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YONEDA LEMMA AND REPRESENTATION THEOREM FOR
DOUBLE CATEGORIES

BENEDIKT FRÖHLICH, LYNE MOSER

Abstract. We study (vertically) normal lax double functors valued in the weak double
category Cat of small categories, functors, profunctors and natural transformations,
which we refer to as lax double presheaves. We show that for the theory of double
categories they play a similar role as 2-functors valued in Cat for 2-categories. We first
introduce representable lax double presheaves and establish a Yoneda lemma. Then
we build a Grothendieck construction which gives a 2-equivalence between lax double
presheaves and discrete double fibrations over a fixed double category. Finally, we prove
a representation theorem showing that a lax double presheaf is represented by an object
if and only if its Grothendieck construction has a double terminal object.
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1. Introduction

The classical story. Universal constructions are the core of the study of category
theory. Such constructions are determined by universal properties which are obtained by
requiring that a certain presheaf is representable. A presheaf on a category C is a functor
X : Cop → Set into the category of sets and maps, and it is said to be represented by an
object x̂ in C if it is isomorphic to the representable functor C(−, x̂) : Cop → Set taking
as values the hom sets of C with target x̂. Presheaves therefore play an important role in
category theory and, for this reason, they have been extensively studied.

One of the most fundamental results in ordinary category theory is the Yoneda lemma.
It says that, given a presheaf X : Cop → Set, natural transformations C(−, x̂) ⇒ X are
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completely determined by a single element of the set Xx̂, for every object x̂ in C. More
explicitly, this says that we have an isomorphism of sets

[Cop, Set](C(−, x̂), X) ∼= Xx̂;

see e.g. [Rie17, Theorem 2.2.4]. As a consequence, we get a Yoneda embedding C ↪→ SetC
op

,
allowing us to infer universal constructions in C from an analogous setting in presheaves,
where a very explicit computation of such constructions is possible.

Another approach to presheaves is given by studying them from a fibrational perspec-
tive through the Grothendieck construction. This construction encodes the structure of
a presheaf X : Cop → Set in a different way by compressing all of its data into a single
category

∫
C X coming with a canonical projection onto C. This projection

∫
C X → C is the

prototypical example of a discrete fibration. A discrete fibration is a functor P : E → C
such that every morphism in C of the form f : x → Pe admits a unique lift e′ → e in E .
In fact, the Grothendieck construction induces an equivalence∫

C : Set
Cop ≃−→ Fib(C) ⊆ Cat/C,

where Fib(C) denotes the full subcategory of the slice Cat/C of categories over C spanned
by the discrete fibrations; see e.g. [LR20, Theorem 2.1.2].

A powerful consequence of this equivalence is that one can derive another criterion
to detect representability of a presheaf by testing whether its Grothendieck construction
has a terminal object; see e.g. [Rie17, Proposition 2.4.8]. We refer to this result as the
representation theorem.

A drama in 2-categories. The categories that one considers in practice often have
more structure. Typically, the category Cat of categories and functors further comes with
a notion of natural transformations between its morphisms. This is an example of a 2-
category, which, in addition to objects and morphisms, also have 2-morphisms between
their morphisms. In this context, morphisms between two objects in a 2-category C now
form a category rather than a set, and so the representable presheaves of a 2-category
take values in the 2-category Cat. We refer to 2-functors Cop → Cat as 2-presheaves. This
allows for a refined version of universal properties by requiring that certain 2-presheaves
X : Cop → Cat are represented by an object x̂ in C in this higher sense, i.e., there is
an isomorphism between X and the representable 2-presheaf C(−, x̂) : Cop → Cat. This
gives a better-behaved definition of universal constructions in the 2-categorical context,
as these are now compatible with the higher structure of the 2-categories involved.

One can then formulate a 2-categorical version of the Yoneda lemma by upgrading
isomorphisms of sets into isomorphisms of categories. It says that, given a 2-presheaf
X : Cop → Cat and an object x̂ in C, there is an isomorphism of categories

[Cop,Cat](C(−, x̂), X) ∼= Xx̂;

see e.g. [JY21, Lemma 8.3.16]. Again, this yields a Yoneda embedding C ↪→ [Cop,Cat],
which shows how the role of Set has been replaced by Cat in the 2-categorical world.
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On the other hand, a first 2-categorical version of the Grothendieck construction was
introduced by Buckley. As shown in [Buc14, Theorem 2.2.11], this Grothendieck con-
struction induces a 2-equivalence of 2-categories∫

C : [C
op,Cat]

≃−→ 2F ib(C) ⊆ 2Cat/C,

where 2F ib(C) denotes the 2-subcategory of the slice 2Cat/C of 2-categories onto C
spanned by certain 2-fibrations ; see [Buc14, Definition 2.1.10]. While this gives a fi-
brational perspective on 2-presheaves, there is a priori no obvious generalization of the
representation theorem in this setting. Indeed, as clingman and the second author show
in [cM22a], it is not true that a 2-presheaf X is represented by an object if and only if
its Grothendieck construction

∫
C X admits a 2-terminal object. Instead, one would need

to generalize results by Gagna–Harpaz–Lanari [GHL22] to obtain a more appropriate
characterization.

The savior: double categories. However, passing to a double categorical context
allows for such a characterization. Double categories are another type of 2-dimensional
categorical structure, namely, the internal categories to Cat, which have objects, two
different kinds of morphisms between objects—the horizontal and vertical morphisms—,
and 2-dimensional morphisms called squares. In particular, every 2-category can be seen
as a double category with only trivial vertical morphisms. Then, Grandis–Paré introduce
in [GP19, §1.2] a double categorical Grothendieck construction which takes a 2-presheaf
X : Cop → Cat to a double category

∫∫
C X coming with a canonical projection onto C (seen

as a double category). Analogously to ordinary categories, this projection
∫∫
C X → C

is a discrete double fibration, i.e., the induced functors on the categories of objects and
horizontal morphisms, and on the categories of vertical morphisms and squares are discrete
fibrations of categories. Then, in [MSV23, Theorem 5.1], the second author with Sarazola–
Verdugo show that this double Grothendieck construction also induces a 2-equivalence of
2-categories ∫∫

C : [C
op,Cat]

≃−→ DF ib(C) ⊆ DblCatv/C,
where DF ib(C) denotes the 2-full 2-subcategory of DblCatv/C spanned by the discrete
double fibrations. Here, DblCatv denotes the 2-category of double categories, double
functors, and vertical transformations; see Notation 2.17.

Using this double Grothendieck construction, a representation theorem can now be
formulated by saying that a 2-presheaf is represented by an object if and only if its double
Grothendieck construction admits a double terminal object; see [cM22b, Theorem 6.8]
and [MSV23, Theorem 6.12]. Since these results already require the language of double
categories, one might wonder whether the whole situation extends to double categories
and a suitable notion of double presheaves.

The story continues for double categories. In the double categorical world,
Paré [Par11] and Fiore–Gambino–Kock [FGK12] prove a Yoneda lemma for “set-valued”
double presheaves. In this context, the target of the double presheaves is given by the
(weak) double category Set of sets, maps, spans, and maps of spans. Given a double
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category C, the representable presheaf at an object x̂ in C is then given by associating to
each object x in C the set of horizontal morphisms x → x̂ in C. Moreover, to each vertical
morphism u : x−→• x′ in C, one can associate a span of sets whose middle object is the set
of all squares in C of the form

x x̂

x′ x̂

•

u

f

α

•

f ′

(1.1)

However, such an assignment fails to be functorial in vertical morphisms, and therefore
this forces the correct notion of double presheaves to be lax in the vertical direction. Hence
a lax double presheaf is a lax double functor Cop → Set. Using this notion, the Yoneda
lemma proven as [Par11, Theorem 2.3] and [FGK12, Proposition 3.10], respectively, shows
that, for every object x̂ in C, there is an isomorphism of sets

[Cop,Set]lax(C(−, x̂), X) ∼= Xx̂.

However, since those presheaves only detect sets of morphisms, when taking C = C to be
a 2-category, there is no obvious way on how to retrieve the 2-categorical Yoneda lemma
from this statement.

In this paper, we want to enhance the structure of those double presheaves by con-
sidering “category-valued” double presheaves instead. For this, we consider the (weak)
double category Cat of categories, functors, profunctors, and natural transformations, in
place of Set. Then, the representable presheaf at an object x̂ in C will now associate
to each object x in C the category C(x, x̂) of horizontal morphisms x → x̂ and globular
squares in C of the form

x x̂

x x̂

•

f

α

•

f ′

Then, similarly to before, to each vertical morphism u : x−→• x′ in C, one can associate
a profunctor which assigns to any two horizontal morphisms f : x → x̂ and f ′ : x′ → x̂,
the set of squares of the form (1.1). While this assignment is still not compatible with
vertical composition (see Remark 3.44), by adding the extra structure of a category to
the values of the representable presheaf, it now becomes normal, i.e., it preserves vertical
identities strictly. Therefore, we define lax double presheaves as normal lax double functors
C
op → Cat.
We then obtain the following Yoneda lemma, which appears as Theorem 4.2. Here

we denote by [Cop,Cat]nlax the 2-category of (normal) lax double presheaves, horizontal
transformations, and globular modifications; see Notation 3.30.

1.1. Theorem. Given a double category C, an object x̂ in C, and a lax double presheaf
X : Cop → Cat, there is an isomorphism of categories

[Cop,Cat]nlax(C(−, x̂), X) ∼= Xx̂,



1702 BENEDIKT FRÖHLICH, LYNE MOSER

which is 2-natural in x̂ and X.

This gives a 2-categorical enhancement of the Yoneda lemma for double categories
shown by Paré and Fiore–Gambino–Kock. Moreover, by taking C = C to be a 2-category,
we retrieve as a straightforward consequence the Yoneda lemma for 2-categories mentioned
above, as shown in Corollary 4.10.

Continuing the story, Paré introduces in [Par11, §3.7] a Grothendieck construction for
“set-valued” lax double presheaves X : Cop → Set in the form of double categories

∫∫
C
X

with a canonical projection onto C. Lambert then shows in [Lam21, Lemma 2.10] that
this projection

∫∫
C
X → C is a discrete double fibration, and in [Lam21, Theorem 2.27]

that the Grothendieck construction induces an equivalence of categories∫∫
C
: [Cop,Set]lax

≃−→ DFib(C) ⊆ DblCat/C, (1.2)

where DFib(C) denotes the full (1-)subcategory of DblCat/C spanned by the discrete
double fibrations.

In this paper, we extend Paré’s Grothendieck construction to our “category-valued”
lax double presheaves. Given a lax double presheaf X : Cop → Cat, we also build in
Construction 6.1 a double category

∫∫
C
X coming with a canonical projection onto C.

Surprisingly, despite the fact that X is a (normal) lax double functor rather than a strict
one, its Grothendieck construction

∫∫
C
X is an actual strict double category; note that this

already happens for Paré’s Grothendieck construction (see [Par11, Theorem 3.8]). Even
though we now consider presheaves valued in categories rather than in sets, the projection∫∫
C
X → C is still a discrete double fibration.
Furthermore, by extending the Grothendieck construction to a 2-functor, we can then

show the following equivalence with discrete double fibrations, which appears as Theorem
6.13.

1.2. Theorem. Given a double category C, the Grothendieck construction induces a 2-
equivalence of 2-categories∫∫

C
: [Cop,Cat]nlax

≃−→ DF ib(C) ⊆ DblCatv/C,

which is pseudo-natural in C.

Again, by taking C = C to be a 2-category, we retrieve as a straightforward consequence
the 2-equivalence between 2-presheaves and discrete double fibrations from [MSV23], as
shown in Corollary 6.30.

There is now an intriguing relation between Lambert’s equivalence from (1.2) and our
2-equivalence from Theorem 1.2. At its heart is the fact that the fibers of a discrete double
fibration are categories—seen as double categories with trivial horizontal morphisms and
squares—; see Proposition 5.11. Therefore, to obtain an equivalence with a certain type of
double presheaves, one needs to encode both the objects and the morphisms of those fibers
into the presheaf. While the inverse of the equivalence (1.2) only detects the underlying
sets of objects of the fibers as the values of the presheaf, the morphisms are encoded in the
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lax unitality condition. On the other hand, the inverse of the equivalence from Theorem
1.2 directly chooses the values of the presheaf to be the categories given by the fibers,
and the lax unitality condition now becomes strict. In fact, the relation between the 2-
categories [Cop,Cat]nlax and [Cop,Set]lax can be understood from the universal property of
the adjunction developed by Cruttwell–Shulman in [CS10, Proposition 5.14], using that
Mod(Set) = Cat.

The idea of enhancing “set-valued” lax double presheaves to “category-valued” ones is
already studied in a paper by Cruttwell–Lambert–Pronk–Szyld, where they consider lax
double pseudo functors Cop → Span(Cat) into the (weak) double category Span(Cat) of
categories, functors, spans of categories, and morphisms of spans. For such presheaves,
they show in [CLPS22, Theorem 3.45] that there is an equivalence of categories

[Cop,Span(Cat)]lax
≃−→ DblFib(C) ⊆ DblCat/C,

where DblFib(C) denotes the subcategory of DblCat/C spanned by the double fibrations ;
see [CLPS22, Definition 3.38]. These double fibrations generalize discrete double fibra-
tions in the same vein that Grothendieck fibrations generalize discrete fibrations for or-
dinary categories, meaning that their fibers are double categories instead of categories.
By restricting the above equivalence to discrete double fibrations, they retrieve Lambert’s
equivalence (1.2). Hence, this suggests that the approach taken in this paper is different
from theirs.

Finally, we use the Grothendieck equivalence from Theorem 1.2 to prove a representa-
tion theorem for double categories. Namely, we want to find a criterion for a lax double
presheaf X : Cop → Cat to be represented by an object x̂ of C, i.e., isomorphic to the
representable lax double presheaf C(−, x̂) : Cop → Cat. As for the case of 2-categories,
these will be determined by double terminal objects in the Grothendieck construction.
The following result appears as Theorem 7.9.

1.3. Theorem. A lax double presheaf X : Cop → Cat is represented by an object if and
only if its Grothendieck construction

∫∫
C
X has a double terminal object.

Again, by choosing C = C to be a 2-category, we retrieve the representation theorem
for 2-categories from [cM22b, MSV23], as shown in Corollary 7.11.

Notations. Throughout the paper, we will assume basic knowledge about 2-category
theory. We refer the reader to [JY21] for a complete account of the theory of 2-categories.
We use the following notations:

• we write Set for the category of sets and maps,

• we write Cat for the (2-)category of categories, functors, (and natural transforma-
tions),

• we write 2Cat for the 2-category of 2-categories, 2-functors, and 2-natural transfor-
mations.



1704 BENEDIKT FRÖHLICH, LYNE MOSER

Acknowledgment. We would like to thank Denis-Charles Cisinski, Johannes Glossner,
and Nima Rasekh for helpful discussions related to the subject of this paper. We are
also grateful to Nathanael Arkor and David Kern for insightful comments on a first draft
of this paper, and in particular for pointing to the result of Cruttwell–Shulman [CS10]
shedding light on the relation between normal lax double functors into Cat and lax double
functors into Set. We also thank the anonymous referee for their careful reading, their
insightful comments, and for catching many typos.

During the realization of this work, the second author was a member of the Collabora-
tive Research Centre “SFB 1085: Higher Invariants” funded by the Deutsche Forschungs-
gemeinschaft (DFG).

2. Background on double categories

In this section, we give a concise introduction of the main notions of double category
theory needed in this paper. We refer the reader to [Gra19] for more details.

As our lax double presheaves will be lax double functors taking value in the weak
double category Cat, we start by introducing in Sections 2.1 to 2.6 the notions of weak
double categories and (vertically) lax double functors between them. We further introduce
horizontal and vertical transformations between such functors, as well as modifications.

By imposing strictness conditions, we retrieve in Sections 2.7 to 2.19 the notions of
double categories, double functors, horizontal and vertical transformations between double
functors, and modifications.

Weak double categories.We start by introducing (vertically) weak double categories.

2.1. Definition. A weak double category C consists of

• objects x, y, x′, y′, . . .,

• horizontal morphisms f : x → y, with a horizontal identity 1x at each object x, and
an associative and unital composition gf for all composable horizontal morphisms
f, g,

• vertical morphisms u : x−→• x′, with a vertical identity ex at each object x, and a
composition u′ • u for all composable vertical morphisms u, u′,

• squares α as depicted below, written inline as α :
[
u f

f ′ v
]
:
[
x
x′

y
y′

]
or simply as

α :
[
u f

f ′ v
]
,

x y

x′ y′

f

•

u α •

v

f ′
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with a horizontal identity square 1u at each vertical morphism u, and an associative
and unital horizontal composition β ◦α along vertical morphisms for all horizontally
composable squares α, β, as well as a vertical identity square ef at each horizontal
morphism f , and a vertical composition α′ • α along horizontal morphisms for all
vertically composable squares α, α′.

If the vertical boundaries of a square are identities, i.e., x = x′, y = y′, u = ex and
v = e′y, we call such a square globular.

• for all composable vertical morphisms x
u−→• x′ u′

−→• x′′ u′′

−→• x′′′, a horizontally invertible
associator square

αu,u′,u′′ :
[
(u′′ • u′) • u 1x

1x′′′
u′′ • (u′ • u)

]
,

• for every vertical morphism u : x−→• x′, horizontally invertible left and right unitor
squares

λu :
[
u • ex 1x

1x′
u
]

and ρu :
[
ex′ • u 1x

1x′
u
]
,

satisfying the following conditions:

(1) horizontal and vertical compositions of squares satisfy the interchange law,

(2) for all composable horizontal morphisms f, g, we have eg ◦ ef = egf , and for every
object x, we have e1x = 1ex ,

(3) for all composable vertical morphisms u, u′, we have 1u′ • 1u = 1u′•u,

(4) the associator square αu,u′,u′′ is natural in (u, u′, u′′), and satisfies the pentagon
axiom,

(5) the unitor squares λu and ρu are natural in u, compatible with associator squares,
and for an object x, one has λex = ρex .

If the unitor squares are horizontal identities, we call C a unitary weak double category.
For a more detailed description of the coherence conditions, we refer the reader to

[Gra19, Definition 3.3.1].

Next, we introduce a suitable notion of functors between weak double categories,
namely the notion of a lax double functor. As horizontal composition in a weak double
category is strictly associative and unital while the vertical one is not, it is not surprising
that lax double functors only preserve strictly horizontal compositions and identities while,
in the vertical direction, we get comparison squares.
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2.2. Definition. Given weak double categories C,D, a lax double functor X : C → D

consists of

• assignments on objects, horizontal morphisms, vertical morphisms, and squares,
which are compatible with sources and targets,

• for all composable vertical morphisms x
u−→• x′ u′

−→• x′′ in C, a composition comparison
square in D

µu,u′ :
[
Xu′ •Xu

1Xx

1Xx′′
X(u′ • u)

]
:
[
Xx
Xx′′

Xx
Xx′′

]
,

• for every object x in C, an identity comparison square in D

εx :
[
eXx

1Xx
1Xx

Xex
]
:
[
Xx
Xx

Xx
Xx

]
,

satisfying the following conditions:

(1) it preserves horizontal identities and horizontal compositions strictly,

(2) composition comparison squares µu,u′ are natural with respect to (u, u′), and com-
patible with associator squares,

(3) identity comparison squares εx are natural with respect to x, and compatible with
composition comparison squares and unitor squares.

If all identity comparison squares are horizontal identities, i.e., if X preserves strictly
vertical identities, we call X a normal lax double functor. Consequently, the comparison
squares µu,ex′

and µex,u agree with the identity.
For a more detailed description of the coherence conditions, we refer the reader to

[Gra19, Definition 3.5.1].

Lax double functors between two weak double categories assemble into a weak dou-
ble category, and we introduce here its horizontal morphisms, vertical morphisms, and
squares.

2.3. Definition. Given lax double functors X, Y : C → D, a horizontal transformation
F : X ⇒ Y consists of

• for every object x in C, a horizontal morphism Fx : Xx → Y x in D,

• for every vertical morphism u : x−→• x′ in C, a square Fu :
[
Xu Fx

Fx′
Y u

]
in D,

such that the components Fx are natural in x, and the components Fu are natural in u
and compatible with composition and identity comparison squares.

For a more detailed description of the coherence conditions, we refer the reader to
[Gra19, §3.5.4].
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2.4. Definition. Given lax double functors X,X ′ : C → D, a colax vertical transforma-
tion U : X=⇒• X ′ consists of

• for every object x in C, a vertical morphism Ux : Xx−→• X ′x in D,

• for every horizontal morphism f : x → y in C, a square Uf :
[
Ux

Xf
X′f Uy

]
in D,

• for every vertical morphism u : x−→• x′ in C, a naturality comparison square in D

Uu :
[
Ux′ •Xu 1Xx

1X′x′
X ′u • Ux

]
,

satisfying the following conditions:

(1) the components Uf are compatible with composition of horizontal morphisms and
horizontal identities,

(2) the components Uu are natural in u and compatible with composition and identity
comparison squares.

If the naturality comparison squares are invertible, we call U a pseudo vertical transfor-
mation.

Moreover, if a pseudo vertical transformation is strictly natural in the vertical di-
rection, i.e., if the natural comparison squares Uu are horizontal identities, we call U a
vertical transformation.

For a more detailed description of the coherence conditions, we refer the reader to the
transposed version of [Fem23, Definition 2.2]. See also [Gra19, Definition 3.8.2].

2.5. Definition. Given lax double functors X,X ′, Y, Y ′ : C → D, horizontal transfor-
mations F : X ⇒ Y , F ′ : X ′ ⇒ Y ′ and colax vertical transformations U : X=⇒• X ′,
V : Y=⇒• Y ′, then a modification A :

[
U F

F ′ V
]
consists of, for every object x in C, a square

in D
Ax :

[
Ux

Fx

F ′
x
Vx

]
:
[
Xx
X′x

Y x
Y ′x

]
satisfying the following conditions:

(1) (horizontal compatibility) for every horizontal morphism f : x → y in C, one has

Ay ◦ Uf = Vf ◦ Ax,

(2) (vertical compatibility) for every vertical morphism u : x−→• x′ in C, one has

(F ′
u • Ax) ◦ Uu = Vu ◦ (Ax′ • Fu).

If the vertical boundaries of a modification are identities, i.e., X = X ′, Y = Y ′,
U = eX and V = eY , we call such a modification globular.

As claimed above, lax double functors assemble into a weak double category. As we
will not make use of the vertical structure of this double category throughout the paper, we
state the result as it appears in [Gra19, Theorem 3.8.4], where the vertical morphisms are
given by the pseudo vertical transformation. A version with colax vertical transformations
also exists, as proven in [Fem23, §2].
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2.6. Proposition.Given two weak double categories C and D, there is a weak double cat-
egory JC,DKlax of lax double functors C → D, horizontal transformations, pseudo vertical
transformations and modifications.

We denote by HJC,DKlax its underlying 2-category of lax double functors, horizontal
transformations, and globular modifications.

(Strict) double categories. To simplify computations, except for the weak double
category Cat, all of our double categories will be strict. Therefore, we further present here
the strict version of double categories. We refer the reader to [Gra19, §3.2] for a more
detailed introduction to strict double categories.

2.7. Definition. A double category is a weak double category, where the composition
of vertical morphisms and the vertical composition of squares are strictly associative and
unital. In other words, the associator and unitor squares in Definition 2.1 are horizontal
identities.

2.8. Definition. A double functor is a lax double functor between double categories
which preserves vertical compositions and identities strictly. In other words, the compo-
sition and identity comparison squares in Definition 2.2 are horizontal identities.

2.9. Notation. We denote by DblCat the category of double categories and double
functors.

Due to the strictness of vertical compositions, we can now define two different under-
lying categories of a double category.

2.10. Definition. Given a double category C, we define

• its underlying vertical category Ver0 C to be the category of objects and vertical
morphisms in C,

• its underlying horizontal category Hor0 C to be the category of objects and horizontal
morphisms in C.

These constructions extend to functors

Ver0,Hor0 : DblCat → Cat.

2.11. Remark. The functors Ver0,Hor0 : DblCat → Cat admit left adjoints

V,H : Cat → DblCat,

respectively. We call a category in the image of V (resp. H) a vertical (resp. horizontal)
double category.
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2.12. Remark. Given a double category C, we can further define a category Ver1 C of
horizontal morphisms and squares, with composition given by the vertical composition of
squares in C. We can then see C as an internal category to Cat

Ver0 C Ver1 C Ver1 C×Ver0 C Ver1 C.i

t

s
c

We can, in fact, upgrade the underlying horizontal category to a 2-category as follows.

2.13. Definition. Given a double category C, we define its underlying horizontal 2-
category HC to be the 2-category of objects, horizontal morphisms, and globular squares
in C. This construction extends to a functor

H : DblCat → 2Cat.

2.14. Remark. The functor H : DblCat → 2Cat admits a left adjoint

H : 2Cat → DblCat,

which sees a 2-category as a double category with only trivial vertical morphisms.

The following result can be deduced from [Joh02, Lemma B2.3.15(ii)], using that
double categories are internal categories in Cat.

2.15. Proposition. The category DblCat is cartesian closed.

2.16. Notation. Given double categories C and D, we denote by JC,DK the internal hom
in DblCat. It is the double category whose

• objects are double functors C→ D,

• horizontal morphisms are horizontal transformations between (strict) double func-
tors as defined in Definition 2.3,

• vertical morphisms are vertical transformations between double functors as defined
in Definition 2.4,

• squares are modifications as defined in Definition 2.5.

We refer the reader to [Gra19, §3.2.7] for more details.

Using these structures, we can define two different 2-categories of double categories,
by picking the 2-morphisms to be either the horizontal or vertical transformations. Each
of them will play an important role in this paper: the one with horizontal transformations
will be giving the naturality of the constructions, while the one with the vertical trans-
formations will be used to define the 2-category of double categorical discrete fibrations.
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2.17. Notation.The category DblCat can be upgraded into a 2-category in two different
ways:

• we write DblCath for the 2-category of double categories, double functors, and hor-
izontal transformations,

• we write DblCatv for the 2-category of double categories, double functors, and ver-
tical transformations.

2.18. Remark. By [FPP08, Proposition 2.5], the adjunctions V ⊣ Ver0 from Remark
2.11 and H ⊣ H from Remark 2.14 extend to 2-adjunctions

V : Cat ⇆ DblCatv : Ver0 and H : 2Cat ⇆ DblCath : H.

We will also make use of the horizontal opposite of a double category, which we now
recall.

2.19. Definition. We define a 2-functor (−)op : DblCatcoh → DblCath, where DblCatcoh
is the 2-category obtained from DblCath by reversing the 2-morphisms, sending

• a double category C to its horizontal opposite double category Cop which consists of
the same objects and vertical morphisms as C, but where the direction of horizontal
morphisms and squares is horizontally reversed,

• a double functor G : C→ D to the double functor Gop : Cop → D
op, which acts as G

on objects, horizontal morphisms, vertical morphisms, and squares,

• a horizontal transformation B : G ⇒ G′ : C→ D to the horizontal transformation

Bop : G′ op ⇒ Gop : Cop → D
op,

whose components are the same as those of B.

It is straightforward to check that this construction is 2-functorial.

3. Lax double presheaves

In this section, we introduce our lax double presheaves as lax double functors Cop → Cat
with C a (strict) double category and Cat the weak double category of categories. To
introduce the weak double category Cat, we need two notions of morphisms between
categories. The horizontal ones will simply be the functors, and the vertical ones will be
the profunctors. For this, we first recall in Sections 3.1 to 3.23 the notion of profunctors
and their relations to two-sided discrete fibrations. Then, in Sections 3.24 to 3.28, we
review the construction of the weak double category Cat.

In Sections 3.29 to 3.36, we introduce the notion of lax double presheaves, and finally,
in Sections 3.37 to 3.45, we study a first class of examples of lax double presheaves, the
representable lax double presheaves.
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Profunctors and two-sided discrete fibrations. We start by recalling profunc-
tors, as well as their weakly associative and unital composition.

3.1. Definition. A profunctor U : C−→• C ′ between categories C and C ′ is a functor

U : Cop × C ′ → Set.

3.2. Notation. We denote by Prof(C, C ′) the category of profunctors Cop × C ′ → Set
and natural transformations between them.

Composition of profunctors is defined via coends; see e.g. [Rie14, §1.2] for a definition.
As the category Set is cocomplete, coends in Set always exist and are given very explicitly
by the following formula, as mentioned in [Rie14, (1.2.4)].

3.3. Proposition. Given a functor U : Cop × C → Set, a coend of U exists and can be
computed as the coequalizer

∫ x
U(x, x) ∼= coeq

 ⊔
x

f−→x′∈C

U(x′, x)
⊔
x∈C

U(x, x)

 ,

where the two parallel maps are induced by U(f, x) and U(x′, f), respectively.

3.4. Remark.As universal constructions, coends are unique up to a unique isomorphism.
In what follows, we choose a specific coend for each functor U : Cop ×C → Set, and speak
of the coend of U .

We can now use the notion of coends to define composition of profunctors.

3.5. Construction. Given profunctors U : C−→• C ′ and U ′ : C ′−→• C ′′, their composition
is the profunctor U ′ • U : Cop × C ′′ → Set sending

• an object (x, x′′) in C × C ′′ to the set
∫ x′∈C′

U ′(x′, x′′)× U(x, x′) given by the coend
of the functor U ′(−, x′′)× U(x,−) : C ′ op × C ′ → Set,

• a morphism (f, f ′′) : (x, x′′) → (y, y′′) in C × C ′′ to the unique induced map between
coends∫ x′∈C′

U ′(x′, f ′′)× U(f, x′) :
∫ x′∈C′

U ′(x′, x′′)× U(y, x′) →
∫ x′∈C′

U ′(x′, y′′)× U(x, x′).

This construction extends to a functor

• : Prof(C, C ′)× Prof(C ′, C ′′) → Prof(C, C ′′).

3.6. Remark. Composition of profunctors is not strictly associative as the order in which
we take coequalizers matters. However, as coends are unique up to a unique isomorphism,
composition of profunctors is associative up to a unique invertible comparison cell.

Moreover, this composition of profunctors admits as identities the following.
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3.7. Definition. The identity profunctor eC : C−→• C at a category C is given by the hom
functor C(−,−) : Cop × C → Set.

It will be convenient if composition of profunctors is strictly unital. The following
result implies that we can pick U • eC := U and eC′ • U := U , for every profunctor
U : Cop × C ′ → Set.

3.8. Lemma. Given a profunctor U : Cop × C ′ → Set and objects x in C, x′′ in C ′, there
are canonical natural bijections

U(x, x′′) ∼=
∫ x′∈C

U(x′, x′′)× C(x, x′) and U(x, x′′) ∼=
∫ x′∈CC ′(x′, x′′)× U(x, x′).

In particular, this implies that there are canonical natural isomorphisms of profunctors

U ∼= U • eC and U ∼= eC′ • U.

Proof. The first bijection can be shown by proving that the set U(x, x′′) together with
the maps

ιx′ : U(x′, x′′)× C(x, x′) → U(x, x′′), (u, f) 7→ U(f, x′′)(u),

for objects x′ in C, satisfies the universal property of the coend of

U(−, x′′)× C(x,−) : Cop × C → Set.

The second bijection can be shown analogously.

In the remainder of this section, we study the connection between profunctors and
two-sided discrete fibrations, which will be useful later. For this, let us first recall the
definition of a two-sided discrete fibration.

3.9. Definition. Given a functor P : E → C, we say that a morphism g : e → e′ in E

• is a P -lift of a morphism f : c → c′ in C if Pg = f ,

• lies in the fiber of P at an object c in C if it is a P -lift of the identity 1c.

3.10. Definition. A functor (P,Q) : E → C × C ′ is a two-sided discrete fibration over
C × C ′, if the following conditions hold:

(1) for every object e in E and every morphism f : x → Pe in C, there is a unique P -lift
of f with target e lying in the fiber of Q at Qe, i.e, there is a unique morphism
P ∗f : f ∗e → e in E such that P (P ∗f) = f and Q(P ∗f) = 1Qe,

(2) for every object e in E and every morphism f ′ : Qe → x′ in C ′, there is a unique Q-lift
of f ′ with source e lying in the fiber of P at Pe, i.e., there is a unique morphism
Q!f

′ : e → f ′
! e in E such that Q(Q!f

′) = f ′ and P (Q!f
′) = 1Pe,

(3) for every morphism g : e → e′ in E , the source of the unique P -lift of Pg agrees
with the target of the unique Q-lift of Qg and their composite is g, i.e., one has
(Pg)∗e′ = (Qg)!e and P ∗(Pg) ◦Q!(Qg) = g.
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3.11. Notation. We denote by TSFib(C, C ′) the full subcategory of the slice category
Cat/C×C′ spanned by the two-sided discrete fibrations over C × C ′.

There is an equivalence of categories between profunctors and two-sided discrete fi-
brations, that we now recall.

3.12. Construction. We construct a functor

fib: TSFib(C, C ′) → Prof(C, C ′).

It sends a two-sided discrete fibration (P,Q) : E → C × C ′ to the profunctor

fib(P,Q) : Cop × C ′ → Set

sending

• an object (x, x′) in C × C ′ to the fiber (P,Q)−1(x, x′) of (P,Q) at (x, x′),

• a morphism (f, f ′) : (x, x′) → (y, y′) in Cop × C ′ to the map

(P,Q)−1(x, x′) → (P,Q)−1(y, y′)

given by sending e to f ′
!f

∗e = f ∗f ′
! e,

and a morphism of two-sided discrete fibrations

E E ′

C × C ′

F

(P,Q) (P ′,Q′)

to the natural transformation fib(F ) : fib(P,Q) ⇒ fib(P ′, Q′) whose component at an
object (x, x′) in C × C ′ is the unique induced map between fibers

fib(F )x,x′ := Fx,x′ : (P,Q)−1(x, x′) → (P ′, Q′)−1(x, x′).

A proof of the following result can be found in [LR20, Theorem 2.3.2].

3.13. Theorem. The functor fib induces an equivalence of categories

TSFib(C, C ′) Prof(C, C ′).fib

≃

In particular, this equivalence is compatible with precomposition and pullback, as
follows.
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3.14. Proposition. Given functors G : C → D and G′ : C ′ → D′, the following diagram
of functors commutes up to natural isomorphism

TSFib(D,D′) Prof(D,D′)

TSFib(C, C ′) Prof(C, C ′)

fib

≃
(G×G′)∗ (Gop×G′)∗

fib

≃

where the left-hand functor is induced by taking pullbacks along G×G′ : C × C ′ → D×D′

and the right-hand functor is induced by precomposing along Gop×G′ : Cop×C ′ → Dop×D′.

As a consequence, we get the following result.

3.15. Corollary. Let (P,Q) : E → C×C ′ and (R, S) : F → D×D′ be two-sided discrete
fibrations. Then a commutative square of functors of the form

E F

C × C ′ D ×D′

F

(P,Q) (R,S)

G×G′

corresponds to a natural transformation

F : fib(P,Q) ⇒ fib(R, S)(Gop ×G′) : Cop × C ′ → Set,

whose component at an object (x, x′) in Cop×C ′ is given by the unique induced map between
fibers

Fx,x′ : (P,Q)−1(x, x′) → (R, S)−1(Gx,Gx′).

Proof. By the universal property of pullback, such a square of functors corresponds to
a functor F̂ : E → (G×G′)∗F over C × C ′ as depicted in the following diagram:

E

(G×G′)∗F F

C × C ′ D ×D′

F

(P,Q)

F̂

⌟ (R,S)

G×G′

Using Proposition 3.14, the functor F̂ over C×C ′ corresponds to a natural transformation

fib(P,Q) ⇒ fib((G×G′)∗(R, S)) ∼= (Gop ×G′)∗(fib(R, S)) = fib(R, S)(Gop ×G′).

Note that the description of the components of this natural transformation follows directly
from the definition of the functor fib.
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Finally, similarly to profunctors one can also define a composition for two-sided discrete
fibrations as follows.

3.16. Construction. Let (P,Q) : E → C × C ′ and (P ′, Q′) : E ′ → C ′ × C ′′ be two-sided
discrete fibrations, and let A be the wide subcategory of the pullback E ×C′ E ′ with
morphisms given by

{(e, g∗e′) (Q!g,P
′∗g)−−−−−−→ (g!e, e

′) | Qe
g−→ P ′e′ ∈ C ′}.

We define the composition (P ′, Q′) • (P,Q) : E ×C′ E ′
/∼ → C ×C ′′ to be the unique functor

obtained by the universal property of the pushout E ×C′ E ′
/∼ defined by the following

commutative diagram in Cat.

A E ×C′ E ′

π0A E ×C′ E ′
/∼

C × C ′′

⌜ (Pπ1,Q′π2)

(P ′,Q′)•(P,Q)

Here πi, for i = 1, 2 denote the canonical projections from the pullback E ×C′ E ′, and π0A
is the set of path components of the category A and A → π0A is the canonical projection.
Note that the composite

A → E ×C′ E ′ (Pπ1,Q′π2)−−−−−−→ C × C ′′

factors through A → π0A since, for every morphism g : Qe → P ′e′ in C ′, we have

Pπ1(Q!g, P
′∗g) = P (Q!g) = idPe and Q′π2(Q!g, P

′∗g) = Q′(P ′∗g) = idQ′e′ ,

and so we get an outer commutative diagram, as desired.
Using Lemma 3.18 below, this construction extends to a functor

• : TSFib(C, C ′)× TSFib(C ′, C ′′) → TSFib(C, C ′′).

3.17. Remark. Unpacking the universal property of the pushout, we observe that the
category E ×C′ E ′

/∼ is obtained from the pullback E ×C′ E ′ by making all morphisms of A
into identities. In particular, for every morphism g : Qe → P ′e′ in C ′, the objects (e, g∗e′)
and (g!e, e

′) in E ×C′ E ′ are identified in E ×C′ E ′
/∼.

3.18. Lemma. Let (P,Q) : E → C × C ′ and (P ′, Q′) : E ′ → C ′ × C ′′ be two-sided discrete
fibrations. Then their composition

(P ′, Q′) • (P,Q) : E ×C′ E ′
/∼ → C × C ′′

is a two-sided discrete fibration.



1716 BENEDIKT FRÖHLICH, LYNE MOSER

Proof. By definition, the functor (P ′, Q′) • (P,Q) : E ×C′ E ′
/∼ → C×C ′′ acts as P : E → C

and Q′ : E ′ → C ′′ on each component, and so we write (P ′, Q′) • (P,Q) = (Pπ1, Q
′π2),

where πi, for i = 1, 2, denote the canonical projections from the pullback E ×C′ E ′.
We show that (Pπ1, Q

′π2) : E ×C′ E ′
/∼ → C × C ′ satisfies the conditions of a two-sided

discrete fibration from Definition 3.10. To prove (1), let [ê, ê′] be an object in E ×C′ E ′
/∼

and f : x → P ê be a morphism in C. Then a Pπ1-lift of f with target [ê, ê′] that lies in
the fiber of Q′π2 at Q′ê′ is given by the morphism in E ×′

C E ′
/∼

[P ∗f, 1ê′ ] : [f
∗ê, ê′] → [ê, ê′].

Note that this is well-defined as Q(P ∗f) = 1Qê = 1P ′ê′ = P ′(1ê′) in C ′. Now let

[g, g′] : [e, e′] → [ê, ê′],

be another Pπ1-lift of f that lies in the fiber of Q′π2 at Q′ê′, i.e., a morphism [g, g′] in
E ×C′ E ′

/∼ such that Pg = f and Q′g′ = 1Q′ê′ . By definition of the pullback E ×C′ E ′, we

further have Qg = P ′g′ in C ′. Using condition (3) of Definition 3.10 for the two-sided
discrete fibrations (P,Q) and (P ′, Q′), we have factorizations

g = P ∗(Pg) ◦Q!(Qg) = P ∗f ◦Q!(Qg)

and

g′ = P ′∗(P ′g′) ◦Q′
!(Q

′g′) = P ′∗(Qg) ◦Q′
!(1Q′ê′) = P ′∗(Qg) ◦ 1ê′ = P ′∗(Qg),

where we use that Q′
!(1Q′ê′) = 1ê′ by unicity of lifts. Since the morphism [Q!(Qg), P ′∗(Qg)]

is, by definition, an identity in E ×C′ E ′
/∼, we have that

[g, g′] = [P ∗f ◦Q!(Qg), P ′∗(Qg)] = [P ∗f, 1ê′ ] ◦ [Q!(Qg), P ′∗(Qg)] = [P ∗f, 1ê′ ].

This shows that [P ∗f, 1ê′ ] is the unique such lift. Condition (2) can be shown analogously.
To show (3), let [g, g′] : [e, e′] → [ê, ê′] be a morphism in E ×C′ E ′

/∼. Then the unique

lifts of Pg and Q′g′ provided by conditions (1) and (2) are the morphisms in E ×C′ E ′
/∼

[P ∗(Pg), 1ê′ ] : [(Pg)∗ê, ê′] → [ê, ê′] and [1e, Q
′
!(Q

′g′)] : [e, e′] → [e, (Q′g′)!e
′].

Recall that, by definition of the pullback E×C′E ′, we have Qg = P ′g′ in C ′. Using property
(3) for the two-sided discrete fibrations (P,Q) and (P ′, Q′), we observe that

(Pg)∗ê = (Qg)!e and (Q′g′)!e
′ = (P ′g′)∗ê′ = (Qg)∗ê′,

and so the source of the first lift agrees with the target of the second lift by Remark 3.17.
Therefore we can form their composite and we get

[P ∗(Pg), 1ê′ ] ◦ [1e, Q′
!(Q

′g′)]

= [P ∗(Pg), 1ê′ ] ◦ [Q!(Qg), P ′∗(Qg)] ◦ [1e, Q′
!(Q

′g′)] [Q!(Qg), P ′∗(Qg)] ∼ 1[(Qg)!e,ê′]

= [P ∗(Pg), ◦Q!(Qg), P ′∗(Qg) ◦Q′
!(Q

′g′)] Composition in E ×C′ E ′
/∼

= [g, g′]. (3) for (P,Q) and (P ′, Q′)

This shows the desired result.
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3.19. Remark. As for profunctors, composition of two-sided discrete fibrations is not
strictly associative. However, as pullbacks and pushouts are unique up to unique isomor-
phism, composition of two-sided discrete fibrations is associative up to a unique invertible
comparison cell.

Composition of two-sided discrete fibrations is defined in such a way that it corresponds
to composition of profunctors through the equivalence fib.

3.20. Proposition. Given categories C, C ′, C ′′, the following diagram of functors com-
mutes up to natural isomorphism

TSFib(C, C ′)× TSFib(C ′, C ′′) Prof(C, C ′)× Prof(C ′, C ′′)

TSFib(C, C ′′) Prof(C, C ′′).

•

fib×fib

≃
•

fib

≃

Proof. Given two-sided discrete fibrations (P,Q) : E → C×C ′ and (P ′, Q′) : E ′ → C ′×C ′′,
we want to show that there is an isomorphism in Prof(C, C ′′)

fib((P ′, Q′) • (P,Q)) ∼= fib(P ′, Q′) • fib(P,Q) (3.1)

which is natural in (P,Q) and (P ′, Q′). When evaluated at an object (x, x′′) in C × C ′′,
this amounts to showing that there is an isomorphism in Set

fib((P ′, Q′) • (P,Q))(x, x′′) ∼= fib(P ′, Q′) • fib(P,Q)(x, x′′) (3.2)

which is natural in (x, x′′). By definition, we have that the set fib(P ′, Q′)•fib(P,Q)(x, x′′)
is the coequalizer of the diagram⊔

x′
g−→x̂′∈C′

(P ′, Q′)−1(x̂′, x′′)× (P,Q)−1(x, x′)
⊔

x′∈C′
(P ′, Q′)−1(x′, x′′)× (P,Q)−1(x, x′)

where the two parallel maps are induced by g∗ × 1(P,Q)−1(x,x′) and 1(P ′,Q′)−1(x̂′,x′′) × g!,
respectively. Hence, to obtain the isomorphism (3.2), it suffices to show that the set
fib((P ′, Q′)•(P,Q))(x, x′′) is also a coequalizer of the above diagram. However, by Remark
3.17, we see that the fiber fib((P ′, Q′) • (P,Q))(x, x′′) consists of the quotient of the set⊔

x′∈C′

(P ′, Q′)−1(x′, x′′)× (P,Q)−1(x, x′)

by the relation (e, g∗e′) ∼ (g!e, e
′), for all morphisms g : Qe → P ′e′ in C ′. But these are

precisely the relations enforced by the coequalizer. Hence we have a canonical isomor-
phism (3.2). Moreover, it is natural in (x, x′′) since, for both profunctors, the actions of
morphisms in C and C ′′ are determined by taking unique lifts along P and Q′, therefore
yielding the natural isomorphism (3.1).

Finally, the naturality of the isomorphism (3.1) in (P,Q) and (P ′, Q′) follows directly
from the universal property of the coequalizers.
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Moreover, this composition of two-sided discrete fibration admits as identities the
following.

3.21. Definition. The identity two-sided discrete fibration at a category C is the two-
sided discrete fibration (s, t) : C[1] → C × C, where [1] denotes the category associated
with the poset {0 < 1}, often called the walking morphism—so C[1] is the category of
morphisms and commutative squares of morphisms in C—and the functor (s, t) is induced
by taking source and target.

3.22. Remark.Note that, given a category C, the image of the identity two-sided discrete
fibration (s, t) : C[1] → C × C under the equivalence fib: TSFib(C, C) → Prof(C, C) is the
identity profunctor eC = C(−,−) : Cop × C → Set.

As a consequence, we get the following.

3.23. Lemma.Given a two-sided discrete fibration (P,Q) : E → C×C ′, there are canonical
isomorphisms in TSFib(C, C ′)

E C[1] ×C E/∼

C × C ′

∼=

(P,Q) (P,Q)•(s,t)
and

E E ×C′ C ′[1]
/∼

C × C ′

∼=

(P,Q) (s,t)•(P,Q)

Proof. We show the first isomorphism, and the second can be shown analogously.
Let (s, t) : C[1] → C × C denote the identity two-sided discrete fibration. We have the

following natural isomorphisms

fib((P,Q) • (s, t)) ∼= fib(P,Q) • fib(s, t) Proposition 3.20
∼= fib(P,Q) • eC Remark 3.22
∼= fib(P,Q) Lemma 3.8

Since fib is an equivalence, it reflects isomorphisms and so we get an isomorphism

C[1] ×C E/∼ ∼= E

over C × C ′, as desired.

The weak double category Cat.With the notion of profunctors at hand, we are now
ready to introduce the weak double category Cat.

3.24. Definition. We define Cat to be the unitary weak double category whose

• objects are (small) categories C, C ′,D,D′, . . .,

• horizontal morphisms C → D are functors F : C → D, with their ordinary identity
and composition,
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• vertical morphisms C−→• C ′ are profunctors U : Cop × C ′ → Set, with identity at C
given by the hom functor eC := C(−,−) : Cop × C → Set and composition defined as
in Construction 3.5; using Lemma 3.8, we impose eC • U := U and U • eC′ := U , for
every profunctor U : C−→• C ′,

• squares

C D

C ′ D′

•

U

F

α •

V

F ′

are natural transformations

Cop × C ′ Dop ×D′

Set

F op×F ′

U V

α

with horizontal composition of two horizontally composable squares α :
[
U F

F ′ V
]

and β :
[
V G

G′ W
]
given by the natural transformation

(F op × F ′)β ◦ α : U ⇒ W ◦ ((GF )op × (G′F ′)),

and vertical composition of two vertically composable squares α :
[
U F

F ′ V
]
and

α′ :
[
U ′ F ′

F ′′ V ′
]
given by the natural transformation

α′ • α : U ′ • U ⇒ (V ′ • V ) ◦ (F op × F ′′)

whose component at an object (x, x′′) of C × C ′′ is the unique map between coends∫ x′∈C′
α′
x′,x′′ × αx,x′ :

∫ x′∈C′
U ′(x′, x′′)× U(x, x′) →

∫ y′∈D′
V ′(y′, F ′′x′′)× V (Fx, y′).

induced by α′
x′,x′′ : U ′(x′, x′′) → V ′(F ′x′, F ′′x′′) and αx,x′ : U(x, x′) → V (Fx, F ′x′),

• for composable profunctors U,U ′, U ′′, the associator square

αU,U ′,U ′′ :
[
(U ′′ • U ′) • U 1C

1C′′′
U ′′ • (U ′ • U)

]
is the natural isomorphism

αU,U ′,U ′′ : ((U ′′ • U ′) • U)
∼=
=⇒ (U ′′ • (U ′ • U))

whose component at an object (x, x′′′) in C ×C ′′′ is the unique isomorphism between
coends

(αU,U ′,U ′′)x,x′′′ : ((U ′′ • U ′) • U)(x, x′′′)
∼=−→ (U ′′ • (U ′ • U))(x, x′′′).

The following result is mentioned in [Gra19, §3.4.3], and can be deduced from [Bén73,
§2].
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3.25. Lemma. The construction Cat is a unitary weak double category.

Finally, we give a more convenient description of the globular squares in Cat.

3.26. Lemma. A globular square α :
[
eC

F
F ′ eD

]
in Cat is equivalently a natural transfor-

mation α : F ⇒ F ′ : C → D.

Proof. By definition, a globular square α :
[
eC

F
F ′ eD

]
in Cat is a natural transformation

α : C(−,−) ⇒ D(F (−), F ′(−)) : Cop × C → Set,

corresponding uniquely to a family of natural transformations

{α−,x : C(−, x) ⇒ D(F (−), F ′x)}x∈C

natural in x. By the usual Yoneda lemma, such a family corresponds then uniquely to
a family {αx ∈ D(Fx, F ′x)}x∈C natural in x. But such a family defines precisely the
components of a natural transformation α : F ⇒ F ′.

3.27. Remark. Under the bijection of Lemma 3.26, the identity natural transformation
idF at a functor F : C → D corresponds to the globular square idF :

[
eC

F
F eD

]
in Cat

given by the natural transformation idF : C(−,−) ⇒ D(F (−), F (−)) : Cop × C → Set
whose component at objects x, x′ in C is the map of sets

C(x, x′) → D(Fx, Fx′)

sending a morphism g : x → x′ in C to the morphism Fg : Fx → Fx′ in D.

3.28. Remark. As a consequence of Lemma 3.26, we see that the underlying horizontal
2-category HCat is simply the 2-category Cat itself.

The 2-category of lax double presheaves. Having constructed the weak double
category Cat, we can now introduce our notion of lax double presheaves.

3.29. Definition. Given a (strict) double category C, a lax double presheaf over C is a
normal lax double functor X : Cop → Cat.

3.30. Notation. We denote by PC := HJCop,CatKnlax the 2-category of lax double
presheaves over C, horizontal transformations, and globular modifications. Here we have
that JCop,CatKnlax is the full double subcategory of the double category JCop,CatKlax
from Proposition 2.6 spanned by the normal lax double functors and, consequently,
HJCop,CatKnlax is the corresponding 2-subcategory of the 2-category HJCop,CatKlax from
Proposition 2.6.

In the case where C = HC with C a 2-category, we can provide another description
of PHC.

3.31. Notation. Given a 2-category C, we denote by [Cop,Cat] the 2-category of 2-
presheaves, i.e., 2-functors Cop → Cat, 2-natural transformations, and modifications; see
e.g. [RV22, §B.2].
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3.32. Lemma. Given a 2-category C, there is an isomorphism of 2-categories

PHC ∼= [Cop,Cat],

which is natural in C.
Proof. By Remark 2.18, we have a 2-adjunction

H : 2Cat ⇆ DblCath : H.

Hence this gives an isomorphism of categories

Hor0JHCop,CatK ∼= 2Cat(Cop,HCat)

which can be promoted to an isomorphism of 2-categories

HJHCop,CatK ∼= [Cop,HCat].

Then, noticing that normal lax double functors out of HCop are simply (strict) double
functors and using Remark 3.28, we get an isomorphism of 2-categories

PHC = HJHCop,CatKnlax = HJHCop,CatK ∼= [Cop,HCat] = [Cop,Cat],

as desired.

To simplify computations later, we unpack here the data of the 2-category PC.

3.33. Remark. A lax double presheaf X : Cop → Cat consists of

• for every object x in C, a category Xx,

• for every horizontal morphism f : x → y in C, a functor Xf : Xy → Xx,

• for every vertical morphism u : x−→• x′ in C, a profunctor Xu : Xxop ×Xx′ → Set,

• for every square α :
[
u f

f ′ v
]
in C, a natural transformation

Xα : Xv ⇒ Xu(Xf op ×Xf ′),

• for all composable vertical morphisms x
u−→• x′ u′

−→• x′′ in C, a composition comparison
natural transformation

µu,u′ : Xu′ •Xu ⇒ X(u′ • u) : Xxop ×Xx′′ → Set.

such that the following conditions are satisfied:

(1) it preserves horizontal identities and horizontal compositions strictly,

(2) composition comparison natural transformations µu,u′ are natural with respect to
(u, u′) and compatible with the associator natural transformations in Cat,

(3) it preserves vertical identities strictly; and, for every vertical morphism u : x−→• x′

in C, the natural transformations µu,ex′
and µex,u agree with the identity natural

transformation at Xu.
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3.34. Remark. Given lax double presheaves X, Y : Cop → Cat, then a horizontal trans-
formation F : X ⇒ Y consists of

• for every object x in C, a functor Fx : Xx → Y x,

• for every vertical morphism u : x−→• x′ in C, a natural transformation

Fu : Xu ⇒ Y u ◦ (F op
x × Fx′) : Xxop ×Xx′ → Set,

such that the following conditions are satisfied:

(1) the functors Fx are natural in x: for every horizontal morphism f : x → y in C, the
following diagram of functors commutes

Xy Xx

Y y Y x

Xf

Fy Fx

Y f

(2) the natural transformations Fu are natural in u: for every square α :
[
u f

f ′ v
]
:
[
x
x′

y
y′

]
in C, the following diagram in Prof(Xy,Xy′) commutes,

Xv Xu(Xf op ×Xf ′)

Y v(F op
y × Fy′) Y u((Y f ◦ Fy)

op × (Y f ′ ◦ Fy′))

Fv

Xα

Fu(Xfop×Xf ′)

Y α(F op
y ×Fy′ )

where we use that Y f ◦ Fy = Fx ◦Xf and Y f ′ ◦ Fy′ = Fx′ ◦Xf ′ by (1),

(3) the natural transformations Fu are compatible with composition comparisons: for

all composable vertical morphisms x
u−→• x′ u′

−→• x′′ in C, the following diagram in
Prof(Xx,Xx′′) commutes,

Xu′ •Xu X(u′ • u)

(Y u′ • Y u)(F op
x × Fx′′) Y (u′ • u)(F op

x × Fx′′)

Fu′•Fu

µu,u′

Fu′•u

µu,u′ (F
op
x ×Fx′′ )

(4) the natural transformations Fu are compatible with vertical identities: for every
object x in C, the natural transformation Fex is the identity at Fx.



YONEDA LEMMA AND REPRESENTATION THEOREM FOR DOUBLE CATEGORIES1723

3.35. Remark. Given horizontal transformations F, F ′ : X ⇒ Y : Cop → Cat, then a
globular modification A :

[
eX

F
F ′ eY

]
consists of, for every object x in C, a natural trans-

formation
Ax : Fx ⇒ F ′

x : Xx → Y x,

such that the following conditions are satisfied:

(1) the natural transformations Ax are compatible with horizontal morphisms: for every
horizontal morphism f : x → y in C, the following pasting diagram of functors and
natural transformations commutes,

Xy Xx

Y y Y x

Xf

Fy F ′
y Fx F ′

x

Ay Ax

Y f

(2) the natural transformations Ax are compatible with vertical morphisms: for every
vertical morphism u : x−→• x′ in C, the following diagram in Prof(Xx,Xx′) com-
mutes.

Xu Y u(F op
x × Fx′)

Y u(F ′op
x × F ′

x′) Y u(F op
x × F ′

x′)

Fu

F ′
u Y u(F op

x ×Ax′ )

Y u(Aop
x ×F ′

x′ )

Finally, we extend the construction PC into a 2-functor.

3.36. Construction. We define a 2-functor

P : DblCatcooph → 2Cat,

where DblCatcooph is the 2-category obtained from DblCath by reversing the morphisms
and the 2-morphisms, which sends

• a double category C to the weak double category PC of lax double presheaves over
C, horizontal transformations, and globular modifications,

• a double functor G : C→ D to the 2-functor

PG := (Gop)∗ : PD → PC,

induced by precomposition with Gop,
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• a horizontal transformation B : G ⇒ G′ : C→ D to the 2-natural transformation

PB := (Bop)∗ : PG′ ⇒ PG

whose component at a lax double presheaf X : Dop → Cat is the horizontal transfor-
mation

(PB)X := X ◦Bop : PG′(X) = X ◦G′ op → PG(X) = X ◦Gop

of lax double presheaves Cop → Cat.

It is straightforward to check that this construction is 2-functorial.

Representable lax double presheaves. We now want to introduce our first class
of examples. They will be induced by the following construction.

3.37. Construction. Given a double category C, we define a normal lax double functor

C(−,−) : Cop × C→ Cat

by the following data:

• it sends a pair (x, x̂) of objects in C to the category C(x, x̂) whose

– objects are horizontal morphisms g : x → x̂ in C,

– morphisms g → g′ are globular squares η :
[
ex

g
g′ ex̂

]
in C,

– composition is given by the vertical composition of squares in C

• it sends a pair (x
f−→ y, x̂

f̂−→ ŷ) of horizontal morphisms in C to the functor

C(f, f̂) : C(y, x̂) → C(x, ŷ)

sending

– a horizontal morphism g : y → x̂ to the composite f̂ ◦ g ◦ f : x → ŷ,

– a square η :
[
ey

g
g′ ex̂

]
to the square ef̂ ◦ η ◦ ef :

[
ex

f̂◦g◦f
f̂◦g′◦f eŷ

]
,

• it sends a pair (x
u−→• x′, x̂

û−→• x̂′) of vertical morphisms in C to the profunctor

C(u, û) : C(x, x̂)op × C(x′, x̂′) → Set

sending

– an object (x
g−→ x̂, x′ g′−→ x̂′) of C(x, x̂)× C(x′, x̂′) to the set of squares{[

u g
g′ û

]
:
[
x
x′

x̂
x̂′

]}
,
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– a pair of squares
(
α : [ex

g
h ex̂] , α

′ :
[
ex′

g′

h′ ex̂′

])
to the map

C(u, û)(h, g′) → C(u, û)(g, h′)

sending a square η :
[
u h

g′ û
]
to the vertical composite of squares

x x̂

x x̂

x′ x̂′

x′ x̂′

•

g

α

•

•

u

h

η •

û

g′

•

α′ •

h′

• it sends a pair (α :
[
v f

f ′ u
]
, α̂ :

[
û f̂

f̂ ′ v̂
]
) of squares in C to the natural transformation

C(α, α̂) : C(u, û) ⇒ C(v, v̂)(C(f, f̂)op × C(f ′, f̂ ′)) : C(y, x̂)op × C(y′, x̂′) → Set

whose component at an object (y
g−→ x̂, y′

g′−→ x̂′) of C(y, x̂)× C(y′, x̂′) is the map

C(α, α̂)g,g′ : C(u, û)(g, g
′) → C(v, v̂)(f̂ ◦ g ◦ f, f̂ ′ ◦ g′ ◦ f ′),

sending a square η :
[
u g

g′ û
]
to the horizontal composite of squares

x y x̂ ŷ

x′ y′ x̂′ ŷ′

f

•

v α •

u

g

η •

û

f̂

α̂

•

v̂

f ′ g′ f̂ ′

• its composition comparison square at a pair (x, x̂)
(u,û)
−→• (x′, x̂′)

(u′,û′)
−→• (x′′, x̂′′) of compos-

able vertical morphisms in C is the natural transformation

µ(u,û),(u′,û′) : C(u
′, û′) • C(u, û) ⇒ C(u′ • u, û′ • û) : C(x, x̂)op × C(x′′, x̂′′) → Set,

whose component at an object (x
g−→ x̂, x′′ g′′−→ x̂′′) of C(x, x̂)× C(x′′, x̂′′) is the map

C(u′, û′) • C(u, û)(g, g′′) → C(u′ • u, û′ • u′)(g, g′′),

induced by the universal property of the coend from the family of maps, given at

an object x′ g′−→ x̂′ of C(x′, x̂′), by the map

C(u′, û′)(g′, g′′)× C(u, û)(g, g′) −→ C(u′ • u, û′ • û)(g, g′′),

sending an element (α′ :
[
u′ g′

g′′ û
′
]
, α :

[
u g

g′ û
]
) of C(u′, û′)(g′, g′′)× C(u, û)(g, g′) to

the vertical composite α′ • α in C(u′ • u, û′ • û)(g, g′′).
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3.38. Lemma. The construction

C(−,−) : Cop × C→ Cat

is a normal lax double functor.

Proof. It is straightforward to see that C(−,−) : Cop × C → Cat preserves horizontal
compositions and identities. The fact that, given vertical morphisms u, û in C, the com-
position comparison natural transformations µu,u′ are natural in (u, u′) follows from the
interchange law that the compositions of squares in C satisfy, and the fact that the natural
transformations µu,u′ are compatible with associator natural transformations follows from
the associativity of vertical composition of squares in C. Finally, to see that C(−,−) is
normal, observe that, given objects x, x̂ in C, then C(ex, ex̂) is the identity profunctor
eC(x,x̂), and similarly, given horizontal morphisms f, f̂ in C, then C(ef , ef̂ ) is the identity

natural transformation at C(f, f̂).

3.39. Remark. We note that C(−,−) is in general not a pseudo double functor. If this
was the case, the composition comparison natural transformations

µ(u,û),(u′,û′) : C(u
′, û′) • C(u, û) ⇒ C(u′ • u, û′ • û) : C(x, x̂)op × C(x′′, x̂′′) → Set,

would be invertible. This would imply that every square
[
u′ • u g

g′′û
′ • û

]
in C could be

factorized into a vertical composite of two squares of the form
[
u g

g′ û
]
and

[
u′ g′

g′′ û
′
]
.

However, such a factorization does not exist in general, as we show in Example 3.40
below.

3.40. Example. We consider the double category C generated by the following data

x x̂

x′ x̂′

x′′ x̂′′

•

u

g

α

•

û

•

u′ •

û′

g′′

Then, note that we have

C(x′, x̂′) = ∅, C(x, x̂) = {g} and C(x′′, x̂′′) = {g′′}.

Hence we get that

C(u′, û′) • C(u, û)(g, g′′) =
∫ g′∈C(x′,x̂′)=∅

C(u′, û′)(g′, g′′)× C(u, û)(g, g′) = ∅,

while
C(u′ • u, û′ • û)(g, g′′) = {α}.

Hence (µ(u,û),(u′,û′))g,g′′ is not a bijection, and therefore µ(u,û),(u′,û′) is not invertible.

By fixing components, we get the following.
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3.41. Construction.Given a double category C and an object x̂ in C, the representable
lax double presheaf at x̂ is the composite of normal lax double functors

C(−, x̂) : Cop ∼= C
op × [0]

Cop×x̂−−−→ C
op × C

C(−,−)−−−−→ Cat.

This construction can be extended on horizontal morphisms and globular squares as
follows.

3.42. Construction. Given a double category C and a horizontal morphism f̂ : x̂ → ŷ
in C, the representable horizontal transformation at f̂

C(−, f̂) : C(−, x̂) ⇒ C(−, ŷ) : Cop → Cat

is the horizontal transformation whose

• component at an object x in C is the functor C(x, f̂) := C(1x, f̂) : C(x, x̂) → C(x, ŷ),

• component at a vertical morphism u : x−→• x′ in C is the natural transformation of
functors C(x, x̂)op × C(x′, x̂) → Set

C(u, f̂) := C(1u, ef̂ ) : C(u, ex̂) ⇒ C(u, eŷ)(C(x, f̂)
op × C(x′, f̂)).

The fact that C(−, f̂) is a horizontal transformation follows from the coherences of
C(−,−).

3.43. Construction. Given a double category C and a globular square α̂ :
[
ex̂

f̂

f̂ ′ ex̂′

]
in C, the representable globular modification at α̂

C(−, α̂) :
[
eC(−,x̂)

C(−,f̂)

C(−,f̂ ′)
eC(−,x̂′)

]
is the globular modification whose component at an object x in C is the natural transfor-
mation

C(x, α̂) := C(e1x , α̂) : C(x, f̂) ⇒ C(x, f̂ ′).

The fact that C(−, α̂) is a globular modification follows from the coherences of C(−,−).

However, this construction fails to extend to vertical morphisms.

3.44. Remark. Given a double category C and a vertical morphism û : x̂−→• x̂′ in C, we
could consider the “vertical transformation” whose

• component at an object x in C is the profunctor

C(x, û) := C(ex, û) : C(x, x̂)
op × C(x, x̂′) → Set,

• component at a horizontal morphism f : x → y in C is the natural transformation

C(f, û) := C(ef , 1û) : C(y, û) ⇒ C(x, û)(C(f, x̂)op × C(f, x̂′)).
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One might expect to get a colax vertical transformation C(−, û) : C(−, x̂)=⇒• C(−, x̂′).
However, there are in general no naturality comparison squares. Indeed, given a verti-
cal morphism u : x−→• x′ in C, such a naturality comparison square would be a natural
transformation of the form

C(x′, û) • C(u, x̂) ⇒ C(u, x̂′) • C(x, û) : C(x, x̂)op × C(x′, x̂′) → Set.

Thus, when evaluated at an object (x
g−→ x̂, x′ g′−→ x̂′) in C(x, x̂)× C(x′, x̂′), we would get

a map∫ s∈C(x′,x̂)
C(x′, û)(s, g′)× C(u, x̂)(g, s) −→

∫ t∈C(x,x̂′)
C(u, x̂′)(t, g′)× C(x, û)(g, t). (3.3)

But in general, such a map does not exist, as we show in Example 3.45 below.
The core issue here is that elements in the left-hand set of (3.3) are represented by

pairs (α, α′) of squares as depicted below left for some horizontal morphism s : x′ → x̂ in
C, while elements of the right-hand set of (3.3) are represented by pairs (β, β′) of squares
as depicted below right for some horizontal morphism t : x → x̂′.

x x̂

x′ x̂

x′ x̂′,

•

u

g

α

•

•
s

α′ •

û

g′

x x̂

x x̂′

x′ x̂′

•

g

β

•

û

•

u

t

β′ •

g′

But there is no natural assignment between such pairs.
Can we evade this problem by introducing a new notion of vertical transformation?

Note that the vertical composites α′ • α and β′ • β of the above squares share the same
boundaries, so the composition comparison transformations of C(−,−) fit into the follow-
ing picture

C(x, x̂) C(x, x̂′)

C(x′, x̂) C(x′, x̂′),

•
•C(x,û)

•

C(u,x̂)

•

C(u,x̂′)

•
C(x′,û)

where the diagonal vertical morphism is given by C(u, û), which might be a good candidate
for replacing the naturality comparison squares. This fixes our issue regarding naturality
comparison squares, but introduces yet another problem: such vertical transformations do
not compose! Indeed, the fact that the 2-morphisms in the above diagram face opposite
directions prevents the composition of two such transformations.

These issues are the core of our decision to work in the 2-category PC of lax double
presheaves, in which vertical transformations are not considered, rather than in the double
category JCop,CatKnlax.
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3.45. Example. We consider the double category C generated by the following data

x x̂

x′ x̂

x′ x̂′,

•

u

g

α

•

•

h

α′ •

û

g′

Then, note the we have

C(x, x̂′) = ∅, C(x, x̂) = {g}, C(x′, x̂) = {h} and C(x′, x̂′) = {g′}.

Hence we get that∫ s∈C(x′,x̂)={h}
C(x′, û)(s, g′)× C(u, x̂)(g, s) = {(α′, α)}

while ∫ t∈C(x,x̂′)=∅
C(u, x̂′)(t, g′)× C(x, û)(g, t) = ∅.

This implies that a map as in (3.3) cannot exist.

4. Yoneda lemma

In this section, we show a 2-categorical version of the Yoneda lemma for double categories
using the weak double category Cat. More precisely, given a double category C and a
double lax presheaf X over C, we prove that there is a 2-natural isomorphism between
the category of morphisms from a representable lax double presheaf C(−, x̂) to X and the
category Xx̂.

In Sections 4.1 to 4.4, we construct the Yoneda comparison map and show that it
is 2-natural. In Sections 4.5 to 4.10, we construct its inverse henceforth proving the
desired Yoneda lemma. Finally, in Sections 4.11 and 4.12, we deduce that there is a
Yoneda embedding from the underlying horizontal 2-category of C into its 2-category of
lax double presheaves PC.

Statement of Yoneda lemma. We start by constructing the components of the
Yoneda isomorphism.

4.1. Construction. Given a double category C, a lax double presheaf X : Cop → Cat,
and an object x̂ ∈ C, we construct a functor

Ψx̂,X : PC(C(−, x̂), X) → Xx̂.
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It sends a horizontal transformation φ : C(−, x̂) ⇒ X to the object φx̂(1x̂) of Xx̂, i.e., the
image of the identity 1x̂ under the functor φx̂ : C(x̂, x̂) → Xx̂. It sends a modification

C(−, x̂) X

C(−, x̂) X

φ

•

ν

•

φ′

to the morphism (νx̂)1x̂ : φx̂(1x̂) → φ′
x̂(1x̂) in Xx̂, i.e., the component of the natural

transformation νx̂ : φx̂ ⇒ φ′
x̂ : C(x̂, x̂) → Xx̂ at 1x̂.

We now state the Yoneda lemma.

4.2. Theorem. Given a double category C, a lax double presheaf X : Cop → Cat, and an
object x̂ in C, the functor

Ψx̂,X : PC(C(−, x̂), X) → Xx̂

is an isomorphism, which is 2-natural in x̂ in HC and in X in PC.
We show that it is 2-natural in x̂ and X, separately.

4.3. Proposition. The functors

Ψx̂,X : PC(C(−, x̂), X) → Xx̂

are 2-natural in x̂ in HC.

Proof.To prove 2-naturality in x̂, we first have to show that, given a horizontal morphism
f̂ : x̂ → ŷ in C, the following diagram of functors commutes.

PC(C(−, ŷ), X) Xŷ

PC(C(−, x̂), X) Xx̂

C(−,f̂)∗

Ψŷ,X

Xf̂

Ψx̂,X

To do so, we evaluate both composites at a horizontal transformation φ : C(−, ŷ) ⇒ X:

Ψx̂,X(C(−, f̂)∗(φ)) = Ψx̂,X(φ ◦ C(−, f̂)) Definition of C(−, f̂)∗

= (φ ◦ C(−, f̂))x̂(1x̂) Definition of Ψx̂,X

= φx̂(C(x̂, f̂)(1x̂)) Composition of transformations

= φx̂(f̂) Definition of C(x̂, f̂)

= φx̂(C(f̂ , ŷ)(1ŷ)) Definition of C(f̂ , ŷ)

= Xf̂(φŷ(1ŷ)) Naturality of φ

= Xf̂(Ψŷ,X(φ)), Definition of Ψŷ,X
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as well as at a globular modification ν :
[
eC(−,ŷ)

φ
φ′ eX

]
:

Ψx̂,X(C(−, f̂)∗(ν)) = Ψx̂,X(ν ◦ C(−, f̂)) Definition of C(−, f̂)∗

= ((ν ◦ C(−, f̂))x̂)1x̂ Definition of Ψx̂,X

= (νx̂)C(x̂,f̂)(1x̂) Whiskering

= (νx̂)f̂◦1x̂ Definition of C(x̂, f̂)

= (νx̂)1ŷ◦f̂ f̂ ◦ 1x̂ = f̂ = 1ŷ ◦ f̂

= (νx̂)C(f̂ ,ŷ)(1ŷ) Definition of C(f̂ , ŷ)

= Xf̂((νŷ)1ŷ) Horizontal compatibility of ν

= Xf̂(Ψŷ,X(ν)). Definition of Ψŷ,X

This shows that the two composites agree on objects and morphisms, as desired.

Next, we have to show that, given a globular square α̂ :
[
ex̂

f̂

f̂ ′ eŷ

]
in C, the following

pasting diagram of functors and natural transformations commutes.

PC(C(−, ŷ), X) Xŷ

PC(C(−, x̂), X) Xx̂

C(−,f̂)∗ C(−,f̂ ′)∗

Ψŷ,X

Xf̂ Xf̂ ′
C(−,α̂)∗ Xα̂

Ψx̂,X

To do so, we evaluate both whiskerings at a horizontal transformation φ : C(−, ŷ) ⇒ X:

(Ψx̂,X ◦ C(−, α̂)∗)φ = Ψx̂,X(φ ◦ C(−, α̂)) Definition of C(−, α̂)∗

= ((φ ◦ C(−, α̂))x̂)1x̂ Definition of Ψx̂,X

= φx̂(C(x̂, α̂)1x̂) Whiskering

= φx̂(α̂ ◦ e1x̂) Definition of C(x̂, α̂)

= φx̂(e1ŷ ◦ α̂) α̂ ◦ e1x̂ = α̂ = e1ŷ ◦ α̂
= φx̂(C(α̂, ŷ)1ŷ) Definition of C(α̂, ŷ)

= (Xα̂)φŷ(1ŷ) 2-Naturality of φ

= (Xα̂)Ψŷ,X(φ) Definition of Ψŷ,X

= (Xα̂ ◦Ψŷ,X)φ. Whiskering

This shows that the components of the two whiskerings agree, as desired.

4.4. Proposition. The functors

Ψx̂,X : PC(C(−, x̂), X) → Xx̂

are 2-natural in X in PC.
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Proof. To prove 2-naturality in X, we first have to show that, given a horizontal trans-
formation F : X ⇒ Y of lax double presheaves over C, the following diagram of functors
commutes.

PC(C(−, x̂), X) Xx̂

PC(C(−, x̂), Y ) Y x̂

F∗

Ψx̂,X

Fx̂

Ψx̂,Y

To do so, we evaluate both composites at a horizontal transformation φ : C(−, x̂) ⇒ X:

Ψx̂,Y (F∗(φ)) = Ψx̂,Y (F ◦ φ) Definition of F∗

= (F ◦ φ)x̂(1x̂) Definition of Ψx̂,Y

= Fx̂(φx̂(1x̂)) Composition of horizontal transformations

= Fx̂(Ψx̂,X(φ)) Definition of Ψx̂,X

as well as at a globular modification ν :
[
eC(−,x̂)

φ
φ′ eX

]
:

Ψx̂,Y (F∗(ν)) = Ψx̂,Y (F ◦ ν) Definition of F∗

= ((F ◦ ν)x̂)1x̂ Definition of Ψx̂,X

= Fx̂((νx̂)1x̂) Whiskering

= Fx̂(Ψx̂,X(ν)). Definition of Ψx̂,X

This shows that the two composites agree on objects and morphisms, as desired.
Next, we have to show that, given a globular modification A :

[
eX

F
F ′ eY

]
of lax double

presheaves over C, the following pasting diagram of functors and natural transformations
commutes.

PC(C(−, x̂), X) Xx̂

PC(C(−, x̂), Y ) Y x̂

F∗ F ′
∗

Ψx̂,X

Fx̂ F ′
x̂

A∗ Ax̂

Ψx̂,Y

To do so, we evaluate both whiskerings at a horizontal transformation φ : C(−, x̂) ⇒ X:

(Ψx̂,Y ◦ A∗)φ = Ψx̂,Y (A ◦ φ) Definition of A∗

= ((A ◦ φ)x̂)1x̂ Definition of Ψx̂,Y

= (Ax̂)φx̂(1x̂) Whiskering

= (Ax̂)Ψx̂,X(φ) Definition of Ψx̂,X

= (Ax̂ ◦Ψx̂,X)φ. Whiskering

This shows that the components of the two whiskerings agree, as desired.
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Proof of Yoneda lemma. To prove the Yoneda lemma, namely Theorem 4.2, let us
fix a double category C, a lax double presheaf X : Cop → Cat and an object x̂ ∈ C. We
construct an inverse Φx̂,X : Xx̂ → PC(C(−, x̂), X) of the functor Ψx̂,X from Construction
4.1. We start with its assignment on objects.

4.5. Construction. Given an object x− in Xx̂, we construct a horizontal transforma-
tion

Φx̂,X(x−) : C(−, x̂) ⇒ X : Cop → Cat

such that

• its component at an object x in C is given by the functor

Φx̂,X(x−)x : C(x, x̂) → Xx

sending an object x
g−→ x̂ in C(x, x̂) to the object Xg(x−) in Xx, i.e., the image

of the object x− under the functor Xg : Xx̂ → Xx, and a square η :
[
ex

g
g′ ex̂

]
to

the morphism (Xη)x− : Xg(x−) → Xg′(x−) in Xx, i.e., the component at x− of the
natural transformation Xη : Xg ⇒ Xg′ : Xx̂ → Xx,

• its component at a vertical morphism u : x−→• x′ in C is given by the natural trans-
formation

Φx̂,X(x−)u : C(u, x̂) ⇒ Xu(Φx̂,X(x−)
op
x × Φx̂,X(x−)x′) : C(x, x̂)op × C(x′, x̂) → Set

whose component at an object (x
g−→ x̂, x′ g′−→ x̂) of C(x, x̂)× C(x′, x̂) is the map

C(u, x̂)(g, g′) −→ Xu(Xg(x−), Xg′(x−))

sending a square η :
[
u g

g′ ex̂
]
to the element (Xη)x−,x−(1x−), i.e., the image of the

identity 1x− under the component (Xη)x−,x− : Xx̂(x−, x−) → Xu(Xg(x−), Xg′(x−))
of the natural transformation Xη : Xex̂ = eXx̂ ⇒ Xu(Xgop ×Xg′) at x−.

4.6. Lemma. The construction

Φx̂,X(x−) : C(−, x̂) ⇒ X

is a horizontal transformation.

Proof.We first show naturality of the components Φx̂,X(x−)x in x. For this, let f : y → x
be a horizontal morphism in C. We want to show that the following diagram of functors
commutes.

C(x, x̂) C(y, x̂)

Xx Xy

C(f,x̂)

Φx̂,X(x−)x Φx̂,X(x−)y

Xf
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To do so, we evaluate both composites at an object x
g−→ x̂ of C(x, x̂):

Φx̂,X(x−)y ◦ C(f, x̂)(g) = Φx̂,X(x−)y(g ◦ f) Definition of C(f, x̂)

= X(g ◦ f)(x−) Definition of Φx̂,X(x−)

= Xf ◦Xg(x−) Functorality of X

= Xf ◦ Φx̂,X(x−)x(g) Definition of Φx̂,X(x−)

as well as at a morphism η :
[
ex

g
g′ ex̂

]
of C(x, x̂):

Φx̂,X(x−)y ◦ C(f, x̂)(η) = Φx̂,X(x−)y(η ◦ ef ) Definition of C(f, x̂)

= X(η ◦ ef )x−,x−(1x−) Definition of Φx̂,X(x−)

= Xef ◦Xηx−,x−(1x−) Functorality of X

= Xf ◦Xηx−,x−(1x−) Normality of X

= Xf ◦ Φx̂,X(x−)x(η) Definition of Φx̂,X(x−)

This shows that the two composites agree on objects and morphisms, as desired.
Next, we show naturality of the components Φx̂,X(x−)u in u. For this, consider

a square α :
[
v f

f ′ u
]
:
[
y
y′

x
x′

]
in C. We want to show that the following diagram in

Prof(C(x, x̂),C(x′, x̂)) commutes.

C(u, x̂) C(v, x̂)(C(f, x̂)op × C(f ′, x̂))

Xu(Φx̂,X(x−)
op
x × Φx̂,X(x−)x′) Xv((Xf ◦ Φx̂,X(x−)x)

op × (Xf ′ ◦ Φx̂,X(x−)x′))

C(α,x̂)

Φx̂,X(x−)u Φx̂,X(x−)v(C(f,x̂)op×C(f ′,x̂))

Xα(Φx̂,X(x−)opx ×Φx̂,X(x−)x′ )

where we recall that, by the first part, we have the relations Xf ◦Φx̂,X(x−)x = Φx̂,X(x−)y◦
C(f, x̂) and Xf ′ ◦ Φx̂,X(x−)x′ = Φx̂,X(x−)y′ ◦ C(f ′, x̂). When evaluated at an object

(x
g−→ x̂, x′ g′−→ x̂) of C(x, x̂)×C(x′, x̂), this amounts to showing that the following diagram

in Set commutes.

C(u, x̂)(g, g′) C(u, x̂)(gf, g′f ′)

Xv(Xg(x−), Xg′(x−)) Xu(X(gf)(x−), X(g′f ′)(x−))

(C(α,x̂))g,g′

(Φx̂,X(x−)u)g,g′ (Φx̂,X(x−)v)gf,g′f ′

(Xα)Xg(x−),Xg′(x−)

To do so, we evaluate both composites at an element η :
[
u g

g′ ex̂
]
in C(u, x̂)(g, g′):

(Φx̂,X(x−)v)gf,g′f ′(C(α, x̂)(η))

= X(C(α, x̂)(η))x−,x−(1x−) Definition of Φx̂,X(x−)v

= X(η ◦ α)x−,x−(1x−) Definition of C(α, x̂)

= (Xα)Xg(x−),Xg′(x−)((Xη)x−,x−(1x−)) Functorality of X

= (Xα)Xg(x−),Xg′(x−)(Φx̂,X(x−)u(η)). Definition of Φx̂,X(x−)u
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This shows that the two composites agree, as desired.
Next, we show compatibility of Φx̂,X(x−)u with composition comparison squares. For

this, let u : x−→• x′ and u′ : x′−→• x′′ be composable vertical morphisms in C. We want to
show that the following diagram in Prof(C(x, x̂),C(x′′, x̂)) commutes.

C(u′, x̂) • C(u, x̂) C(u′ • u, x̂)

(Xu′ •Xu)(Φx̂,X(x−)
op
x × Φx̂,X(x−)x′′) X(u′ • u)(Φx̂,X(x−)

op
x × Φx̂,X(x−)x′′)

µu,u′

Φx̂,X(x−)u′•Φx̂,X(x−)u Φx̂,X(x−)u′•u

µu,u′ (Φx̂,X(x−)opx ×Φx̂,X(x−)x′′ )

When evaluated at an object (x
g−→ x̂, x′′ g′′−→ x̂) of C(x, x̂) × C(x′′, x̂), this amounts to

showing that the following diagram in Set commutes.

(C(u′, x̂) • C(u, x̂))(g, g′′) C(u′ • u, x̂)(g, g′′)

(Xu′ •Xu)(Xg(x−), Xg′′(x−))) X(u′ • u)(Xg(x−), Xg′′(x−))

(µu,u′ )g,g′′

(Φx̂,X(x−)u′•Φx̂,X(x−)u)g,g′′ (Φx̂,X(x−)u′•u)g,g′′

(µu,u′ )Xg(x−),Xg′′(x−)

By the universal properties of the coequalizers, it is enough to show that, given an object

x′ g′−→ x̂ of C(x′, x̂), the following diagram in Set commutes.

C(u′, x̂)(g′, g′′)× C(u, x̂)(g, g′) C(u′ • u, x̂)(g, g′′)

Xu′(Xg′(x−), Xg′′(x−))×Xu(Xg(x−), Xg′(x−)) X(u′ • u)(Xg(x−), Xg′′(x−))

•

(Φx̂,X(x−)u′ )g′,g′′×(Φx̂,X(x−)u)g,g′ (Φx̂,X(x−)u′•u)g,g′′

(µu,u′ )Xg(x−),Xg′′(x−)

To do so, we evaluate both composites at an element (η′ :
[
u′ g′

g′′ ex̂

]
, η :

[
u g

g′ ex̂
]
) of the

set C(u′, x̂)(g′, g′′)× C(u, x̂)(g, g′):

(µu,u′)Xg(x−),Xg′′(x−)((Φx̂,X(x−)u′ × Φx̂,X(x−)u)((η
′, η)))

= (µu,u′)Xg(x−),Xg′′(x−)((Xη′)x−,x−(1x−), (Xη)x−,x−(1x−)) Definition of Φx̂,X(x−)

= X(η′ • η)x−,x−(1x−) Naturality of µu,u′

= Φx̂,X(x−)(η
′ • η) Definition of Φx̂,X(x−)u′•u

This shows that both composites agree, as desired.
Finally, we show compatibility of Φx̂,X(x−)u with vertical identities. Given an object x

of C, we want to show that the natural transformation of functors C(x, x̂)op×C(x, x̂) → Set

Φx̂,X(x−)ex : C(ex, x̂) ⇒ Xex(Φx̂,X(x−)
op
x × Φx̂,X(x−)x)
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is the identity at Φx̂,X(x−)x. When evaluated at an object (x
g−→ x̂, x

g′−→ x̂) of the category
C(x, x̂)op × C(x, x̂), this is given by the map of sets

(Φx̂,X(x−)ex)g,g′ : C(x, x̂)(g, g
′) → Xx(Xg(x−), Xg′(x−))

sending an element η :
[
ex

g
g′ ex̂

]
in C(x, x̂)(g, g′) to (Xη)x−,x−(1x−) = Φx̂,X(x−)x(η). So,

by Remark 3.27, we see that Φx̂,X(x−)ex is the identity at Φx̂,X(x−)x.

We now turn to the assignment of Ψx̂,X on morphisms.

4.7. Construction. Given a morphism u− : x− → x′
− in Xx̂, we construct a globular

modification in PC
C(−, x̂) X

C(−, x̂) X

Φx̂,X(x−)

•

Φx̂,X(u−)
•

Φx̂,X(x′
−)

such that its component at an object x ∈ C is given by the natural transformation

Φx̂,X(u−)x : Φx̂,X(x−)x ⇒ Φx̂,X(x
′
−)x : C(x, x̂) → Xx

whose component at an object x
g−→ x̂ of C(x, x̂) is given by the morphism

Xg(u−) : Xg(x−) = Φx̂,X(x−)x(g) −→ Xg(x′
−) = Φx̂,X(x

′
−)x(g),

i.e., the image of the morphism u− under the functor Xg : Xx̂ → Xx.

4.8. Lemma. The construction Φx̂,X(u−) is a modification.

Proof. We start by showing horizontal compatibility of Φx̂,X(u−). Given a horizontal
morphism f : x → y in C, we have to show that the following pasting diagram of functors
and natural transformations commutes.

C(y, x̂) C(x, x̂)

Xy Xx

Φx̂,X(x−)y Φx̂,X(x′
−)y

C(f,x̂)

Φx̂,X(x−)x Φx̂,X(x′
−)xΦx̂,X(u−)y Φx̂,X(u−)x

Xf

To do so, we evaluate both whiskerings at an object y
g−→ x̂ of C(y, x̂):

(Xf ◦ Φx̂,X(u−)y)g = Xf((Φx̂,X(u−)y)g) Whiskering

= Xf(Xg(u−)) Definition of Φx̂,X(u−)y

= X(gf)(u−) Functorality of X

= (Φx̂,X(u−)x)gf Definition of Φx̂,X(u−)x

= (Φx̂,X(u−)x)C(f,x̂)(g) Definition of C(f, x̂)

= (Φx̂,X(u−)x ◦ C(f, x̂))g. Whiskering
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This shows that the components of the two whiskerings agree, as desired.
Now, we show vertical compatibility of Φx̂,X(u−). Given a vertical morphism u : x−→• x′

in C, we have to show that the following diagram commutes in [C(x, x̂)op × C(x′, x̂), Set]:

C(u, x̂) Xu(Φx̂,X(x−)
op
x × Φx̂,X(x−)x′)

Xu(Φx̂,X(x
′
−)

op
x × Φx̂,X(x

′
−)x′) Xu(Φx̂,X(x−)

op
x × Φx̂,X(x

′
−)x′)

Φx̂,X(x−)u

Φx̂,x(x
′
−)u Xu(Φx̂,X(x−)opx ×Φx̂,X(u−)x′ )

Xu(Φx̂,X(u−)opx ×Φx̂,X(x′
−)x′ )

When evaluated at an object (x
g−→ x̂, x′ g′−→ x̂) of C(x, x̂) × C(x′, x̂), this amounts to

showing that the following diagram in Set commutes.

C(u, x̂)(g, g′) Xu(Xg(x−), Xg′(x−))

Xu(Xg(x′
−), Xg′(x′

−)) Xu(Xg(x−), Xg′(x′
−))

(Φx̂,X(x′
−)u)g,g′

(Φx̂,X(x−)u)g,g′

Xg′(u−)∗

Xg(u−)∗

To do so, we evaluate both composites at an element η :
[
u g

g′ ex̂
]
in C(u, x̂)(g, g′):

Xg′(u−)∗((Φx̂,X(x−)u)g,g′(η)) = Xg′(u−)∗((Xη)x−,x−(1x−)) Definition of Φx̂,X(x−)u

= (Xη)x−,x′
−
((u−)∗(1x−)) Naturality of Xη

= (Xη)x−,x′
−
(u−) Definition of (u−)∗

= (Xη)x−,x′
−
((u−)

∗(1x′
−
)) Definition of (u−)

∗

= Xg(u−)
∗((Xη)x′

−,x′
−
(1x′

−
)) Naturality of Xη

= Xg(u−)
∗((Φx̂,X(x

′
−)u)g,g′(η)) Definition of Φx̂,X(x

′
−)u

This shows that the two composites agree, as desired.

Putting everything together, we get the following.

4.9. Construction. Given a double category C, a lax double presheaf X : Cop → Cat,
and an object x̂ ∈ C, we construct a functor

Φx̂,X : Xx̂ → PC(C(−, x̂), X)

which sends

• an object x− in Xx̂ to the horizontal transformation Φx̂,X(x−) : C(−, x̂) ⇒ X as in
Construction 4.5,

• a morphism u− : x− → x′
− in Xx̂ to the modification Φx̂,X(u−) :

[
eC(−,x̂)

Φx̂,X(x−)

Φx̂,X(x′
−) eX

]
as in Construction 4.7.

We are now ready to prove the Yoneda lemma.
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Proof of Theorem 4.2. We show that the functors

Ψx̂,X : PC(C(−, x̂), X) → Xx̂ and Φx̂,X : Xx̂ → PC(C(−, x̂), X)

from Constructions 4.1 and 4.9 are inverses to each other.
We first consider the composite

Xx̂
Φx̂,X−−−→ PC(C(−, x̂), X)

Ψx̂,X−−−→ Xx̂.

It sends an object x− in Xx̂ to the object

Ψx̂,X(Φx̂,X(x−)) = Φx̂,X(x−)x̂(1x̂) Definition of Ψx̂,X

= X1x̂(x−) Definition of Φx̂,X

= 1Xx̂(x−) = x− Functorality of X

and a morphism u− : x− → x′
− in Xx̂ to the morphism

Ψx̂,X(Φx̂,X(u−)) = (Φx̂,X(u−)x̂)1x̂ Definition of Ψx̂,X

= X1x̂(u−) Definition of Φx̂,X(u−)

= 1Xx̂(u−) = u−. Functorality of X

This shows that the composite Ψx̂,X ◦ Φx̂,X is the identity.
We then consider the composite

PC(C(−, x̂), X)
Ψx̂,X−−−→ Xx̂

Φx̂,X−−−→ PC(C(−, x̂), X)

It sends a horizontal transformation φ : C(−, x̂) ⇒ X to the horizontal transformation

Φx̂,X(Ψx̂,X(φ)) = Φx̂,X(φx̂(1x̂)) : C(−, x̂) ⇒ X

whose

• component at an object x in C is given by the functor

Φx̂,X(φx̂(1x̂))x : C(x, x̂) → Xx

defined as follows. It sends an object x
g−→ x̂ in C(x, x̂) to the object

Φx̂,X(φx̂(1x̂))x(g) = Xg(φx̂(1x̂)) Definition of Φx̂,X

= φx(C(g, x̂)(1x̂)) Naturality of φ

= φx(1x̂ ◦ g) = φx(g) Definition of C(g, x̂)

and a morphism η :
[
ex

g
g′ ex̂

]
in C(x, x̂) to the morphism

Φx̂,X(φx̂(1x̂))x(η) = (Xη)φx̂(1x̂) Definition of Φx̂,X

= φx(C(η, x̂)1x̂) Naturality of φ

= φx(η). Definition of C(η, x̂)

This shows that Φx̂,X(Ψx̂,X(φ))x = Φx̂,X(φx̂(1x̂)) = φx.



YONEDA LEMMA AND REPRESENTATION THEOREM FOR DOUBLE CATEGORIES1739

• component at a vertical morphism u : x−→• x′ in C is given by the natural transfor-
mation

Φx̂,X(φx̂(1x̂))u : C(u, x̂) ⇒ Xu (Φx̂,X(φx̂(1x̂))
op
x × Φx̂,X(φx̂(1x̂))x′) = Xu(φop

x × φ′
x)

defined as follows. Its component at an object (x
g−→ x̂, x′ g′−→ x̂) of C(x, x̂)×C(x′, x̂)

is the map

(Φx̂,X(φx̂(1x̂))u)g,g′ : C(u, x̂)(g, g
′) → Xu(φx(g), φ

′
x(g

′))

which sends an element η :
[
u g

g′ ex̂
]
of C(u, x̂)(g, g′) to the element

(Φx̂,X(φx̂(1x̂))u)g,g′(η) = (Xη)φx̂(1x̂),φx̂(1x̂)(1φx̂(1x̂)) Definition of Φx̂,X

= (Xη)φx̂(1x̂),φx̂(1x̂)(e1x̂) Functorality of φx̂

= φu(C(η, x̂)1x̂,1x̂(e1x̂)) Naturality of φ

= φu(e1x̂ ◦ η) = φu(η). Definition of C(η, x̂)

This shows that Φx̂,X(Ψx̂,X(φ))u = Φx̂,X(φx̂(1x̂))u = φu.

Putting these two together, we deduce that Φx̂,X(Ψx̂,X(φ)) = φ.
The composite Φx̂,X ◦ Ψx̂,X sends a globular modification ν :

[
eC(−,x̂)

φ
φ′ eX

]
to the

globular modification

C(−, x̂) X

C(−, x̂) X

•

Φx̂,X(φx̂(1x̂))=φ

Φx̂,X ◦Ψx̂,X(ν) = Φx̂,X((νx̂)1x̂)

•

Φx̂,X(φ′
x̂(1x̂))=φ′

defined as follows. Its component at an object x in C is given by the natural transformation

Φx̂,X((νx̂)1x̂)x : φx ⇒ φ′
x : C(x, x̂) → Xx.

whose component at an object x
g−→ x̂ of C(x, x̂) is

(Φx̂,X((νx̂)1x̂)x)g = Xg((νx̂)1x̂) Definition of Φx̂,X

= (νx)C(g,x̂)(1x̂) Horizontal compatibility of ν

= (νx)1x̂◦g = (νx)g. Definition of C(g, x̂)

This shows that Φx̂,X(Φx̂,X(ν)) = ν. Hence this proves that the composite Φx̂,X ◦Ψx̂,X is
the identity, and concludes the proof.
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As a consequence of Lemma 3.32 and Theorem 4.2, when taking C = HC with C
a 2-category, we retrieve the usual Yoneda lemma for 2-categories; see [JY21, Lemma
8.3.16].

4.10. Corollary. Given a 2-category C, a 2-presheaf X : Cop → Cat, and an object x̂
in C, the functor

Ψx̂,X : [Cop,Cat](C(−, x̂), X) → Xx̂

is an isomorphism, which is 2-natural in x̂ in C and in X in [Cop,Cat].

Yoneda embedding. Using the Yoneda lemma, we can construct a Yoneda embedding
from the underlying horizontal 2-category of a double category C to its 2-category of lax
double presheaves.

4.11. Construction. Given a double category C, there is a Yoneda 2-functor

YC : HC→ PC

sending

• an object x̂ of C to the representable lax double presheaf C(−, x̂) : Cop → Cat,

• a horizontal morphism f̂ : x̂ → ŷ of C to the representable horizontal transformation

C(−, f̂) : C(−, x̂) ⇒ C(−, ŷ),

• a globular square α̂ :
[
ex̂

f̂

f̂ ′ eŷ

]
to the representable globular modification

C(−, α̂) :
[
eC(−,x̂)

C(−,f̂)

C(−,f̂ ′)
eC(−,ŷ)

]
.

It is straightforward to check that this construction is 2-functorial.

4.12. Theorem. Given a double category C, the Yoneda 2-functor

YC : HC→ PC

is an embedding of 2-categories.

Proof. Let x̂ and ŷ be objects in C. Then by Theorem 4.2, we have a canonical isomor-
phism of categories

C(x̂, ŷ) ∼= PC(C(−, x̂),C(−, ŷ)).

This shows that YC : HC→ PC is 2-fully-faithful, as desired.
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5. Discrete double fibrations

We now want lax double presheaves from a fibrational point of view. For this, we recall
in this section the notion of discrete double fibrations. In Sections 5.1 to 5.9, we rec-
ollect the definition and main properties of discrete double fibrations. In particular, we
construct a 2-category of discrete double fibrations over a double category C and show
that it is 2-functorial in C. In Sections 5.10 to 5.20, we study the fibers of a discrete
double fibration at both an object and a vertical morphism, which will be useful in the
next section to construct a lax double presheaf from a discrete double fibration. Finally,
in Sections 5.21 to 5.23, we present a first class of examples of discrete double fibrations,
which are given by canonical projections from slice double categories. As these will cor-
respond to representable lax double presheaves, we refer to them as representable discrete
double fibrations.

The 2-category of discrete double fibrations. We start by introducing the 2-
category of discrete double fibrations.

5.1. Definition.A double functor P : E→ C is a discrete double fibration if the following
commutative square in Cat is a pullback

Ver1 E Ver0 E

Ver1 C Ver0 C

t

Ver1 P
⌟

Ver0 P

t

5.2. Notation. We denote by DF ib(C) the 2-full 2-subcategory of the slice 2-category
DblCatv/C spanned by the discrete double fibrations over C. In other words,

• an object in DF ib(C) is a discrete double fibration P : E→ C over C,

• given discrete double fibrations P : E → C and Q : F → C, a morphism from P to
Q in DF ib(C) is a double functor F : E→ F such that Q ◦ F = P ,

• given discrete double fibrations P : E → C, Q : F → C as well as double functors
F : E → F, F ′ : E → F such that Q ◦ F = P = Q ◦ F ′, a 2-morphism from F to
F ′ in DF ib(C) is a vertical transformation A : F=⇒• F ′ such that Q ◦ A = P , i.e.,
Q(Ax) = ePx for all objects x in E and Q(Af ) = ePf for all horizontal morphisms f
in E.

5.3. Remark.Unpacking the pullback condition, a double functor P : E→ C is a discrete
double fibration if and only if the following conditions hold:

(1) for every object y− in E and every horizontal morphism f : x → Py− in C, there
is a unique horizontal morphism f− : x− → y− in E such that Pf− = f . We write
f ∗y− := x− and P ∗f := f−.
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(2) for every vertical morphism v− : x−−→• x′
− in E and every square α :

[
u f

f ′Pv−

]
in

C, there is a unique square α− :
[
u−

f−
f ′
−
v−

]
in E such that Pα− = α. We write

α∗v− := u− and P ∗α := α−.

5.4. Remark. Note that, by unicity of the lifts, if f : x → y and g : y → z are two
composable horizontal morphisms in C and z− is an object of E such that Pz− = z, then

(g ◦ f)∗z− = f ∗g∗z−.

Similarly, if α :
[
u f

f ′ v
]
and β :

[
v g

g′ w
]
are two horizontally composable squares in C and

w− is a vertical morphism in E such that Pw− = w, then

(β ◦ α)∗w− = α∗β∗w−.

The construction DF ib(C) extends to a pseudo-functor DblCatcooph → 2Cat. To define
its action on morphisms, we use the following pullback stability of discrete double fibra-
tions. This result follows from [MSV23, Proposition 4.11] by taking V = Cat and the fact
that pullbacks in 2Cat are 2-categorical pullbacks.

5.5. Lemma. Discrete double fibrations are stable under pullback. In particular, by uni-
versality of pullbacks, a double functor G : C→ D induces a 2-functor

G∗ : DF ib(D) → DF ib(C)

by taking pullbacks along G.

We now describe its action on 2-morphisms.

5.6. Construction. Given a horizontal transformation B : G ⇒ G′ : C → D, we define
a 2-natural transformation

B∗ : G′∗ ⇒ G∗ : DF ib(D) → DF ib(C),

whose component at a discrete double fibration P : E → D is given by the morphism of
discrete double fibrations over C

G′∗
E G∗

E

C

G′∗P

B∗
P

G∗P

which sends

• an object (x, x−) in G′∗
E, i.e., a pair of objects x in C and x− in E such that

Px− = G′x, to the object (x, (Bx)
∗x−) in G∗

E, where (Bx)
∗x− denotes the source

of the unique lift of the horizontal morphism Bx : Gx → G′x in D with target x−,
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• a horizontal morphism (f, f−) : (x, x−) → (y, y−) in G′∗
E, i.e., a pair of horizontal

morphisms f : x → y in C and f− : x− → y− in E such that Pf− = G′f , to the
horizontal morphism in G∗

E

(f, P ∗Gf) : (x, (Bx)
∗x−) → (y, (By)

∗y−),

where P ∗Gf : (Bx)
∗x− → (By)

∗y− denotes the unique lift of Gf ,

• a vertical morphism (u, u−) : (x, x−)−→• (x′, x′
−) in G′∗

E, i.e., a pair of vertical mor-
phisms u : x−→• x′ in C and u− : x−−→• x′

− in E such that Pu− = G′u, to the vertical
morphism in G∗

E

(u, (Bu)
∗u−) : (x, (Bx)

∗x−)−→• (x′, (Bx′)∗x′
−),

where (Bu)
∗u− denotes the source of the unique lift of the square Bu :

[
Gu Bx

Bx′
G′u

]
in D with target u−,

• a square (α, α−) :
[
(u, u−)

(f,f−)

(f ′,f ′
−)(v, v−)

]
:
[
(x,x−)

(x′,x′
−)

(y,y−)

(y′,y′−)

]
in G′∗

E, i.e., a pair of squa-

res α :
[
u f

f ′ v
]
in C and α− :

[
u−

f−
f ′
−
v−

]
in E such that Pα− = G′α, to the square

in G∗
E

(x, (Bx)
∗x−) (y, (By)

∗y−)

(x′, (Bx′)∗x′
−) (y′, (By′)

∗y′−)

•

(u,(Bu)∗u−)

(f,P ∗f)

(α, P ∗Gα) •

(v,(Bv)∗v−)

(f ′,P ∗f ′)

where P ∗Gα :
[
(Bu)

∗u−
P ∗f
P ∗f ′ (Bv)

∗v−

]
denotes the unique lift of Gα.

5.7. Lemma. The construction B∗ : G′∗ ⇒ G∗ : DF ib(D) → DF ib(C) is a 2-natural
transformation.

Proof. First note that the components B∗
P : G

′∗
E→ G∗

E are well-defined double functors
over C. The fact that it preserves compositions and identities is a consequence of the
unicity of lifts.

Similarly, the 2-naturality of B∗
P in P follows from the unicity of lifts.

Putting everything together, we get the following.

5.8. Construction. We define a pseudo-functor

DF ib : DblCatcooph → 2Cat,

which sends

• a double category C to the 2-category DF ib(C) of discrete double fibrations, double
functors over C, and vertical transformations over C,
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• a double functor G : C→ D to the 2-functor

DF ib(G) := G∗ : DF ib(D) → DF ib(C)

induced by taking pullback along G,

• a horizontal transformation B : G ⇒ G′ : C→ D to the 2-natural transformation

DF ib(B) : DF ib(G′) = G′∗ ⇒ DF ib(G) = G∗ : DF ib(D) → DF ib(C)

from Construction 5.6.

It is straightforward to check that this construction is pseudo-functorial.

Finally, we state the following result, which will be useful later on. A proof can be
found in [MSV23, Proposition 4.12] by taking V = Cat.

5.9. Lemma. A morphism F : E → F between discrete double fibrations P : E → C and
Q : F → C is an isomorphism of double categories if and only if the induced functor
Ver0 F : Ver0 E→ Ver0 F is an isomorphism of categories.

Fibers of discrete double fibrations.We now want to study the fibers of a discrete
double fibration at both an object and a vertical morphism, which will be useful to
construct a lax double presheaf out of a discrete double fibration. Let us first define
these.

5.10. Construction. Given a discrete double fibration P : E → C, an object x in C,
and a vertical morphisms u : x−→• x′ in C, we define the following pullbacks in DblCat,

P−1x E

[0] C

⌟
P

x

P−1u JV[1],EK

[0] JV[1],CK

⌟
JV[1],P K

u

where V[1] denotes the double category free on a vertical morphism. Note that there is a
canonical induced map Pu : P

−1u → P−1x×P−1x′ obtained using the universal property
of pullback as follows:

P−1u JV[1],EK

P−1x× P−1x′
E× E

[0] JV[1],CK

[0] C× C

∃!Pu

JV[1],P K

(s,t)

⌟

P×Pu

(s,t)

(x,x′)
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We start by showing that the fiber P−1x at an object is a category, seen as an object
in DblCat through the vertical embedding V : Cat → DblCat. Explicitly, this means that
its horizontal morphisms and squares are all trivial.

5.11. Proposition. Given a discrete double fibration P : E → C and an object x in
C, the double category P−1x is a vertical double category. We also denote by P−1x the
corresponding category.

Proof. Consider the following diagram in Cat

Ver1 P
−1x Ver1 E Ver0 E

[0] Ver1 C Ver0 C

⌟ ⌟
Ver1 P

t

Ver0 P

x t

=

Ver1 P
−1x Ver0 P

−1x Ver0 E

[0] [0] Ver0 C

t

⌟
Ver0 P

x

Here, the leftmost and rightmost squares are pullbacks by definition of P−1x and the
fact that the functor Veri preserves pullbacks for i = 0, 1, and the middle left square is
a pullback by definition of P being a discrete double fibration. Hence, by cancellation
of pullbacks, the middle right square is also a pullback and so Ver1 P

−1x ∼= Ver0 P
−1x,

showing that P−1x is a vertical double category.

Unpacking definition, we have the following explicit description of the fiber P−1x.

5.12. Remark. Given an object x in C, the category P−1x is the category whose

• objects are objects x− in E such that Px− = x,

• morphisms are vertical morphisms s− : x−−→• x̂− in E such that Ps− = ex.

Moreover, every horizontal morphism in C acts on fibers by taking unique lifts as
follows.

5.13. Construction. Given a horizontal morphism f : x → y in C, there is an induced
functor

f ∗ : P−1y → P−1x

given by sending

• an object y− in P−1y to the object f ∗y− in P−1x, i.e., the source of the unique lift
of the horizontal morphism f with target y−,

• a morphism s− : y−−→• ŷ− in P−1y to the morphism e∗fs− : f
∗y−−→• f ∗ŷ− in P−1x,

i.e., the source of the unique lift of the identity square ef with target s−.

Next, we show that the fiber P−1u at a vertical morphism is also a category, embedded
vertically in DblCat.
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5.14. Lemma. Given a double category C and i = 0, 1, there is an isomorphism of cate-
gories

VeriJV[1],EK ∼= (Veri E)
[1]

natural in C.

Proof. By Remark 2.18, we have a 2-adjunction

V : Cat ⇆ DblCatv : Ver0 .

In particular, for the Cat-enriched homs Ver0J−,−K of DblCatv and (−)(−) of Cat, this
means that we have an isomorphism of categories

Ver0JV[1],EK ∼= (Ver0 E)
[1].

This shows the case i = 0. For the case i = 1, observe that, for every double category
C, we have Ver1 C ∼= Ver0JH[1],CK, where H[1] denotes the double category free on a
horizontal morphism. Then we have natural isomorphisms of categories

Ver1JV[1],EK ∼= Ver0JH[1], JV[1],EKK Observation
∼= Ver0JH[1]× V[1],EK (−)× V[1] ⊣ JH[1],−K
∼= Ver0JV[1], JH[1],EKK H[1]× (−) ⊣ JH[1],−K
∼= (Ver0JH[1],EK)[1] Case i = 0

∼= (Ver1 E)
[1], Observation

where the product–internal homs adjunctions hold by Proposition 2.15.

5.15. Lemma. Given a discrete double fibration P : E→ C, the induced double functor

JV[1], P K : JV[1],EK → JV[1],CK

is also a discrete double fibration.

Proof. We have to show that the following square is a pullback in Cat

Ver1(JV[1],EK) Ver0(JV[1],EK)

Ver1(JV[1],CK) Ver0(JV[1],EK)

Ver1(JV[1],P K)

t

Ver0(JV[1],P K)

t

By the natural isomorphism in Lemma 5.14, this is equivalent to showing that the following
square is a pullback in Cat

(Ver1 E)
[1] (Ver0 E)

[1]

(Ver1 C)
[1] (Ver0 C)

[1],

(Ver1 P )[1]

t[1]

(Ver0 P )[1]

t[1]

But this follows directly from the facts that P is a discrete double fibration and that (−)[1]

preserves pullbacks, as a right adjoint.
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5.16. Proposition.Given a discrete double fibration P : E→ C and a vertical morphism
u : x−→• x′ in C, the double category P−1u is a vertical double category. We also denote
by P−1u the corresponding category.

Proof. This follows from applying Proposition 5.11 to the discrete double fibration
JV[1], P K from Lemma 5.15.

Unpacking definition, we have the following explicit description of the fiber P−1u.

5.17. Remark. Given a vertical morphism u : x−→• x′ in C, the category P−1u is the
category whose

• objects are vertical morphisms u− : x−−→• x′
− in E such that Pu− = u,

• morphisms u− → û− are pairs (s−, s
′
−) of vertical morphisms s− and s′− in E such

that Ps− = ex and Ps′− = ex′ , and making the following diagram in E commutes.

x− x̂−

x′
− x̂′

−.

u−

•
s−•

û−

•

s′−

•

(5.1)

Moreover, every square in C acts on fibers by taking unique lifts as follows.

5.18. Construction. Given a square α :
[
u f

f ′ v
]
in C, there is an induced functor

α∗ : P−1v → P−1u

given by sending

• an object v− : y−−→• y′− in P−1v to the object α∗v− : f
∗y−−→• f ′∗y′− in P−1u, i.e., the

source of the unique lift of α with target v−,

• a morphism (s−, s
′
−) : v− → v′− in P−1v to the morphism (e∗fs−, e

∗
f ′s′−) : α

∗v− → α∗v′−
in P−1u, where e∗fs− and e∗f ′s′− are the sources of the unique lifts of the identity
squares ef and ef ′ with targets s− and s′−, respectively.

Note that the assignment on morphisms is well-defined as

α∗v′− • e∗fs− = α∗(v′− • s−) = α∗(s′− • v−) = e∗f ′s′− • α∗v−

by unicity of lifts and by definition of the morphism (s−, s
′
−) in P−1v.

Next, we study the double functor Pu, which now amounts simply to an ordinary
functor. We show that this is a two-sided discrete fibration. Hence, using the equivalence
from Theorem 3.13, this will yield a profunctor associated with each vertical morphism
u.
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5.19. Proposition.Given a discrete double fibration P : E→ C and a vertical morphism
u : x−→• x′ in C, the functor

Pu : P
−1u → P−1x× P−1x′

is a two-sided discrete fibration.

Proof. First note that the functor Pu : P
−1u → P−1x× P−1x′ is given by sending

• an object u− : x−−→• x′
− in P−1u to the object (x−, x

′
−) of P

−1x× P−1x′,

• a morphism (s−, s
′
−) : u− → û− in P−1u to the morphism (s−, s

′
−) of P

−1x×P−1x′.

We write Pu = (P 1
u , P

2
u ) for its components.

We show that (P 1
u , P

2
u ) satisfies the conditions of a two-sided discrete fibration from

Definition 3.10. To prove (1), let û− : x̂− → x̂′
− be an object in P−1u and s− : x−−→• x̂−

be a morphism in P−1x. Then the unique P 1
u -lift of s− with target û− that lies in the

fiber of P 2
u at x̂′

− is given by the following commutative square.

x− x̂−

x̂′
− x̂′

−

•s−
•

û−•s−

•

û−

•ex̂′−

Condition (2) can be shown analogously.
To see (3), let (s−, s

′
−) : u− → û− be a morphism in P−1u as in (5.1). Then the unique

lifts of s− and s′− provided by conditions (1) and (2) are the commutative squares

x− x̂−

x̂′
− x̂′

−

•s−

•

û−•s−

•

û−

•ex̂′−

and

x− x−

x′
− x̂′

−

•
ex−

•u−

•

s′−•u−

•
s′−

respectively. Then, by definition of the morphism (s−, s
′
−) in P−1u, we have that û−•s− =

s′− •u− and, moreover, the two squares compose to the commutative square (5.1) defining
(s−, s

′
−). This proves that Pu is a two-sided discrete fibration.

In particular, as lax double presheaves are normal, we want to be able to associate
the identity profunctor, i.e., the hom functor, to a vertical identity. The following result
allows us to do so.

5.20. Lemma. Given a discrete double fibration P : E → C and an object x in C, the
two-sided discrete fibration

Pex : P
−1ex → P−1x× P−1x

is canonically isomorphic to the identity two-sided discrete fibration

(s, t) : (P−1x)[1] → P−1x× P−1x.
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Proof. By definition of Pex (see Construction 5.10), to get the desired isomorphism it
suffices to show that the following commutative square in DblCat is a pullback.

JV[1], P−1xK = (P−1x)[1] JV[1],EK

[0] JV[1],CK

⌟ JV[1],P K

ex

However, this follows directly from the definition of the fiber P−1x and the fact that
JV[1],−K preserves pullbacks, as a right adjoint.

Representable discrete double fibrations. We now introduce our first examples
of discrete double fibrations.

5.21. Definition. Given a double category C and an object x̂ in C, we define the slice
double category over x̂ to be the following pullback in DblCat.

C/x̂ JH[1],CK

C C× C

⌟
(s,t)

idC×{x̂}

5.22. Remark. Explicitly, given a double category C and an object x̂, we have that C/x̂
is the double category whose

• objects are pairs (x, g) of an object x in C and a horizontal morphism g : x → x̂ in
C,

• horizontal morphisms (x, g) → (y, h) are horizontal morphisms f : x → y in C such
that g = h ◦ f ,

• vertical morphisms (x, g)−→• (x′, g′) are pairs (u, η) of a vertical morphism u : x−→• x′

in C and a square η :
[
u g

g′ ex̂
]
in C,

• squares α :
[
(u, η) f

f ′ (v, θ)
]
are squares α :

[
u f

f ′ v
]
in C such that η = θ ◦ α.

Moreover, the canonical projection double functor C/x̂ → C is given by projecting onto
the first component.

As claimed before, the canonical projection is a discrete double fibration. A proof can
be found in [MSV23, Proposition 4.17] by taking V = Cat.

5.23. Proposition. Given a double category C and an object x̂ in C, the canonical
projection from the slice double category over x̂

C/x̂ → C

is a discrete double fibration.
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6. Grothendieck construction for lax double presheaves

In this section, we study the link between lax double presheaves and discrete double fibra-
tions. More precisely, given a double category C, we prove that there is a pseudo-natural
2-equivalence—induced by the Grothendieck construction—between the 2-category of lax
double presheaves over C and the 2-category of discrete double fibrations over C.

In Sections 6.1 to 6.12, we define the Grothendieck construction of a lax double presheaf
over a double category C. We show, using the coherence conditions for normal lax double
functors, that this actually defines a discrete double fibration over C, where the base is an
actual strict double category. This may sound surprising at first since only the base double
category of a lax double presheaf is strict, but not the presheaf itself. We further show
that this construction is pseudo-natural in C. In Sections 6.13 to 6.30, we construct the
weak inverse of the Grothendieck construction induced by taking fibers of discrete double
fibrations. We show that there are 2-natural isomorphisms relating the Grothendieck
construction and its weak inverse, henceforth giving the desired 2-equivalence.

Grothendieck construction. We start by defining the Grothendieck construction of
a lax double presheaf.

6.1. Construction. Given a lax double presheaf X : Cop → Cat, its Grothendieck con-
struction is the double category

∫∫
C
X whose

• objects are pairs (x, x−) of objects x in C and x− in Xx,

• horizontal morphisms (x, x−) → (y, y−) are horizontal morphisms f : x → y in C

satisfying x− = Xf(y−), where we recall that Xf is a functor Xf : Xy → Xx,

• vertical morphisms (x, x−)−→• (x′, x′
−) are given by pairs (u, u−) of a vertical mor-

phism u : x−→• x′ in C and an element u− in Xu(x−, x
′
−), where we recall that Xu

is a profunctor Xu : Xxop ×Xx′ → Set,

• squares

(x, x−) (y, y−)

(x′, x′
−) (y′, y′−)

•

(u,u−)

f

α •

(v,v−)

f ′

are squares α :
[
u f

f ′ v
]
in C satisfying u− = (Xα)y−,y′−

(v−), where we recall that Xα

is a natural transformation Xα : Xv ⇒ Xu ◦ (Xf op ×Xf ′) : Xyop ×Xy′ → Set.

Compositions and identities for horizontal morphisms and squares are defined as in C. The

vertical composite of two composable vertical morphisms (x, x−)
(u,u−)
−→• (x′, x′

−)
(u′,u′

−)
−→• (x′′, x′′

−)
is given by the pair (u′ • u, u′

− • u−) of the composite u′ • u in C and the element

u′
− • u− := (µu,u′)x−,x′′

−
([u′

−, u−]),
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where [u′
−, u−] is the element in (Xu′ •Xu)(x−, x

′′
−) =

∫ x̂′
−∈X′x′

Xu′(x̂′
−, x

′′
−)×Xu(x−, x̂

′
−)

represented by the element (u′
−, u−) ofXu′(x′, x′′)×Xu(x, x′), and µu,u′ is the composition

comparison natural transformation

µu,u′ : Xu′ •Xu ⇒ X(u′ • u) : Xxop ×Xx′′ → Set.

The vertical identity at an object (x, x−) is given by the pair (ex, 1x−), where we recall
that Xex = eXx is the hom functor Xx(−,−) : Xxop ×Xx → Set, as X is normal.

It comes with a canonical projection double functor πX :
∫∫
C
X → C given by projecting

onto the first component.

6.2. Lemma. The Grothendieck construction
∫∫
C
X is a strict double category.

Proof. We first show that composition of horizontal morphisms and squares is well-
defined. To see this, given composable horizontal morphisms f : (x, x−) → (y, y−) and
g : (y, y−) → (z, z−) in

∫∫
C
X, then the composite g◦f : (x, x−) → (z, z−) is also a horizontal

morphism in
∫∫
C
X since

X(g ◦ f)(z−) = Xf(Xg(z−)) = Xf(y−) = x−.

Then, given horizontally composable squares in
∫∫
C
X

(x, x−) (y, y−) (z, z−)

(x′, x′
−) (y′, y′−) (z′, z′−)

•

(u,u−)

f

α •

(v,v−)

g

β •

(w,w−)

f ′ g′

their horizontal composite β ◦ α is also a square in
∫∫
C
X since

X(β ◦ α)z−,z′−
(w−) = (Xα)Xg(z−),Xg′(z′−)((Xβ)z−,z′−

(w−)) Functorality of X

= (Xα)y−,y′−
((Xβ)z−,z′−

(w−)) Horizontal morphisms in
∫∫
C
X

= (Xα)y−,y′−
(v−) = u− Squares in

∫∫
C
X

Finally, given vertically composable squares in
∫∫
C
X

(x, x−) (y, y−)

(x′, x′
−) (y′, y′−)

(x′′, x′′
−) (y′′, y′′−)

f

•

(u,u−) α •

(v,v−)

f ′

•

(u′,u′
−) α′ •

(v′,v′−)

f ′′
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their vertical composite α′ • α is also a square in
∫∫
C
X since

X(α′ • α)y−,y′′−
(v′− • v−)

= X(α′ • α)y−,y′′−
((µv,v′)y−,y′′−

([v′−, v−])) Definition of •
= (µu,u′)x−,x′′

−
((Xα′ •Xα)y−,y′′−

([v′−, v−])) Naturality of µ

= (µu,u′)x−,x′′
−
([(Xα′)y′−,y′′−

(v′−), (Xα)y−,y′−
(v−)]) Comp. of profunctors

= (µu,u′)x−,x′′
−
([u′

−, u−]) Squares in
∫∫
C
X

= u′
− • u−. Definition of •

Now, it remains to show that composition of vertical morphisms in
∫∫
C
X is strictly

associative and unital. We start by showing associativity. Given three composable vertical

morphisms (x, x−)
(u,u−)
−→• (x′, x′

−)
(u′,u′

−)
−→• (x′′, x′′

−)
(u′′,u′′

−)
−→• (x′′′, x′′′

−) in
∫∫
C
X, we have that

(u′′
− • u′

−) • u− = (µu,u′′•u′)x′
−,x′′′

−
([u′′

− • u′
−, u−]) Definition of •

= (µu,u′′•u′)x′
−,x′′′

−
([(µu′,u′′)x′

−,x′′′
−
([u′′

−, u
′
−]), u−]) Definition of •

= (µu′•u,u′′)x−,x′′′
−
([u′′

−, (µu,u′)x−,x′′
−
([u′

−, u−]]) Associativity of µ

= (µu′•u,u′′)x−,x′′′
−
([u′′

−, u
′
− • u−]) Definition of •

= u′′
− • (u′

− • u−) Definition of •

Finally, we show unitality. Given a vertical morphism (u, u−) : (x, x−)−→• (x′, x′
−) in∫∫

C
X, we have that

u− • 1x− = (µu,ex)x−,x′
−
([u−, 1x− ]) = (1Xu)x−,x′

−
(u−) = 1Xu(x−,x′

−)(u−) = u−

using that µu,ex is the identity at Xu. Similarly, we have 1x′
−
• u− = u−. This concludes

the proof that
∫∫
C
X is a strict double category.

As a first example, we compute the Grothendieck construction of a representable lax
double presheaf.

6.3. Proposition. Given a double category C and an object x̂ in C, we have∫∫
C
C(−, x̂) = C/x̂.

Proof. Explicitly, the double category
∫∫
C
C(−, x̂) is such that

• an object (x, x−) in
∫∫
C
C(−, x̂) is the data of an object x in C and an object x− in

C(x, x̂), i.e., a horizontal morphism x− : x → x̂ in C,

• a horizontal morphism f : (x, x−) → (y, y−) in
∫∫
C
C(−, x̂) is the data of a horizontal

morphism f : x → y in C satisfying x− = C(f, x̂)(y−) = y− ◦ f ,



YONEDA LEMMA AND REPRESENTATION THEOREM FOR DOUBLE CATEGORIES1753

• a vertical morphism (u, u−) : (x, x−)−→• (x′, x′
−) in

∫∫
C
C(−, x̂) is the data of a verti-

cal morphism u : x−→• x′ in C and an element u− in C(u, x̂)(x−, x
′
−), i.e., a square

u− :
[
u

x−
x′
−
ex̂

]
in C,

• a square α :
[
(u, u−)

f
f ′ (v, v−)

]
in

∫∫
C
C(−, x̂) is the data of a square α :

[
u f

f ′ v
]
in

C satisfying u− = C(α, x̂)y−,y′−
(v−) = v− ◦ α.

By comparing with the data of the double category C/x̂ as described in Definition 5.22,
we get the desired result.

By Proposition 5.23, we know that the canonical projection
∫∫
C
C(−, x̂) = C/x̂ → C

is a discrete double fibration. The following shows that the Grothendieck construction of
any lax double presheaf is also a discrete double fibration.

6.4. Proposition. The canonical projection πX :
∫∫
C
X → C is a discrete double fibra-

tion.

Proof. We check the conditions of a discrete double fibration from Remark 5.3.

(1) Given an object (y, y−) in
∫∫
C
X as well as a horizontal morphism f : x → y in

C, the unique lift of f with target (y, y−) is given by the horizontal morphism
f : (x,Xf(y−)) → (y, y−) in

∫∫
C
X.

(2) Given a vertical morphism (v, v−) : (y, y−)−→• (y′, y′−) in
∫∫
C
X as well as a square

α :
[
u f

f ′ v
]
:
[
x
x′

y
y′

]
in C, the unique lift of α with target (v, v−) is the square

(x,Xf(y−)) (y, y−)

(x′, Xf ′(y′−)) (y′, y′−).

f

•(u,(Xα)y−,y′−
(v−)) α •

(v,v−)

f ′

This shows that πX :
∫∫
C
X → C is a discrete double fibration.

We can extend the Grothendieck construction to a 2-functor
∫∫
C
: PC → DF ib(C). We

first describe its assignment on morphisms.

6.5. Construction. Given a horizontal transformation F : X ⇒ Y : Cop → Cat, we
define a double functor over C ∫∫

C
F :

∫∫
C
X →

∫∫
C
Y

sending

• an object (x, x−) in
∫∫
C
X to the object (x, Fxx−) in

∫∫
C
Y , where Fxx− is the image

of x− under the functor Fx : Xx → Y x,
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• a horizontal morphism f : (x, x−) → (y, y−) in
∫∫
C
X to the horizontal morphism in∫∫

C
Y

f : (x, Fxx−) → (y, Fyy−),

where Y f(Fyy−) = Fx(Xf(y−)) = Fxx− by naturality of Fx,

• a vertical morphism (u, u−) : (x, x−)−→• (x′, x′
−) in

∫∫
C
X to the vertical morphism

in
∫∫
C
Y

(u, (Fu)x−,x′
−
u−) : (x, Fxx−)−→• (x′, Fx′x′

−),

where (Fu)x−,x′
−
u− is the image of u− under the component

(Fu)x−,x′
−
: Xu(x−, x

′
−) → Y u(Fxx−, Fx′x′

−)

of the natural transformation Fu : Xu ⇒ Y u(F op
x × Fx′) : Xxop ×Xx′ → Set.

• a square α :
[
(u, u−)

f
f ′ (v, v−)

]
:
[
(x,x−)

(x′,x′
−)

(y,y−)

(y′,y′−)

]
in

∫∫
C
X to the square in

∫∫
C
Y

(x, Fxx−) (y, Fyy−)

(x′, Fx′x′
−) (y′, Fy′y

′
−)

•(u,(Fu)x−,x′−
u−)

f

α • (v,(Fv)y−,y′−
v−)

f ′

where (Y α)Fyy−,Fy′y
′
−
((Fv)y−,y′−

v−) = (Fu)x−,x′
−
((Xα)y−,y′−

v−) = (Fu)x−,x′
−
u− by nat-

urality of Fu.

Note that, by construction, the double functor
∫∫
C
F clearly lies over C.

6.6. Lemma. The construction
∫∫
C
F :

∫∫
C
X →

∫∫
C
Y is a strict double functor.

Proof. By construction, the double functor
∫∫
C
F clearly preserves compositions and

identities of horizontal morphisms and squares. It remains to show that it preserves
compositions and identities of vertical morphisms.

Given composable vertical morphisms (x, x−)
(u,u−)
−→• (x′, x′

−)
(u′,u′

−)
−→• (x′′, x′′

−) in
∫∫
C
X, we

have:∫∫
C
F ((u′, u′

−) • (u, u−))

= (u′ • u, (Fu′•u)x−,x′′
−
(u′

− • u−)) Definition of
∫∫
C
F

= (u′ • u, (Fu′•u)x−,x′′
−
(µu,u′)x−,x′′

−
([u′

−, u−])) Composition in
∫∫
C
X

= (u′ • u, (µu,u′)x−,x′′
−
(Fu′ • Fu)x−,x′′

−
([u′

−, u−])) Compatibility of F and µ

= (u′ • u, (µu,u′)x−,x′′
−
([(Fu′)x′

−,x′′
−
u′
−, (Fu)x−,x′

−
u−])) Comp. of profunctors

= (u′, (Fu′)x′
−,x′′

−
u′
−) • (u, (Fu)x−,x′

−
u−) Composition in

∫∫
C
Y

=
∫∫
C
F (u′, u′

−) •
∫∫
C
F (u, u−). Definition of

∫∫
C
F
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This shows that
∫∫
C
F preserves vertical composition. Now, given an object (x, x−) of∫∫

C
X, we have:∫∫

C
F (e(x,x−)) =

∫∫
C
F (ex, 1x−) Vertical identity in

∫∫
C
X

= (ex, (Fex)x−,x−1x−) Definition of
∫∫
C
F

= (ex, 1Fx(x−)) Fex = 1Fx

= e(x,Fxx−) Vertical identity in
∫∫
C
Y

= e∫∫
C
F (x,x−). Definition of

∫∫
C
F

This shows that
∫∫
C
F preserves vertical identities and concludes the proof that

∫∫
C
F is a

strict double functor.

Now, we describe the assignment of
∫∫
C
on 2-morphisms.

6.7. Construction. Given a globular modification A :
[
eX

F
F ′ eY

]
:
[
X
X

Y
Y

]
of lax double

presheaves Cop → Cat, we define a vertical transformation over C∫∫
C
A :

∫∫
C
F=⇒•

∫∫
C
F ′ :

∫∫
C
X →

∫∫
C
Y

whose

• component at an object (x, x−) in
∫∫
C
X is given by the vertical morphism in

∫∫
C
Y

(ex, (Ax)x−) : (x, Fxx−)−→• (x, F ′
xx−),

where (Ax)x− denotes the component at the object x− of Xx of the natural trans-
formation Ax : Fx ⇒ F ′

x : Xx → Y x,

• component at a horizontal morphism f : (x, x−) → (y, y−) in
∫∫
C
X is given by the

square in
∫∫
C
Y

(x, Fxx−) (y, Fyy−)

(x, F ′
xx−) (y, F ′

yy−)

•

(ex,(Ax)x− )

f

ef •

(ey ,(Ay)y− )

f

where (Y ef )Fyy−,F ′
yy−((Ay)y−) = Y f((Ay)y−) = (Ax)Xf(y−) = (Ax)x− by normality of

Y and horizontal compatibility of Ax.

Note that, by construction, the vertical transformation
∫∫
C
A clearly lies over C.

6.8. Lemma. The construction
∫∫
C
A :

∫∫
C
F=⇒•

∫∫
C
F ′ :

∫∫
C
X →

∫∫
C
Y is a vertical trans-

formation.
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Proof. We first show that the components (
∫∫
C
A)(x,x−) are natural in objects (x, x−).

Given a vertical morphism (u, u−) : (x, x−)−→• (x′, x′
−) in

∫∫
C
X, we have to show that the

following diagram in
∫∫
C
Y commutes.

∫∫
C
F (x, x−)

∫∫
C
F ′(x, x−)

∫∫
C
F (x′, x′

−)
∫∫
C
F ′(x′, x′

−)

•∫∫
C
F (u,u−)

•
(
∫∫
C
A)(x,x−)

• ∫∫
C
F ′(u,u−)

•
(
∫∫
C
A)(x′,x′−)

This we can do by a short computation:∫∫
C
F ′(u,u−) ◦ (

∫∫
C
A)(x,x−)

= (u, (F ′
u)x−,x′

−
(u−)) • (ex, (Ax)x−) Definition of

∫∫
C
A,

∫∫
C
F ′

= (u • ex, (µex,u)x−,x′
−
([(F ′

u)x−,x′
−
(u−), (Ax)x− ]) Composition in

∫∫
C
Y

= (ex′ • u, (µu,ex′
)x−,x′

−
([(Ax′)x′

−
, (Fu)x−,x′

−
(u−)]) Vertical compatibility of A

= (ex′ , (Ax′)x′
−
) • (u, (Fu)x−,x′

−
(u−)) Composition in

∫∫
C
Y

= (
∫∫
C
A)(x′,x′

−) •
∫∫
C
F (u, u−) Definition of

∫∫
C
A,

∫∫
C
F

The naturality of the components (
∫∫
C
A)f in horizontal morphisms f is then straightfor-

ward from the fact that these components are given by the vertical identity squares ef .

Putting everything together, we get the following.

6.9. Construction. Given a double category C, we define a 2-functor∫∫
C
: PC → DF ib(C),

sending

• a double presheaf X : Cop → Cat to the discrete double fibration πX :
∫∫
C
X → C

from Construction 6.1,

• a horizontal transformation F : X ⇒ Y to the double functor
∫∫
C
F :

∫∫
C
X →

∫∫
C
Y

over C from Construction 6.5,

• a globular modification A :
[
eX

F
F ′ eX′

]
to the vertical transformation over C∫∫

C
A :

∫∫
C
F=⇒•

∫∫
C
F ′

from Construction 6.7.

It is straightforward to check that this construction is 2-functorial.

Next, we want to show that the construction
∫∫
C
is pseudo-natural in C. For this, we

start by constructing the pseudo-naturality comparison cells.
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6.10. Construction. Given a double functor G : C → D, we construct a 2-natural
isomorphism

PD PC

DF ib(D) DF ib(C)

(Gop)∗

∫∫
D

∫∫
C

∫∫
G

∼=

G∗

whose component at a lax double presheaf X : Dop → Cat is the invertible double functor
over C

(
∫∫
G
)X :

∫∫
C
(Gop)∗X =

∫∫
C
XGop −→ G∗ ∫∫

D
X = C×D

∫∫
D
X

given by sending

• an object (x, x−) in
∫∫
C
XGop, i.e., a pair of objects x in C and x− in XG(x), to the

object (x, (Gx, x−)) in C×D

∫∫
D
X,

• a horizontal morphism f : (x, x−) → (y, y−) in
∫∫
C
XGop, i.e., a horizontal morphism

f : x → y in C such that XGf(y−) = x−, to the horizontal morphism in C×D

∫∫
D
X

(f,Gf) : (x, (Gx, x−)) → (y, (Gy, y−)),

• a vertical morphism (u, u−) : (x, x−)−→• (x′, x′
−) in

∫∫
C
XGop, i.e., a pair of a verti-

cal morphism u : x−→• x′ in C and an element u− in XGu(x−, x
′
−), to the vertical

morphism in C×D

∫∫
D
X

(u, (Gu, u−)) : (x, (Gx, x−))−→• (x′, (Gx′, x′
−)),

• a square α :
[
(u, u−)

f
f ′ (v, v−)

]
:
[
(x,x−)

(x′,x′
−)

(y,y−)

(y′,y′−)

]
in

∫∫
C
XGop, i.e., a square α :

[
u f

f ′ v
]

in C such that (XGα)x−,x′
−
(v−) = u−, to the square in C×D

∫∫
D
X

(x, (Gx, x−)) (y, (Gy, y−))

(x′, (Gx′, x′
−)) (y′, (Gy′, y′−)).

•

(u,(Gu,u−))

(f,Gf)

(α,Gα) •

(v,(Gv,v−))

(f ′,Gf ′)

Note that it admits an obvious inverse given by projecting onto the first and last compo-
nents, so that the components (

∫∫
G
)X are invertible.

6.11. Lemma. The construction
∫∫
G
:
∫∫
C
◦(Gop)∗ ⇒ G∗ ◦

∫∫
D
is a 2-natural isomorphism.
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Proof. It remains to prove that the components (
∫∫
G
)X are 2-natural in X. Given a

horizontal transformation F : X ⇒ Y : Dop → Cat, we have to show that the following
diagram of double functors over C commutes.∫∫

C
XGop G∗ ∫∫

D
X = C×D

∫∫
D
X

∫∫
C
Y Gop G∗ ∫∫

D
Y = C×D

∫∫
D
Y

(
∫∫
G)X

∫∫
C
(Gop)∗F=

∫∫
C
F◦Gop G∗(

∫∫
D
F )=C×D

∫∫
D
F

(
∫∫
G)Y

We check that the above diagram commutes on objects, and the proof is similar for
horizontal morphisms, vertical morphisms, and squares. To do so, we evaluate both
composites at an object (x, x−) in

∫∫
C
XGop:

(
∫∫
G
)Y ◦

∫∫
C
F ◦Gop(x, x−) = (

∫∫
G
)Y (x, (F ◦Gop)xx−) Definition of

∫∫
C
F ◦Gop

= (
∫∫
G
)Y (x, FGxx−) Whiskering

= (x, (Gx, FGxx−)) Definition of (
∫∫
G
)Y

= (C×D

∫∫
D
F )(x, (Gx, x−)) Definition of C×D

∫∫
D
F

= (C×D

∫∫
D
F ) ◦ (

∫∫
G
)X(x, x−). Definition of (

∫∫
G
)X

This shows that the desired diagram commutes.
Next, given a globular modification A :

[
eX

F
F ′ eY

]
:
[
X
X

Y
Y

]
in PD, we have to check

that the following diagram of double functors and vertical transformations commutes∫∫
C
XGop G∗ ∫∫

D
X

∫∫
C
Y Gop G∗ ∫∫

D
Y

∫∫
C
F◦Gop

∫∫
C
F ′◦Gop

(
∫∫
G)X

G∗ ∫∫
D
F ′G∗ ∫∫

D
F

∫∫
C
A◦Gop

• •
G∗ ∫∫

D
A

(
∫∫
G)Y

To do so, we first evaluate both whiskerings at an object (x, x−) of
∫∫
C
XGop:

(
∫∫
G
)Y (

∫∫
C
A ◦Gop)(x,x−)) = (

∫∫
G
)Y (ex, ((A ◦Gop)x)x−) Definition of

∫∫
C
A ◦Gop

= (
∫∫
G
)Y (ex, (AGx)x−) Whiskering

= (ex, (Gex, (AGx)x−)) Definition of (
∫∫
G
)Y

= (ex, (eGx, (AGx)x−)) Functorality of G

= (G∗ ∫∫
D
A)(x,(Gx,x−)) Definition of G∗ ∫∫

D
A

= (G∗ ∫∫
D
A)(

∫∫
G)X(x,x−). Definition of (

∫∫
G
)X

This shows that the components at objects of
∫∫
C
XGop of the two whiskerings agree. The

fact that their components at horizontal morphisms agree is then straightforward from
the fact that they are both given by the vertical identity square (ef , eGf ) in G∗ ∫∫

D
Y .
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Putting the components
∫∫
C
and

∫∫
G
together, we get the following.

6.12. Proposition. The Grothendieck construction defines a pseudo-natural transfor-
mation of pseudo-functors∫∫

: P ⇒ DF ib : DblCatcooph → 2Cat,

where P is the 2-functor from Construction 3.36 and DF ib is the pseudo-functor from
Construction 5.8.

Proof. We first show that the components
∫∫
G
are functorial in G. Given composable

double functors G : C→ D and H : D→ E, we have to show that the following composite
coincides with the 2-natural transformation

∫∫
HG∫∫

C
((HG)op)∗ =

∫∫
C
(Gop)∗(Hop)∗

∫∫
G(Hop)∗

======⇒ G∗ ∫∫
D
(Hop)∗

G∗ ∫∫
H====⇒ G∗H∗ ∫∫

E

∼= (HG)∗
∫∫
E
.

When evaluated at a lax double presheaf X : Eop → Cat, this amounts to showing that
the following composite coincides with the double functor (

∫∫
HG

)X∫∫
C
XHopGop

(
∫∫
G)XHop

−−−−−−→ G∗ ∫∫
D
XHop

G∗(
∫∫
H)X−−−−−→ G∗H∗ ∫∫

E
X ∼= (HG)∗

∫∫
E
X.

But this is straightforward from the definitions of
∫∫
G
,
∫∫
H
, and

∫∫
HG

. Moreover, given a
double category C, a similar computation shows that

∫∫
idC

= id∫∫
C
.

Finally, we show that the components
∫∫
G
are natural in G. Given a horizontal trans-

formation B : G ⇒ G′ : C → D, we have to show that the following diagram of 2-natural
transformations commutes,

∫∫
C
(G′ op)∗ G′∗ ∫∫

D

∫∫
C
(Gop)∗ G∗ ∫∫

D
.

∫∫
C
(Bop)∗

∫∫
G′

B∗ ∫∫
D

∫∫
G

where we recall that the left-hand (Bop)∗ is as in Construction 3.36 and the right-hand
B∗ is as in Construction 5.6. When evaluated at a lax double presheaf X : Dop → Cat,
this amounts to showing that the following diagram of double functors commutes.

∫∫
C
XG′ op G′∗ ∫∫

D
X

∫∫
C
XGop G∗ ∫∫

D
X.

∫∫
C
X◦Bop

(
∫∫
G′ )X

B∗∫∫
D
X

(
∫∫
G)X
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We check that the above diagram commutes on objects, and the proof is similar for
horizontal morphisms, vertical morphisms, and squares. To do so, we evaluate both
composites at an object (x, x−) in

∫∫
C
XG′ op:

B∗∫∫
D
X
(
∫∫
G′)X(x, x−) = B∗∫∫

D
X(x, (G

′x, x−)) Definition of
∫∫
G′

= (x, (Bx)
∗(G′x, x−)) Definition of B∗

= (x, (Gx,X(Bx)x−)) Unique lifts in
∫∫
D
X

= (
∫∫
G
)X(x,X(Bx)x−) Definition of (

∫∫
G
)X

= (
∫∫
G
)X(x, (X ◦Bop)xx−) Whiskering

= (
∫∫
G
)X(

∫∫
C
(X ◦Bop)(x, x−) Definition of

∫∫
C
X ◦Bop

This shows that the desired diagram commutes.

Grothendieck 2-equivalence. We now show that the Grothendieck construction
establishes a 2-equivalence between the 2-categories PC of lax double presheaves and
DF ib(C) of discrete double fibrations over a fixed double category C.

6.13. Theorem. Given a double category C, the Grothendieck construction∫∫
C
: PC −→ DF ib(C)

is a 2-equivalence of 2-categories, which is pseudo-natural in C.

In order to show this, we construct a weak inverse 2-functor ∂∂C : DF ib(C) → PC of
the 2-functor

∫∫
C
from Construction 6.9. We start with its assignment on objects.

6.14. Construction. Given a discrete double fibration P : E → C, we construct a lax
double presheaf

∂∂C(P ) : Cop → Cat

which sends

• an object x in C to the category P−1x given by the fiber of P at x,

• a horizontal morphism f : x → y in C to the functor

∂∂C(P )f := f ∗ : ∂∂C(P )y = P−1y → ∂∂C(P )x = P−1x,

from Construction 5.13,

• a vertical morphism u : x−→• x′ in C to the profunctor

∂∂C(P )u : ∂∂C(P )xop × ∂∂C(P )x′ = P−1xop × P−1x′ → Set

given by the image under the equivalence from Theorem 3.13

fib: TSFib(P−1x, P−1x′)
≃−→ Prof(P−1x, P−1x′)
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of the two-sided discrete fibration from Proposition 5.19

P−1u → P−1x× P−1x′;

using Lemma 5.20, we impose ∂∂C(P )ex := eP−1x, for every object x in C,

• a square α :
[
u f

f ′ v
]
:
[
x
x′

y
y′

]
in C to the natural transformation

∂∂C(P )α : ∂∂C(P )v ⇒ ∂∂C(P )u ◦ (∂∂C(P )f op × ∂∂C(P )f ′)

which is induced as in Corollary 3.15 by the following commutative square

P−1v P−1u

P−1y × P−1y′ P−1x× P−1x′

α∗

(f∗,f ′∗)

where α∗ is the functor from Construction 5.18; note that the above diagram indeed
commutes by construction of f ∗, f ′∗, α∗,

• for composable vertical morphisms x
u−→• x′ u′

−→• x′′ in C, the composition comparison
square is given by the natural transformation

µu,u′ : ∂∂C(P )u′ • ∂∂C(P )u ⇒ ∂∂C(P )(u′ • u)

given by the image under the equivalence from Theorem 3.13

fib: TSFib(P−1x, P−1x′′)
≃−→ Prof(P−1x, P−1x′′)

of the morphism of two-sided discrete fibrations

P−1u×P−1x′ P−1u′
/∼ P−1(u′ • u)

P−1x× P−1x′′

−•−

induced by vertical composition in E.

6.15. Lemma. The construction ∂∂C(P ) : Cop → Cat is a lax double presheaf.

Proof. First note that ∂∂C(P ) preserves horizontal compositions and identities for hori-
zontal morphisms and squares by unicity of lifts.
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We first show that the composition comparison natural transformations µu,u′ are nat-

ural in (u, u′). Given squares α :
[
u f

f ′ v
]
and α′ :

[
u′ f ′

f ′′ v′
]
in C, we have to show that

the following diagram in Prof(P−1x, P−1x′′) commutes.

∂∂C(P )v′ • ∂∂C(P )v (∂∂C(P )u • ∂∂C(P )u)(f ∗op × f ′′∗)

∂∂C(P )(v′ • v) ∂∂C(P )(u′ • u)(f ∗op × f ′′∗)

∂∂C(P )α′•∂∂C(P )α

µv,v′ µu,u′ (f
∗op×f ′′∗)

∂∂C(P )(α′•α)

Under the natural equivalence fib from Theorem 3.13 and Proposition 3.14 and using
Proposition 3.20, this amounts to showing that the following diagram of functors com-
mutes.

P−1v ×P−1y′ P
−1v′/∼ P−1u×P−1x′ P−1u′

/∼

P−1(v′ • v) P−1(u′ • u)

−•−

α∗×α′∗

−•−

(α′•α)∗

But this follows directly from the unicity of lifts.
Next, we show that the composition comparison natural transformations µu,u′ are com-

patible with vertical composition. To see this, given three composable vertical morphisms

x
u−→• x′ u′

−→• x′′ u′′

−→• x′′′ in C, we have to show that the following diagram in the category
TSFib(P−1x, P−1x′′′) commutes.

∂∂C(P )u′′ • ∂∂C(P )u′ • ∂∂C(P )u ∂∂C(P )(u′′ • u′) • ∂∂C(P )u

∂∂C(P )u′′ • ∂∂C(P )(u′ • u) ∂∂C(P )(u′′ • u′ • u)(f ∗op × f ′′∗)

µu′,u′′•∂∂C(P )u

∂∂C(P )u′′•µu,u′ µu,u′′•u′

µu′•u,u′′

Under the equivalence fib from Theorem 3.13, this amounts to showing that the following
diagram in TSFib(P−1x, P−1x′′′) commutes.

P−1u×P−1x′ P−1u′ ×P−1x′′ P−1u′′
/∼ P−1u×P−1x′ P−1(u′′ • u′)/∼

P−1(u′ • u)×P−1x′′ P−1u′′
/∼ P−1(u′′ • u′ • u)

(−•−)×1P−1u′′

1P−1u×(−•−)

−•−

−•−

But this follows directly from the fact that vertical composition in E is strictly associative.
Next, we show that ∂∂C(P ) preserves vertical identities. By construction, it preserves

the vertical identity at an object. Given a horizontal morphism f : x → y in C, we have
to show that the natural transformation ∂∂C(P )ef is the identity at ∂∂C(P )f = f ∗. By



YONEDA LEMMA AND REPRESENTATION THEOREM FOR DOUBLE CATEGORIES1763

definition, we have that ∂∂C(P )ef is the natural transformation induced as in Corollary
3.15 by the below left commutative square.

P−1ey P−1ex

P−1y × P−1y P−1x× P−1x

e∗f

Pey Pex

(f∗,f∗)

(P−1y)[1] (P−1x)[1]

P−1y × P−1y P−1x× P−1x

(s,t)

(f∗)[1]

(s,t)

(f∗,f∗)

Since the above left commutative square is canonically isomorphic to the above right
commutative square by Lemma 5.20, we see that the desired natural transformation is
the identity at f ∗.

Finally, we show that the composition comparison natural transformations µu,ex′
and

µu,ex agree with the identity natural transformation at ∂∂C(P )u. To see this, given a verti-
cal morphism u : x−→• x′ in C, by Lemmas 3.23 and 5.20, we have canonical isomorphisms
over P−1x× P−1x′

P−1ex ×P−1x P
−1u/∼ ∼= (P−1x)[1] ×P−1x P

−1u/∼ ∼= P−1u

and
P−1u×P−1x′ P−1ex′/∼

∼= P−1u×P−1x′ (P−1x′)[1]/∼
∼= P−1u.

Note that these isomorphisms are induced by vertical composition, therefore we have
µex,u = 1∂∂C(P )u = µu,ex′

, concluding the proof.

We now turn to the assignment of ∂∂C on morphisms.

6.16. Construction. Given a morphism of discrete double fibrations

E F

C

F

P Q

we construct a horizontal transformation

∂∂C(F ) : ∂∂C(P ) ⇒ ∂∂C(Q)

whose

• component at an object x is given by the unique induced functor between fibers

∂∂C(F )x := Fx : ∂∂C(P )x = P−1x → ∂∂C(Q)x = Q−1x

• component at a vertical morphism u : x−→• x′ is given by the natural transformation

∂∂C(F )u : ∂∂C(P )u ⇒ ∂∂C(Q)u(∂∂C(F )opx × ∂∂C(F )x′)
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which is induced as in Corollary 3.15 by the following commutative square

P−1u Q−1u

P−1x× P−1x′ Q−1x×Q−1x′

Fu:=JV[1],F Ku

Fx×Fx′

where JV[1], F Ku denotes the unique induced functor between fibers.

6.17. Lemma. The construction ∂∂C(F ) : ∂∂C(P ) ⇒ ∂∂C(Q) is a horizontal transformation.

Proof. We first show that the components ∂∂C(F )x are natural in x. Given a horizon-
tal morphism f : x → y in C, we have to show that the following diagram of functors
commutes.

P−1y Q−1y

P−1x Q−1x

f∗

Fy

f∗

Fx

But this follows directly from the fact that every morphism of discrete double fibrations
over C preserves unique lifts.

Next, we show that the components ∂∂C(F )u are natural in u. Consider a square

α :
[
u f

f ′ v
]
:
[
x
x′

y
y′

]
in C. We have to show that the following diagram in Prof(P−1y, P−1y′)

commutes.

∂∂C(P )v ∂∂C(Q)v(F op
y × Fy′)

∂∂C(P )u(f ∗op × f ′∗) ∂∂C(Q)u((Fxf
∗)op × Fx′f ′)

∂∂C(F )v

∂∂C(P )α ∂∂C(Q)α(F op
y ×Fy′ )

∂∂C(F )u(f∗op×f ′∗)

Under the natural equivalence fib from Theorem 3.13 and Proposition 3.14, this amounts
to showing that the following diagram of functors commutes.

P−1v Q−1v

P−1u Q−1u

α∗

Fv

α∗

Fu

But this follows directly from the fact that every morphism of discrete double fibrations
over JV[1],CK preserves unique lifts.

We now show that the components ∂∂C(F )u are compatible with composition compar-

ison natural transformations. Given composable vertical morphisms x
u−→• x′ u′

−→• x′′ in C,
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we have to show that the following diagram in Prof(P−1x, P−1x′′) commutes.

∂∂C(P )u′ • ∂∂C(P )u (∂∂C(Q)u′ • ∂∂C(Q)u)(F op
x × Fx′′)

∂∂C(P )(u′ • u) ∂∂C(Q)(u′ • u)(F op
x × Fx′′)

∂∂C(F )u′•∂∂C(F )u

µu,u′ µu,u′ (F
op
x ×Fx′′ )

∂∂C(F )u′•u

Under the equivalence fib from Theorem 3.13, this amounts to showing that the following
diagram of functors commutes.

P−1u×P−1x′ P−1u′
/∼ Q−1u×Q−1x′ Q−1u′

/∼

P−1(u′ • u) Q−1(u′ • u)

−•−

Fu×Fu′

−•−

Fu′•u

But this follows directly from the fact that F preserves vertical composition.
Finally, we show that the components ∂∂C(F )u are compatible with vertical identities.

Given an object x in C, we have to show that the natural transformation ∂∂C(F )ex is the
identity at ∂∂C(F )x = Fx. By definition, we have that ∂∂C(F )ex is the natural transforma-
tion induced as in Corollary 3.15 by the below left commutative square.

P−1ex Q−1ex

P−1x× P−1x Q−1x×Q−1x

Pex

JV[1],F Kex

Qex

Fx×Fx

(P−1x)[1] (Q−1x)[1]

P−1x× P−1x Q−1x×Q−1x

(s,t)

F
[1]
x

(s,t)

Fx×Fx

Since the above left commutative square is canonically isomorphic to the above right
commutative square by Lemma 5.20, we see that the desired natural transformation is
the identity at Fx, concluding the proof.

Finally, we turn to the assignment of ∂∂C on 2-morphisms.

6.18. Construction. Given a vertical transformation of discrete double fibrations

E F

C

•

A

F

F ′

P Q

we construct a globular modification

∂∂C(P ) ∂∂C(Q)

∂∂C(P ) ∂∂C(Q)

∂∂C(F )

• ∂∂C(A)

•

∂∂C(F
′)



1766 BENEDIKT FRÖHLICH, LYNE MOSER

defined as follows. Its component at an object x in C is given by the natural transformation

∂∂C(A)x : ∂∂C(F )x = Fx ⇒ ∂∂C(F
′)x = F ′

x : P
−1x → Q−1x

whose component at an object x− of P−1x is given by the morphism in Q−1x

Ax− : Fx−−→• F ′x−.

6.19. Lemma. The construction ∂∂C(A) :
[
e∂∂C(P )

∂∂C(F )
∂∂C(F ′) e∂∂C(Q)

]
is a globular modification.

Proof. We first show horizontal compatibility of ∂∂C(A)x. Given a horizontal morphism
f : x → y in C, we have to show that the following pasting diagram of functors and natural
transformations commutes.

P−1y P−1x

Q−1y Q−1x

f∗

Fy F ′
y Fx F ′

x∂∂C(A)y ∂∂C(A)x

f∗

To see this, we first note the following. Since A : F=⇒• F ′ is a vertical transformation
over C, given an object y− in P−1y, the component of A at the horizontal morphism

P ∗f : f ∗y− → y− is a square AP ∗f :
[
Af∗y−

FP ∗f
F ′P ∗f

Ay−

]
such that QAP ∗f = ef . Hence it

has to be the unique lift of ef along Q with target Ay− . When evaluating both whiskerings
at an object y− in P−1y, we therefore have:

e∗f (∂∂C(A)y)y− = e∗fAy− Definition of ∂∂C(A)y

= Af∗y− Unicity of lifts

= (∂∂C(A)x)f∗y− . Definition of ∂∂C(A)x

This shows that the components of the two whiskerings agree, as desired.
Next, we show vertical compatibility of ∂∂C(A)x. Given a vertical morphism u : x−→• x′

in C, we have to show that the following diagram in Prof(P−1, P−1x′) commutes.

∂∂C(P )u ∂∂C(Q)u(F op
x × Fx′)

∂∂C(Q)u(F ′
x
op × F ′

x′) ∂∂C(Q)u(F op
x × F ′

x′)

∂∂C(F )u

∂∂C(F
′)u ∂∂C(Q)u(F op

x ×Ax′ )

∂∂C(Q)u(Aop
x ×F ′

x′ )

Under the natural equivalence fib from Theorem 3.13 and Proposition 3.14, this amounts
to showing that the following diagram of functors and natural transformations commutes.
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P−1u P−1x× P−1x′

Q−1u Q−1x×Q−1x′

Fu F ′
u

Fx×Fx′ F ′
x×F ′

x′(∂∂C(A)x,∂∂C(A)x′ ) ∂∂C(A)x×∂∂C(A)x′ (6.1)

Here, the left-hand transformation is defined as follows: using the description of the
morphisms in Q−1u from Remark 5.17, there is a natural transformation

(∂∂C(A)x, ∂∂C(A)x′) : Fu ⇒ F ′
u

whose component at an object u− : x−−→• x′
− in P−1u is given by the commutative diagram

in F

Fx− F ′x−

Fx′
− F ′x′

−.

Fu−

•

Ax−•
F ′u−

•

Ax′−

•

Note that this gives a well-defined morphism of Q−1u since the above diagram of vertical
morphisms commutes by naturality of Ax− in x−, and QAx− = ex and QAx′

−
= ex′ by

definition of the vertical transformation A living over C. The fact that the diagram (6.1)
commutes is then straightforward from the fact that the horizontal arrows are picking
source and target as described in Proposition 5.19.

Putting everything together, we get the following.

6.20. Construction. Given a double category C, we define a 2-functor

∂∂C : DF ib(C) → PC

which sends

• a discrete double fibration P : E→ C to the lax double presheaf ∂∂C(P ) : Cop → Cat
from Construction 6.14,

• a double functor F : E→ F over C to the horizontal transformation

∂∂C(F ) : ∂∂C(P ) ⇒ ∂∂C(Q)

from Construction 6.16,

• a vertical transformation A : F=⇒• F ′ over C to the globular modification

∂∂C(A) :
[
e∂∂C(P )

∂∂C(F )
∂∂C(F ′) e∂∂C(Q)

]
from Construction 6.18.



1768 BENEDIKT FRÖHLICH, LYNE MOSER

It is straightforward to check that this construction is 2-functorial.

We are now ready to show that ∂∂C is a weak inverse of
∫∫
C
. We start by constructing

a 2-natural isomorphism ε : ∂∂C
∫∫
C

∼= idPC . For this, we first describe the composite ∂∂C
∫∫
C

on objects, morphisms, and 2-morphisms explicitly.

6.21. Lemma. Given a lax double presheaf X : Cop → Cat, the lax double presheaf

∂∂C(πX) : C
op → Cat

associated with the Grothendieck construction πX :
∫∫
C
X → C admits the following de-

scription.

• Given an object x in C, the category ∂∂C(πX)x = π−1
X x is given by {x} ×Xx.

• Given a horizontal morphism f : x → y in C, the functor ∂∂C(πX)f : π
−1
X y → π−1

X x
is given by

[y 7→ x]×Xf : {y} ×Xy → {x} ×Xx.

• Given a vertical morphism u : x−→• x′ in C, the profunctor

∂∂C(πX)u : π
−1
X xop × π−1

X x′ → Set

is given by

{u} ×Xu : {x} ×Xxop × {x′} ×Xx′ ∼= Xxop ×Xx′ → Set.

• Given a square α :
[
u f

f ′ v
]
:
[
x
x′

y
y′

]
in C, the natural transformation

∂∂C(πX)α : ∂∂C(πX)v ⇒ ∂∂C(πX)u(∂∂C(πX)f
op × ∂∂C(πX)f

′)

is given by

[v 7→ u]×Xα : {v} ×Xv ⇒ {u} ×Xu(Xf op ×Xf ′).

• Given composable vertical morphisms x
u−→• x′ u′

−→• x′′ in C, the compositor comparison
natural transformation ∂∂C(πX)u

′ • ∂∂C(πX)u ⇒ ∂∂C(πX)(u
′ • u) is given by

[(u, u′) 7→ u′ • u]× µu,u′ : ({u} ×Xu) • ({u′} ×Xu′) → {u′ • u} ×X(u′ • u)

where µu,u′ denotes the composition comparison natural transformation of X and we
use the isomorphism ({u} ×Xu) • ({u′} ×Xu′) ∼= {(u, u′)} × (Xu •Xu′).
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Proof. By unpacking Constructions 6.1 and 6.14, we observe the following.
Given an object x in C, then π−1

X x is the category whose

• objects are pairs (x, x−) with x− an object in Xx,

• morphisms (x, x−) → (x, x′
−) are pairs (ex, s−) with s− an element of Xex(x−, x

′
−) =

Xx(x−, x
′
−), i.e., a morphism s− : x− → x′

− in Xx.

Hence, we have that π−1
X x = {x} ×Xx, as desired.

Next, given a horizontal morphism f : x → y in C, the functor ∂∂C(πX)f is given
by assigning the source of the unique lift of f or ef along the discrete double fibration
πX :

∫∫
C
X → C. Hence, by the proof of Proposition 6.4, we get the desired description,

namely ∂∂C(πX)f = [y 7→ x]×Xf .
Now, given a vertical morphism u : x−→• x′ in C, the profunctor ∂∂C(πX)u is the image

under the equivalence fib from Theorem 3.13 of the two-sided discrete fibrations

π−1
X u → π−1

X x× π−1
X x′.

Here π−1
X u is the category whose

• objects are pairs (u, u−) with u− an element of Xu(x−, x
′
−), for some object (x−, x

′
−)

in Xx×Xx′,

• morphisms (u, u−) → (u, û−) with u− ∈ Xu(x−, x
′
−) and û− ∈ Xu(x̂−, x̂

′
−) are

tuples (u, s−, s
′
−) with (x−

s−−→ x̂−, x
′
−

s′−−→ x̂′
−) a morphism in Xx×Xx′ making the

following square in
∫∫
C
X commutes.

(x, x−) (x, x̂−)

(x′, x′
−) (x′, x̂′

−).

(u,s−)

•

(ex,s−)•
(u,û−)

•

(ex′ ,s
′
−)

•

Hence, by applying the functor fib from Construction 3.12, we see that the profunctor
∂∂C(πX)u assigns to an object (x−, x

′
−) in π−1

X x × π−1
X x′ the set {u} × Xu(x−, x

′
−). It

remains to show that the action on morphisms of ∂∂C(πX)u and {u} ×Xu agree.

By the proof of Proposition 5.19, the action of a morphism (x−
s−−→ x̂−, x

′
−

s′−−→ x̂′
−) in

π−1
X x× π−1

X x′ on fibers is given by taking an element (u, u−) in {u} ×Xu(x̂−, x
′
−) to the

composite (ex, s
′) • (u, u−) • (ex′ , s−) = (u, s′ • u− • s−) of

∫∫
C
X. However, we have:

s′− • u− • s− = (µu,ex′
)x̂−,x̂′

−
([s′−, u− • s−]) Definition of •

= (µu,ex′
)x−,x̂′

−
([s′−, (µex,u)x−,x′

−
([u−, s−])]) Definition of •

= (µu,ex′
)x−,x̂′

−
([s′−, Xu(s−, x

′
−)(u−)]) µex,u = 1Xu

= Xu(x−, s
′
−)(Xu(s−, x

′
−)(u−)) µu,ex′

= 1Xu

= Xu(s−, s
′
−)(u−). Functorality of Xu
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Hence, this shows that ∂∂C(πX)u = {u} ×Xu, as desired.

Next, given a square α :
[
u f

f ′ v
]
:
[
x
x′

y
y′

]
in C, the natural transformation ∂∂C(πX)α is

induced as in Corollary 3.15 by the following commutative square

π−1
X v π−1

X u

π−1
X y × π−1

X y′ π−1
X x× π−1x′

α∗

f∗×f ′∗

where α∗ is given by assigning the source of the unique lift of α along the discrete double
fibration πX :

∫∫
C
X → C. Hence, by the proof of Proposition 6.4, we get the desired

description, namely ∂∂C(πX)α = [u 7→ v]×Xα.

Finally, given composable vertical morphisms x
u−→• x′ u′

−→• x′′ in C, the composition
comparison natural transformation of ∂∂C(πX) is the image under the equivalence fib from
Theorem 3.13 of the morphism of two-sided discrete fibrations

π−1
X u×π−1

X x′ π
−1
X u′

/∼ π−1
X (u′ • u)

π−1
X x× π−1

X x′′.

−•−

induced by vertical composition in
∫∫
C
X. However, by definition, the composite of two

vertical morphisms (u, u−) and (u′, u′
−) with u− ∈ Xu(x−, x

′
−) and u′

− ∈ Xu(x′
−, x

′′
−) in∫∫

C
X is given by the pair (u′•u, u′

−•u) with u′
−•u = (µu,u′)x−,x′′

−
([u′

−, u−]). Hence, we get
the desired description, namely the composition comparison is given by the assignment
[(u, u′) 7→ u′ • u]× µu,u′ .

6.22. Lemma. Given a horizontal transformation F : X ⇒ Y of lax double presheaves
X, Y : Cop → Cat, the horizontal transformation

∂∂C
∫∫
C
F : ∂∂C(πX) ⇒ ∂∂C(πY )

admits the following description.

• Given an object x in C, the functor (∂∂C
∫∫
C
F )x : ∂∂C(πX)x → ∂∂C(πY )x is given by

{x} × Fx : {x} ×Xx → {x} × Y x.

• Given a vertical morphisms u : x−→• x′ in C, the natural transformation

(∂∂C
∫∫
C
F )u : ∂∂C(πX)u ⇒ ∂∂C(πY )u((∂∂C

∫∫
C
F )opx × (∂∂C

∫∫
C
F )x′)

is given by
{u} × Fu : {u} ×Xu ⇒ {u} × Y u(F op

x × Fx′).
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Proof. Using Lemma 6.21 and unpacking Constructions 6.5 and 6.16, we observe the
following.

Given an object x in C, the functor (∂∂C
∫∫
C
F )x is the unique induced functor between

fibers
(
∫∫
C
F )x = {x} × Fx : π

−1
X (x) = {x} ×Xx → π−1

Y x = {x} × Y x.

Hence, we get the desired description, namely (∂∂C
∫∫
C
F )x = {x} × Fx.

Given a vertical morphism u : x−→• x′ in C, the natural transformation (∂∂C
∫∫
C
F )u is

induced as in Corollary 3.15 by the following commutative square

π−1
X u π−1

Y u

π−1
X x× π−1

X x′ π−1
Y x× π−1

Y x′,

(sX ,tX)

(
∫∫
C
F )u

(sY ,tY )

Fx×Fx′

where (
∫∫
C
F )u is the unique induced functor between fibers

JV[1],
∫∫
C
F Ku = {u} × Fu =: π−1

X u = {u} ×Xu → π−1
Y u = {u} × Y u.

Hence, we get the desired description, namely (∂∂C
∫∫
C
F )u = {u} × Fu.

6.23. Lemma. Given a globular modification A :
[
eX

F
F ′ eY

]
between lax double presheaves

C
op → Cat, the globular modification

∂∂C
∫∫
C
A :

[
e∂∂C(πX)

∂∂C
∫∫
C
F

∂∂C
∫∫
C
F ′ e∂∂C(πY )

]
admits the following description. Given an object x in C, the natural transformation

(∂∂C
∫∫
C
A)x : (∂∂C

∫∫
C
F )x ⇒ (∂∂C

∫∫
C
F ′)x

is given by
{x} × Ax : {x} × Fx ⇒ {x} × F ′x.

Proof. Using Lemma 6.22 and unpacking Constructions 6.7 and 6.18, we observe the
following.

Given an object x in C, the natural transformation

(∂∂C
∫∫
C
A)x : (∂∂C

∫∫
C
F )x = {x} × Fx ⇒ (∂∂C

∫∫
C
F ′) = {x} × F ′

x

is given at an object (x, x−) in π−1
X x = {x} ×Xx by the vertical morphism in

∫∫
C
Y

(
∫∫
C
A)(x,x−) = (ex, (Ax)x−) : (x, Fxx−)−→• (x, F ′

xx−).

Hence, we get the desired description, namely (∂∂C
∫∫
C
A)x = {x} × Ax.
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Using the explicit description of the composite ∂∂C
∫∫
C
, we can now construct the desired

2-natural isomorphism.

6.24. Proposition. There is a 2-natural isomorphism ε : ∂∂C
∫∫
C
⇒ idPC.

Proof. Given a lax double presheaf X : Cop → Cat, we define the component of the 2-
natural isomorphism ε : ∂∂C

∫∫
C
⇒ idPC at X to be the invertible horizontal transformation

εX : ∂∂C
∫∫
C
X ⇒ X

whose components at an object x in C and at a vertical morphism u : x−→• x′ in C are
given by the canonical isomorphisms

{x} ×Xx ∼= Xx and {u} ×Xu ∼= Xu.

Using the description from Lemma 6.21, it is straightforward to check that this gives a
well-defined horizontal transformation.

Moreover, it follows easily from the descriptions in Lemmas 6.22 and 6.23 that the
components εX are 2-natural in X.

Next, we want to construct a 2-natural isomorphism η : idDF ib(C)
∼=

∫∫
C
∂∂C. As before,

we first describe the composite
∫∫
C
∂∂C on objects, morphisms, and 2-morphisms.

6.25. Lemma. Given a discrete double fibration P : E→ C, the discrete double fibration

π∂∂C(P ) :
∫∫
C
∂∂C(P ) → C

admits the following description. We have that
∫∫
C
∂∂C(P ) is the double category whose

• objects are pairs (x, x−) of objects x in C and x− in E such that Px− = x,

• horizontal morphisms (x, x−) → (y, y−) are horizontal morphisms f : x → y in C

such that f ∗y− = x−, i.e., x− is the source of the unique lift P ∗f : x− → y− in E

of f ,

• vertical morphisms (x, x−)−→• (x′, x′
−) are given by pairs (u, u−) of vertical mor-

phisms u : x−→• x′ in C and u− : x−−→• x′
− in E such that Pu− = u,

• squares
[
(u, u−)

f
f ′ (v, v−)

]
are squares α :

[
u f

f ′ v
]
in C such that α∗v− = u−, i.e.,

u− is the source of the unique lift P ∗α :
[
u−

f−
f ′
−
v−

]
in E of α,

and that π∂∂C(P ) :
∫∫
C
∂∂C(P ) → C is given by projecting onto the first variable.
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Proof. By unpacking Constructions 6.1 and 6.14, we observe the following.
We have that

∫∫
C
∂∂C(P ) is the double category whose

• objects are pairs (x, x−) of objects x in C and x− in ∂∂C(P )x = P−1x, i.e., x− is an
object in E such that Px− = x,

• horizontal morphisms (x, x−) → (y, y−) are horizontal morphisms f : x → y in C

such that x− = ∂∂C(P )f(y−) = f ∗y−,

• vertical morphisms (x, x−)−→• (x′, x′
−) are given by pairs (u, u−) of a vertical mor-

phism u : x−→• x′ in C and an element u− in ∂∂C(P )u(x−, x
′
−), i.e., u− is an element

in the fiber of the two-sided discrete fibration P−1u → P−1x × P−1x′ at (x−, x
′
−),

namely a vertical morphism u− : x−−→• x′
− in E such that Pu− = u,

• squares
[
(u, u−)

f
f ′ (v, v−)

]
:
[
(x,x−)

(x′,x′
−)

(y,y−)

(y′,y′−)

]
are squares α :

[
u f

f ′ v
]
:
[
x
x′

y
y′

]
in C such

that u− = ∂∂C(P )αy−,y′−
(v−) = α∗v−.

Moreover, the double functor π∂∂C(P ) :
∫∫
C
∂∂C(P ) → C is given by projecting onto the first

variable. This gives the desired description.

6.26. Lemma. Given a double functor F : E → F of discrete double fibration P : E → C

and Q : F→ C, the double functor∫∫
C
∂∂C(F ) :

∫∫
C
∂∂C(P ) →

∫∫
C
∂∂C(Q)

admits the following description. It sends

• an object (x, x−) in
∫∫
C
∂∂C(P ) to the object (x, Fx−) in

∫∫
C
∂∂C(Q),

• a horizontal morphism f : (x, x−) → (y, y−) in
∫∫
C
∂∂C(P ) to the horizontal morphism

in
∫∫
C
∂∂C(Q)

f : (x, Fx−) → (y, Fy−),

• a vertical morphism (u, u−) : (x, x−)−→• (x′, x′
−) in

∫∫
C
∂∂C(P ) to the vertical mor-

phism in
∫∫
C
∂∂C(Q)

(u, Fu−) : (x, Fx−)−→• (x′, Fx′
−),

• a square α :
[
(u, u−)

f
f ′ (v, v−)

]
in

∫∫
C
∂∂C(P ) to the square in

∫∫
C
∂∂C(Q)

α :
[
(u, Fu−)

f
f ′ (v, Fv−)

]
.

Proof. This is straightforward from unpacking Constructions 6.5 and 6.16.
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6.27. Lemma. Given a vertical transformation A : F=⇒• F ′ : E → F between morphisms
of discrete double fibrations P : E→ C and Q : F→ C, the vertical transformation∫∫

C
∂∂C(A) :

∫∫
C
∂∂C(F )=⇒•

∫∫
C
∂∂C(F

′)

admits the following description.

• Its component at an object (x, x−) in
∫∫
C
∂∂C(P ) is the vertical morphism in

∫∫
C
∂∂C(Q)

(ex, Ax−) : (x, Fx−)−→• (x, F ′x−),

• Its component at a horizontal morphism f : (x, x−) → (y, y−) in
∫∫
C
∂∂C(P ) is the

square ef :
[
(ex, Ax−)

f

f
(ey, Ay−)

]
in

∫∫
C
∂∂C(Q).

Proof. This is straightforward from unpacking Constructions 6.7 and 6.18.

We are now ready to construct the desired 2-natural isomorphism.

6.28. Construction. We construct a 2-natural transformation η : idDF ib(C) ⇒
∫∫
C
∂∂C

whose component at a discrete double fibration P : E→ C is given by the functor over C

ηP : E→
∫∫
C
∂∂C(P )

sending, using the description of
∫∫
C
∂∂C(P ) from Lemma 6.25,

• an object x− in E to the object (Px−, x−) in
∫∫
C
∂∂C(P ),

• a horizontal morphism f− : x− → y− in E to the horizontal morphism in
∫∫
C
∂∂C(P )

Pf− : (Px−, x−) → (Py−, y−),

where (Pf−)
∗(y−) = x− by unicity of the lift f− of Pf− with target y−,

• a vertical morphism u− : x−−→• x′
− in E to the vertical morphism in

∫∫
C
∂∂C(P )

(Pu−, u−) : (Px−, x−) → (Px′
−, x

′
−),

• a square α− :
[
u−

f−
f ′
−
v−

]
in E to the square in

∫∫
C
∂∂C(P )

Pα− :
[
(Pu−, u−)

Pf−
Pf ′

−
(Pv−, v−)

]
,

where (Pα−)
∗(v−) = u− by unicity of the lift α− of Pα− with target v−.

6.29. Proposition. The construction η : idDF ib ⇒
∫∫
C
◦∂∂C is a 2-natural isomorphism.

Proof. First note that the double functor ηP : E →
∫∫
C
∂∂C(P ) admits as an inverse

the double functor
∫∫
C
∂∂C(P ) → E given by projecting onto the second component on

objects and vertical morphisms, and by picking the unique lift of horizontal morphisms
and squares.

Moreover, it follows easily from the descriptions in Lemmas 6.26 and 6.27 that the
components ηP are 2-natural in P .
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Proof of Theorem 6.13. The data (
∫∫
C
, ∂∂C, η, ε) from Constructions 6.9 and 6.20 and

Propositions 6.24 and 6.29 provides the desired 2-equivalence.

As a consequence of Lemma 3.32 and Theorem 6.13, when taking C = HC with C a
2-category, we retrieve the Grothendieck 2-equivalence from [MSV23, Theorem 5.1] in the
case of V = Cat.

6.30. Corollary. Given a 2-category C, the Grothendieck construction∫∫
HC : [C

op,Cat] −→ DF ib(HC)

is a 2-equivalence of 2-categories, which is pseudo-natural in C.

7. Representation theorem for lax double presheaves

In this last section, we turn to a representation theorem for double categories. While
in the presheaf world a lax double functor is said to be represented by an object if it is
isomorphic to a representable lax double functor at the same object, in the fibrational
world we can reformulate this representation condition in terms of double terminal objects.
In Sections 7.1 to 7.7, we first introduce double terminal objects and show that a discrete
double fibration is represented, i.e., it is isomorphic to a double slice, if and only if it has a
double terminal object. Then, in Sections 7.8 to 7.11, we use this result to show that a lax
double presheaf is represented by an object if and only if its Grothendieck construction
has a double terminal object. This gives a nice criterion to test representability of a given
lax double presheaf, and formulate universal properties for double categories.

Double terminal objects. Let us fix a double category C. We start by recalling the
definition of a double terminal object.

7.1. Definition.An object x̂ in C is double terminal if the canonical projection C/x̂ → C

is an isomorphism of double categories.

7.2. Remark. Unpacking the double isomorphism, an object x̂ in C is double terminal
if and only if the following conditions hold:

(1) for every object x in C, there is a unique horizontal morphism tx : x → x̂ in C,

(2) for every vertical morphism u : x−→• x′ in C, there is a unique square τu :
[
u tx

tx′
ex̂

]
in C.

7.3. Notation. In what follows, for an object x̂ in C and a double functorX : Cop → Cat,
we abuse notation and denote the discrete double fibrations C/x̂ → C and πX :

∫∫
C
X → C

simply by their sources C/x̂ and
∫∫
C
X.

We can translate the Yoneda lemma in the fibrational setting as follows.
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7.4. Theorem. Given a discrete double fibration P : E → C and an object x̂ in C, there
is an isomorphism of categories

Ψ: DF ib(C)(C/x̂, P )
∼=−→ P−1x̂

which is 2-natural in x̂ in HC and in P in DF ib(C).

Proof. We have the following 2-natural isomorphisms

DF ib(C)(C/x̂, P ) = DF ib(C)(
∫∫
C
C(−, x̂), P ) Proposition 6.3

∼= PC(C(−, x̂), ∂∂C(P ))
∫∫
C
⊣ ∂∂C

∼= ∂∂C(P )x̂ = P−1x̂, Theorem 4.2

as desired.

In particular, we are interested in the inverse of Ψ

Φ: P−1x̂
∼=−→ DF ib(C)(C/x̂, P ).

We describe its action on objects explicitly.

7.5. Lemma. Given a discrete double fibration P : E→ C, an object x̂ in C and an object
x̂− in P−1x̂, then the double functor over C

Φ(x̂−) : C/x̂ → E

can be described as follows. It sends

• an object (x, g) in C/x̂ to the object g∗x̂− in E, i.e., the source of the unique lift of
the horizontal morphism g : x → x̂ with target x̂−,

• a horizontal morphism f : (x, g) → (y, h) in C/x̂ to the horizontal morphism in E

P ∗f : g∗x̂− = f ∗h∗x̂− → h∗x̂−,

i.e., the unique lift of the horizontal morphism f : x → y with target h∗x̂−,

• a vertical morphism (u, η) : (x, g)−→• (x′, g′) in C/x̂ to the vertical morphism in E

η∗ex̂− : g
∗x̂−−→• g′∗x̂−,

i.e., the source of the unique lift of the square η :
[
u g

g′ ex̂
]
with target ex̂−,

• a square α :
[
(u, η) f

f ′ (v, θ)
]
in C/x̂ to the square in E

P ∗α :
[
η∗ex̂− = α∗θ∗ex̂−

P ∗f
P ∗f ′ θ

∗ex̂−

]
,

i.e., the unique lift of the square α :
[
u f

f ′ v
]
with target θ∗ex̂−.
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Proof. By construction, the functor Φ is given by the composite

P−1x̂ PC(C(−, x̂), ∂∂C(P )) DF ib(C)(C/x̂,
∫∫
C
∂∂C(P )) DF ib(C)(C/x̂, P ).

Φx̂,∂∂C(P )
∫∫
C

(η−1
P )∗

and therefore Φ(x̂−) = η−1
P (

∫∫
C
(Φx̂,∂∂C(P )(x̂−))). By Construction 4.5, the horizontal trans-

formation
Φx̂,∂∂C(P )(x̂−) : C(−, x̂) ⇒ ∂∂C(P )

is defined as follows.

• Its component at an object x in C is the functor C(x, x̂) → ∂∂C(P )x = P−1x which
sends

– a horizontal morphism g : x → x̂ in C to the object ∂∂C(P )g(x̂−) = g∗x̂− in
P−1x, i.e., the source of the unique lift of g with target x̂−,

– a globular square η :
[
ex

g
g′ ex̂

]
to the vertical morphism (∂∂C(P )η)x̂− = η∗ex̂−

in P−1x, i.e., the source of the unique lift of η with target ex̂− .

• Its component at a vertical morphism u : x−→• x′ in C is the natural transformation

Φx̂,∂∂C(P )(x̂−)u : C(u, x̂) ⇒ ∂∂C(P )u ◦ (Φx̂,∂∂C(P )(x̂−)
op
x × Φx̂,∂∂C(P )(x̂−)x′),

whose component at an object (x
g−→ x̂, x′ g−→ x̂) of C(x, x̂)× C(x′, x̂) is given by the

map

C(u, x̂)(g, g′) → ∂∂C(P )u(g∗x̂−, g
′∗x̂−) = {g∗x̂−

u−−→• g′∗x̂− | Pu− = u},

sending a square η :
[
u g

g′ ex̂
]
in C to the vertical morphism (∂∂C(P )η)x̂−,x̂−(1x̂−) =

η∗ex̂− , i.e., the source of the unique lift of η with target ex̂− .

Next, using the description from Construction 6.5, the double functor∫∫
C
Φx̂,∂∂C(P )(x̂−) :

∫∫
C
C(−, x̂) = C/x̂ →

∫∫
C
∂∂C(P )

is given by sending

• an object (x, g) of C/x̂ to the object (x, g∗x̂−) in
∫∫
C
∂∂C(P ),

• a horizontal morphism f in C/x̂ to the corresponding horizontal morphism f in∫∫
C
∂∂C(P ),

• a vertical morphism (u, η) : (x, g)−→• (x′, g′) in C/x̂ to the vertical morphism in∫∫
C
∂∂C(P )

(u, η∗ex̂−) : (x, g
∗x̂−)−→• (x′, g′∗x̂−),

• a square α in C/x̂ to the corresponding square α in
∫∫
C
∂∂C(P ).

Finally, applying the inverse η−1
P :

∫∫
C
∂∂C(P ) → E of the unit as described in Proposition

6.29, we can observe that the double functor Φ(x̂−) = η−1
P (

∫∫
C
Φx̂,∂∂C(P )(x̂−)) : C/x̂ → E is

as described in the statement.
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Finally, we can prove that double terminal objects detect representability. For this,
we first prove the following result.

7.6. Lemma. Given a discrete double fibration P : E → C and an object x̂− in E with
x̂ := P (x̂−), then the induced double functor between slices

P/x̂− : E/x̂− → C/x̂

is an isomorphism of double categories.

Proof. By definition, the double functor P/x̂− fits into a commutative square in DblCat

E/x̂− C/x̂

E C

P/x̂−

P

where the vertical canonical projections are discrete double fibrations by Proposition 6.4.
Hence P/x̂− is a morphism of the discrete double fibrations over C. Therefore, to show
that it is an isomorphism, by Lemma 5.9, it suffices to show that the induced functor

Ver0(P/x̂−) : Ver0(E/x̂−) → Ver0(C/x̂)

is an isomorphism of categories.
We construct an inverse of Ver0(P/x̂−)

L : Ver0(C/x̂) → Ver0(E/x̂−)

as follows. It is the functor sending

• an object (x, g) of C/x̂ to the object (g∗x̂−, P
∗g) of E/x̂−, where P ∗g : g∗x̂− → x̂−

denotes the unique lift of the horizontal morphism g : x → x̂ in C,

• a vertical morphism (u, η) : (x, g)−→• (x′, g′) in C/x̂ to the vertical morphism in E/x̂−

(η∗ex̂− , P
∗η) : (g∗x̂−, P

∗g)−→• (g′∗x̂−, P
∗g′),

where P ∗η :
[
η∗ex̂−

P ∗g
P ∗g′

ex̂−

]
denotes the unique lift of the square η :

[
u g

g′ ex̂
]
.

Clearly, the functor L defines an inverse of Ver0(P/x̂−) by unicity of lifts.
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7.7. Theorem. Given a discrete double fibration P : E → C and an object x̂− in E with
x̂ := P (x̂−), then the object x̂− is double terminal in E if and only if the double functor

Φ(x̂−) : C/x̂ → E

is an isomorphism of double categories.

Proof. We first show that the following triangle of double functors commutes.

E/x̂− E

C/x̂

P/x̂− Φ(x̂−)

Unpacking the description of Φ(x̂−) from Lemma 7.5 and using unicity of lifts, we note
that the composition Φ(x̂−) ◦ P/x̂− sends

• an object (x−, x−
g−−→ x̂−) in E/x̂− to the object in E

Φ(x̂−)(P/x̂−(x−, g−)) = Φ(x̂−)(Px−, Pg−) = (Pg−)
∗x̂− = x−,

• a horizontal morphism f− : (x−, g−) → (y−, h−) in E/x̂− to the horizontal morphism
in E

Φ(x̂−)(P/x̂−(f−)) = Φ(x̂−)(Pf−) = P ∗(Pf−) = f−,

• a vertical morphism (u−, η−) : (x−, g−)−→• (x′
−, g

′
−) in E/x̂− to the vertical morphism

in E
Φ(x̂−)(P/x̂−(u−, η−)) = Φ(x̂−)(Pu−, Pη−) = (Pη−)

∗ex̂− = u−,

• a square α− :
[
(u−, η−)

f−
f ′
−
(v−, θ−)

]
to the square in E

Φ(x̂−)(P/x̂−(α−)) = Φ(x̂−)(Pα−) = P ∗(Pα−) = α−.

Hence the composite Φ(x̂−) ◦ P/x̂− coincides with the canonical projection E/x̂ → E, as
desired.

Now, by Lemma 7.6, the double functor P/x̂− is an isomorphism of double categories.
Therefore, by 2-out-of-3 for isomorphisms, the double functor Φ(x̂−) : C/x̂ → E is an iso-
morphism if and only if the canonical projection E/x̂− → E is an isomorphism. However,
by definition, this means that the object x̂− is double terminal in E.
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Representation theorem. Finally, we state our representation theorem. For this, we
first introduce the notion of a represented lax double presheaf.

7.8. Definition. A lax double presheaf X : Cop → Cat is represented by an object x̂ in
C if there is an object x̂− in Xx̂ such that the induced horizontal transformation

Φx̂,X(x̂−) : C(−, x̂) ⇒ X

from Construction 4.5 is invertible. In this case, we also say that X is represented by
(x̂, x̂−).

7.9. Theorem. Given a lax double presheaf X : Cop → Cat and objects x̂ in C and x̂−
in Xx̂, then X is represented by (x̂, x̂−) if and only if the object (x̂, x̂−) is double terminal
in the Grothendieck construction

∫∫
C
X.

Proof. By definition, the lax double presheaf X is represented by (x̂, x̂−) if and only if
the induced horizontal transformation

Φx̂,X(x̂−) : C(−, x̂) ⇒ X

is invertible. By applying the 2-equivalence
∫∫
C
: PC → DF ib(C) from Theorem 6.13, this

is the case if and only if the induced morphism of discrete double fibrations over C∫∫
C
Φx̂,X(x̂−) :

∫∫
C
C(−, x̂) = C/x̂ →

∫∫
C
X

is an isomorphism. Noticing that Φ(x̂, x̂−) =
∫∫
C
Φx̂,X(x̂−) using Lemma 7.5, it follows

from Theorem 7.7 that this is equivalent to the object (x̂, x̂−) being double terminal in∫∫
C
X, as desired.

As a consequence, we get that the double slice always has a double terminal object
given by the identity.

7.10. Corollary. The object (x̂, 1x̂) is double terminal in C/x̂.

Proof. As Φx̂,C(−,x̂)(1x̂) is the identity horizontal transformation C(−, x̂) ⇒ C(−, x̂) by
functorality of Φx̂,C(−,x̂), the lax double presheaf C(−, x̂) is represented by (x̂, 1x̂). Then,
by Theorem 7.9, the object (x̂, 1x̂) is double terminal in the double category

∫∫
C
C(−, x̂) =

C/x̂, where the last equality holds by Proposition 6.3.

Finally, as a consequence of Lemma 3.32 and Theorem 7.9, when taking C = HC with
C a 2-category, we retrieve the representation theorem for 2-presheaves from [MSV23,
Theorem 6.12] in the case of V = Cat. This is a stricter version of [cM22b, Theorem 6.8].

7.11. Corollary. Given a 2-presheaf X : Cop → Cat and objects x̂ in C and x̂− in Xx̂,
then X is represented by (x̂, x̂−) if and only if the object (x̂, x̂−) is double terminal in the
Grothendieck construction

∫∫
HC X.
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