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A COHERENCE THEOREM FOR PSEUDO SYMMETRIC
MULTIFUNCTORS

DIEGO MANCO

Abstract. Donald Yau defined the notion of pseudo symmetric Cat-enriched mul-
tifunctor between Cat-enriched multicategories and proved that Mandell’s inverse K-
theory multifunctor is pseudo symmetric. We prove a coherence theorem for pseudo
symmetric Cat-enriched multifunctors. As an application we prove that pseudo sym-
metric Cat-enriched multifunctors, and in particular Mandell’s inverse K-theory, pre-
serve Σ-free En-algebras (n = 1, 2, ...,∞), at the cost of changing the parameterizing
Σ-free En-operad O for the Σ-free En-operad O × EΣ∗.

1. Introduction

Permutative categories are symmetric monoidal categories that are strictly associative
and unital. Let Perm be the category of permutative categories. By a construction of
May [May, 1974], we can define algebraic K-theory as a functor from Perm to spectra.
Elmendorf and Mandell [Elmendorf and Mandell, 2006] introduced multicategories in ho-
motopy theory to study the multiplicative properties of this functor. They gave Perm the
structure of a multicategory and showed that the K-theory construction can be extended
to a symmetric multifunctor landing in spectra. This implies that K-theory preserves
certain multiplicative structures—for example, the K-theory of a bipermutative category
is an E∞-ring spectrum.

Following work of Thomason [Thomason, 1995], Mandell [Mandell, 2010] introduced
inverse K-theory P , a functor from Γ-categories (modelling connective spectra) to Perm
that provides a homotopy inverse to K-theory. Elmendorf [Elmendorf, 2021] had initially
extended P to a symmetric multifunctor, but some mistakes were found as it is described
in [Yau, 2024] Explanation 10.3.13. Johnson and Yau [Johnson and Yau, 2022] finally
extended P to a Cat-enriched multifunctor, but one that is not symmetric: it is not
compatible with the permutation of elements in the domains of multicategory mapping
spaces. To account for this Yau [Yau, 2024] introduced pseudo-symmetric multifunctors,
where there is a compatibility only up to coherent natural isomorphisms, and he proved
that Mandell’s inverse K-theory multifunctor P is pseudo symmetric in his sense.

In this article we establish a 2-adjunction that lets us rigidify pseudo symmetric mul-

Received by the editors 2023-11-20 and, in final form, 2024-10-18.
Transmitted by Julie Bergner. Published on 2024-10-29.
2020 Mathematics Subject Classification: Primary 18M65, 19D23; Secondary 55P47, 55P43..
Key words and phrases: Multicategories, K-theory.
© Diego Manco, 2024. Permission to copy for private use granted.

1644



A COHERENCE THEOREM FOR PSEUDO SYMMETRIC MULTIFUNCTORS 1645

tifunctors and write them as symmetric multifunctors at the cost of fattening up their
domain in a specific way. As an application we get a new result in multiplicativeK-theory:
pseudo symmetric multifunctors, and in particular Mandell’s inverse K-theory, preserve
En-algebras for n = 1, 2, . . . ,∞ at the cost of changing the parameterizing En-operad.
For example, they send commutative monoids to E∞-algebras.

Let us go back and provide more details of the above panorama. Segal’s infinite loop
space machine [Segal, 1974] allows the construction of spectra from symmetric monoidal
categories. May’s construction [May, 1974] provides an alternative way of building spec-
tra from permutative categories. Both K-theory constructions turn out to be equivalent
[May and Thomason, 1978], with Perm being equivalent to the category of symmetric
monoidal categories by a theorem of Isbell [Isbell, 1969]. The question about what kind
of structure to impose on a permutative category so that its K-theory is an E∞-ring spec-
trum was answered independently by Elmendorf and Mandell [Elmendorf and Mandell,
2006] and May [May, 2009], the former using the theory of multicategories. To study
multiplicative K-theory, one would like the domain of the K-theory construction Perm
to have a symmetric monoidal structure and K-theory to be a monoidal functor. That
way, K-theory would preserve multiplicative structures in Perm. However, Perm lacks
a natural symmetric monoidal structure, although it admits one in a 2-categorical sense
[Gurski, Johnson, and Osorno].

Multicategories, also known as colored operads, generalize symmetric monoidal cate-
gories by supplying a setup for working with multi-input maps, thus providing an alterna-
tive way of encoding multiplicative structures even in the absence of symmetric monoidal
structures. In a sense, multicategories allow us to talk about multilinear maps without
making any reference to tensor products. Multiplicative structures can then be encoded
in a multicategory via the actions of operads and similar gadgets. Elmendorf and Mandell
[Elmendorf and Mandell, 2006] gave Perm the structure of a multicategory and extended
algebraic K-theory to a symmetric multifunctor landing in symmetric spectra. This im-
plies that K-theory preserves multiplicative structures. This is how they proved that the
K-theory of a bipermutative category is an E∞-ring spectrum. Multiplicative K-theory
has also been defined as a symmetric multifunctor from the multicategory of Waldhausen
categories Wald to spectra [Blumberg and Mandell, 2011], with Wald providing an-
other example of a multicategory that doesn’t arise from a symmetric monoidal structure
[Zkharevich, 2018].

Spectra arising from the Segal-May construction are all connective, and by a theo-
rem of Thomason [Thomason, 1995] the K-theory construction is surjective on homotopy
types. Mandell’s inverse K-theory functor P : Γ-Cat //Perm witnesses this by provid-
ing a homotopy stable inverse to K-theory. Here Γ-categories model connective spectra
by [Thomason, 1980, Cisinski, 1999, Bousfield and Friedlander, 78]. The question of
whether Mandell’s inverse K-theory functor could be extended to a multifunctor was first
attacked by Elmendorf [Elmendorf, 2021]. After mistakes were found (see [Yau, 2024] Ex-
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planation 10.3.13) Johnson and Yau settled the matter and proved that Mandell’s inverse
K-theory is equivalent to a Cat-enriched multifunctor P : Γ-Cat // Perm, albeit one
that is not symmetric. The Cat-enriched multifunctor P doesn’t preserve the action of
the symmetric group on the hom objects of the multicategories by permutation of inputs.
So, Johnson and Yau’s results can only be used to prove that P preserves multiplicative
structures that don’t involve symmetry, like associative monoids [Johnson and Yau, 2022].
This obstruction led Yau [Yau, 2024] to define pseudo symmetric multifunctors. These
are non-symmetric Cat-enriched multifunctors that preserve the action of the symmetric
group of multicategory mapping spaces only up to coherent natural isomorphisms. One
of the main results of [Yau, 2024] is that P is in fact pseudo symmetric.

Our main result can be interpreted as a coherence result for pseudo symmetric multi-
functors. If F : M //N is a pseudo symmetric multifunctor between Cat-enriched mul-
ticategories, we prove that the natural isomorphisms attesting the pseudo symmetry of F
assemble together to give a symmetric Cat-enriched multifunctor ϕ(F ) : M×EΣ∗ //N
satisfying a universal property, where EΣ∗ is the categorical Barratt-Eccles operad de-
fined in Example 2.5. We can also think about our result as a rigidification result. We
can rigidify F and turn it into a symmetric Cat-enriched multifunctor ϕ(F ), at the cost
of changing its domain.

1.1. Theorem. (Theorem 3.3) Let M be a Cat-enriched multicategory. There is a
pseudo symmetric multifunctor ηM : M → M × EΣ∗ such that for every Cat-enriched
multicategory N and pseudo symmetric multifunctor F : M → N , there exists a unique
symmetric Cat-enriched multifunctor ϕ(F ) : M × EΣ∗ → N such that the following
diagram commutes:

M× EΣ∗

M N .

ϕ(F )

F

ηM

That is, F = ϕ(F ) ◦ ηM as pseudo symmetric multifunctors.

Thus, if O is an operad inCat, pseudo symmetric algebras in aCat-enriched multicat-
egory M over O, i.e., pseudo symmetric multifunctors O //M, are symmetric algebras
in M over O × EΣ∗, i.e., symmetric multifuntors O × EΣ∗ //M The following result,
which appears as Corollary 4.7, holds since multiplying by EΣ∗ sends the commutative
operad {∗} to the E∞-operad EΣ∗ and Σ-free En-operads in Cat, like the ones defined
in [Berger, 1996] and [Fiedorowicz et al., 2003], to En-operads.

1.2. Corollary. (Corollary 4.7) Let F : M //N be Cat-enriched pseudo symmetric
multifunctor. Then,

1. F sends commutative monoids to E∞-algebras.
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2. F sends symmetric En-algebras over a Σ-free En Cat-operad O to symmetric En-
algebras over the free En Cat-operad O × EΣ∗, for n = 1, 2, . . . ,∞.

In this sense, pseudo symmetric Cat-enriched multifunctors preserve symmetric En-
algebras parameterized by free En-operads at the cost of changing the parameterizing
operad. We notice that requiring that Σ∗ acts freely on the En-operad O doesn’t im-
pose a serious restriction since there are En Cat-operads (n = 1, 2, . . . ,∞) like the ones
defined in [Berger, 1996] and [Fiedorowicz et al., 2003] that are Σ-free. This corollary
extends our understanding of the behavior of inverse K-theory since it implies that the
inverse K-theory multifunctor P sends commutative monoids to E∞-algebras and sends
En-algebras (n = 1, 2, . . . ) parameterized by free Σ-operads to En-algebras. Since P pro-
vides a stable inverse to K-theory, and K-theory is a symmetric multifunctor, this implies
that every symmetric En-algebra parameterized by a Σ-free Cat-operad in Γ-categories is
stably equivalent to the K-theory of an symmetric En-algebra in permutative categories
for n = 1, 2, . . . ,∞. This shows how Theorem 1.1 can be used to grasp the behavior
of pseudo symmetric multifunctors on structures parameterized by symmetric operads in
general.

In [Yau, 2024] Yau defines the 2-category Cat-Multicat having Cat-enriched multi-
categories as 0-cells, symmetric multifunctors as 1-cells and multinatural transformations
as 2-cells. He also defines the 2-category Cat-Multicatps with 0-cells Cat-enriched mul-
ticategories, 1-cells pseudo symmetric multifunctors, and 2-cells pseudo symmetric Cat-
multinatural transformations. Every symmetric Cat-enriched multifunctor (respectively
multinatural transformation) is canonically a pseudo symmetric multifunctor (respectively
multinatural transformation), so there is a 2-functorial inclusion j : Cat-Multicat //Cat-
Multicatps. Taking into account these 2-categorical structures we can improve our previ-
ous result by providing a left adjoint ψ to j, which, at the 0-cell level, sends a multicategory
M to ψ(M) = M× EΣ∗.

1.3. Theorem. (Corollary 3.5 and Theorem 3.7) The inclusion j : Cat-Multicat //Cat-
Multicatps admits a left 2-adjoint ψ : Cat-Multicatps //Cat-Multicat with ψ(M) =
M× EΣ∗ for M a Cat-multicategory. In particular, for Cat-multicategories M and N
we have an isomorphism of categories

Cat-Multicatps(M,N ) ∼= Cat-Multicat(M× EΣ∗,N ).

An important consequence of this theorem is that we can give a very simple and com-
pact description of the 2-category Cat-Multicatps solely in terms of symmetric Cat-
multifunctors and Cat-mutinatural transformations, which we do in Definition 3.8.

The equivariant infinite loop space machine KG from [Guillou, May, Merling, and Os-
orno, 2023] is also suspected to be pseudo symmetric, so our result might help understand
the preservation of multiplicative structures in the equivariant context as well. A multi-
functorial equivariant Algebraic K-theory construction was provided by Yau [Yau, 2024].
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Our result could also be used to prove that the two equivariant K-theory constructions
from [Guillou, May, Merling, and Osorno, 2023] and [Yau, 2024] are equivalent.

Outline. In Section 2 we recall the definition of the 2-categories Cat-Multicat and
Cat-Multicatps. In Section 3 we prove Theorems 1.1 and 1.3. We also extract a new
and compact description of the 2-category Cat-Multicatps. In Section 4 we obtain the
desired consequences for Mandell’s inverse K-theory functor P included in Corollary 1.2.
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2. Symmetric and pseudo symmetric Multifunctors

We begin by reviewing the definition of multicategory enriched in a symmetric monoidal
category. In the following definition (C, 1,⊕, λ, ρ, ξ) is a symmetric monoidal category
with ⊕ : C × C // C the monoidal product, 1 the monoidal unit, λ the left unit isomor-
phism, ρ the right unit isomorphism and ξ the symmetry. In this paper we will consider
only categories enriched over Cat with the monoidal structure given by products, but
we use a general monoidal category in the definition to make explicit the fact that this
definition doesn’t make use of the 2-categorical structure of Cat.

2.1. Remark. We will also use the following notation: if σ ∈ Σn and τi ∈ Σki for
1 ≤ i ≤ n, σ⟨τ1, . . . , τn⟩ ∈ Σk1+···+kn is the permutation that permutes n blocks of lengths
k1, . . . , kn according to σ and each block of length ki according to τi.

2.2. Definition. If C is a symmetric monoidal category, a C-multicategory (M, γ, 1)
consists of the following data.

• A class of objects Ob(M).

• For every n ≥ 0, ⟨a⟩ = ⟨ai⟩ni=1 ∈ Ob(M)n and b ∈ Ob(M), an object in C denoted
by

M(⟨a⟩; b) = M(a1, . . . , an; b).

We will write ⟨a⟩ instead of ⟨ai⟩ni=1 when n is clear from the context or irrelevant.
[In the case C = Cat, an object f of M(⟨a⟩; b) will be called an n-ary 1-cell with
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input ⟨a⟩ and output b and will be denoted as f : ⟨a⟩ // b. Similarly, we will call
α : f // g in M(⟨a⟩; b)(f, g) an n-ary 2-cell.]

• For each n ≥ 0, ⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M), and σ ∈ Σn, a C-isomorphism

M(⟨a⟩; b) M(⟨a⟩σ; b)σ
∼=

called the right σ action or the symmetric group action. Here

⟨a⟩σ = ⟨a1, . . . , an⟩σ = ⟨aσ(1), . . . , aσ(n)⟩.

[In the case C = Cat we write fσ for the image of an n-ary 1-cell f : ⟨a⟩ // b in
M and similarly for 2-cells.]

• For each object a ∈ Ob(M), a morphism

1 M(a; a)
1a

called the a-unit. In the case C = Cat we notice that if a ∈ Ob(M), 1a : a // a is
a 1-ary 1-cell while if f : ⟨a⟩ // b is an n-ary 1-cell, then 1f : f // f is an n-ary
2-cell in M(⟨a⟩; b)(f, f) so our notation is unambiguous.

• For every c ∈ Ob(M), n ≥ 0, ⟨b⟩ = ⟨bj⟩nj=1 ∈ Ob(M)n, kj ≥ 0 for 1 ≤ j ≤ n, and

⟨aj⟩ = ⟨aj,i⟩
kj
i=1 ∈ Ob(M)kj for 1 ≤ j ≤ n, a morphism in C,

M(⟨b⟩; c)⊗
n⊗
j=1

M(⟨aj⟩; bj) M(⟨a⟩; c),γ

where we adopt the convention that ⟨a⟩ ∈ Ob(M)k, where k =
∑n

i=1 kj, denotes the
concatenation of the varying aj’s for j = 1, . . . , n. We write this as

⟨a⟩ = ⟨a1, . . . , an⟩ = ⟨⟨aj⟩⟩nj=1 = ⟨a1,1, . . . , a1,k1 , a2,1, . . . , an−1,kn−1an,1, . . . , an,kn⟩.

The previous data are required to satisfy the following axioms.

• Symmetric group action: For every n ≥ 0, ⟨a⟩ ∈ Ob(M), b ∈ Ob(M), and σ, τ
in Σn the following diagram commutes in C :

M(⟨a⟩; b) M(⟨a⟩σ; b)

M(⟨a⟩στ ; b).

σ

στ
τ
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We also require the identity permutation idn ∈ Σn to act as the identity morphism
on M(⟨a⟩; b).

• Associativity: For every d ∈ Ob(M), n ≥ 1, ⟨c⟩ = ⟨cj⟩nj=1 ∈ Ob(M)n, kj ≥ 0 for

1 ≤ j ≤ n with kj ≥ 1 for at least one j, ⟨bj⟩ = ⟨bj,i⟩
kj
i=1 ∈ Ob(M)kj for 1 ≤ j ≤ n,

li,j ≥ 0 for 1 ≤ j ≤ n and 1 ≤ i ≤ kj, and ⟨aj,i⟩ = ⟨aj,i,p⟩
li,j
p=1 ∈ Ob(M)li,j for

1 ≤ j ≤ n and 1 ≤ i ≤ kj, the following associativity diagram commutes in C:

M(⟨c⟩; d)⊗

(
n⊗
j=1

M(⟨bj⟩; cj)

)
⊗

n⊗
j=1

(
kj⊗
i=1

M(⟨aj,i⟩; bj,i)

)

M(⟨b⟩; c)⊗
n⊗
j=1

(
kj⊗
i=1

M(⟨aj,i⟩); bj,i

)

M(⟨c⟩; d)⊗
n⊗
j=1

(
M(⟨bj⟩; cj)⊗

kj⊗
i=1

M(⟨aj,i⟩; bj,i)

)

M(⟨c⟩; d)⊗
n⊗
j=1

M(⟨aj⟩; cj) M(⟨a⟩; b).

γ⊗1

∼=

γ

1⊗
⊗n

j=1 γ

γ

(1)

• Unity: Suppose b ∈ Ob(M) and ⟨a⟩ = ⟨aj⟩nj=1 ∈ Ob(M), then the following right
unity diagram commutes in C :

M(⟨a⟩; b)⊗
n⊗
j=1

1

M(⟨a⟩; b)⊗
n⊗
j=1

M(aj; aj) M(⟨a⟩; b).

id⊗
n⊗

j=1
1aj

∼=

γ

With b, ⟨a⟩ as before, we also demand that the following left unity diagram commutes
in C.

1⊗M(⟨a⟩; b)

M(b; b)⊗M(⟨a⟩; b) M(⟨a⟩; b).

λ
1b⊗id

γ
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• Top equivariance: For every c ∈ Ob(M), n ≥ 1, ⟨b⟩ = ⟨bj⟩nj=1 ∈ Ob(M)n, kj ≥ 0

for 1 ≤ j ≤ n, ⟨aj⟩ = ⟨aj,i⟩
kj
i=1 ∈ Ob(M)kj for 1 ≤ j ≤ n, and σ ∈ Σn, the following

diagram commutes:

M(⟨b⟩; c)⊗
n⊗
j=1

M(⟨aj⟩; bj) M(⟨b⟩σ; c)⊗
n⊗
j=1

M(⟨aσ(j)⟩; bσ(j))

M(⟨a1⟩, . . . , ⟨an⟩; c) M(⟨aσ(1)⟩, . . . , ⟨aσ(n)⟩; c).

σ⊗σ−1

γ γ

σ
〈
idkσ(1)

,...,idkσ(n)

〉
(2)

Here σ−1 is the unique isomorphism in C, given by the coherence theorem for sym-
metric monoidal categories, that permutes the factors M(⟨aj⟩, bj) according to σ−1.

• Bottom equivariance: For ⟨aj⟩, ⟨b⟩ and c as in Top equivariance 2, the following
diagram commutes:

M(⟨b⟩; c)⊗
n⊗
j=1

M(⟨aj⟩; bj) M(⟨b⟩, c)⊗
n⊗
j=1

M(⟨aj⟩τj; bj)

M(⟨a1⟩, . . . , ⟨an⟩; c) M(⟨a1⟩τ1, . . . , ⟨an⟩τn; c).

id⊗
n⊗

j=1
τj

γ γ

idn
〈
τ1,...,τn

〉
(3)

This concludes the definition of a C-multicategory.

2.3. Remark. A C-operad is a C-multicategory with one object. If O is a C-operad,
its n-ary operations will be denoted by On ∈ Ob(C). A non symmetric C-multicategory
(C-operad) is defined in the same way as a C-multicategory (C-operad) excluding the
data of the symmetric group action as well as the symmetric group, top and bottom
equivariance coherence axioms. We will only be concerned with symmetric multicategories
and operads. C-multicategories are often referred to as colored operads, with the objects
of the C-multicategory being referred to as colors and C-operads having just one color.

2.4. Example. As examples of Set-operads, where Set has the monoidal structure in-
duced by products in Set, we have the commutative operad Comm = {∗} with Commn =
{∗}. Another example is the associative operad Ass = Σ∗ with Assn = Σn, with the
right action of the symmetric product given by right multiplication and γ defined in the
following way. If n ≥ 1 and k1, . . . , kn natural numbers with k = Σn

i=1ki, we define
γ : Σn × (

∏n
i=1 Σki)

// Σk given for σ ∈ Σn and ⟨τ1, . . . , τn⟩ ∈
∏n

i=1Σki by

γ(σ, ⟨ρi⟩ni=1) = σ⟨ρi⟩ni=1 = σ⟨ρ1, . . . , ρn⟩,

as in Remark 2.1. When n is clear from the context we will write σ⟨ρi⟩ = σ⟨ρi⟩ni=1.
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2.5. Example. We will consider Cat-multicategories where the monoidal structure in
Cat is given by products. One source of examples is the forgetful functor Ob: Cat //Set
which forgets the morphism structure and remembers only the object set. Its right ad-
joint E : Set //Cat is the functor that takes a set A to EA, the category with objects
Ob(EA) = A, and with a unique isomorphism between each pair of objects. E sends a
morphism f : A // B of sets to the functor Ef : EA // EB, the only functor such that
f = Ob(Ef). E preserves products, and thus, if O is a Set-operad, EO is a Cat-operad.
Similarly, if M is a Set-multicategory, EM is a Cat-multicategory with the same collec-
tion of objects as M.

We will call EComm = {∗} the commutative Cat-operad. The Barratt-Eccles operad
is the Cat-operad EΣ∗ = EAss.

2.6. Example. Another source of examples for multicategories are symmetric monoidal
categories, and thus also permutative categories. Each symmetric monoidal category C
has an associated Set-multicategory End(C), whose objects agree with the objects of C
and such that for ⟨a⟩ ∈ Ob(C)n and b ∈ Ob(C),

End(C)(⟨a⟩; b) = C(a1 ⊗ · · · ⊗ an, b).

Here we take a1⊗· · ·⊗an with the leftmost parenthesization. Any fixed parenthesization
would work. An empty string of objects is interpreted as the monoidal unit 1 ∈ Ob(C).

Next, we define 1-cells between C-multicategories that preserve the action of the sym-
metric group. These are called symmetric C-multifunctors.

2.7. Definition. A symmetric C-multifunctor F : M //N between C-multicategories
M and N consists of the following data.

• An object assignment F : Ob(M) //Ob(N ).

• For each n ≥ 0, ⟨a⟩ ∈ Ob(M)n and b ∈ Ob(M) a C morphism

M(⟨a⟩; b) N (⟨Fa⟩;Fb).F

These data are required to preserve units, composition, and the action of the symmetric
group.

• Units: For each object a ∈ Ob(M), F (1a) = 1Fa, i.e., the following diagram
commutes in C :

M(a, a)

1 N (Fa, Fa).

F1a

1Fa
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• Composition: For every c ∈ Ob(M), n ≥ 0, ⟨b⟩ = ⟨bj⟩nj=1 ∈ Ob(M)n, kj ≥ 0

for 1 ≤ j ≤ n, and ⟨aj⟩ = ⟨aj,i⟩
kj
i=1 ∈ Ob(M)kj for 1 ≤ j ≤ n and 1 ≤ i ≤ n, the

following diagram commutes in C :

M(⟨b⟩; c)⊗
n⊗
j=1

M(⟨aj⟩; bj) N (⟨Fb⟩;Fc)⊗
n⊗
j=1

N (⟨Faj⟩;Fbj)

M(⟨a⟩; c) N (⟨Fa⟩;Fc).

F⊗
n⊗

j=1
F

γ γ

F

(4)

• Symmetric Group Action: For each ⟨a⟩ ∈ Ob(M)n and b ∈ Ob(M) the follow-
ing diagram commutes in C :

M(⟨a⟩; b) N (⟨Fa⟩;Fb)

M(⟨a⟩σ; b) N (⟨Fa⟩σ;Fb).

F

σ∼= σ∼=

F

2.8. Definition. Let O be a C-operad and a M be a C-multicategory. A symmetric
algebra in M over O is a symmetric multifunctor O //M.

Symmetric algebras are usually called algebras, but we add the adjective symmetric
to distinguish them from pseudo symmetric algebras, which will be defined later.

2.9. Example. Since their introduction by May [May, 1972], operads have been used
to characterize certain categories as the categories of symmetric algebras over a certain
operad. For example, symmetric algebras over Comm in Set are commutative monoids.
Symmetric algebras over Σ∗ in Set are associative monoids. Symmetric algebras over the
Barrat-Eccles operad EΣ∗ in Cat are precisely permutative categories [May, 1974].

Next we define composition of C-multifunctors.

2.10. Definition. We define the horizontal composition of C-multifunctors in the fol-
lowing way.

• Let F : M //N , and G : N //Q be C-multifunctors, we define the C-multifunctor
GF : M //Q on objects as the composition

Ob(M) Ob(N ) Ob(Q),F G
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and its component functors for ⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M) as the composite

M(⟨a⟩; b) N (⟨Fa⟩;Fb) Q(⟨GFa⟩;GFb).F G

• The identity C-multifunctor 1M : M //M is defined as the identity assignment on
objects with the identity functors as component functors.

Next we define 2-cells between C-multifunctors. These will be the 2-cells of a 2-
category with 0-cells C-multicategories and 1-cells C-multifunctors.

2.11. Definition. ([Yau, 2024], Def. 3.2.5) For (symmetric) C-multifunctors F,G : M //N ,
we define a C-multinatural transformation θ : F ⇒ G as the data of a component mor-
phism θa : 1 //N (Fa,Ga) in C for each a ∈ Ob(M) subject to the commutativity of the
following diagram in C for each ⟨a⟩ ∈ Ob(M)n and b ∈ Ob(M),

1⊗M(⟨a⟩; b) N (Fb;Gb)⊗N (⟨Fa⟩;Fb)

M(⟨a⟩, b) N (⟨Fa⟩;Gb).

M(⟨a⟩; b)⊗
⊗n

j=1 1 N (⟨Ga⟩;Gb)⊗
⊗n

j=1N (Faj;Gaj)

θb⊗F

γ∼=

∼=
G⊗

⊗
θaj

γ

We define the identity multinatural transformation 1F : F //F as having component
(1F )a = 1Fa for a an object of M.

2.12. Remark. When C = Cat, and given F,G : M //N Cat-multifunctors and the
data of a 1-ary 1-cell θa : Fa //Ga for each a ∈ Ob(M), the commutativity of the diagram
in the previous definition means that for every n ≥ 0, ⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M) and
each 1-cell f : ⟨a⟩ // b,

γ(Gf ; ⟨θaj⟩) = γ(θb;Ff) (5)

holds in N (⟨Fa⟩;Gb) and that, for every 2-cell α : f // g in M(⟨a⟩; b)(f, g),

γ(Gα; ⟨1θaj ⟩) = γ(1θb ;Fα) (6)

in N (⟨Fa⟩;Gb). We can express (5) diagrammatically as the commutativity of the square

⟨Fa⟩ ⟨Ga⟩

Fb Gb,

⟨θaj ⟩

Ff Gf

θb

where the composition of adjacent 1-cells is done through γ and a square represents an
equality between composite 1-cells. In the same fashion, and using (5), we can express
(6) as the equality of multicategorical pasting diagrams
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⟨Fa⟩ ⟨Ga⟩ ⟨Fa⟩ ⟨Ga⟩

=

Fb Gb Fb Gb.

FgFf

⟨θaj ⟩

Gg

⟨θaj ⟩

Ff GgGf

θb

θb

Fα Gα

Here the concatenation of adjacent 2-cells is done through γ, and an arrow labeled with
the 1-cell h is interpreted as the 2-cell 1h : h //h. For example, the left hand side diagram
represents γ(1θb , Fα) while the right hand side represents γ(Gα, ⟨θαj

⟩). The empty squares
represent equalities between composite 1-cells.

Next, we define horizontal and vertical compositions of C-multinatural transforma-
tions.

2.13. Definition. ([Yau, 2024], Def. 3.2.7)

Suppose given θ : F ⇒ G, ζ : G⇒ H C-multinatural transformations with
F,G,H : M //N C-multifunctors. The vertical composition ζθ : F ⇒ H is defined as

having as component at each a ∈ Ob(M) (ζθ)a, the composite

1 1⊗ 1 N (Ga;Ha)⊗N (Fa;Ga) N (Fa;Ha).
∼= ζa⊗θa γ

Suppose that θ : F ⇒ G and ζ : F ′ ⇒ G′ are C-multinatural transformations with
F,G : M // N and F ′, G′ : N // Q C-multifunctors. The horizontal composition ζ ∗
θ : F ′F ⇒ G′G is defined as the C-multinatural transformation with component at each
a ∈ Ob(M), given by the composite

1 Q(F ′Fa;G′Ga)

1 ⊗ 1 Q(F ′Ga;G′Ga) ⊗ N (Fa;Ga) Q(F ′Ga;G′Ga) ⊗ Q(F ′Fa;F ′Ga).

∼=

(ζ∗θ)a

ζGa⊗θa 1⊗F ′
γ

2.14. Remark. When C = Cat and given θ : F ⇒ G, ζ : G ⇒ H Cat-multinatural
transformations with F,G,H : M //N C-multifunctors and a ∈ Ob(M),

(ζθ)a = γ(ζa, θa.) (7)

On the other hand, if θ : F ⇒ G and ζ : F ′ ⇒ G′ are Cat-multinatural transformations
with F,G : M //N and F ′, G′ : N //Q Cat-multifunctors,

(ζ ∗ θ)a = γ(ζGa;F
′θa). (8)

Yau proves in [Yau, 2024] that Definitions 2.2, 2.7, 2.10, and 2.13 assemble together
to give the 2-category C-Multicat, with 0-cells consisting of C-multicategories, 1-cells
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symmetric C-multifunctors, and 2-cells C-multinatural transformations. There is a non
symmetric variant where we drop the requirement that the C-multifunctors preserve the
symmetric group action, as well as dropping the coherence axioms related to the symmet-
ric group action, but we won’t refer to this 2-category again.

For the rest of the article we fix our symmetric monoidal category C to beCat, with the
symmetric monoidal structure induced by products. In this context we can define a pseudo
symmetric variant of this 2-category, namely Cat-Multicatps using the 2-categorical
structure of Cat. The objects of Cat-Multicatps are still Cat-multicategories, but the
1-cells are pseudo symmetricCat-multifunctors: Cat-multifunctors where we only require
that they preserve the symmetric group action up to coherent isomorphisms.

2.15. Definition. ([Yau, 2024] Def. 4.1.1) Suppose that M,N are Cat-multicategories.
A pseudo symmetric Cat-multifunctor F : M //N consists of the following data:

• A function on object sets F : Ob(M) //Ob(N ).

• For each ⟨a⟩ ∈ Ob(M)n and b ∈ Ob(M), a component functor

M(⟨a⟩; b) N (⟨Fa⟩;Fb).F

• For each σ ∈ Σn, ⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M), a natural isomorphism Fσ,⟨a⟩,b

M(⟨a⟩; b) N (⟨Fa⟩;Fb)

M(⟨a⟩σ; b) N (⟨Fa⟩σ;Fb).

F

σ σ

F

Fσ,⟨a⟩,b

∼=

When ⟨a⟩ and b are clear from the context we write simply Fσ, and if f ∈ Ob(M(⟨a⟩, b))
we will denote by Fσ,⟨a⟩,b;f = Fσ;f : F (fσ) //F (f)σ the 2-cell inN (⟨Fa⟩σ;Fb) corre-
sponding to the component of Fσ at f. Naturality for Fσ means that given α : f //g
a 2-cell in M(⟨a⟩; b)(f, g), the following diagram commutes in N (⟨Fa⟩σ; b) :

F (fσ) F (f)σ

F (gσ) F (g)σ.

Fσ;f

F (ασ) (Fα)σ

Fσ;g

(9)

These data are subject to the same axioms of unit and composition preservation (4) as
a symmetric Cat-multifunctor, but we replace the symmetric group action preservation
axiom by the following four axioms.
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• Unit permutation: Let n ≥ 0, ⟨a⟩ ∈ Ob(M)n and b ∈ Ob(M), then

Fidn,⟨a⟩,b = 1F . (10)

• Product permutation: This axiom expresses the coherence of the natural isomor-
phisms Fσ, for varying σ, with respect to the symmetric group action. Let n ≥ 0,
⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M) and σ, τ ∈ Σn. Then, the following equality of pasting
diagrams holds.

M(⟨a⟩; b) N (⟨Fa⟩;Fb) M(⟨a⟩; b) N (⟨Fa⟩;Fb)

M(⟨a⟩σ; b) N (⟨Fa⟩σ;Fb) =

M(⟨a⟩στ ; b) N (⟨Fa⟩στ ;Fb) M(⟨a⟩στ ; b) N (⟨Fa⟩στ ;Fb).

F

σ σ

F

στ στ
F

τ τ

F F

Fσ

Fτ

Fστ

Thus, for every 1-cell f ∈ Ob(M(⟨a⟩; b)), the following diagram of 2-cells commutes
in N (⟨Fa⟩;Fb):

F (fσ)τ

F (fστ) F (f)στ.

(Fσ;f )τFτ ;fσ

Fστ ;f

(11)

• Top equivariance: For every c ∈ Ob(M), n ≥ 0, ⟨b⟩ = ⟨bj⟩nj=1 ∈ Ob(M)n, kj ≥ 0

for 1 ≤ j ≤ n, and ⟨aj⟩ = ⟨aj,i⟩
kj
i=1 ∈ Ob(M)kj for 1 ≤ j ≤ n, and σ ∈ Σn, the

following two pasting diagrams are equal.
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M(⟨b⟩; c) ×
∏n

j=1 M(⟨aj⟩; bj) N (⟨Fb⟩;Fc) ×
∏n

j=1 N (⟨Faj⟩;Fbj)

M(⟨⟨aj⟩⟩nj=1; c) N (⟨⟨Faj⟩⟩nj=1;Fc)

M(⟨⟨aσ(j)⟩⟩
n
j=1; c) N (⟨⟨Faσ(j)⟩⟩

n
j=1;Fc)

∥

M(⟨b⟩; c) ×
∏n

j=1 M(⟨aj⟩; bj) N (⟨Fb⟩;Fc) ×
∏n

j=1 N (⟨Faj⟩;Fbj)

M(⟨b⟩σ; c) ×
∏n

j=1 M(⟨aσ(j)⟩; bσ(j)) N (⟨Fb⟩σ;Fc) ×
∏n

j=1 N (⟨Faσ(j)⟩;Fbσ(j))

M(⟨⟨aσ(j)⟩⟩
n
j=1; c) N (⟨⟨Faσ(j)⟩⟩

n
j=1;Fc)

F×
∏

j F

γ γ

σ⟨idkσ(j)
⟩

F

σ⟨idkσ(j)
⟩

F

σ×σ−1

F×
∏

j F

σ×σ−1

F×
∏

j F

γ γ

F

Fσ×1

Fσ⟨idkσ(j)
⟩

Here σ⟨idkσ(j)
⟩ = σ⟨idkσ(1)

, . . . , idkσ(n)⟩. This means that for 1-cells f ∈ Ob(M(⟨b⟩; c))
and gj ∈ Ob(M(⟨aj⟩; bj)) for 1 ≤ j ≤ n,

Fσ⟨idkσ(j)
⟩;γ(f ;⟨gj⟩) = γ

(
Fσ;f ; ⟨1Fgσ(j)

⟩nj=1

)
. (12)

The domains and codomains of these pasting diagrams are equal by top equivari-
ance in M and N , and the fact that F preserves γ implies the commutativity of
the empty rectangles, see [Yau, 2024].

• Bottom Equivariance: For every c ∈ Ob(M), n ≥ 0, ⟨b⟩ = ⟨bj⟩nj=1 ∈ Ob(M)n,

kj ≥ 0 for 1 ≤ j ≤ n, and ⟨aj⟩ = ⟨aj,i⟩
kj
i=1 ∈ Ob(M)kj for 1 ≤ j ≤ n and 1 ≤ i ≤ kj,

and τj ∈ Σkj , the following two pasting diagrams are equal.
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M(⟨b⟩; c)×
∏n
j=1M(⟨aj⟩; bj) N (⟨Fb⟩;Fc)×

∏n
j=1(⟨Faj⟩;Fbj)

M(⟨⟨aj⟩⟩nj=1; c) N (⟨⟨Faj⟩⟩nj=1;Fc)

M(⟨⟨aj⟩τj⟩nj=1; c) N (⟨⟨Faj⟩τj⟩nj=1;Fc)

∥

M(⟨b⟩; c)×
∏n
j=1M(⟨aj⟩; bj) N (⟨Fb⟩;Fc)×

∏n
j=1N (⟨Faj⟩;Fbj)

M(⟨b⟩; c)×
∏n
j=1M(⟨aj⟩τj ; bj) N (⟨Fb⟩;Fc)×

∏n
j=1N (⟨⟨Faj⟩τj⟩;Fbj)

M(⟨⟨aj⟩τj⟩nj=1; c) N (⟨⟨Faj⟩τj⟩nj=1;Fc)

F×
∏

j F

γ γ

idn⟨τj⟩

F

idn⟨τj⟩

F

id×
∏

j τj

F×
∏

j F

id×
∏

j τj

F×
∏

j F

γ γ

F

Fidn⟨τi⟩

1×
∏

j Fτj

This means that for 1-cells f : ⟨b⟩ // c and gj : ⟨aj⟩ // bj for 1 ≤ j ≤ n,

Fidn⟨τj⟩;γ(f ;⟨gj⟩) = γ(1Ff ; ⟨Fτj ;gj⟩) (13)

as 2-cells in N (⟨⟨Faj⟩τj⟩;Fc). The domain and codomain of these pasting diagrams
are equal by bottom equivariance for M and N , and the preservation of γ by F
guarantees that the empty squares commute, see [Yau, 2024].

Next we describe the horizontal composition of 1-cells in the 2-categoryCat-Multicatps.

2.16. Definition. ([Yau, 2024] Def. 4.1.1) Let F : M //N , and G : N //Q be pseudo
symmetricCat-multifunctors. We define the pseudo symmetric functor GF : M //Q. On
objects GF is the composite function GF : Ob(M) //Ob(Q). The composite component
functor is given for ⟨a⟩ ∈ Ob(M)n, and b ∈ Ob(M) by the pasting

M(⟨a⟩; b) N (⟨Fa⟩; b) Q(⟨GFa⟩;GFb).F G

The symmetry isomorphisms are given for each σ ∈ Σn, ⟨a⟩ ∈ Ob(M), and b ∈ Ob(M)
by

M(⟨a⟩; b) N (⟨Fa⟩;Fb) Q(⟨GFa⟩;GFb)

M(⟨a⟩σ; b) N (⟨Fa⟩σ; fb) Q(⟨GFa⟩σ;GFb).

σ

F

σ

G

σ

F G
Fσ,⟨a⟩,b Gσ,⟨Fa⟩,Fb



1660 DIEGO MANCO

That is, for each 1-cell f : ⟨a⟩ // b, the f component of GFσ is given by the composite

G((Ff)σ)

GF (fσ) (GFf)σ.

Gσ;Ff

(GF )σ;f

G(Fσ;f ) (14)

Next we define the 2-cells of the category Cat-Multicatps.

2.17. Definition. ([Yau, 2024] Def. 4.2.1) Suppose that F,G : M // N are pseudo
symmetric Cat-multifunctors. A pseudo symmetric Cat-multinatural transformation
θ : F ⇒ G is the data of a component 1-cell θa : Fa // Ga for each a ∈ Ob(M)
subject to axioms (5), (6) and the following extra axiom. For each n ≥ 0, ⟨a⟩ ∈ Ob(M)n,
b ∈ Ob(M), object f ∈ Ob(M(⟨a⟩; b)), and permutation σ ∈ Σn, the following arrow
equality holds in the category N (⟨Fa⟩σ; b),

γ (1θb ;Fσ;f ) = γ
(
Gσ;f ; ⟨1θaσ(j)

⟩
)
. (15)

This can also be expressed diagrammatically as the equality of multicategorical pasting
diagrams

⟨Fa⟩σ G⟨a⟩σ ⟨Fa⟩σ ⟨Ga⟩σ

=

Fb Gb Fb Gb,

(Ff)σF (fσ)

⟨θaσ(j)
⟩

(Gf)σ

⟨θaσ(j)
⟩

F (fσ) (Gf)σG(fσ)

θb

θb

Fσ;f Gσ;f

where the diagrams are interpreted as in Remark 2.12, the squares commuting by (5) and
top and bottom equivariance for N , see [Yau, 2024].

We define the vertical and horizontal composition of pseudo symmetricCat-multinatural
transformations in the same way that we did for symmetric ones, through diagrams (7)
and (8).

It is a theorem of Yau [Yau, 2024] that the data we have just defined gives the structure
of a 2-category, namely Cat-Multicatps. Definition 3.8 says that we can describe this 2-
category solely in terms of symmetricCat-multifunctors and symmetricCat-multinatural
transformations.

3. Coherence

To prove our first result we use finite products in the category Cat-Multicat. Having
just the 1-categorical structure in mind, the products in Cat-Multicat are given in
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the following way. If M and N are two Cat-multicategories, then M × N has objects
Ob(M × N ) = Ob(M) × Ob(N ). Now, for n ≥ 0, ⟨a⟩ ∈ Ob(M)n, ⟨c⟩ ∈ Ob(N )n,
b ∈ Ob(M), and d ∈ Ob(N ), we define

M×N (⟨(a, c)⟩; (b, d)) = M(⟨a⟩; b)×N (⟨c⟩; d).

The composition γ of M × N , as well as the Σ∗ action and the multicategorical
units, are defined componentwise. Next we define the pseudo symmetric multifunctor ηM
appearing in the statement of 1.1.

3.1. Definition. Let M be a Cat-multicategory. We define the pseudo symmetric Cat-
multifunctor ηM : M //M× EΣ∗ which, when there is no room for confusion, we will
denote η. For an object a ∈ Ob(M) as η(a) = (a, ∗). We will abuse notation and denote
the object (a, ∗) of M× EΣ∗ as a.

For n ≥ 0, ⟨a⟩ ∈ Ob(M)n and b ∈ Ob(M) we need to define a functor η : M(⟨a⟩; b) //M(⟨a⟩; b)×
EΣn. For a 1-cell f : ⟨a⟩ // b, we define

η(f) = (f, idn) ∈ Ob(M(a; b)× EΣn).

Similarly, for a 2-cell α : f // g in M(⟨a⟩; b),

η(α) = (α, 1idn) ∈ M(⟨a⟩; b)× EΣn((f, idn)), (g, idn).

Next, we define the components of the pseudo symmetry isomorphisms. For σ, τ ∈ Σn

we will denote from here on by Eτ
σ the unique arrow σ // τ in EΣn. For σ ∈ Σn, ⟨a⟩ ∈

Ob(M)n, and b ∈ Ob(M) we need to define a natural isomorphism ησ,⟨a⟩,b : (η◦σ) //(σ◦η)
that fits in the following diagram

M(⟨a⟩; b) M(⟨a⟩; b)× EΣn

M(⟨a⟩σ, b) M(⟨a⟩σ; b)× EΣn.

η

σ σ×σ

η

ησ,⟨a⟩,b

∼=

The isomorphism ησ,⟨a⟩,b is defined for every 1-cell f : ⟨a⟩ // b as the 2-cell

ησ;f = (1fσ, E
σ
id) : (fσ, idn) // (fσ, σ).

3.2. Lemma. Let M be a Cat-multicategory, then ηM : M //M×EΣ∗ is pseudo sym-
metric.

Proof. We start from a non symmetric multifunctor η : M //M × EΣ∗ that is the
identity on the first coordinate and the multicategorical unit in the second coordinate.
As a non symmetric multifunctor, η preserves units and γ composition. We need to show
that η is a pseudo symmetric Cat-multifunctor. The naturality of ησ;f follows from the
commutativity of the following diagram for any 2-cell α : f // g:
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(fσ, idn) (fσ, σ)

(gσ, idn) (gσ, σ).

(1fσ ,E
σ
idn

)

(ασ,1idn ) (ασ,1σ)

(1gσ ,Eσ
idn

)

Next we focus on the coherence axioms. The unit permutation axiom (10) holds since,
for all ⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M), and f : ⟨a⟩ // b,

ηidn;f = (1f idn , E
idn
idn

) = (1f , 1idn) = 1(f,idn) = 1η(f).

Let ⟨a⟩, b and f be as before, the product permutation axiom (11) holds again by
definition. Indeed, for τ, σ ∈ Σn, we have

ηστ ;f = (1fστ , E
στ
id ) = (1fστ , E

στ
τ ) ◦ (1fστ , Eτ

idn) = (ησ;fτ) ◦ ητ ;fσ.

For Top Equivariance (12), suppose that c ∈ Ob(M), n ≥ 1, ⟨b⟩ = ⟨bj⟩nj=1 ∈ Ob(M)n,

kj ≥ 0 for 1 ≤ j ≤ n, ⟨aj⟩ = ⟨aj,i⟩
kj
i=1 ∈ Ob(M)kj for 1 ≤ j ≤ n, σ ∈ Σn, f ∈

Ob(M(⟨b⟩; c)), and gj ∈ Ob(M(⟨aj⟩; bj)). We have that

γ(ησ;f ; ⟨1i(gσ(j))⟩) = γ((1fσ, E
σ
id); ⟨(1gσ(j)

, 1idkσ(j)
)⟩)

=

(
(γ(1fσ; 1gσ(j)

), γ

(
Eσ

id;E
idkσ(j)

idkσ(j)

))
=

(
1γ(f ;⟨gσ(j)⟩), E

σ⟨idkσ(j)
⟩

id⟨idkσ(j)
⟩

)
=

(
1γ(f ;⟨gj⟩)σ⟨idkσ(j)

⟩, E
σ⟨idkσ(j)

⟩
idk

)
= ησ⟨idkσ(j)

⟩;γ(f ;⟨gj⟩).

For Bottom Equivariance, let c, n, ⟨b⟩, kj for 1 ≤ j ≤ n, ⟨aj⟩ for 1 ≤ j ≤ n, f and gj be
as above and let τj ∈ Σkj for 1 ≤ j ≤ n. We also let k =

∑n
j=1 kj. Bottom Equivariance

(13) for i is

γ
(
1if ; ⟨ητj ;gj⟩

)
= γ

(
(1f , 1idn); ⟨(1gjτj , E

τj
idkj

)⟩
)

=
(
γ(1f ; 1gjτj), 1idn⟨E

τj
idkj

⟩
)

=
(
1γ(f ;⟨gjτj⟩), E

idn⟨τj⟩
idk

)
=
(
1γ(f ;⟨gj⟩)idn⟨τj⟩, E

idn⟨τj⟩
idk

)
= ηid⟨τj⟩,γ(f ;⟨gj⟩).

Thus, we conclude that η : M //M× EΣ∗ is a pseudo symmetric Cat-multifunctor.
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Recall that j : Cat-Multicat //Cat-Multicatps denotes the inclusion functor. We
are ready to present a proof of 1.1.

3.3. Theorem. Let M and N be a Cat-multicategories and F : M → N a pseudo sym-
metric Cat-multifunctor. There exists a unique symmetric Cat-multifunctor ϕ(F ) : M×
EΣ∗ → N such that the following diagram commutes:

M× EΣ∗

M N .

jϕ(F )

F

ηM

That is, F = jϕ(F ) ◦ ηM in Cat-Multicatps.

Proof Proof of Theorem 1.1. For uniqueness, suppose that ϕ(F ) : M×EΣ∗ //N
is a symmetric Cat-multifunctor satisfying F = (jϕ(F )) ◦ η. We will abuse notation and
write jϕ(F ) = ϕ(F ). We will prove there is a unique way of defining ϕ(F ). At the level
of the objects of the multicategory we must have ϕ(F )(a, ∗) = ϕ(F ) ◦ η(a) = F (a) for
each a ∈ Ob(M). Next, we show that there is a unique way of defining each component
functor of ϕ(F ). For this let ⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M), and consider the functor
ϕ(F ) : M(⟨a⟩; b)× EΣn

//N (⟨Fa⟩;Fb). If f : ⟨a⟩ // b is a 1-cell and σ ∈ Σn, we must
have that

ϕ(F )(f, σ) = ϕ(F )((fσ−1, idn)σ)

= ϕ(F )((fσ−1, idn))σ

= ϕ(F ) ◦ η(fσ−1)σ

= F (fσ−1)σ, (16)

where in the second equality we used that ϕ(F ) is symmetric. So the values of the
component functors of ϕ(F ) on n-ary 1-cells are uniquely determined by F . In exactly
the same fashion, for ⟨a⟩, b and σ as before, f, g : ⟨a⟩ // b, and α : f // g a 2-cell,

ϕ(F )(α, 1σ) = F (ασ−1)σ. (17)

Finally, if f, σ are as before and τ ∈ Σn, we get that

ϕ(F )(1f , E
τ
σ) = ϕ(F )(1fσ−1σ,Eτσ−1

id σ)

= ϕ(F )((1fσ−1 , Eτσ−1

id ))σ

= ϕ(F )(ητσ−1;fτ−1)σ

= (ϕ(F ) ◦ ητσ−1;fτ−1)σ

= (Fτσ−1;fτ−1)σ. (18)

We have used the definition of composition of pseudo symmetric Cat-multifunctors (14)
where we see ϕ(F ) trivially as a pseudo symmetric functor. For ⟨a⟩, b, f, g, α, σ, and τ as
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before, we can write the morphism (α : f // g, Eτ
σ) in M(⟨a⟩; b)×Σn as (1y, E

τ
σ) ◦ (f, 1σ).

Since both ϕ(F )(1y, E
τ
σ) and ϕ(F )(f, 1σ) are uniquely determined by F , we conclude that

the component functors of ϕ(F ) are uniquely determined. We have proven the uniqueness
of ϕ(F ).

Next we prove the existence of ϕ(F ). By uniqueness, we have no choice but to define
ϕ(F )(b, ∗) = Fb for any b ∈ Ob(M). Likewise, for ⟨a⟩ ∈ Ob(M)n and b ∈ Ob(M), unique-
ness forces the definition of the component functor ϕ(F ) : M(⟨a⟩; b)×Σn

//N (⟨Fa⟩; b).
For f : ⟨a⟩ // b, a 1-cell in M(⟨a⟩; b) and σ ∈ Σn we define

ϕ(F )(f, σ) = F (fσ−1)σ (19)

as in (16). For a 2-cell α : f // g in M(⟨a⟩; b)(f, g), we define

ϕ(F )(α, 1σ) = F (ασ−1)σ (20)

as in (17). For τ ∈ Σn we define

ϕ(F )(1f , E
τ
σ) = (Fτσ−1;fτ−1)σ (21)

as in (18).

We still have to prove that ϕ(F ) : M(⟨a⟩; b) × Σn is well defined and extend our
definition to all 2-cells. Notice that for a 1-cell f : ⟨a⟩ // b our definition is ambiguous for
the identity arrow (1f , 1σ) since both (20) and (21) apply. However, ϕ(F ) is well defined
in this case since F is a functor componentwise and so, it preserves identities. Explicitly,

F (1fσ
−1)σ = F (1fσ−1)σ = 1F (fσ−1)σ = 1F (fσ−1)σ,

and

(Fσσ−1,fσ−1)σ = Fidn,fσ−1σ = 1F (fσ−1)σ = 1F (fσ−1)σ.

So, our definition is so far unambiguous and ϕ(F ) preserves identities. We go on to
extend the definition of ϕ(F ) to the rest of the arrows. For α : f // g 2-cell in M(⟨a⟩, b)
and σ, τ in Σn, we define ϕ(F )(α,Eτ

σ) : F (fσ
−1)σ // F (gτ−1)τ by

ϕ(F )(α,Eτ
σ) =ϕ(F )(1g, E

τ
σ) ◦ ϕ(F )(α, 1σ)

=ϕ(F )(α, 1τ ) ◦ ϕ(F )(1f , Eτ
σ). (22)

The last equality together with the preservation of identities already proven implies that
our definition is unambiguous. This equality holds since,

ϕ(F )(1g, E
τ
σ) ◦ ϕ(F )(α, 1σ) = (Fτσ−1;gτ−1)σ ◦ F (ασ−1)σ

=
(
Fτσ−1;gτ−1 ◦ F (ασ−1)

)
σ

=
(
F (ατ−1)τσ−1 ◦ Fτσ−1;fτ−1

)
σ

= F (ατ−1)τ ◦ (Fτσ−1;fτ−1)σ

= ϕ(F )(α, 1τ ) ◦ ϕ(F )(1f , Eτ
σ).
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The third equality holds since it is precisely the commutativity of the following diagram:

F (fτ−1τσ−1) F (fτ−1)τσ−1

F (gτ−1τσ−1) F (gτ−1)τσ−1.

Fτσ−1;fτ−1

F (ατ−1τσ−1) (Fατ−1)τσ−1

Fτσ−1;gτ−1

(23)

This diagram commutes since it is an instance of the pseudo symmetry naturality co-
herence axiom for F, (9). Next, we check that the defined assignments give a functor
ϕ(F ) : M(⟨a⟩; b) × EΣn

// N (⟨Fa⟩; b). The fact that ϕ(F ) preserves identities was al-
ready proven. We prove functoriality in the second variable first. For f : ⟨a⟩ // b 1-cell,
σ, τ, and ρ in Σn,

ϕ(F )(1f , E
ρ
τ ) ◦ ϕ(F )(1f , Eτ

σ) = (Fρτ−1;fρ−1τ) ◦ (Fτσ−1;fτ−1σ)

=
(
(Fρτ−1;fρ−1) τσ−1 ◦ Fτσ−1;fτ−1

)
σ

= (Fρσ−1;fρ−1)σ

= ϕ(F )(1f , E
ρ
σ). (24)

Here the third equality holds by (11), which implies the commutativity of the following
diagram:

F (fρ−1ρτ−1)τσ−1

F (fρ−1ρτ−1τσ−1) F (fρ−1)ρτ−1τσ−1.

(Fρτ−1;fρ−1 )τσ−1Fτσ−1;fρ−1ρτ−1

Fρτ−1τσ−1;fρ−1

(25)

On the other hand, if α : f // g and β : g // h are 2-cells in M(⟨a⟩; b), and σ ∈ Σn we
have that

ϕ(F )(β, 1σ) ◦ ϕ(F )(α, 1σ) = ϕ(F )(βα, 1σ). (26)

The functoriality of ϕ(F ) follows from a straightforward argument by (24), and (26) to-
gether with the exchange property (22).

The next step is to prove that the component functors give rise to a symmetric Cat-
multifunctor ϕ(F ) : M × EΣ∗ // N . First, notice that ϕ(F ) preserves units since, for
a ∈ Ob(M) ϕ(F )(1a, id1) = F (1aid

−1
1 )id1 = F (1a) = 1Fa, since F itself preserves units.

Next we prove that ϕ(F ) preserves the Σn-action. For n ≥ 0, ⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M),
and σ ∈ Σn, we show that the following diagram commutes in Cat :

M(⟨a⟩; b)× EΣn N (⟨Fa⟩;Fb)

M(⟨aj⟩σ; b)× EΣn N (⟨Fa⟩σ;Fb).

ϕ(F )

σ σ

ϕ(F )
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For this we don’t need any of the pseudo symmetry axioms for F. For 1-cells (f : ⟨a⟩ //b, τ)
of M(⟨a⟩; b)× EΣn,

ϕ(F )(f, τ)σ = (F (fτ−1)τ)σ

= F (fτ−1)τσ

= F (fσ(τσ)−1)τσ

= ϕ(F )((fσ, τσ)))

= ϕ(F )((f, τ)σ).

A similar calculation works for 2-cells of the form (α : f //g, 1τ ) in M(⟨a⟩; b)×EΣn. For
morphisms of the form (1f , E

ρ
τ ) in M(⟨a⟩; b)× EΣn,

(ϕ(F )(1f , E
ρ
τ ))σ = (Fρτ−1;fρ−1τ)σ

= Fρτ−1;fρ−1(τσ)

= Fρσ(τσ)−1;fσ(ρσ)−1(τσ)

= ϕ(F )(1fσ, E
ρσ
τσ)

= ϕ(F )((1f , E
ρ
τ )σ).

By functoriality of ϕ(F ) and σ we conclude that ϕ(F ) preserves the action of the sym-
metric group.

The only step we are missing to finish proving that ϕ(F ) defines a Cat-multifunctor
is the preservation of γ. Let c ∈ Ob(M), n ≥ 0, ⟨b⟩ ∈ Ob(M)n, kj ≥ 0 for 1 ≤ j ≤ n,

⟨aj⟩ = ⟨aj,i⟩
kj
i=1 for 1 ≤ j ≤ n. Set k =

∑n
j=1 kj. As usual ⟨a⟩ = ⟨aj⟩ = ⟨⟨aj,i⟩

kj
i=1⟩nj=1 denotes

the concatenation of the aj’s. We will prove that the following square is commutative:

M(⟨b⟩; c) × EΣn ×
∏n

j=1 M(⟨aj⟩; bj) × EΣkj
N (⟨Fb⟩;Fc) ×

∏n
j=1 N (⟨Faj⟩;Fbj)

M(⟨a⟩; c) × E(Σk) N (⟨Fa⟩;Fc).

ϕ(F )×
∏
ϕ(F )

γ γ

ϕ(F )

(27)

The commutativity of this diagram at the level of 1-cells will follow from top and
bottom equivariance for M and Σ∗, as well as the fact that F preserves γ. Let f : ⟨b⟩ //c,
σ ∈ Σn, and gj : ⟨aj⟩ // bj and τj ∈ Σkj for 1 ≤ j ≤ n. We have that

γ(ϕ(F )(f, σ), ⟨ϕ(F )(gj, τj)⟩) = γ(F (fσ−1)σ, ⟨F (gjτ−1
j )τj⟩)

= γ
(
(F (fσ−1),

〈
F
(
gσ−1(j)τ

−1
σ−1(j)

)〉)
σ⟨τj⟩

= F
(
γ
(
fσ−1,

〈
gσ−1(j)τ

−1
σ−1(j)

〉))
σ⟨τj⟩

= F
(
γ(f, ⟨gj⟩)(σ⟨τj⟩)−1

)
σ⟨τj⟩

= ϕ(F )(γ(f, ⟨gj⟩), σ⟨τj⟩)
= ϕ(F )(γ((f, σ), ⟨gj, τj⟩)).
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We have proven that our diagram is commutative at the level of 1-cells. For the morphisms
we will consider again morphisms that change the first variable only and morphisms that
change the second variable only separately.

For 2-cells that change the first variable only, the commutativity of our diagram follows
in the same way as it did for 1-cells. We consider two cases for 2-cells that change the
second variable. For 2-cells of the form ((1f , E

τ
σ), ⟨1gj , 1ρj⟩) where f : ⟨b⟩ // c, σ, τ ∈ Σn,

and gj ∈ Ob(M(⟨aj⟩; bj)) and ρj ∈ Σkj for 1 ≤ j ≤ n, we have that

γ
(
ϕ(F )(1f , E

τ
σ)
〈
ϕ(F )(1gj , 1ρj)

〉)
=γ
(
(Fτσ−1;fτ−1)σ,

〈
1F (gjρ

−1
j )ρj

〉)
=γ

(
Fτσ−1;fτ−1 ,

〈
1
F
(
gσ−1(j)ρ

−1

σ−1(j)

)〉)σ⟨ρj⟩
=F

τσ−1
〈
idk

σ−1(j)

〉
;γ

(
fτ−1

〈
gτ−1(j)ρ

−1

τ−1(j)

〉)σ⟨ρj⟩
=Fτ⟨ρj⟩(σ⟨ρj⟩)−1;γ(f,⟨gj⟩)(τ⟨ρj⟩)−1σ⟨ρj⟩

=ϕ(F )(1γ(f,⟨gj⟩), E
τ⟨ρj⟩
σ⟨ρj⟩)

=ϕ(F )(γ(1f , ⟨1gj⟩), γ(Eτ
σ , ⟨1ρj⟩)).

The above equalities follow from our definitions, top and bottom equivariance in M,N ,
and EΣ∗ except the third equality which follows from top equivariance for F (12). Next,
let’s consider two cells of the form ((1f , 1σ), ⟨1gj , E

νj
ρj ⟩) where f : ⟨b⟩ // c, σ ∈ Σn, and

gj ∈ Ob(M(⟨aj⟩; bj)) and ρj, νj ∈ Σkj for 1 ≤ j ≤ n. We get that

γ
(
ϕ(F )(1f , 1σ), ϕ(F )

〈
(1gj , E

νj
ρj
)
〉)

=γ
(
1F (fσ−1)σ,

(
Fνjρ−1

j ;gjν
−1
j

)
ρj

)
=γ

(
1F (fσ−1),

〈
Fνσ−1(j)ρ

−1

σ−1(j)
;gσ−1(j)ν

−1

σ−1(j)

〉)
σ⟨ρj⟩

=F
idn

〈
νσ−1(j)ρ

−1

σ−1(j)

〉
;γ

(
fσ−1,

〈
gσ−1(j)ν

−1

σ−1(j)

〉)σ⟨ρj⟩
=Fσ⟨νj⟩(σ⟨ρj⟩)−1;γ(f,⟨gj⟩)(ρ⟨νj⟩)−1σ⟨ρj⟩

=ϕ(F )
(
1γ(f,⟨gj⟩),

〈
E
σ⟨νj⟩
σ⟨ρj⟩

〉)
=ϕ(F )

(
γ
(
(1f , 1σ),

〈(
1gj , E

νj
ρj

)〉))
.

The third equality above follows from the bottom equivariance axiom for F (13) and the
rest by our definitions as well as top and bottom equivariance for M,N , and EΣ∗.
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By functoriality of γ and ϕ(F ), and since every morphism in the source category can
be written as a composite of arrows for which we already proved the commutativity of
(27), we can conclude that the square (27) is commutative.

We are almost done, we just have to prove that our definition of ϕ(F ) gives us F =
ϕ(F ) ◦ η in Cat-Multicatps. This is clear for objects of the multicategory M. For each
n ≥ 0, ⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M), and f : ⟨a⟩ // b,

ϕ(F ) ◦ η(f) = ϕ(F )(f, idn) = F (f id−1
n )idn = F (f).

Similarly for α : f // g a 2-cell in M(⟨a⟩; b). Finally, we just need to prove that (ϕ(F ) ◦
η)σ,⟨ai⟩,b = Fσ,⟨ai⟩,b for any σ ∈ Σn. Let f : ⟨a⟩ // b be a 1-cell. Since ϕ(F ) is symmetric,

(ϕ(F )η)σ;f = ϕ(F )(ησ;f ) = ϕ(F )(1fσ, Eidσ) = Fσ(id)−1;fσσ−1 = Fσ;f ,

where we have used the notation introduced just before (9). We have proven that jϕ(F )◦
η = F . This finishes our proof.

Similarly, pseudo symmetric Cat-multinatural transformations between F and G cor-
respond to symmetric Cat-multinatural transformations between ϕ(F ) and ϕ(G).

3.4. Lemma. Let M,N be Cat-multicategories with F,G : M //N pseudo symmetric
Cat-multifunctors and θ : F //G a pseudo symmetric Cat-multinatural transformation.
There exists a unique symmetric Cat-multinatural transformation ϕ(θ) : ϕ(F ) // ϕ(G)
such that ϕ(θ) ∗ 1ηM = θ in Cat-Multicatps. That is, the following pasting diagram
equality holds in Cat-Multicatps :

M N M N
=

M× EΣ∗ M× EΣ∗.

F

G
ηM

F

ηMϕ(G)

ϕ(F )

ϕ(G)

θ

ϕ(θ)

Proof. We prove uniqueness first. Suppose ϕ(θ) is a symmetric Cat-multinatural trans-
formation ϕ(θ) : ϕ(F ) //ϕ(G) such that ϕ(θ) ∗ 1η = θ. Any object of M×EΣ∗ takes the
form (a, ∗) for some object a of M, with i(a) = (a, ∗). By definition,

θa = γ(ϕ(θ)ηa, ϕ(F )((1η)a)) = γ(ϕ(θ)ηa, 1Fa)) = ϕ(θ)ηa.

Since all objects of the Cat-multifunctor M×EΣ∗ are of the form ηa for some object a of
M, this is the only possible way of defining such Cat-multinatural transformation ϕ(θ).
Next, we check that by defining ϕ(θ)(a,∗) = θa for a ∈ Ob(M), we in fact get a symmetric
Cat-multinatural transformation ϕ(θ) : ϕ(F ) // ϕ(G). Let n ≥ 0, ⟨a⟩ ∈ Ob(M)n, b ∈
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(Ob(M)n), f : ⟨a⟩ // b, and σ ∈ Σn, then

γ(ϕ(G)(f, σ); ⟨ϕ(θ)(aj ,∗)⟩) = γ
(
G(fσ−1)σ;

〈
θaj
〉)

= γ
(
G(fσ−1);

〈
θaσ−1(j)

〉)
σ

= γ(θb;F (fσ
−1))σ

= γ(θb;F (fσ
−1)σ)

= γ
(
ϕ(θ)(b,∗), ϕ(F )(f, σ)

)
Where we have used top and bottom equivariance, as well as the Cat-multinaturality
of θ. Now we need to prove Cat-multinaturality of ϕ(θ) for 2-cells. As before, the case
where the 2-cell changes just the first variable is similar to what was done for 1-cells.
Now, if ⟨a⟩, b, f are as before and Eτ

σ is a morphism in EΣn, (1f , E
τ
σ) is a morphism in

M(⟨a⟩; b)× EΣn, and

γ
(
ϕ(G)(1f , E

τ
σ);
〈
1ϕ(θ)(aj,∗)

〉)
= γ

(
(Gτσ−1;fτ−1)σ; ⟨1θaj ⟩

)
= γ

(
Gτσ−1;fτ−1 ;

〈
1θa

σ−1(j)

〉)
σ

= γ (1θb ;Fτσ−1;fτ−1)σ

= γ
(
1ϕ(θ)(b,∗) ;ϕ(F )(1f , E

τ
σ)
)
.

In the third equality we have used pseudo symmetric Cat-multinaturality for θ. In con-
clusion, by componentwise functoriality of γ, ϕ(F ) and ϕ(G) we conclude that Cat-
multinaturality holds for ϕ(θ) at the 2-cell level finishing the proof of the lemma.

Furthermore, Theorem 3.3 and Lemma 3.4 together give the following isomorphism.

3.5. Corollary. If M,N are Cat multicategories, then there is an isomorphism of
small categories

Cat-Multicatps(M,N ) ∼= Cat-Multicat(M× EΣ∗,N ).

Proof. Recalling the definitions from the two previous results, we define

ϕ : Cat-Multicatps(M,N ) //Cat-Multicat(M× EΣ∗,M) (28)

for pseudo symmetric Cat-multifunctors as in Theorem 3.3 and for pseudo symmetric
Cat-multinatural transformations as in Lemma 3.4.

It is immediate from the definitions that ϕ is a functor. Indeed, if α : F // G and
β : G //H are pseudo symmetricCat-multinatural transformations with F,G,H : M //N

ϕ(β ∗ α)(c,∗) = (β ∗ α)c = γ(βc, αc) = γ(ϕ(β)(c,∗), ϕ(α)(c,∗)) = (ϕ(β) ∗ ϕ(α))(c,∗)
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We can define the inverse of ϕ, η∗, as the composite

Cat-Multicat(M× EΣ∗,N ) Cat-Multicatps(M× EΣ∗,N )

Cat-Multicatps(M,N ).

η∗

j

η∗M
(29)

Finally, the existence part of Theorem 3.3 and Lemma 3.4, implies that η∗ ◦ ϕ is the
identity of Cat-Multicatps(M,N ), while the uniqueness part of both results implies
that ϕ ◦ η∗ is the identity of Cat-Multicat(M× EΣ∗,N ).

The two previous results hint at the existence of a 2-adjunction between the 2-inclusion
j : Cat-Multicat //Cat-Multicatps and the 2-functor which we define next.

3.6. Definition. We define the 2-functor ψ : Cat-Multicatps // Cat-Multicat as
follows. For a Cat-multicategory M, ψM = M×EΣ∗. For M,N Cat-multicategories,
we define the component functor ψ as the composite

Cat-Multicatps(M,N ) Cat-Multicatps(M,N × EΣ∗)

Cat-Multicat(M× EΣ∗,N × EΣ∗).

ηN∗

ψ
ϕ

Thus, by Theorem 3.3 if F : M // N is a pseudo symmetric Cat-multifunctor, then
ψF : M×EΣ∗ //N ×EΣ∗ is the unique symmetric Cat-multifunctor which makes the
diagram

M M× EΣ∗

N N × EΣ∗

ηM

F jψF

ηN

(30)

commute in Cat-Multicatps. Similarly, by Lemma 3.4, for θ : F // G a pseudo sym-
metric Cat-multinatural transformation between F,G : M //N pseudo symmetric Cat-
multifunctors, ψθ : ψF // ψG is the unique symmetric Cat-multinatural transformation
such that the equality of pasting diagrams

M M× EΣ∗ M M× EΣ∗

=

N N × EΣ∗ N N × EΣ∗

GF

ηM

jψF

ηM

F jψGjψF

ηN ηN

θ jψθ (31)

holds in Cat-Multicatps.
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3.7. Theorem. There is a 2-adjunction

Cat-Multicatps ⊥ Cat-Multicat

ψ

j

where j is the inclusion 2-functor.

Proof. Following Corollary 3.5, we define the unit of the adjunction as the strict 2-natural
transformation η : 1Cat-Multicatps //jψ having component ηM at a Cat-multicategoryM.
We also define the counit of the adjunction π : ψj // 1Cat-Multicat as having component
at a Cat-multicategory M the projection πM : M× EΣ∗ //M.

The fact that η defines a strict 2-natural transformation follows directly from (30)
and (31). To prove that the data of π defines a strict 2-natural transformation we need
to prove that given F : M // N symmetric Cat-multifunctor, the following diagram
commutes:

M× EΣ∗ M

N × EΣ∗ N .

πM

ψjF F

πN

Indeed, we prove that ψjF = F × 1EΣ∗ . By (30), it suffices to show that the following
diagram commutes in Cat-Multicatps:

M M× EΣ∗

N N × EΣ∗.

ηM

jF j(F×1)

ηN

(32)

It is clear that this diagram commutes at the level of objects, 1-cells, and 2-cells of
the multicategory. The pseudo symmetry isomorphisms of both composites also agree.
Indeed, for f : ⟨a⟩ // b a 1-cell of M and σ ∈ Σn, by (14), we get that

(j(F × 1)ηM)σ;f =j(F × 1)σ;ηM(f) ◦ j(F × 1)(ηMσ;f )

= (1(Ff)σ, 1σ) ◦ (1(Ff)σ, Eσ
id)

= (1(Ff)σ, E
σ
id) ◦ (1(Ff)σ, 1σ)

= ηN σ;Ff ◦ ηN (jFσ;f )

= (ηN ◦ jF )σ;f .

To finish proving the 2-naturality of πM, we need to prove that given M,N Cat-
multicategories, F,G : M //N Cat-multifunctors and a Cat-multinatural transforma-
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tion θ : F //G, the following equality of pasting diagrams holds in Cat-Multicat:

M× EΣ∗ M M× EΣ∗ M

=

N × EΣ∗ N N × EΣ∗ N .

j(G×1)j(F×1)

πM

G

πM

j(F×1) GF

πN πN

ψjθ θ

In turn, the last equality of pasting diagrams holds since ψjθ = j(θ × 1). To see this, by
(31), we must show the following equality of pasting diagrams in Cat-Multicatps :

M M× EΣ∗ M M× EΣ∗

=

N N × EΣ∗ N N × EΣ∗.

jGjF

ηM

j(G×1)

ηM

jF j(G×1)j(F×1)

ηN

ηN

jθ j(θ×1) (33)

To check that this equality holds let a ∈ Ob(M). We get, by (8), that

(1ηN ∗ jθ)a = γ
(
1ηN (jGa); ηN (θa)

)
= γ ((1Ga, 1id); (θa, 1id))

= γ ((θa, 1id); (1Fa, 1id))

= γ
(
j(θ × 1)ηN (a); j(F × 1)(1ηM(a))

)
= (j(θ × 1) ∗ ηM)a.

Thus, η and π are strict 2-natural transformations and we just need to prove that they
satisfy the triangle identities. To prove that the identity (1j ∗ π)(η ∗ 1j) = 1j holds we
need to prove that for M a Cat-multicategory the diagram

M× EΣ∗

M M

jπMηM

1M

commutes in Cat-Multicatps. This is clear at the level of objects, n-ary 1-cells and n-ary
2-cells. The pseudo symmetry isomorphisms of both pseudo symmetric Cat-multifunctors
also agree since, for f : ⟨a⟩ // b an n-ary 1-cell of M and σ ∈ Σn, we obtain, by (14),

((jπM) ◦ ηM)σ;f = (jπM)σ;ηM(f) ◦ jπM(ηMσ;f ) = 1fσ = 1Mσ;f .

The other triangle identity is (π ∗1ψ)(1ψ ∗ η) = 1ψ. To check it, we must prove that, given
a Cat-multicategory M, the composite

M× EΣ∗ M× EΣ∗ × EΣ∗ M× EΣ∗
ψηM πM×EΣ∗
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agrees with 1M×EΣ∗ . This holds since, if ∆: EΣ∗ // EΣ∗ × EΣ∗ denotes the diagonal
map, then ψ(ηM) = 1M ×∆. To see this, notice that by (30) all we need is to prove that
the following diagram is commutative:

M M× EΣ∗

M× EΣ∗ M× EΣ∗ × EΣ∗.

ηM

ηM j(1×∆)

ηM×EΣ∗

(34)

Now, the previous diagram is evidently commutative at the level of objects, 1-cells, and
2-cells. The diagram also commutes at the level of pseudo symmetry isomorphisms since,
for f : ⟨a⟩ // b an n-ary 1-cell in M and σ ∈ Σn,

(ηM×EΣ∗ ◦ ηM)σ;f = ηM×EΣ∗σ;ηM(f) ◦ ηM×EΣ∗(ηMσ;f )

= (1fσ, 1σ, E
σ
id) ◦ (1fσ, Eσ

id, 1id)

= (1fσ, 1σ, 1σ) ◦ (1fσ, Eσ
id, E

σ
id)

= j(1×∆)σ;ηM(f) ◦ j(1×∆)(ηMσ;f )

= (j(1×∆) ◦ ηM)σ;f .

We conclude that the triangle identities are satisfied and thus we get the desired 2-
adjunction.

We can use this 2-adjunction to describe the 2-category Cat-Multicatps in terms
of symmetric Cat-multifunctors and symmetric Cat-multinatural transformations alone,
thus upgrading the functors ϕ from Corollary 3.5 to an isomorphism of 2-categories.

3.8. Definition. The 2-category D has Cat-multicategories as objects. For M,N Cat-
multicategories, the category of morphisms between M and N is

D(M,N ) = Cat-Multicat(M× EΣ∗,N ).

In particular, vertical composition of 2-cells is defined as in Cat-Multicat. For F : M×
EΣ∗ //N and G : N ×EΣ∗ //Q symmetric Cat-multifunctors, the composition G ◦F
is defined as the composite

M× EΣ∗ M× EΣ∗ × EΣ∗ N × EΣ∗ Q1×∆ F×1 G

in Cat-Multicat. Similarly, for F, J : M×EΣ∗ //N , G,K : N ×EΣ∗ //Q symmetric
Cat-multifunctors and θ : F // J, ζ : G //K Cat-multinatural transformations, ζ ∗ θ is
defined as the pasting

M× EΣ∗ M× EΣ∗ × EΣ∗ N × EΣ∗ Q1×∆

F×1

J×1

G

K

θ×1 ζ

in Cat-Multicat.

The previous definition makes D into a 2-category and the functors ϕ, and η∗ from
Corollary 3.5 into the components of isomorphisms of 2-categories.
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3.9. Theorem. The data of the previous definition defines a 2-category D isomorphic to
Cat-Multicatps.

Proof. The (horizontal) composition functors are defined so that ϕ and η∗ become the
componentwise functors of a 2-category isomorphism between D and Cat-Multicatps.
More precisely, for M,N and Q Cat-multicategories, we will prove that the D composi-
tion functor defined, ◦′ : D(N ,Q)×D(M,N ) //D(M,Q), makes the following diagram
commute, where ◦ denotes the horizontal composition functor of Cat-Multicatps :

D(N ,Q)×D(M,N ) D(M,Q)

Cat-Multicatps(N ,Q)×Cat-Multicatps(M,N ) Cat-Multicatps(M,Q).

◦′

η∗×η∗

◦

ϕ (35)

Let G : N × Q and F : M × EΣ∗ // N be symmetric Cat-multifunctors. The com-
mutativity of (35) for (G,F ) reduces to the commutativity of the following diagram by
Theorem 3.3:

M M× EΣ∗

M× EΣ∗ M× EΣ∗ × EΣ∗

N N × EΣ∗ Q.

ηM

ηM j(1×∆)

ηM×EΣ∗

jF j(F×1)

ηN jG

This diagram in turn is commutative by (32) and (34). Now, if F,G are as before,
J : M×EΣ∗ and K : N ×EΣ∗ //Q are symmetric Cat-multifunctors, and θ : F // J,
ζ : G //K are Cat-multinatural transformations, by Lemma 3.4, the commutativity of
(35) for (ζ, θ) reduces to the equality of pasting diagrams:

M M× EΣ∗ M M× EΣ∗

M× EΣ∗ M× EΣ∗ × EΣ∗ = M× EΣ∗ M× EΣ∗ × EΣ∗

N N × EΣ∗ N N × EΣ∗

Q Q.

ηM

ηM j(1×∆) ηM

ηM

j(1×∆)

ηM×EΣ∗

jF j(F×1) j(J×1)

ηM×EΣ∗

jF jJ j(J×1)

ηN

jG jK

ηN

jG jK

j(θ×1) jθ

jζ jζ

This equality holds by (33) and makes implicit use of (32) and (34). We can thus
define ϕ : Cat-Multicatps // D in objects as the identity map, and do the same for
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η∗ : D //Cat-Multicatps, with the component functors given for M and N multicate-
gories by (28) and (29) respectively. By (35) and the fact that ϕ and η∗ are componentwise
isomorphisms, ϕ and η preserve vertical composition of 2-cells and horizontal composition
of 1-cells and 2-cells. The fact that Cat-Multicatps is a 2-category implies that D is a
2-category. This further turns ϕ and η∗ into isomorphisms of 2-categories.

4. Applications to inverse K-theory

We use our understanding of pseudo symmetric Cat-multifunctors to show that they
preserve certain En-algebras for n = 1, 2, 3, ...,∞. First we define En Cat-operads.

4.1. Definition. For n = 1, ...,∞, an En Cat-operad is a Cat-operad that becomes a
topological En-operad (in the sense of [May, 1972]) after applying the classifying space
functor. A topological En-operad is one that has the same Σ-equivariant homotopy type
as the little n-cubes operad.

4.2. Example. An example of an E∞ Cat-operad is EΣ∗. There are also examples of En
Cat-operads for each n = 1, 2, . . . in [Berger, 1996] and [Fiedorowicz et al., 2003], which
furthermore have a free action of the symmetric group. Importantly, symmetric algebras
over topological En-operads are grouplike n-fold loop spaces. Symmetric algebras over
the En Cat-operads in [Fiedorowicz et al., 2003] are n-fold monoidal categories, with the
group completion of the classifying space of an n-monoidal category being an example of
an n-fold loop space.

4.3. Definition. Let M be a Cat-multicategory and O a Cat-operad. A pseudo sym-
metric algebra in M over O is a pseudo symmetric Cat-multifunctor O //M. For
n ∈ {1, 2, . . . ,∞}, a symmetric En-algebra (respectively a pseudo symmetric En-algebra)
in M is a symmetric algebra (respectively a pseudo symmetric algebra) over an En-operad.

4.4. Lemma. .

1. Let O be a Σ-free En Cat-operad. Then O × EΣ∗ is an En Cat-operad.

2. Pseudo symmetric En-algebras over Σ-free En Cat-operads are symmetric En-algebras
for n = 1, 2, . . . ,∞.

Proof. Let O be a Σ-free Cat-operad. We will show that O × EΣ∗ is componentwise
Σ-equivariantly homotopy equivalent to O (after taking nerves), that is, for each n ≥ 0,
we will show that the projection O(n) × EΣn

// O(n) induces a Σn-equivariant homo-
topy equivalence on classifying spaces. Since B(O(n) × EΣn) and B(O(n)) are Σn-CW
complexes we must show that for subgroups H ≤ Σn, the projection induces homotopy
equivalences B (O(n)× Σn)

H //B (O(n))H . Since the action of Σn on both O(n)×EΣn

and O(n) is free, the fixed point map is either empty when H is non-trivial or the projec-
tion B (O(n))×B (EΣn) //B (O(n)) , which is a homotopy equivalence since B (EΣn)
is contractible.
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4.5. Example. If O is Cat-operad andM is a Cat-multicategory, the pseudo symmetric
algebras over O agree with symmetric algebras over the operad O × EΣ∗. For example,
while algebras over the commutative operad {∗} in M are the commutative monoids in
M, pseudo symmetric algebras over {∗} in M are precisely algebras over the Barratt-
Eccles operad and thus, E∞-algebras. Similarly, pseudo symmetric algebras over the E∞
Cat-operad EΣ∗, which are defined in [Yau, 2024] as pseudo symmetric E∞-algebras in
M, are algebras over EΣ∗ × EΣ∗ = E(Σ∗ × Σ∗) which is still an E∞ Cat-operad, and
thus, they are still E∞-algebras in the sense defined above. Thus, we have the following
result.

4.6. Remark. We remind the reader that Σ-freedom is not a serious restriction since
there are En-operads in Cat, like those in [Berger, 1996] and [Fiedorowicz et al., 2003]
which are Σ-free. As a corollary, we conclude that pseudo symmetric Cat-multifunctors
preserve certain En-algebras.

4.7. Corollary. Let M and N be Cat-multicategories and F : M //N be a pseudo
symmetric Cat-multifunctor, then:

1. F sends commutative monoids in M to E∞-algebras in N .

2. F preserves En-algebras parameterized by Σ-free Cat-operads.

We conclude our paper by applying our understanding of pseudo symmetric Cat-
multifunctors to multifunctorial inverse K-theory. In [Johnson and Yau, 2022], John-
son and Yau define Mandell’s inverse K-theory multifunctor P as well as the Cat-
multicategories that are its domain (Γ-categories) and target (permutative categories).
Yau proves in [Yau, 2024] that P is pseudo symmetric. We refer the interested reader
[Yau, 2024] of which the following theorem is one of the main results.

4.8. Theorem. [Yau, 2024] Mandell’s inverse K-theory functor is a pseudo symmetric
Cat-multifunctor P : Γ-Cat //PermCatsg.

As a consequence, P sends commutative monoids to E∞-algebras and preserves En-
algebras parameterized by Σ-free En-operads, as was stated in Corollary 1.2.
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