in Arr(A) and assuming
that A has zero object, finite colimits and finite limits, we can construct the following
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diagram

Ker⟨a, f⟩
k⟨a,f⟩

��

K(id) // Ker(a)
K(f) //

ka
��

Ker(b)

kb
��

K(a′) // Ker[f0, b]

k[f0,b]
��

A id //

⟨a,f⟩
��

A
f //

a

��

B
b

��

a′ // A0 +a,f B

[f0,b]

��
A0 ×f0,b B

f ′0

33

b′
//

q⟨a,f⟩
��

A0

f ′

33

f0
//

qa
��

B0

(⋆)

id
//

qb
��

B0

q[f0,b]

��
Coker⟨a, f⟩

K(b′)
// Coker(a)

C(f0)
// Coker(b)

C(id)
// Coker[f0, b]

where the dashed arrows are the structural nullhomotopies of N (f, f0) and C(f, f0).
We recall two results from [52] (see also Lemma 4.5.1 in [7] for the first one and [28]

for the second one). The second one is the snail lemma, a variant of the classical snake
lemma.

6.1.2. Lemma. (With the notation of 6.1.1.) Let A be an abelian category.

1. In the following diagram

A
f //

⟨a,f⟩

%%

a

��

B

b

��

a′

��

A0 ×f0,b B

f ′0

22

q⟨a,f⟩ ''
b′

��

Ker[f0, b]
k[f0,b]

&&
Coker⟨a, f⟩

i

OO

A0+a,f

[f0,b] ##
A0 f0

//
f ′

22

B0

there exists a unique arrow i: Coker⟨a, f⟩ → Ker[f0, b] such that

q⟨a,f⟩ · i · k[f0,b] = b′ · f ′ − f ′
0 · a′

Moreover, the arrow i is an isomorphism.

2. Let us write H(f, f0) for any of the isomorphic objects Coker⟨a, f⟩ ≃ Ker[f0, b]. The
following sequence is exact:

0 // Ker⟨a, f⟩ K(id) // Ker(a)
K(f) // Ker(b)

K(a′) // H(f, f0)

H(f, f0)
C(b′)

// Coker(a)
C(f0)

// Coker(b)
C(id)

// Coker[f0, b] // 0
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In the next proposition, we conclude the study of the classes E1 andM2 introduced in
Section 4. The terminology we use comes from the equivalence Arr(A) ≃ Grpd(A). In
fact, Conditions 1.(c) and 2.(c) are intended to simplify the comparison with [26], where
a more detailed discussion can be found.

6.1.3. Proposition. (With the notation of 6.1.1 and 6.1.2.) Let A be an abelian cate-
gory. Consider an arrow (f, f0): (A, a,A0)→ (B, b, B0) in Arr(A)

A
f //

a
��

B

b
��

A0 f0
// B0

(⋆)

1. The following conditions are equivalent. When they are satisfied, we say that (f, f0)
is faithful.

(a) K(f): Ker(a)→ Ker(b) is a monomorphism,

(b) ⟨a, f⟩:A→ A0 ×f0,b B is a monomorphism,

(c) ⟨a; f⟩:A→ A0 ⊕B is a monomorphism.

2. The following conditions are equivalent. When they are satisfied, we say that (f, f0)
is essentially surjective.

(a) C(f0): Coker(a)→ Coker(b) is an epimorphism,

(b) [f0, b]:A0 +a,f B → B0 is an epimorphism,

(c) [f0; b]:A0 ⊕B → B0 is an epimorphism.

3. The following conditions are equivalent. When they are satisfied, we say that (f, f0)
is full.

(a) K(f) is an epimorphism and C(f0) is a monomorphism,

(b) ⟨a, f⟩:A→ A0 ×f0,b B is an epimorphism,

(c) [f0, b]:A0 +a,f B → B0 is a monomorphism,

(d) H(f, f0) = 0,

(e) the structural nullhomotopies of N (f, f0) and C(f, f0) are compatible, that is,
ν(f,f0) ◦ c(f,f0) = n(f,f0) ◦ γ(f,f0).

4. (f, f0) is full and faithful iff it is inM2, that is, iff (⋆) is a pullback.

5. (f, f0) is full and essentially surjective iff it is in E1, that is, iff (⋆) is a pushout.

6. The following conditions are equivalent. When they are satisfied, we say that (f, f0)
is a weak equivalence.



1856 ENRICO M. VITALE

(a) K(f) and C(f0) are isomorphisms,

(b) (f, f0) is full, faithful and essentially surjective,

(c) (f, f0) ∈ E1 ∩M2, that is, (⋆) is a pullback and a pushout.

Proof. 1. The equivalence between (a) and (b) comes from the snail exact sequence of
Lemma 6.1.2.2, which gives that Ker⟨a, f⟩ is the kernel of K(f). The equivalence between
(b) and (c) comes from the commutativity of the following triangle, where the arrow e is
the canonical equalizer defining the pullback as a subobject of the product

A
⟨a,f⟩ //

⟨a;f⟩ $$

A0 ×f0,b B
e

��
A0 ×B

2. Dual of 1.
3. The equivalence between (a) and (d) comes from the exactness in Ker(b), H(f, f0)
and Coker(a) of the snail sequence in Lemma 6.1.2.2. The equivalences between (b) and
(d) and between (c) and (d) come from Lemma 6.1.2.1 because H(f, f0) ≃ Coker⟨a, f⟩
and H(f, f0) ≃ Ker[f0, b]. The equivalence between (d) and (e) also comes from Lemma
6.1.2.1 because ν(f,f0) ◦ c(f,f0) = n(f,f0) ◦ γ(f,f0) iff f ′

0 · a′ = b′ · f ′ iff q⟨a,f⟩ · i · k[f0,b] = 0 iff
i = 0:Coker⟨a, f⟩ → Ker[f0, b] and i is an isomorphism.
4. Obvious: the commutative square (⋆) is a pullback iff its factorization ⟨a, f⟩ through
the pullback A0×f0,bB is an isomorphism, that is, a monomorphism and an epimorphism.
5. Dual of 4.
6. The implication (a) ⇒ (b) follows from points 1., 2. and 3. The implication (b) ⇒
(c) follows from points 4. and 5. The implication (c) ⇒ (a) is obvious: in any category,
if (⋆) is a pullback, then K(f) is an isomorphism, if (⋆) is a pushout, then C(f0) is an
isomorphism.

6.1.4. Corollary. Consider an arrow (f, f0): (A, a,A0) → (B, b, B0) in Arr(A), with
A abelian.

1. If f :A→ B is a monomorphism, then (f, f0) is faithful.

2. If f0:A0 → B0 is an epimorphism, then (f, f0) is essentially surjective.

Proof. 1. Since K(f) ·kb = ka ·f, if f is a monomorphism then K(f) also is a monomor-
phism. We can conclude by point 1. of Proposition 6.1.3.

We can now prove a result, announced in 4.2.1, on the three-step factorizations of an
arrow in Arr(A).
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6.1.5. Proposition. Let A be an abelian category and let (f ; f0): (A, a,A0)→ (B, b, B0)
be an arrow in Arr(A). Consider the factorizations obtained in 4.2.5 and 4.2.7:

(A, a,A0)

cεN (f,f0)
·n(f,f0)

��

(f,f0) // (B, b, B0)

C(εN (f,f0) · n(f,f0)) w(f,f0)

// N (c(f,f0))

nc(f,f0)

OO
(A, a,A0)

(f,f0) //

cn(f,f0)

��

(B, b, B0)

C(n(f,f0)) w(f,f0)

// N (c(f,f0) · ηC(f,f0))

nc(f,f0)
·ηC(f,f0)

OO

The arrows w(f,f0) and w(f,f0) are weak equivalences.

Proof. We prove that w(f,f0): C(εN (f,f0) · n(f,f0)) → N (c(f,f0)) is a weak equivalence, the
proof for w(f,f0): C(n(f,f0)) → N (c(f,f0) · ηC(f,f0)) is dual. Let us write explicitly the first
diagram appearing in the statement:

A
f //

a

��

qk⟨a,f⟩

��

B

b

��
A0

f0 //

id

��

B0

Coker(k⟨a,f⟩)
⟨a,f⟩·f ′0 //

⟨a,f⟩·b′

��

B

a′

��

id

FF

A0
f ′

//

(we)

A0 +a,f B

[f0,b]

FF

where ⟨a, f⟩ is the unique arrow making commutative the following diagram

Ker⟨a, f⟩
k⟨a,f⟩ // A

⟨a,f⟩ //

qk⟨a,f⟩
��

A0 ×f0,b B

Coker(k⟨a,f⟩)
⟨a,f⟩

55

We have to prove that the commutative square (we) is a weak equivalence and we already
know that it is a pushout (see 4.2.5). Following Proposition 6.1.3, to prove that (we) is a
pullback it suffices to prove that its factorization through the pullback, as in the following
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diagram, is a monomorphism:

Coker(k⟨a,f⟩)
⟨a,f⟩·f ′0

''

⟨⟨a,f⟩·b′,⟨a,f⟩·f ′0⟩
))

⟨a,f⟩·b′
..

A0 ×f ′,a′ B
f ′′

//

a′′

��

B

a′

��
A0

f ′
// A0 +a,f B

For this, observe that

a′′ · f0 = a′′ · f ′ · [f0, b] = f ′′ · a′ · [f0, b] = f ′′ · b
so that there is a unique arrow ⟨a′′, f ′′⟩:A0×f ′,a′B → A0×f0,bB such that [a′′, f ′′] · b′ = a′′

and [a′′, f ′′] · f ′
0 = f ′′. Now we claim that the following triangle commutes

Coker(k⟨a,f⟩)
⟨⟨a,f⟩·b′,⟨a,f⟩·f ′0⟩ //

⟨a,f⟩ ''

A0 ×f ′,a′ B

⟨a′′,f ′′⟩ww
A0 ×f0,b B

If this is the case, then we are done because ⟨a, f⟩ is a monomorphism (being the mono
part of the epi-mono factorization of ⟨a, f⟩ in A), so that ⟨⟨a, f⟩ · b′, ⟨a, f⟩ · f ′

0⟩ also is a
monomorphism, as required. To check that the above triangle commutes, it suffices to
compose with the projections of the pullback A0 ×f0,b B:

⟨⟨a, f⟩ · b′, ⟨a, f⟩ · f ′
0⟩ · ⟨a′′, f ′′⟩ · b′ = ⟨⟨a, f⟩ · b′, ⟨a, f⟩ · f ′

0⟩ · a′′ = ⟨a, f⟩ · b′

⟨⟨a, f⟩ · b′, ⟨a, f⟩ · f ′
0⟩ · ⟨a′′, f ′′⟩ · f ′

0 = ⟨⟨a, f⟩ · b′, ⟨a, f⟩ · f ′
0⟩ · f ′′ = ⟨a, f⟩ · f ′

0

6.1.6. . Even if we will not use it in the rest of the paper, to complete the picture we
recall here another characterization of the classes of arrows introduced in Proposition
6.1.3. All but the last point can be deduced from Proposition 6.1.3 using the fact that,
in an abelian category, a complex f · g = 0 is exact iff kg · qf = 0.
Consider an arrow (f, f0): (A, a,A0)→ (B, b, B0) in Arr(A) together with the complex

S : 0 // A
⟨a;−f⟩// A0 ⊕B

[f0;b] // B0
// 0

1. (f, f0) is faithful iff S is exact in A.

2. (f, f0) is essentially surjective iff S is exact in B0.

3. (f, f0) is full iff S is exact in A0 ⊕B.

4. (f, f0) is a weak equivalence iff S is exact.

5. (f, f0) is an equivalence iff S is split exact.
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6.1.7. Remark. Putting together Lemma 5.1.3 and Proposition 6.1.3, we can deduce
that the classes of arrows studied in Proposition 6.1.3 are stable under 2-cells and under
composition with weak equivalences. Moreover, if a composite arrow is faithful, then the
first term is faithful, and if the composite is essentially surjective, then the last term
is essentially surjective. The above stability conditions are not satisfied by the classes
M1 and E2 studied in Section 4. In fact, the stabilization under composition with weak
equivalences of the class M1 is the class of faithful arrows, and the stabilization under
composition with weak equivalences of the class E2 is the class of essentially surjective
arrows. This explains why, to get factorization systems in a bicategorical sense (see
[31, 34, 17]) in the bicategory of fractions Arr(A)[Σ−1], one can use the classes E1 and
M2, but the classesM1 and E2 have to be replaced by the classes of faithful arrows and
of essentially surjective arrows.

Proof. Let us explain the case of M1, the case of E2 is dual. Consider the (E1,M1)
factorization of a faithful arrow (f, f0): (A, a,A0)→ (B, b, B0) as in Proposition 4.1.6

(A, a,A0)
(f,f0) //

(f,f ′) ((

(B, b, B0)

(B, a′, A0 +a,f B)

(idB ,[f0,b])

66

The E1-component is full and essentially surjective by Proposition 6.1.3, and it is faithful
because (f, f0) is faithful. Therefore, it is a weak equivalence. This means that every
faithful arrow can be obtained by composing a weak equivalence with an arrow inM1.

6.2. Calculus of fractions in Arr(A).

6.2.1. Lemma. (With the notation of 5.2.3 and 5.2.7.) Let A be an additive category.
Fix an object (B, b, B0) in Arr(A). The following arrows are equiivalences:

←−γ :←−B → (B, b, B0) ,
←−
δ :
←−B → (B, b, B0) , −→γ : (B, b, B0)→

−→B ,
−→
δ : (B, b, B0)→

−→B

Proof. Recall, from Lemma 5.2.4 and Lemma 5.2.8, that the following diagrams are,
respectively, a strong H-pullback and a strong H-pushout.

←−B
←−γ //

←−
δ
��

(B, b, B0)

id
��

(B, b, B0) id
//

⇒
π2

(B, b, B0)

(B, b, B0)
id //

id
��

(B, b, B0)

−→γ
��

(B, b, B0) −→
δ

//

⇒
i1

−→B

Since equivalences are stable under bipullbacks and bipushouts, we are done.
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In the rest of this section, we denote by Σ the class of weak equivalences in Arr(A),
for A an abelian category. This means that an arrow (f, f0): (A, a,A0)→ (B, b, B0) is in
Σ when the square

A
f //

a
��

B

b
��

A0 f0
// B0

is a pullback and a pushout or, equivalently, when the induced arrows K(f) and C(f0)
are isomorphisms (see Proposition 6.1.3).

6.2.2. Proposition. Let A be an abelian category. The class Σ of weak equivalences in
Arr(A) is a bipullback congruence and a bipushout congruence.

Proof. First of all, note that the statement makes sense because, by Corollary 5.2.6
and Corollary 5.2.9, Arr(A) has strong H-pullbacks and strong H-pushouts, and then it
has bipullbacks and bipushouts. We are going to check conditions 1), 2), 3) and 4) of
Definition 3.1.3. The proof of condition 4’) is dual to that of condition 4) and we omit it.
1) Σ contains the equivalences. This follows from Corollary 5.1.4 and Proposition 6.1.3.6.
2) If there exists a 2-cell φ: (f, f0) ⇒ (g, g0), then (f, f0) ∈ Σ iff (g, g0) ∈ Σ. By Lemma
5.1.3, K(f) = K(g) and C(f0) = C(g0). By point 6 of Proposition 6.1.3, we are done.
3) Σ satisfies the “2 out of 3” rule. This follows once again from Proposition 6.1.3.6,
because the class of isomorphisms obviously satisfies such a rule.
4) Σ is stable under bipullbacks. Recall from Corollary 5.2.6 that a bipullback of two
arrows

(A, a,A0)
(f,f0) // (B, b, B0) (C, c, C0)

(g,g0)oo

in Arr(A) can be obtained as the following limit

P((f, f0), (g, g0))
(g,g0)′

ss

←−π (f,f0),(g,g0)��

(f,f0)′

++
(A, a,A0)

(f,f0) &&

←−B

←−
δvv ←−γ ((

(C, c, C0)

(g,g0)xx
(B, b, B0) (B, b, B0)

We assume that (f, f0) is a weak equivalence and we have to show that (f, f0)
′ is a weak

equivalence too. Observe that the previous limit can be computed by performing two
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pullbacks

P((f, f0), (g, g0))

uu (f,f0)′

((ww
))

(A, a,A0)

(f,f0) &&

(1)
←−B

←−
δvv ←−γ ((

(2) (C, c, C0)

(g,g0)xx
(B, b, B0) (B, b, B0)

Let us write explicitly the first pullback:

A⊕B f⊕id //

a⊕id

��

π1

zz

B ⊕B
π1

zz
b⊕id

��

A
f //

a

��

B

b

��

A0 ⊕B
f0⊕id //

π1

{{

B0 ⊕B

π1zz
A0 f0

// B0

The front face is a pullback by assumption. The top and the bottom faces are pullbacks
by construction. The right and the left faces commute by construction. As a consequence,
the back face is a pullback. Now we can write explicitly the second pullback:

(A⊕B)×[f ;id],g C //

��

uu

C

c

��

g

~~
A⊕B f⊕id //

a⊕id

��

B ⊕B [id;id] //

b⊕id

��

B

b

��

(A0 ⊕B)×[f0;b],g0 C0
//

vv

C0

g0~~
A0 ⊕B f0⊕id

// B0 ⊕B
[id;b]

// B0

The front face is a pullback because it is the pasting of two pullbacks: the one on the left is
the back face of the previous cube and the one on the right is a pullback by Lemma 6.2.1.
The top and the bottom faces are pullbacks by construction. The right face commutes
by assumption and the left face commutes by construction. As a consequence, the back
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face is a pullback, that is, as an arrow in Arr(A) it is full and faithful by point 4 of
Proposition 6.1.3. Now recall that (f, f0), being a weak equivalence, is in particular
essentially surjective. This means that [f0; b]:A0 ⊕B → B0 is an epimorphism (see point
2. of Proposition 6.1.3). Therefore, in the previous diagram the unlabelled arrow

(A0 ⊕B)×[f0;b],g0 C0 −→ C0

is an epimorphism (because it is obtained by pulling back an epimorphism in an abelian
category). By Corollary 6.1.4, this implies that the back face is essentially surjective. Us-
ing once again Proposition 6.1.3, we can conclude that the back face is a weak equivalence
and the proof is complete.

7. Arr(A)[Σ−1] is 2-abelian
7.1. 2-abelian bicategories. In order to recall the definition of 2-abelian bicategory
introduced by M. Dupont in his Ph.D. Thesis [15], we need a construction for bicategories
parallel to the one done in 4.2.2-4.2.4 for categories with nullhomotopies.

7.1.1. . Let B be a bicategory with invertible 2-cells. Assume that B has a bizero object
0, bikernels and bicokernels. For an object X ∈ B, we define π0(X) and π1(X) by the
following diagrams:

C(n0X ) = π1(X)
εX

&&

⇑ εX

π0(X) = N (c0X )

nc
0X

&&

0

νc
0X

⇓

&&
⇑ ηX

N (0X)
n0X //

0

ν0X ⇑

55

0

γn0X
⇓

11

0
0X //

cn0X

88

X

ηX
88

0X //

0

γ
0X

⇑
550

c
0X // C(0X)

where (εX , εX) is the fill-in provided by the universal property of the bicokernel C(n0X )
and (ηX , ηX) is the fill-in provided by the universal property of the bikernel N (c0X ).

7.1.2. Lemma. Let B be as in 7.1.1.

1. (a) Consider arrows n, g, k and a 2-cell λ as in the following diagram:

N n
//

0

⇓ γn
&&

0 cn
// C(n) g

//

0

γg ⇓
''

X cg
//

0

⇓ λ
&&C(g)

k
// Y

Then, there exists a unique 2-cell λ: 0⇒ k such that (0cg ◦ 0Y ) · (cg ◦ λ) = λ.

(b) Consider arrows n, g, h and k as in the following diagram:

N n
//

0

⇓ γn
&&

0 cn
// C(n) g

//

0

γg ⇓
''

X cg
// C(g)

k
//

h // Y
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Let λ: cg · h ⇒ cg · k be a 2-cell. Then, there exists a unique 2-cell λ:h ⇒ k
such that cg ◦ λ = λ.

2. (a) Consider arrows k, g, c and a 2-cell λ as in the following diagram:

X
k

//

0

⇓ λ
&&N (g) ng
//

0

νg ⇓
''

Y g
// N (c) nc

//

0

⇓ νc
%%

0 c
// C

Then, there exists a unique 2-cell λ: 0⇒ k such that (0X ◦ 0ng) · (λ ◦ ng) = λ.

(b) Consider arrows h, k, g and c as in the following diagram:

X
k

//
h // N (g) ng

//

0

νg ⇓
''

Y g
// N (c) nc

//

0

⇓ νc
%%

0 c
// C

Let λ:h · ng ⇒ k · ng be a 2-cell. Then, there exists a unique 2-cell λ:h ⇒ k
such that λ ◦ ng = λ.

Proof. 1.(a) In order to apply Remark 2.3.8 to the 2-cell λ, we have to check the condition
(0g ◦ 0Y ) · (g ◦ λ) = (0C(n) ◦ 0k) · (γg ◦ k). Thanks to 2.3.7, it is enough to precompose with
cn and to verify the condition cn · (0g ◦ 0Y ) · (g ◦ λ) = cn · (0C(n) ◦ 0k) · (γg ◦ k). This last
equality is verified because it involves 2-cells between arrows whose domain is a bizero
object.
1.(b) In order to apply condition 2.3.6.2” to the 2-cell λ, we have to check the condition
(0C(n) ◦ 0h) · (γg ◦ h) · (g ◦ λ) = (0C(n) ◦ 0k) · (γg ◦ k). Thanks to 2.3.7, it is enough to check
this equation precomposed with cn: 0 → P and we conclude as in the first part of the
proof.

7.1.3. . Let B be as in 7.1.1. Fix an arrow f :A → B in B and consider the following
diagram

π1(N (f))
εN (f) //

0

γεN (f)·nf
⇑

//

N (f)
nf //

0

νf ⇓
&&

A

0

⇓ γf
''

cεN (f)·nf

��

f

τf ⇓
// B

cf // C(f)

C(εN (f) · nf ) wf

//

tf
⇒ ψf

88

N (cf )

ncf

OO

0

⇑ νcf

EE

Let us start by explaining how to get the arrow wf and a 2-celle ωf to fill-in the square.
The pair (tf , τf ) is a fill-in of (f, (0εN (f) ◦ 0B) · (εN (f) ◦ νf )) through the bicokernel of
εN (f) · nf . Now we put X = N (f) in 7.1.1 and we apply Lemma 7.1.2.1(a) by taking

n = n0N (f)
, g = εN (f) ·nf , k = tf · cf and λ = γf · (τf ◦ cf ). We obtain a 2-cell λ: 0⇒ tf · cf .



1864 ENRICO M. VITALE

Finally, the pair (wf , ψf ) is a fill-in of (tf , λ) through the bikernel of cf . If we call ωf =
τf · (cεN (f)·nf

◦ ψf ), we get

A
f //

cεN (f)·nf

��

B

⇓ ωf

C(εN (f) · nf ) wf

// N (cf )

ncf

OO

We are going to prove that the pair (cεN (f)·nf
· wf , ωf ) is a fill-in of (f, γf ) through the

bikernel of cf . Moreover, the pair (wf , ωf ) is characterized by such a condition, in the
sense that, if an arrow x: C(εN (f)·nf

)→ N (cf ) and a 2-cell ξ: f ⇒ cεN (f)·nf
·x ·ncf are such

that the pair (cεN (f)·nf
· x, ξ) is another fill-in of (f, γf ) through the bikernel of cf , then

there exists a unique 2-cell ξ:x⇒ wf such that ξ · (cεN (f)·nf
◦ ξ ◦ ncf ) = ωf .

Proof. The first thing to prove is that (cεN (f)·nf
·wf , ωf ) is a fill-in of (f, γf ) through the

bikernel of cf . This amounts to the commutativity of the following diagram:

cεN (f)·nf
· wf · 0

N (cf )

C(f)

cεN (f)·nf
·wf◦νcf +3 cεN (f)·nf

· wf · ncf · cf

0AC(f)

0
cεN (f)·nf

·wf ◦0C(f)

KS

0
cεN (f)·nf ◦0C(f) +3

λ

'/

γf

��

cεN (f)·nf
· 0C(εN (f)·nf )

C(f)

cεN (f)·nf
◦0wf ◦0C(f)

ck

cεN (f)·nf
◦λ

"*
f · cf τf◦cf

+3 cεN (f)·nf
· tf · cf

cεN (f)·nf
◦ψf◦cf

KS

The four regions commute: by the condition on (wf , ψf ) to be a fill-in (the top-right
triangle), by point 4 of Remark 2.3.5 (the top-left triangle), by the fact that λ factors
through λ (the triangle in the middle), by the definition of λ (the bottom-left triangle).
Now assume that the pair (cεN (f)·nf

· x, ξ) is another fill-in of (f, γf ) through the bikernel
of cf . By the essential uniqueness of the fill-in in the universal property of the bikernel,

there exists a unique 2-cell ξ̂: cεN (f)·nf
· x ⇒ cεN (f)·nf

· wf such that ξ · (ξ̂ ◦ ncf ) = ωf . We

can apply 7.1.2.1(b) by taking n = n0N (f)
, g = εN (f) ·nf , h = x, k = wf and λ = ξ̂. We get

a unique 2-cell ξ:x⇒ wf such that cεN (f)·nf
◦ ξ = ξ̂. It follows that

ξ · (cεN (f)·nf
◦ ξ ◦ ncf ) = ξ · (ξ̂ ◦ ncf ) = ωf
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Uniqueness of ξ: if ψ:x⇒ wf is another 2-cell such that ξ · (cεN (f)·nf
◦ψ ◦ ncf ) = ωf , then

cεN (f)·nf
◦ ψ = ξ̂ by definition of ξ̂, and then ψ = ξ by definition of ξ.

7.1.4. . Let B be as in 7.1.1 and consider once again an arrow f :A → B in B. Starting
from

N (f) nf

//

0

νf ⇓
&&

A
f

//

0

⇓ γf ''
B cf

// C(f)
ηC(f) // π0(C(f))

and using Lemma 7.1.2.2, we get

A
f //

cnf

��

B

⇓ ωf

C(nf ) wf

// N (cf · ηC(f))

ncf ·ηC(f)

OO

which is a fill-in of (f, νf ) through the bicokernel of nf . Moreover, the pair (wf , ωf ) is
characterized by such a condition. The various steps to construct wf and ωf are dual of
those in 7.1.3.

7.1.5. Definition. (M. Dupont [15]) A bicategory B is 2-abelian if:

1) 2-cells in B are invertible;

2) B has a bizero object, bicokernels, bikernels, bicoproducts and biproducts;

3) B is 2-Puppe exact: for every arrow f :A → B in B, the arrows wf and wf con-
structed in 7.1.3 and 7.1.4 are equivalences.

7.2. The main result. In this section, we prove that, when the base category A is
abelian, the bicategory of fractions of Arr(A) with respect to the class Σ of weak equiv-
alences is 2-abelian.

7.2.1. Lemma. Let B be a bicategory with invertible 2-cells, zero object, bicokernels and
bikernels. Consider a class Σ of arrows in B and assume that it is a bipullback congruence
and a bipushout congruence. Fix an arrow (v, f):A→ B in Br[Σ−1] together with a chosen
2-cell φ: (v, f)⇒ P r

Σ(u)
−1 · P r

Σ(f) (see 3.1.1.8).

1. If the diagram hereunder on the left is the three-step factorization of f in B as
in 7.1.3, then the diagram hereunder on the right is the corresponding three-step
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factorization of (v, f) in Br[Σ−1].

I
f //

cεN (f)·nf

��

B

C(εN (f) · nf ) wf

// N (cf )

ncf

OO

⇓ ωf

A
(v,f)

φ ⇓
//

P r
Σ(v)

−1

��

B

I

P r
Σ(cεN (f)·nf

)

��

P r
Σ(f)

33

⇓ P r
Σ(ωf )

C(εN (f) · nf )
P r
Σ(wf )

// N (cf )

P r
Σ(ncf

)

OO

2. If the diagram hereunder on the left is the three-step factorization of f in B as
in 7.1.4, then the diagram hereunder on the right is the corresponding three-step
factorization of (v, f) in Br[Σ−1].

I
f //

cnf

��

B

⇓ ωf

C(nf ) wf

// N (cf · ηC(f))

ncf ·ηC(f)

OO A
(v,f)

⇓ φ
//

P r
Σ(v)

−1

��

B

I

P r
Σ(cnf

)

��

P r
Σ(f)

33

⇓ P r
Σ(ωf )

C(nf )
P r
Σ(wf )

// N (cf · ηC(f))

P r
Σ(ncf ·ηC(f) )

OO

Proof. Observe that, since P r
Σ:B → Br[Σ−1] preserves zero object, bikernels and bicok-

ernels (see Corollary 3.2.3), it preserves also the construction of π0 and π1 (see 7.1.1).
1. Since P r

Σ preserves zero object, bikernels and bicokernels, and keeping in mind the
description of bikernels and bicokernels in Br[Σ−1] established in 3.2.4, the factorisation
of (v, f) fits into the following diagram (compare with 7.1.3)

π1(N (f))
P r
Σ(εN (f)) //

0

P r
Σ(γεN (f)·nf

) ⇑

--

N (f)
P r
Σ(nf ) //

0

ν(v,f) ⇓

((
I

P r
Σ(v) // A

0

⇓ γ(v,f)
''

P r
Σ(v)

−1

��

(v,f) // B
P r
Σ(cf ) // C(f)

I

P r
Σ(cεN (f)·nf

)

��

⇓ ω(v,f)

C(εN (f) · nf ) w(v,f)

// N (cf )

P r
Σ(ncf

)

OO

0

⇑ P r
Σ(νcf )

II

Therefore, following 7.1.3, all what we have to do is to prove that the pair

(P r
Σ(v)

−1 · P r
Σ(cεN (f)·nf

) · P r
Σ(wf ), φ · (P r

Σ(v)
−1 ◦ P r

Σ(ωf )))
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is a fill-in of ((v, f), γ(v,f)) through the bikernel of c(v,f) = P r
Σ(cf ). This amounts to the

commutativity of the following diagram (where we omit to write P r
Σ and we write cg for

cεN (f)·nf
to make it readable):

0AC(f)
0
v−1·cg ·wf ◦0C(f) +3

0v
−1◦0C(f) $,

γ(v,f)

��

v−1 · cg · wf · 0
N (cf )

C(f)

v−1·cg ·wf◦νcf

��

v−1 · 0IC(f)
v−1◦0cg ·wf ◦0C(f)

08

v−1◦γf
��

(v, f) · cf φ◦cf
+3 v−1 · f · cf

v−1◦ωf◦cf
+3 v−1 · cg · wf · ncf · cf

The three regions commute: the triangle on the top commutes by 2.3.5.4, the trapezoid
on the left is the description of γ(v,f) given in 3.2.4.2, and the trapezoid on the right
commutes because the pair (cεN (f)·nf

· wf , ωf ) is a fill-in of (f, γf ) through the bikernel of
cf .
2. Using once again 3.2.3 and 3.2.4, the proof reduces to check that the pair

(P r
Σ(wf ) · P r

Σ(ncf ·ηC(f)), φ · (P
r
Σ(v)

−1 ◦ P r
Σ(ωf )))

is a fill-in of ((v, f), ν(v,f)) through the bicokerne of n(v,f) = P r
Σ(nf ) · P r

Σ(v). Since such a
bicokernel can be described using the bicokernel of nf as

N (f)
P r
Σ(nf )

//

0

⇓ P r
Σ(γnf

)

$$
I

P r
Σ(v)

//

idI

⇓ α
%%

A
P r
Σ(v)

−1
// I

P r
Σ(cnf

)
// C(nf )

where α attests that P r
Σ(v) and P

r
Σ(v)

−1 are quasi-inverse equivalences, the condition of
fill-in amounts to the commutativity of the following diagram (where we omit to write P r

Σ
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and we write ng for ncf ·ηC(f) to make it readable):

0
N (f)
B

0N (f)◦0wf ·ng +3

νf

$,

ν(v,f)

��

0
N (f)
C(nf )

· wf · ng
γnf

◦wf ·ng

��
nf · f

nf◦ωf +3

nf◦α◦f

%-
nf◦ψ

x�

nf · cnf
· wf · ng

nf◦α◦cnf
·wf ·ng

��

nf · v · v−1 · f

nf ·v·v−1·f
��

nf ·v◦φ−1

nv
nf · v · (v, f) nf ·v◦φ

+3 nf · v · v−1 · f
nf ·v·v−1◦ωf

+3 nf · v · v−1 · cnf
· wf · ng

The five regions commute: the concave region commutes by interchange, the trapezoid
on the top commutes because the pair (wf · ncf ·ηC(f) , ωf ) is a fill-in of (f, νf ) through the
bicokernel of nf , the first triangle is the description of ν(v,f) given in 3.2.4.1, the second
triangle commutes by 3.2.4.3, the commutativity of the third triangle is obvious.

7.2.2. Proposition. Let A be an abelian category and let Σ be the class of weak equiv-
alences in Arr(A). The bicategory of fractions Arr(A)[Σ−1] is 2-abelian.

Proof. SinceArr(A) has a bizero object, bipushouts and bipullbacks (see Corollary 5.2.6
and Corollary 5.2.9) and since the class Σ is a bipushout congruence and a bipullback
congruence (see Proposition 6.2.2), we can use 3.1.4 and Corollary 3.2.3 to conclude that
Arr(A)[Σ−1] has a bizero object, bipushouts and bipullbacks. In particular, Arr(A)[Σ−1]
has bicokernels, bicoproducts, bikernels and biproducts. Moreover, since 2-cells are invert-
ible in Arr(A), by Lemma 3.1.8 the same holds in Arr(A)[Σ−1]. Finally, the conditions
to be 2-Puppe exact follow from Proposition 6.1.5 and Lemma 7.2.1.

7.2.3. .Under the assumptions of item 7.1.1, a quick way to define discrete and connected
objects in a bicategory B is to say that X is discrete if ηX :X → π0(X) is an equivalence,
and that X is connected if εX : π1(X)→ X is an equivalence. Let us recall from [15] that,
if B is 2-abelian, then the sub-bicategories of discrete objects and of connected objects
are abelian categories and they are equivalent. When B = Arr(A), with this construction
one precisely recovers the abelian category A.
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[15] M. Dupont, Catégories abéliennes en dimension 2, PhD thesis, Université
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