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COMPARING 2-CROSSED MODULES WITH GRAY 3-GROUPS

MURAT SARIKAYA AND ERDAL ULUALAN

Abstract. In this paper, we have constructed the close relationship between 2-crossed
modules and Gray 3-groupoids with a single object (Gray 3-groups). Using both the equiv-
alence between 2-crossed modules and Gray 3-groups, and the Gray category structure
over the category of chain complexes of vector spaces; we describe linear representations
as certain 3-functors.

1. Introduction

Whitehead in [29] introduced the concept of crossed modules of groups as an algebraic
model for homotopy 2-types. As an algebraic model for homotopy 3-types, Conduché, [14],
defined the notion of 2-crossed modules and showed how to obtain a 2-crossed module from
a 2-truncated simplicial group. This model extends canonically to a 2-truncated simplicial
group (cf. [13]) and is also equivalent to the notion of crossed square introduced by Loday
and Guin-Walery in [27]. For this connection, see [15]. As an alternative algebraic model for
homotopy 3-types, in [10], Brown and Gilbert gave a lead, from the automorphism structure
for crossed modules, to the notion of braided regular crossed modules. This structure is
equivalent to Conduché’s 2-crossed module. There is also an equivalence between the
category of braided regular crossed modules and that of 2-truncated simplicial groups. For
this equivalence see [3] in terms of Carrasco-Cegarra pairings operators given in [13] and
examined in [26].

Gray, in [19], has developed tensor products for 2-categories. As an algebraic aspect of
this structures, the construction of the tensor product has been restricted to the notion of
2-groupoids and this gives naturally another basic example for 3-types. Then, Joyal and
Tierney in [21], proved that Gray groupoids model all homotopy 3-types. Since 2-crossed
modules are algebraic models of homotopy 3-types and the 2-crossed module underlying
a Gray 3-group has a natural almost geometric description (cf. [6]), in this work, we
give an explicit comparison between 2-crossed modules and Gray 3-groups. In order to
better understand the verification of each axiom in this comparison, we have intensively
given diagrams representing these axioms visually. Furthermore, the concept of a 3-crossed
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module, which is equivalent to a 3-truncated simplicial group, has been introduced in [2]
as an algebraic model for homotopy 4-type. This structure can be regarded as a suitable
model for extending the comparison between 2-crossed modules and Gray 3-groups to the
next higher dimension and provided that the corresponding notion of Gray 4-group can be
defined.

In the literature, it is relatively to find some references to the construction of a Gray
3-groupoid or a 2-groupoid enrichment for the category Ch of positive chain complexes
over vector spaces, for instance in the papers [7] and [8]. For further results about the
Gray category structure for positive chain complexes see also Kamps and Porter’s work
[22]. They have mainly proved that the category of chain complexes of length-2, Ch2

K , over
vector spaces has a Gray 3-groupoid structure. In this context, Barker in [5], using the
fact that the category of chain complexes of length 1, Ch1

K , has a 2-groupoid structure,
has defined the linear representation of crossed modules or equivalently cat1-groups (cf.
[24]), as a 2-functor Φ : C → Ch1

K , where C is a cat1-group obtained from a crossed
module. The functorial image of C under Φ lies within a sub 2-groupoid with a single
object; Aut(δ) of Ch1

K , called automorphism cat1-group. Elgueta in [18] has constructed
an alternative representation of 2-groups or equivalently cat1-groups in the 2-category of
finite dimensional 2-vector spaces as defined by Kapranov and Voevodsky [23]. As a 2-
dimensional version of these results, Al-asady, in [1], has considered a linear representation
of a cat2-group C2, as a lax 3-functor C2 → Aut(δ) ⩽ Ch2

K , where δ is the chain complex
of length 2 of vector spaces.

In the last section, using the detailed comparison between 2-crossed modules and Gray
3-groups given in sections (3),(4) of this work and evaluating the results of how linear
representations of the above-mentioned algebraic models are constructed, we define an
indirect linear representation for 2-crossed modules.
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2. Preliminaries

2.1. 2-Crossed modules. Crossed modules were introduced by Whitehead in [29]. A
crossed module X := (M,N, ∂) consists of groups M,N together with a homomorphism
∂ :M → N and a left action N×M →M of N onM given by (n,m) 7→ nm, satisfying the
conditions: (i) ∂(nm) = n∂(m)n−1 and (ii) ∂(m)m′ = mm′m−1 for all n ∈ N, m,m′ ∈ M .
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Condition (ii) is called the Peiffer identity. A structure with the same data as a crossed
module and satisfying the first condition but not the Peiffer identity is called a pre-crossed
module.

Recall from [14] that a 2-crossed module of groups consists of a complex of groups

L := L
∂2 //M

∂1 // N

together with (a) actions of N on M and L so that ∂2, ∂1 are morphisms of N -groups, and
(b) an N -equivariant function

{−,−} :M ×M −→ L

called a Peiffer lifting. This data must satisfy the following axioms:

PL1 : ∂2{m,m′} = mm′(m−1)∂1m(m′)−1

PL2 : {∂2l,m} = lm(l)−1

PL3 : {m, ∂2l} = m(l)∂1m(l)−1

PL4 : (i) {m,m′m′′} = {m,m′}∂1m(m′){m,m′′}
(ii) {mm′,m′′} = m{m′,m′′}{m, ∂1m′

m′′}
PL5 : {∂2l, ∂2l′} = [l, l′]
PL6 : n{m,m′} = {nm,nm′}

for all l, l′ ∈ L, m,m′,m′′ ∈M and n ∈ N .

2.2. Gray 3-group(oid)s. Recall that a small category A consists of an object set A0,
a set of morphisms A1, source and target maps from A1 to A0, a map e : A0 → A1 which
gives the identity morphisms at an object and a partially defined function A1 × A1 → A1

which gives the composition of two morphisms. We will show a small category (A1, A0)
and diagramatically as

A1

s,t //// A0.
e

oo

For the set of morphisms A1, and x, y ∈ A0 the set of morphisms from x to y is written
A1(x, y) and termed a hom-set. Then for a ∈ A1(x, y), we have s(a) = x and t(a) = y.
We will usually write ex for e(x) and b ◦ a for the composite of the morphisms a : x → y
and b : y → z. The elements of A0 are also called 0-cells and the elements of A1 are called
1-cells between 0-cells.

A groupoid A is a small category in which every morphism (or every 1-cell) is an
isomorphism (or invertible), that is, for any 1-cell (a : x → y) ∈ A1(x, y), there is a 1-cell
(a−1 : y → x) ∈ A1(y, x), such that a−1 ◦ a = ex and a ◦ a−1 = ey. If A1(x, y) is empty
whenever x and y are distinct (that is s = t), then A is called totally disconnected. Note
that a groupoid with a single 0-cell can be regarded as a group. For a survey of application
of groupoids and introduction to their literature, see [9, 10].
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We now recall the definition of a Gray 3-groupoid from Martins and Picken’s work [25].
For this definiton see also Wang [28]. Their definition is slightly different from the ones of
Kamps-Porter [22] and Crans [16].

A Gray 3-groupoid A is given by a set A0 of 0-cells, a set A1 of 1-cells, a set A2 of
2-cells and a set A3 of 3-cells, and maps si, ti : Ak → Ai−1 where i = 1, ..., k such that:

1. s2 ◦ s3 = s2 and t2 ◦ t3 = t2 as maps A3 → A1.

2. s1 = s1 ◦ s2 = s1 ◦ s3 and t1 = t1 ◦ t2 = t1 ◦ t3 as maps A3 → A0.

3. s1 = s1 ◦ s2 and t1 = t1 ◦ t2 as maps A2 → A0.

4. There exists a 2-vertical composition J#3J
′ of 3-cells if t3(J

′) = s3(J). Then,

A3

s3,t3 //// A2
e3
oo is a groupoid with this composition.

5. There exists a vertical composition

Γ′#2Γ =

[
Γ
Γ′

]

of 2-cells if t2(Γ) = s2(Γ
′). Then, A2

s2,t2 //// A1
e2
oo is a groupoid with the composition

#2.

6. There exists a 1-vertical composition J ′#1J of 3-cells if s2(J
′) = t2(J). Then,

A3

s2,t2 //// A1
e2
oo is a groupoid with this composition. In this case, we have two dif-

ferent groupoids over A1; (A3, A1) and (A2, A1). Then, s3, t3 : A3 → A2 are functors
between two categories and these are considered as groupoid morphisms.

7. The 1-vertical and 2-vertical compositions of 3-cells satisfy the interchange law ;

(J ′
1#3J1)#1(J

′#3J) = (J ′
1#1J

′)#3(J1#1J).

According to these conditions, we can say that 2-vertical and 1-vertical compositions
of 3-cells and vertical compositions of 2-cells give a structure of 2-groupoid (cf. [20])
shown pictorially as;

A3 A2

A1

s
2 ,t2

s3,t3

s2
,t2

e3
e
2 e2

where A1 is the set of 0-cells, A2 is the set of 1-cells and A3 is the set of 2-cells for
this structure.
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8. (Whiskering by 1-cells) For each x, y ∈ A0, it can be defined a 2-groupoid A(x, y)
of all 1-, 2- and 3-cells b such that s1(b) = x and t1(b) = y. Given a 1-cell η : y → z,
there is a 2-groupoid map ♮1η : A(x, y) → A(y, z). Similarly if η′ : w → x, there is a
2-groupoid map η′♮1 : A(x, y) → A(w, y).

9. There exists a horizontal composition η♮1η
′ of 1-cells if s1(η) = t1(η

′), which is to be
associative and to define a groupoid with set of objects A0 and set of 1-cells A1.

10. Given η, η′ ∈ A1;

♮1η ◦ ♮1η′ = ♮1(η
′η), η♮1 ◦ η′♮1 = (ηη′)♮1 and η♮1 ◦ ♮1η′ = ♮1η

′ ◦ η♮1,

whenever these compositions make sense.

11. There are two horizontal compositions of 2-cells[
Γ′

Γ

]
= (Γ♮1t2(Γ

′))#2(s2(Γ)♮1Γ
′) and

[
Γ

Γ′

]
= (t2(Γ)♮1Γ

′)#2(Γ♮1s2(Γ
′))

and of 3-cells:[
J ′

J

]
= (J♮1t2(J

′))#1(s2(J)♮1J
′) and

[
J

J ′

]
= (t2(J)♮1J

′)#1(J♮1s2(J
′)).

It follows from the previous axioms that they are associative.

12. (Interchange 3-cells) For any 2-cells Γ and Γ′, there is a 3-cell (called an interchange
3-cell) [

Γ′

Γ

]
= s3(Γ#Γ′)

(Γ#Γ′) // t3(Γ#Γ′) =

[
Γ

Γ′

]
13. (2-functoriality) For any 3-cells

Γ1 = s3(J)
J // t3(J) = Γ2 and Γ′

1 = s3(J
′) J ′

// t3(J
′) = Γ′

2 ,

with s1(J
′) = t1(J) the following upwards compositions (1-vertical compositions) of

3-cells coincide: [
Γ′
1

Γ1

]
(Γ1#Γ′

1) //

[
Γ1

Γ′
1

]
[ J J ′ ]

//

[
Γ2

Γ′
2

]
and [

Γ′
1

Γ1

]
[ J ′
J ]

//

[
Γ′
2

Γ2

]
(Γ2#Γ′

2) //

[
Γ2

Γ′
2

]
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This of course means that the collection Γ#Γ′, for arbitrary 2-cells Γ and Γ′ with
s1(Γ

′) = t1(Γ) defines a natural transformation between the 2-functors of 11. Note
that by using the interchange condition for the vertical and upwards compositions, we
only need to verify this condition for the case when either J or J ′ is an identity.(This
is the way this axiom appears written in [22, 16, 6])

14. (1-functoriality) For any three 2-cells γ
Γ−→ ϕ

Γ′
−→ ψ and γ′′

Γ′′
−→ ϕ′′ with s2(Γ

′) =
t2(Γ) and t1(Γ) = t1(Γ

′) = s1(Γ
′′) the following 2-vertical compositions of 3-cells

coincide:

(a) γ♮1Γ′′

Γ♮1ϕ
′′

Γ′♮1ϕ
′′

 [
Γ#Γ′′

Γ′♮1ϕ′′

]
//

Γ♮1γ
′′

ϕ♮1Γ
′′

Γ′♮1ϕ
′′

 [
Γ♮1γ′′

Γ′#Γ′′

]
//

Γ♮1γ
′′

Γ′♮1γ
′′

ψ♮1Γ
′′


and γ♮1Γ′′

Γ♮1ϕ
′′

Γ′♮1ϕ
′′

 [ ΓΓ′ ]#Γ′′

//

Γ♮1γ
′′

Γ′♮1γ
′′

ψ♮1Γ
′′


and so, we can write [

Γ♮1γ
′′

Γ′#Γ′′

]
#3

[
Γ#Γ′′

Γ′♮1ϕ
′′

]
=

[
Γ
Γ′

]
#Γ′′

Similarly,

(b) γ′′♮1Γγ′′♮1Γ
′

Γ′′♮1ψ

 [
γ′′♮1Γ
Γ′′#Γ′

]
//

γ′′♮1ΓΓ′′♮1ϕ
ϕ′′♮1Γ

′

 [
Γ′′#Γ
ϕ′′♮1Γ′

]
//

Γ′′♮1γ
ϕ′′♮1Γ
ϕ′′♮1Γ

′


and γ′′♮1Γγ′′♮1Γ

′

Γ′′♮1ψ

 Γ′′#[ ΓΓ′ ]
//

Γ′′♮1γ
ϕ′′♮1Γ
ϕ′′♮1Γ

′


and so, we can write [

Γ′′#Γ
ϕ′′♮1Γ

′

]
#3

[
γ′′♮1Γ
Γ′′#Γ′

]
= Γ′′#

[
Γ
Γ′

]
.

A Gray 3-group, [4], is a Gray 3-groupoid with a single 0-cell ∗. We can show it
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pictorially as;

A∗ :=

A3

s3,t3

��

s2,t2

��

��
∗

A2 s2,t2
//

99

A1.

ff

We will denote the category of Gray 3-groups by Gray.

3. From 2-crossed modules to Gray 3-groups

In this section, we will construct a Gray 3-group A∗ from a 2-crossed module L. Thus, we
will define a functor Θ : X2Mod −→ Gray.

Let L := L
∂2 //M

∂1 // N be a 2-crossed module together with the Peiffer lifting map
{−,−} : M ×M → L. Suppose A0 = {∗} and A1 = N . Then, any element n in N can
be regarded as a 1-cell in A∗. That is, n : ∗ → ∗ where s1(n) = t1(n) = ∗. The horizontal
composition of 1-cells is given by the group operation in N .

Using the group action of N on M , we can create the semi-direct product group A2 =
M ⋊ N together with the operation (m,n)(m′, n′) = (mnm′, nn′) for m,m′ ∈ M and
n, n′ ∈ N . An element Γ = (m,n) of A2 can be considered as a 2-cell from n to ∂1mn,
so we can define source, target maps between A2 and A1 as follows: for Γ = (m,n) ∈
(M ⋊ N) = A2, the 1-source of this 2-cell is n and so s2(m,n) = n and 1-target of this
2-cell is t2(m,n) = ∂1mn. The 0-source and 0-target of (m,n) is ∗. We can represent a
2-cell (m,n) in A∗ pictorially as:

∗ ∗(m,n)

n

∂1mn

The vertical composition of Γ = (m,n) and Γ′ = (m′, ∂1mn) in A2 is given by

Γ′#2Γ =

[
Γ
Γ′

]
= (m′, ∂1mn)#2(m,n) = (m′m,n)

with t2(Γ) = ∂1mn = s2(Γ
′). The vertical composition #2 of 2-cells can be pictured as

follows:

∗ ∗

n

∂1m′∂1mn

∂1mn

Γ=(m,n)

Γ′=(m′,∂1mn)

:= ∗ ∗Γ′#2Γ

n

∂1m′∂1mn
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For this composition, we have clearly s2(Γ
′#2Γ) = n = s2(Γ) and t2(Γ

′#2Γ) = ∂1m
′∂1mn =

t2(Γ
′). For a 2-cell; Γ = (m,n) in A2, the inverse of Γ with #2 is defined by (Γ−1)#2 =

(m−1, ∂1mn). The identitiy map e2 : A1 → A2 is defined by e2(n) = (1M , n). Thus,
we have s2e2 = t2e2 = idA1 . Obviously, (Γ−1)#2#2Γ = (1, n) = e2(n) = e2(s2(Γ)) and
Γ#2(Γ

−1)#2 = (m,n)#2(m
−1, ∂1mn) = (1M , ∂1mn) = e2(t2(Γ)). Thus, we get the follow-

ing result:

3.1. Proposition. A2

s2,t2 //// A1
e2
oo is a groupoid with the vertical composition #2 of 2-cells.

3.2. The whiskerings of a 1-cell on a 2-cell. The whiskering of a 1-cell n′ ∈ A1

on Γ = (m,n) ∈ A2 on the left side is n′♮1Γ = (n
′
m,n′n). We can show it diagramatically

by

∗ ∗ ∗Γ

n

∂1mn

n′

:= ∗ ∗n′♮1Γ

n′n

n′∂1mn

The left whiskering of n′ on Γ appears on the left in the notation n′♮1Γ, but on the right
in the picture. For this definition, we can see that s2(n

′♮1Γ) = n′♮1s2(Γ) and t2(n
′♮1Γ) =

n′♮1t2(Γ). Similarly, the right whiskering of n′ on Γ = (m,n) is given by Γ♮1n
′ = (m,nn′)

shown pictorially by

∗ ∗ ∗Γ=(m,n)
n′

n

∂1mn

:= ∗ ∗Γ♮1n′

nn′

∂1mnn′

For this definition, clearly we have s2(Γ♮1n
′) = s2(Γ)♮1n

′ and t2(Γ♮1n
′) = t2(Γ)♮1n

′.

3.3. The horizontal compositions of 2-cells. Let Γ = (m,n) : n ⇒ ∂1mn and
Γ′ = (m′, n′) : n′ ⇒ ∂1m

′n′ be 2-cells. Using the left and right whiskerings of 1-cells on
2-cells, we can define the horizontal composition [ Γ′

Γ ] of Γ and Γ′ by[
Γ′

Γ

]
=(Γ♮1t2(Γ

′))#2(s2(Γ)♮1Γ
′)

=((m,n)♮1∂1m
′n′)#2(n♮1(m

′, n′))

=((m,n∂1m
′n′)#2(

n(m′), nn′)

=(mn(m′), nn′).
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This can be represented by the diagram below:

∗ ∗ ∗Γ′ Γ

n′

∂1m′n′

n

∂1mn

s2(Γ)♮1Γ
′

Γ♮1t2(Γ
′)

:= ∗ ∗

nn′

∂1mn∂1m′n′

n∂1m′n′

s2(Γ)♮1Γ′

Γ♮1t2(Γ′)

On the other hand, the horizontal composition [ Γ Γ′ ] is defined by[
Γ

Γ′

]
=(t2(Γ)♮1Γ

′)#2(Γ♮1s2(Γ
′))

=(∂1mn♮1(m
′, n′))#2((m,n)♮1n

′)

=(∂1mn(m′), ∂1mnn
′)#2(m,nn

′)

=(∂1mn(m′)m,nn′)

and similarly, we can show this by a diagram

∗ ∗ ∗Γ′ Γ

n′

∂1m′n′

n

∂1mn

Γ♮1s2(Γ
′)

t2(Γ)♮1Γ
′

:= ∗ ∗

nn′

∂1mn∂1m′n′

∂1mnn′

Γ♮1s2(Γ′)

t2(Γ)♮1Γ′

Note that [ Γ′
Γ ] ̸= [ Γ Γ′ ] since ∂1 is not a crossed module. We have clearly,

s2

([
Γ′

Γ

])
=s2(m

n(m′), nn′) = nn′ = s2(Γ)s2(Γ
′)

and

t2

([
Γ′

Γ

])
=∂1(m

n(m′))nn′ = ∂1mn∂1m
′n′ = t2(Γ)t2(Γ

′)

and similarly,

s2

([
Γ

Γ′

])
=s2(

∂1mn(m′)m,nn′) = nn′ = s2(Γ)s2(Γ
′)

and

t2

([
Γ

Γ′

])
=∂1(

∂1mn(m′)m)nn′ = ∂1mn∂1m
′n′ = t2(Γ)t2(Γ

′).
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3.4. The set of 3-cells.Now, we can define the group of 3-cells inA∗ . Using the group
actions of M and N on L, we can create the semi-direct product group A3 = L⋊M ⋊N
with the multiplication

(l,m, n)(l′,m′, n′) = (ln(l′){∂2(n(l′))−1,m},mn(m′), nn′)

where {−,−} : M ×M → L is the Peiffer lifting of the 2-crossed module L. Using the
equality l{∂2l−1,m} = ml , we can rewrite it as

(l,m, n)(l′,m′, n′) = (lm(nl′),mnm′, nn′).

Any 3-cell in A3 can be given by an element J = (l,m, n) in L ⋊M ⋊ N for l ∈ L, m ∈
M, n ∈ N . The 2-source of a 3-cell J is given by s3(J) = (m,n) and 2-target is given by
t3(J) = (∂2lm, n). Clearly, s2(J) = n and t2(J) = ∂1mn. We can show a 3-cell in A3 by a
diagram;

∗ ∗(m,n) (∂2lm,n)

n

∂1mn

JJ

3.5. The 2-vertical composition of 3-cells. Let J = (l,m, n) : (m,n) ⇛ (∂2lm, n)
and J ′ = (l′, ∂2lm, n) : (∂2lm, n) ⇛ (∂2l

′∂2lm, n) be 3-cells with s3(J
′) = t3(J). The

2-vertical composition J ′#3J of J and J ′ represented by the diagram below

n ∂1mn

(m,n)

(∂2l
′∂2lm,n)

(∂2lm,n)

JJ

J ′J ′

:= n ∂1mnJ ′#3JJ ′#3J

(m,n)

(∂2l
′∂2lm,n)

can be given by

J ′#3J =

[
J
J ′

]
= (l′, ∂2lm, n)#3(l,m, n) = (l′l,m, n).

For this definition, we obtain clearly

s3(J
′#3J) = s3(l

′l,m, n) = (m,n) = s3(J) and

t3(J
′#3J) = t3(l

′l,m, n) = (∂2l
′∂2lm, n) = t3(J

′).

The identity map e3 : A2 → A3 is defined by e3(m,n) = (1L,m, n). We clearly have
s3e3 = t3e3 = idA2 . The inverse (J−1)#3 of a 3-cell J = (l,m, n) is given by (J−1)#3 =
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(l−1, ∂2lm, n). We have s3((J
−1)#3) = (∂2lm, n) = t3(J) and t3((J

−1)#3) = (m,n) = s3(J)
and

(J−1)#3#3J = (l−1, ∂2lm, n)#3(l,m, n) = (1L,m, n) = e3(s3(J))

and
J#3(J

−1)#3 = (l,m, n)#3(l
−1, ∂2lm, n) = (1L, ∂2lm, n) = e3(t3(J))

So, we obtain the following result:

3.6. Proposition. A3

s3,t3 // // A2
e3
oo is a groupoid with the 2-vertical composition #3 of 3-

cells.

3.7. The whiskerings of a 2-cell on a 3-cell. Let Γ = (m,n) be a 2-cell and
J = (l,m′, ∂1mn) be a 3-cell with t2(Γ) = s2(J). The right whiskering of Γ on J is given
by

J♮2Γ = (l,m′, ∂1mn) ♮2(m,n) = (l,m′m,n).

This can be represented pictorially as

n ∂1mn ∂1m′n′(l,m′,n′)(l,m′,n′)
(m,n)

(m′,n′)

(∂2lm
′,n′)

:= n ∂1m′n′J♮2ΓJ♮2Γ

(m′m,n)

(∂2lm
′m,n)

where n′ = ∂1mn. For this definition, we have clearly

s3(J♮2Γ) =(m′m,n) = (m′, ∂1mn)#2(m,n) = s3(J)#2Γ

and

t3(J♮2Γ) =(∂2lm
′m,n) = (∂2lm

′, ∂1mn)#2(m,n) = t3(J)#2Γ.

The left whiskering of a 2-cell Γ = (m′, ∂1mn) on a 3-cell J = (l,m, n) with t2(J) = s2(Γ)
is given by

Γ♮2J = (m′, ∂1mn)♮2(l,m, n) = (m
′
l,m′m,n) = (l{∂2l−1,m′},m′m,n).

This can be represented pictorially as

n ∂1mn ∂1m′n′(l,m,n)(l,m,n)

(m,n)

(∂2lm,n)

(m′,n′)
:= n ∂1m′n′Γ♮2JΓ♮2J

(m′m,n)

(m′∂2lm,n)
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where n′ = ∂1mn. For this definition, we have clearly

s3(Γ♮2J) =(m′m,n) = (m′, ∂1mn)#2(m,n) = Γ#2s3(J)

and

t3(Γ♮2J) =t3(l{∂2l−1,m′},m′m,n) = (∂2l∂2{∂2l−1,m′}m′m,n)

and from the Peiffer lifting axiom (PL1)

∂2{∂2l−1,m′} = ∂2l
−1m′∂2l

∂1∂2l−1

(m′)−1

and so; since ∂1∂2l
−1 = 1, we have;

t3(Γ♮2J) =(∂2l∂2l
−1m′∂2l

∂1∂2l−1

(m′)−1m′m,n)

=(m′∂2lm, n)

=(m′, ∂1mn)#2(∂2lm, n)

=Γ#2t3(J).

3.8. The whiskerings of a 1-cell on a 3-cell. Let n′ : ∗ → ∗ be a 1-cell and
J = (l,m, n) be a 3-cell. The right whiskering of n′ on J as shown in the following
diagram:

∗ ∗ ∗(m,n) (∂2lm,n)
n′

n

∂1mn

JJ
:= ∗ ∗(m,nn′) (∂2lm,nn′)

nn′

∂1mnn′

J♮1n′J♮1n′

is defined by J♮1n
′ = (l,m, nn′). For this definition clearly;

s3(J♮1n
′) = (m,nn′) = s3(J)♮1n

′ and t3(J♮1n
′) = (∂2lm, nn

′) = t3(J)♮1n
′.

The left whiskering of a 1-cell n′ : ∗ → ∗ on a 3-cell J = (l,m, n) represented by the
diagram

∗ ∗ ∗(m,n) (∂2lm,n)

n

∂1mn

JJ n′

:= ∗ ∗(n
′
m,n′n) (n

′
(∂2lm),n′n)

n′n

n′∂1mn

n′♮1Jn′♮1J

is defined by
n′♮1J = n′♮1(l,m, n) = (n

′
l, n

′
m,n′n).
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For this definition, we have clearly,

s3(n
′♮1J) =(n

′
m,n′n) = n′♮1(m,n) = n′♮1s3(J)

and

t3(n
′♮1J) =(∂2(

n′
l)n

′
m,n′n) = (n

′
(∂2lm), n′n) = n′♮1(∂2lm, n) = n′♮1s3(J).

On the other hand; we have s2(n
′♮1J) = n′n = n′s2(J) and t2(n

′♮1J) = n′∂1mn = n′t2(J).

3.9. The 1-vertical composition of 3-cells. Let J = (l,m, n) and J ′ = (l′,m′, ∂1mn)
be 3-cells with s2(J

′) = t2(J). The 1-vertical composition J#1J
′ of J and J ′ is given by

J ′#1J = (l′(m
′
l),m′m,n) = (l′l{∂2l−1,m′},m′m,n).

The 1-vertical composition of these 3-cells can be represented pictorially by

n ∂1mn ∂1m′∂1mnJJ J ′J ′

(m,n)

(∂2lm,n)

(m′,∂1mn)

(∂2l′m′,∂1mn)

:= n ∂1m′∂1mnJ ′#1JJ ′#1J

(m′m,n)

(∂2l′m′∂2lm,n)

For this definition, we have

s3(J
′#1J) = (m′m,n) = (m′, ∂1mn)#2(m,n) = s3(J

′)#2s3(J)

and

t3(J
′#1J) = (∂2l

′m′∂2lm, n) = (∂2l
′m′, ∂1mn)#2(∂2lm, n) = t3(J

′)#2t3(J).

Similarly, we have s2(J
′#1J) = n = s2(J) and t2(J

′#1J) = ∂1m
′∂1mn = t2(J

′). The
identity map e2 : A1 → A3 is defined by e2(n) = (1L, 1M , n). Clearly, s2e2 = t2e2 = idA1 .

Using the 2-vertical composition of 3-cells and whiskerings of 2-cells on 3-cells, we can
also give the 1-vertical composition of 3-cells as follows:

J ′#1J =(l′l{∂2l−1,m′},m′m,n)

=(l′,m′∂2lm, n)#3(l{∂2l−1,m′},m′m,n)

= ((l′,m′, ∂1mn)♮2(∂2lm, n))#3 ((m
′, ∂1mn)♮2(l,m, n))

=(J ′♮2t3(J))#3(s3(J
′)♮2J)

=

[
s3(J

′)♮2J
J ′♮2t3(J)

]
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and similarly

J ′#1J =(l′l{∂2l−1,m′},m′m,n)

=(∂2l
′
(l{∂2l−1,m′})l′,m′m,n)

=(∂2l
′
(m

′
l)l′,m′m,n)

=(∂2l
′
(m

′
l), ∂2l

′m′m,n)#3(l
′,m′m,n)

=((∂2l
′m′, ∂1mn)♮2(l,m, n))#3((l

′,m′, ∂1mn)♮2(m,n))

=(t3(J
′)♮2J)#3(J

′♮2s3(J))

=

[
J ′♮2s3(J)
t3(J

′)♮2J

]
.

For the 3-cell J = (l,m, n) the 1-vertical inverse (J−1)#1 is given by

(J−1)#1 = (l−1{∂2l,m−1},m−1, ∂1mn).

Clearly, we have;

(J−1)#1#1J = (l−1{∂2l,m−1},m−1, ∂1mn)#1(l,m, n) = (l−1{∂2l,m−1}l{∂2l−1,m−1}, 1M , n).

From Peiffer lifting axioms; {∂2l−1,m−1} = l−1(m
−1
l) and {∂2l,m−1} = l(m

−1
l−1), we have

(J−1)#1#1J = (1L, 1M , n) = e2(n) = e2(s2(J)). Similarly, we obtain

J#1(J
−1)#1 =(l,m, n)#1(l

−1{∂2l,m−1},m−1, ∂1mn)

=(ll−1{∂2l,m−1}{∂2(l−1{∂2l,m−1})−1,m}, 1M , ∂1mn).

From Peiffer lifting axioms, we have,

{∂2(l−1{∂2l,m−1})−1,m} = {∂2(m
−1

l),m} = (m
−1

l)l−1 and l−1{∂2l,m−1} =m−1

l−1

and then, J#1(J
−1)#1 = (1L, 1M , ∂1mn) = e2(∂1mn) = e2t2(J). Thus, we get the following

result:

3.10. Proposition. A3

s2,t2 // // A1
e2
oo is a groupoid with the 1-vertical composition #1 of 3-

cells.

3.11. The interchange law for #1 and #3 of 3-cells. Let J and J ′ be 3-cells
in A3 with s3(J

′) = t3(J). Define J = (l,m, n) and J ′ = (l′, ∂2lm, n). The 2-vertical
composition of J and J ′ is given by (J ′#3J) = (l′l,m, n).

On the other hand, J1 and J ′
1 be 3-cells in A3 with s3(J

′
1) = t3(J1). Define

J1 = (l1,m1, ∂1mn) and J ′
1 = (l′1, ∂2l1m1, ∂1mn).
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The 2-vertical composition of J1 and J ′
1 is given by

(J ′
1#3J1) = (l′1l1,m1, ∂1mn).

Since s2(J
′
1#3J1) = t2(J

′#3J), the 1-vertical composition of 3-cells (J ′
1#3J1) and (J ′#3J)

can be given by

(J ′
1#3J1)#1(J

′#3J) =(l′1l1,m1, ∂1mn)#1(l
′l,m, n)

=(l′1l1l
′l{∂2(l′l)−1,m1}︸ ︷︷ ︸

(A)

,m1m,n).

Since t2(J
′) = s2(J

′
1), the 1-vertical composition of J ′, J ′

1 in A3 can be given by

J ′
1#1J

′ =(l′1, ∂2l1m1, ∂1mn)#1(l
′, ∂2lm, n)

=(l′1l
′{∂2(l′)−1, ∂2l1m1}, ∂2l1m1∂2lm, n)

and since s2(J1) = t2(J), the 1-vertical composition of J, J1 in A3 can be given by

(J1#1J) =(l1,m1, ∂1mn)#1(l,m, n)

=(l1l{∂2l−1,m1},m1m,n)

Since s3(J
′
1#1J

′) = t3(J1#1J), the 2-vertical composition of 3-cells (J ′
1#1J

′) and (J1#1J)
is given by

(J ′
1#1J

′)#3(J1#1J) = (l′1l
′{∂2(l′)−1, ∂2l1m1}l1l{∂2(l)−1,m1}︸ ︷︷ ︸

(B)

,m1m,n).

It must be that (A) = (B). For these equalities, we have;

(A) =l′1l1l
′l{∂2(l′l)−1,m1}

=l′1l1l
′l{∂2(l)−1∂2(l

′)−1,m1}
=l′1l1l

′l∂2(l)
−1{∂2(l′)−1,m1}{∂2(l)−1,∂1∂2(l

′)−1

(m1)} (∵ PL4(ii))

=l′1l1l
′ll−1{∂2(l′)−1,m1}l{∂2(l)−1,m1}

=l′1l1l
′ll−1(l′)−1(m1l′)l(l)−1(m1l) (∵ PL2)

=l′1l1(
m1l′)(m1l)

and

(B) =l′1l
′{∂2(l′)−1, ∂2l1m1}l1l{∂2(l)−1,m1}

=l′1l
′{∂2(l′)−1, ∂2l1}

∂1∂2(l
′)−1

(∂2l1){∂2(l′)−1,m1}l1l{∂2(l)−1,m1} (∵ PL4(i))

=l′1l
′[(l′)−1, l1]l1{∂2(l′)−1,m1}(l1)−1l1l(l)

−1(m1l) (∵ PL5)

=l′1l
′(l′)−1l1l

′(l1)
−1l1(l

′)−1(m1l′)(l1)
−1l1ll

−1(m1l)

=l′1l1(
m1l′)(m1l).
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Thus, we have
(J ′

1#3J1)#1(J
′#3J) = (J ′

1#1J
′)#3(J1#1J).

Consequently, the interchange law for #1 and #3 is satisfied. We can give the following
result:

3.12. Proposition.The 2-vertical and 1-vertical compositions of 3-cells and vertical com-
positions of 2-cells give a structure of 2-groupoid shown pictorially as;

A3 A2

A1

s
2 ,t2

s3,t3

s2
,t2

e3
e
2 e2

where A1 is the set of 0-cells, A2 is the set of 1-cells and A3 is the set of 2-cells for this
structure.

3.13. The horizontal compositions of 3-cells. The horizontal composition [ J ′
J ]

of 3-cells J = (l,m, n) : Γ1 ⇛ Γ2 and J ′ = (l′,m′, n′) : Γ′
1 ⇛ Γ′

2 in A3, where Γ1 = (m,n),
Γ2 = (∂2lm, n) and Γ′

1 = (m′, n′), Γ′
2 = (∂2l

′m′, n′) is given by[
J ′

J

]
=(J♮1t2(J

′))#1(s2(J)♮1J
′)

=((l,m, n)♮1∂1m
′n′)#1(n♮1(l

′,m′, n′))

=(l,m, n∂1m
′n′)#1(

n(l′),n (m′), nn′)

=(lm(n(l′)),mn(m′), nn′)

=(ln(l′){∂2(n(l′))−1,m},mn(m′), nn′)

We can show this composition by the following diagram:

[
J ′

J

]
:= ∗ ∗ ∗Γ′

1 Γ′
2 Γ1 Γ2

n′

∂1m′n′

J ′J ′

n

∂1mn

JJ

s2(J)♮1J
′

J♮1t2(J
′)

For this definition, we have

s3

([
J ′

J

])
=(mnm′, nn′) =

[
(m′, n′)

(m,n)

]
=

[
s3(J

′)
s3(J)

]
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and

t3

([
J ′

J

])
=(∂2(l

n(l′){∂2(n(l′))−1,m})mn(m′), nn′)

=(∂2(l
n(l′))∂2{∂2(n(l′))−1,m}mn(m′), nn′)

=(∂2(l)∂2(
n(l′))∂2(

n(l′)−1)m∂2(
n(l′))∂1∂2((

n(l′))−1)m−1mn(m′), nn′) (∵ PL1)

=(∂2(l)m∂2(
n(l′))n(m′), nn′) (∵ ∂1∂2 = 1)

=(∂2(l)m
n(∂2(l

′)m′), nn′)

=(∂2(l)m,m∂1m
′n′)#2(∂2(

nl′)n(m′), nn′)

=((∂2(l)m,n)♮1∂1m
′n′)#2(n♮1(∂2l

′m′, n′))

=

[
(∂2l

′m′, n′)
(∂2lm, n)

]
=

[
t3(J

′)
t3(J)

]
.

On the other hand, we can define the horizontal composition [ J J ′ ] by[
J

J ′

]
=(t2(J)♮1J

′)#1(J♮1s2(J
′))

=(∂1mn♮1(l
′,m′, n′))#1((l,m, n)♮1n

′)

=(∂1mn(l′)∂1mn(m′), ∂1mnn
′)#1((l,m, nn

′))

=(∂1mn(l′)
∂1mn(m′)(l),∂1mn (m′)m,nn′)

=(∂1mn(l′)∂1mn(l{∂2l−1,m′}),∂1mn (m′)m,nn′)

=(∂1mn(l′l{∂2l−1,m′}),∂1mn (m′)m,nn′).

Similarly, we can represent this composition by a picture

[
J

J ′

]
:= ∗ ∗ ∗Γ′

1 Γ′
2 Γ1 Γ2

n′

∂1m′n′

J ′J ′

n

∂1mn

JJ

J♮1s2(J
′)

t2(J)♮1J
′

For this definiton, we obtain

s3

([
J

J ′

])
=
(
∂1m(nm′)m,nn′) = [

s3(J)
s3(J

′)

]
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and

t3

([
J

J ′

])
=(∂2(

∂1mn(l′l{∂2l−1,m′}))∂1mn(m′)m,nn′)

=(∂2(
∂1mn(l′ll−1m′

l))∂1mn(m′)m,nn′) (∵ PL2)

=(∂2(
∂1mn(l′m

′
l))∂1mn(m′)m,nn′)

=∂2(
∂1mn(l′))∂2(

∂1mn(m
′
l))∂1mn(m′)m,nn′)

=(∂1mn(∂2(l
′))∂1mn(m′)∂2l((

∂1mn(m′))−1)∂1mn(m′)m,nn′)

=(∂1mn(∂2(l
′)m′)∂2(l)m,nn

′)

=(∂1mn♮1(∂2(l
′)m′, n′))#2((∂2(l)m,n)♮1n

′)

=

[
Γ2

Γ′
2

]
=

[
t3(J)

t3(J
′)

]
.

3.14. The interchange 3-cell. For any 2-cells Γ = (m,n) and Γ′ = (m′, n′), the
interchange 3-cell is defined by

Γ#Γ′ = ({m,nm′}−1,mnm′, nn′).

For this interchange 3-cell, we have

s3 (Γ#Γ′) = (mnm′, nn′) =

[
Γ′

Γ

]
and

t3 (Γ#Γ′) =(∂2{m,nm′}−1mnm′, nn′)

=((mnm′(m)−1(∂1m(nm′)−1))−1mnm′, nn′) (∵ PL1)

=(∂1m(nm′)mnm′−1
m−1mnm′, nn′)

=(∂1m(nm′)m,nn′)

=

[
Γ

Γ′

]
Thus, we can say that the interchange 3-cell Γ#Γ′ is a 3-cell from [ Γ′

Γ ] to [ Γ Γ′ ] in A3.
We can represent the interchange 3-cell by the following diagram,

∗ [ Γ′
Γ ] [Γ Γ′ ] ∗

nn′

∂1mn∂1m′n′

Γ#Γ′Γ#Γ′

where

s2(Γ#Γ′) = nn′ = s2(Γ)s2(Γ
′) and t2(Γ#Γ′) = ∂1mn∂1m

′n′ = t2(Γ)t2(Γ
′).
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3.15. 2-functoriality. Consider the 2-cells Γ1 = (m,n), Γ2 = (∂2lm, n), Γ
′
1 = (m′, n′)

and Γ′
2 = (∂2l

′m′, n′) and 3-cells J = (l,m, n) and J ′ = (l′,m′, n′) with

Γ1 = s3(J)
J // t3(J) = Γ2 and Γ′

1 = s3(J
′) J ′

// t3(J
′) = Γ′

2 .

We know that[
Γ′
1

Γ1

]
= mnm′, nn′ and

[
Γ1

Γ′
1

]
= (∂1m(nm′)m,nn′)

and [
Γ′
2

Γ2

]
= (∂2lm

n(∂2l
′m′), nn′) and

[
Γ2

Γ′
2

]
= (∂1mn(∂2l

′m′)∂2lm, nn
′).

Our aim is to show the following equality:[
J

J ′

]
#3(Γ1#Γ′

1) = (Γ2#Γ′
2)#3

[
J ′

J

]
.

On the left side of the equality, we have already[
J

J ′

]
= (∂1mn(l′l{∂2l−1,m′}),∂1mn (m′)m,nn′).

and
Γ1#Γ′

1 = (m,n)#(m′, n′) = ({m,nm′}−1,mnm′, nn′).

Since t3(Γ1#Γ′
1) =

[
Γ1

Γ′
1

]
= s3 ([ J J ′ ]), we obtain[

J
J ′

]
#3(Γ1#Γ′

1) =(∂1mn(l′l{∂2l−1,m′}),∂1mn (m′)m,nn′)#3({m,nm′}−1,mnm′, nn′)

=(∂1mn(l′l{∂2l−1,m′}){m,nm′}−1︸ ︷︷ ︸
A

,mnm′, nn′)

where

s3

([
J

J ′

]
#3(Γ1#Γ′

1)

)
=

[
Γ′
1

Γ1

]
and t3

([
J

J ′

]
#3(Γ1#Γ′

1)

)
=

[
Γ2

Γ′
2

]
.

On the right side, we have already[
J ′

J

]
= (ln(l′){∂2(n(l′))−1,m},mn(m′), nn′)

and

Γ2#Γ′
2 = (∂2lm, n)#(∂2l

′m′, n′) = ({∂2lm,n (∂2l′m′)}−1, ∂2lm
n(∂2l

′m′), nn′).
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Since, s3(Γ2#Γ′
2) =

[
Γ′
2

Γ2

]
= t3 ([ J ′

J ]), we obtain

(Γ2#Γ′
2)#3

[
J ′

J

]
= ({∂2lm,n (∂2l′m′)}−1, ∂2lm

n(∂2l
′m′), nn′)#3(l

n(l′){∂2(n(l′))−1,m},mn(m′), nn′)

= ({∂2lm,n (∂2l′m′)}−1ln(l′){∂2(n(l′))−1,m}︸ ︷︷ ︸
B

,mn(m′), nn′)

where

s3

(
(Γ2#Γ′

2)#3

[
J ′

J

])
=

[
Γ′
1

Γ1

]
and t3

(
(Γ2#Γ′

2)#3

[
J ′

J

])
=

[
Γ2

Γ′
2

]
.
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To prove the necessary equality for this axiom, we must show that A = B. Using the
Peiffer lifting axioms, we have

B =({∂2lm,n (∂2l′m′)}−1ln(l′){∂2(n(l′))−1,m})
= ({∂2lm, ∂2(n(l′))nm′}−1)ln(l′){∂2(n(l′))−1,m})

=
((

{∂2lm, ∂2(n(l′))}
∂1∂2lm(∂2(n(l′)))({∂2lm,nm′})

)−1

ln(l′){∂2(n(l′))−1,m}
)

=
((

{∂2lm, ∂2(n(l′))}∂2(
∂1m((n(l′))))({∂2lm,nm′})

)−1

ln(l′){∂2(n(l′))−1,m}
)

=
((

{∂2lm, ∂2(n(l′))}∂1mn(l′){∂2lm,nm′}(∂1mn(l′))−1
)−1

ln(l′){∂2(n(l′))−1,m}
)

=
((

∂2l({m, ∂2(n(l′))}){∂2l,∂1m (∂2(
n(l′)))}∂1mn(l′){∂2lm,nm′}(∂1mn(l′))−1

)−1
ln(l′){∂2(n(l′))−1,m}

)
=
((

∂2l
(
mnl′(∂1mnl′)−1

)
{∂2l, ∂2(∂1mn(l′))}∂1mn(l′){∂2lm,nm′}(∂1mn(l′))−1

)−1
ln(l′){∂2(n(l′))−1,m}

)
=
((

∂2l
(
mnl′(∂1mnl′)−1

)
[l,∂1mn (l′)]∂1mn(l′){∂2lm,nm′}(∂1mn(l′))−1

)−1
ln(l′){∂2(n(l′))−1,m}

)
=
(
l(mnl′(∂1mnl′)−1)l−1l∂1mn(l′)l−1(∂1mn(l′))−1∂1mn(l′){∂2lm,nm′}(∂1mn(l′))−1

)−1

ln(l′){∂2(n(l′))−1,m})

=
((
lmnl′l−1{∂2lm,nm′}(∂1mn(l′))−1

)−1
ln(l′){∂2(n(l′))−1,m}

)
=
((
lmnl′l−1∂2l({m,nm′}){∂2l,∂1mn (m′)}(∂1mn(l′))−1

)−1
ln(l′){∂2(n(l′))−1,m}

)
=
((
lmnl′l−1l({m,nm′})l−1l(

∂1mn(m′)l−1)(∂1mn(l′))−1

)−1

ln(l′){∂2(n(l′))−1,m}
)

=
((
lmnl′({m,nm′})(∂1mn(m′)l−1)(∂1mn(l′))−1

)−1

ln(l′)(n(l′))−1(mn(l′))
)

=
(
∂1mn(l′))(

∂1mn(m′)l)({m,nm′})−1
(mnl′)−1l−1ln(l′)(n(l′))−1(mn(l′))

)
=
(
∂1mn(l′))(

∂1mn(m′)l)({m,nm′})−1
)

=
(
∂1mn(l′m

′
l)({m,nm′})−1

)
=
(
∂1mn(l′l{∂2l−1,m′})({m,nm′})−1

)
=A

and thus, we obtain [
J

J ′

]
#3(Γ1#Γ′

1) = (Γ2#Γ′
2)#3

[
J ′

J

]
.

3.16. 1-functoriality. For the 2-cells Γ = (m,n) , Γ′ = (m′, ∂1mn) and Γ′′ = (m′′, n′′)
given by the following diagrams;

n
(m,n) +3 ∂1mn

(m′,∂1mn) +3 ∂1m
′∂1mn and n′′ (m′′,n′′) +3 ∂1m

′′n′′
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by taking γ = n , γ′′ = n′′ , ϕ = ∂1mn , ϕ′′ = ∂1m
′′n′′ , ψ = ∂1m

′∂1mn, first we must show
that [

Γ♮1γ
′′

Γ′#Γ′′

]
#3

[
Γ#Γ′′

Γ′♮1ϕ
′′

]
=

[
Γ
Γ′

]
#Γ′′.

On the left side, we have already

Γ#Γ′′ = ({m,nm′′}−1,mnm′′, nn′′)

and
Γ′♮1ϕ

′′ = Γ′♮1∂1m
′′n′′ = (m′, ∂1mn)♮1(∂1m

′′n′′) = (m′, ∂1mn∂1m
′′n′′)

and so, we have [
Γ#Γ′′

Γ′♮1ϕ
′′

]
=(Γ′♮1ϕ

′′)♮2(Γ#Γ′′)

=(m′, ∂1mn∂1m
′′n′′)♮2({m,nm′′}−1,mnm′′, nn′′)

=(m
′
({m,nm′′}−1),m′mnm′′, nn′′).

Similarly, we have

Γ′#Γ′′ = (m′, ∂1mn)#(m′′, n′′) = ({m′,∂1mnm′′}−1,m′(∂1mnm′′), ∂1mnn
′′)

and Γ♮1γ
′′ = (m,n)♮1n

′′ = (m,nn′′) and so, we have[
Γ♮1γ

′′

Γ′#Γ′′

]
=(Γ′#Γ′′)♮2(Γ♮1γ

′′)

=({m′,∂1mnm′′}−1,m′(∂1mnm′′), ∂1mnn
′′)♮2(m,nn

′′)

=({m′,∂1mnm′′}−1,m′(∂1mnm′′)m,nn′).

Since

s3

([
Γ♮1γ

′′

Γ′#Γ′′

])
= t3

([
Γ#Γ′′

Γ′♮1ϕ
′′

])
,

we obtain,[
Γ♮1γ

′′

Γ′#Γ′′

]
#3

[
Γ#Γ′′

Γ′♮1ϕ
′′

]
= ({m′,∂1mn (m′′)}−1(m

′
({m,nm′′}−1)),m′mnm′′, nn′′).

On the right side, we have already[
Γ
Γ′

]
= (m′, ∂1mn)#2(m,n) = (m′m,n)

and [
Γ
Γ′

]
#Γ′′ = (m′m,n)#(m′′, n′′) = ({m′m,nm′′}−1,m′mnm′′, nn′′)
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where

{m′m,nm′′}−1 =
(
m′
({m,nm′′}){m′,∂1mn (m′′)}

)−1

(∵ PL4(ii))

={m′,∂1mn (m′′)}−1(m
′
({m,nm′′})−1).

Consequently,[
Γ
Γ′

]
#Γ′′ =({m′,∂1mn (m′′)}−1(m

′
({m,nm′′}−1)),m′mnm′′, nn′′)

=

[
Γ♮1γ

′′

Γ′#Γ′′

]
#3

[
Γ#Γ′′

Γ′♮1ϕ
′′

]
Now, for the same 2-cells, we must show that[

Γ′′#Γ
ϕ′′♮1Γ

′

]
#3

[
γ′′♮1Γ
Γ′′#Γ′

]
= Γ′′#

[
Γ
Γ′

]
.

On the left side, we have already

γ′′♮1Γ = n′′♮1(m,n) = (n
′′
m,n′′n)

and
Γ′′#Γ′ = (m′′, n′′)#(m′, ∂1mn) = ({m′′,n

′′
m′}−1,m′′(n

′′
m′), n′′∂1mn)

and so, [
γ′′♮1Γ
Γ′′#Γ′

]
=(Γ′′#Γ′)♮2(γ

′′♮1Γ)

=({m′′,n
′′
m′}−1,m′′(n

′′
m′)(n

′′
m), n′′n).

Similarly,
Γ′′#Γ = (m′′, n′′)#(m,n) = ({m′′,n

′′
m}−1,m′′(n

′′
m), n′′n)

and
ϕ′′♮1Γ

′ = ∂1m
′′n′′♮1(m

′, ∂1mn) = (∂1m
′′n′′

(m′), ∂1m
′′n′′∂1mn)

so, we obtain[
Γ′′#Γ
ϕ′′♮1Γ

′

]
=(ϕ′′♮1Γ

′)♮2(Γ
′′#Γ)

=(∂1m
′′n′′

(m′), ∂1m
′′n′′∂1mn)♮2({m′′,n

′′
m}−1,m′′(n

′′
m), n′′n)

=(
∂1m

′′n′′
(m′)({m′′,n

′′
m}−1),∂1m

′′n′′
(m′)m′′(n

′′
m), n′′n).

Therefore, we obtain[
Γ′′#Γ
ϕ′′♮1Γ

′

]
#3

[
γ′′♮1Γ
Γ′′#Γ′

]
= (

∂1m
′′n′′

(m′)({m′′,n
′′
m}−1){m′′,n

′′
m′}−1︸ ︷︷ ︸

A

,m′′(n
′′
(m′m)), n′′n).
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On the right side, we have already[
Γ
Γ′

]
= (m′, ∂1mn)#2(m,n) = (m′m,n)

and

Γ′′#

[
Γ
Γ′

]
= (m′′, n′′)#(m′m,n) = ({m′′,n

′′
(m′m)}−1,m′′(n

′′
(m′m)), n′′n)

where (
{m′′,n

′′
(m′m)}

)−1

=
(
{m′′,n

′′
(m′)n

′′
(m))}

)−1

=
(
{m′′,n

′′
m′}∂1m

′′n′′
(m′){m′′,n

′′
m}

)−1

(∵ PL4(i))

=
(

∂1m
′′n′′

(m′)({m′′,n
′′
m}−1){m′′,n

′′
m′}−1

)
=A.

Consequently, we obtain [
Γ′′#Γ
ϕ′′♮1Γ

′

]
#3

[
γ′′♮1Γ
Γ′′#Γ′

]
= Γ′′#

[
Γ
Γ′

]
.

Therefore, we have verified all Gray 3-group axioms, so this is functorial and hence defines a
functor from the category of 2-crossed modules of groups to the category of Gray 3-groups:

Θ : X2Mod −→ Gray.

4. From Gray 3-groups to 2-crossed modules

Let A∗ be a Gray 3-group shown as

A∗ :=

A3

s3,t3

��

s2,t2

��

��
∗

A2 s2,t2
//

99

A1.

ff

We will construct a 2-crossed module L∗ ∂2 //M∗ ∂1 // N with the Peiffer lifting map

{−,−}∗ :M∗ ×M∗ −→ L∗. Since A1

s1,t1 //// ∗
e1
oo is a totally disconnected groupoid, it can be

regarded as a group and so we can take A1 = N. We know that A2

s2,t2 // // A1
e2
oo is a groupoid
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together with the operation #2 of 2-cells. Define a set in A2 by M∗ = {Γ ∈ A2 : s2(Γ) =
1N}. In this case, any element of M∗ is given by the form Γ : 1N ⇒ n as a 2-cell in A∗.
The set M∗ is a group with the operation given by

ΓΓ′ =

[
Γ′

Γ

]
= (Γ♮1t2(Γ

′))#2Γ
′ = (Γ♮1n

′)#2Γ
′

for Γ : 1N ⇒ n and Γ′ : 1N ⇒ n′ in M∗ with s2(Γ) = s2(Γ
′) = 1N . Firstly, we show that

M∗ is a group together with this operation. For any elements Γ : 1N ⇒ n, Γ′ : 1N ⇒ n′

and Γ′′ : 1N ⇒ n′′ in M∗, we have;

(ΓΓ′)Γ′′ =((ΓΓ′)♮1t2(Γ
′′))#2Γ

′′

=(((Γ♮1t2(Γ
′))#2Γ

′)♮1t2(Γ
′′))#2Γ

′′

=(Γ♮1t2(Γ
′)♮1t2(Γ

′′))#2((Γ
′♮1t2(Γ

′′))#2Γ
′′)

=(Γ♮1t2(Γ
′Γ′′))#2((Γ

′♮1t2(Γ
′′))#2Γ

′′)

=(Γ♮1t2(Γ
′Γ′′))#2(Γ

′Γ′′)

=Γ(Γ′Γ′′)

and also, Γ−1 : 1N ⇒ n−1 and e2(1A1) is an identity element in M∗. So we have

ΓΓ−1 = (Γ♮1t2(Γ
−1))#2Γ

−1 = e2(1A1) and Γ−1Γ = (Γ−1♮1t2(Γ))#2Γ = e2(1A1).

Therefore, M∗ is a group with the operation given above. Moreover,

(Γ−1)♮1n = (Γ)−1#2 and ((Γ)−1#2 )♮1n
−1 = Γ−1.

Since t2|M∗(ΓΓ′) = nn′ = t2|M∗(Γ)t2|M∗(Γ′) for Γ,Γ′ ∈ M∗, the map ∂1 = t2|M∗ is a
homomorphism of groups. The action of element p ∈ N on Γ : 1N ⇒ n ∈ M∗ is given by
pΓ = p♮1Γ♮1p

−1. For this action, we have

∂1(
pΓ) = t2|M(pΓ) = pnp−1 = pt2|M∗(Γ)p−1 = p∂1(Γ)p

−1

and so ∂1 is a pre-crossed module.

We know that A3

s2,t2 //// A1
e2
oo is a groupoid with the 1-vertical composition #1 of 3-cells.

Define a set in A3 by A
∗
3 = {J ∈ A3 : s2(J) = 1N}. For this description, any element in A∗

3

can be illustrated by the picture 1N n.JJ

Γ

t3(J)

An action of (Γ : 1N ⇒ n) ∈M∗ on J := 1N n′JJ

Γ′

t3(J)

in A∗
3 is given by

ΓJ = (Γ♮1n
′n−1)♮2(J♮1n

−1)♮2Γ
−1.
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This action can be represented pictorially as

1N n−1 n′n−1 nn′n−1J♮1n−1J♮1n−1Γ−1

Γ′♮1n−1

t3(J)♮1n−1

Γ♮1n′n−1

:= 1N nn′n−1ΓJΓJ

(Γ♮1n′n−1)#2(Γ′♮1n−1)#2Γ−1

(Γ♮1n′n−1)#2(t3(J)♮1n−1)#2Γ−1

where

t3(
ΓJ) =(Γ♮1n

′n−1)#2(t3(J)♮1n
−1)#2Γ

−1

=((Γ♮1n
′)#2t3(J))♮1n

−1#2Γ
−1

=Γt3(J)Γ
−1

and t2(
ΓJ) = nn′n−1 = t2(Γ)t2(J)t2(Γ)

−1. For this definition A∗
3 is a group with the opera-

tion by

JJ ′ =

[
J ′

J

]
= (J♮1t2(J

′))#1J
′ = (J♮1n

′)#1J
′

for any J, J ′ ∈ A∗
3. This operation can be represented by the following diagram

JJ ′ := 1N nn′JJ ′JJ ′

(Γ♮1n′)#2Γ′

(t3(J)♮1n′)#2t3(J ′)

:= 1N nn′.JJ ′JJ ′

ΓΓ′

t3(J)t3(J ′)

For this operation, the inverse J−1 of J is given by

J−1 := 1N n−1.J−1J−1

Γ−1

t3(J)−1

Define a set in A∗
3 by L∗ = A3

∗(1A1) = {J ∈ A3
∗ : s3(J) = e2(1A1) and s2(J) = t2(J) =

1A1}. For this description, any element in L∗ is given by the form 1A1
1A1

.JJ

e2(1A1
)

t3(J)

The

group operation in L∗ is given by

JJ ′ =

[
J ′

J

]
= (J♮1t2(J

′))#1J
′ = (J♮11A1)#1J

′ = J#1J
′.
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The map ∂2 : L∗ → M∗ is given by the restriction of t3 to L∗. Since t3|L∗(JJ ′) =
t3|L∗(J)t3|L∗(J ′) for J, J ′ ∈ L∗, ∂2 is a homomorphism of groups. The action of Γ : 1N ⇒ n
on J ∈ L∗ is given by: ΓJ = (Γ♮1n

−1)♮2(J♮1n
−1)♮2Γ

−1 and we can show it pictorially by

ΓJ := 1N 1N .ΓJΓJ

e2(1A1
)

Γt3(J)Γ−1

For this action, we have

t3(J)J ′ := 1N 1Nt3(J)J ′t3(J)J ′

t3(J)#2e2(1A1
)#2t3(J)−1

t3(J)t3(J ′)t3(J)−1

:= 1N 1Nt3(J)J ′t3(J)J ′

e2(1A1
)

t3(J)t3(J ′)t3(J)−1

On the other hand, we have

JJ ′J−1 := 1N 1NJJ ′J−1JJ ′J−1

e2(1A1
)

t3(J)t3(J ′)t3(J)−1

Therefore, we have ∂2(
ΓJ) = Γ∂2(J)Γ

−1 and ∂2(J)J ′ = JJ ′J−1 and so, ∂2 is a crossed

module. Since ∂1∂2(J) = t2(t3(J)) = 1N for all J ∈ L∗, the diagram L∗ ∂2 //M∗ ∂1 // N
is a complex of groups.

We can define the Peiffer Lifting {−,−}∗ :M∗ ×M∗ → L∗ by

{Γ,Γ′}∗ =
[

e3 (s3((Γ#Γ′)−1#3 ))−1

(Γ#Γ′)−1#3

]
.

For Γ : 1N ⇒ n and Γ′ : 1N ⇒ n′ in M∗, we have

∂2{Γ,Γ′}∗ =
[

(s3((Γ#Γ′)−1#3 ))−1

t3(Γ#Γ′)−1#3

]
where

(s3((Γ#Γ′)−1#3 ))
−1

= ((n♮1Γ
′)#2Γ)

−1 and t3(Γ#Γ′)−1#3 = (Γ♮1n
′)#2Γ

′

and
((n♮1Γ

′)#2Γ)
−1 = (((n♮1Γ

′)#2Γ)
−1#2 )♮1(n

′)−1n−1.



1584 MURAT SARIKAYA AND ERDAL ULUALAN

So, we have

∂2{Γ,Γ′}∗ =((Γ♮1n
′)#2Γ

′)((n♮1Γ
′)#2Γ)

−1

=(((Γ♮1n
′)#2Γ

′)♮1(n
′)−1n−1)#2((((n♮1Γ

′)#2Γ)
−1#2 )♮1(n

′)−1n−1)

=((ΓΓ′)♮1(n
′)−1n−1)#2((Γ)

−1#2 ♮1(n
′)−1n−1)#2(n♮1(Γ

′)−1#2 ♮1(n
′)−1n−1)

=((ΓΓ′)♮1(n
′)−1n−1)#2(((Γ)

−1♮1n)♮1(n
′)−1n−1)#2(n♮1(Γ

′)−1♮1n
−1)

=((ΓΓ′)♮1(n
′)−1n−1)#2((Γ)

−1♮1n(n
′)−1n−1)#2(

t2(Γ)(Γ′)−1)

=((ΓΓ′)♮1(n
′)−1n−1)#2((Γ)

−1(t2(Γ)(Γ′)−1))

=ΓΓ′(Γ)−1(∂1(Γ)(Γ′)−1)

and clearly this is the first axiom of Peiffer Lifting.
Now, we show that {t3(J),Γ}∗ = JΓ(J)−1. We know that

{t3(J),Γ}∗ =
[

e3 (s3((t3(J)#Γ)−1#3 ))−1

(t3(J)#Γ)−1#3

]
where

t3(J)#Γ := 1N nt3(J)#Γt3(J)#Γ

(t3(J)♮1n)#2Γ

Γ#2t3(J)

and (t3(J)#Γ)−1#3 := 1N n(t3(J)#Γ)
−1#3(t3(J)#Γ)
−1#3

Γ#2t3(J)

(t3(J)♮1n)#2Γ

On the other hand, we have

(s3((t3(J)#Γ)−1#3 )) = Γ#2t3(J) and (s3((t3(J)#Γ)−1#3 ))−1 = (Γ#2t3(J))
−1

where
(Γ#2t3(J))

−1 = ((t3(J)
−1#2 )♮1n

−1)#2(((Γ)
−1#2 )♮1n

−1) : 1N ⇒ n−1.

We have also

((t3(J)#Γ)−1#3 )♮1n
−1 = J#1e3(Γ♮1n

−1)#1(J♮1n
−1)#1(e3(t3(J))♮1n

−1).

Thus, we have

{t3(J),Γ}∗ =
[

e3 (((t3(J)
−1#2 )♮1n

−1)#2(((Γ)
−1#2 )♮1n

−1))
(t3(J)#Γ)−1#3

]
=(((t3(J)#Γ)−1#3 )♮1n

−1)#1e3 (((t3(J)
−1#2 )♮1n

−1)#2(((Γ)
−1#2 )♮1n

−1))

=(((t3(J)#Γ)−1#3 )♮1n
−1)#1e3((t3(J)

−1#2 )♮1n
−1)#1e3(((Γ)

−1#2 )♮1n
−1)

=J#1e3(Γ♮1n
−1)#1(J

−1♮1n
−1)#1e3(t3(J)♮1n

−1)#1e3((t3(J)
−1#2 )♮1n

−1)#1

e3(((Γ)
−1#2 )♮1n

−1)

=J#1e3(Γ♮1n
−1)#1(J

−1♮1n
−1)#1e3(Γ

−1)

=J#1 ((Γ♮1n
−1)♮2(J

−1♮1n
−1)♮2Γ

−1)

=JΓ(J)−1
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and thus the second axiom of the Peiffer Lifting is satisfied. Using the 1-and 2-functorialities,
the other Peiffer lifting axioms can be shown similarly.

Therefore, we have defined a functor from the category of Gray 3-groups to that of
2-crossed modules denoted by ∆ : Gray −→ X2Mod.

5. The equivalence between X2Mod and Gray

In the previous sections, we obtained functors between the categories of 2-crossed modules
and Gray 3-groups: Θ : X2Mod −→ Gray and ∆ : Gray −→ X2Mod. We will prove
that X2Mod is equivalent to Gray.

Let L : L
∂2 //M

∂1 // N be a 2-crossed module with the Peiffer lifting {−,−} :
M ×M → L in X2Mod. If we apply the functor Θ to this 2-crossed module, we obtained
the following Gray 3-group:

Θ(L) :=

L⋊M ⋊N

s3,t3

{{

s2,t2

!!

��
∗

M ⋊N
s2,t2

//

55

N

hh

Now we apply the functor ∆ to this Gray 3-group Θ(L).We will obtain a 2-crossed module
which is isomorphic to L in each step. We know that in Θ(L), the 1-cells are the elements
of N and 2-cells are given by the form (m,n) : n⇒ ∂1mn. Then;

M∗ = A2
∗ = {(m,n) : s2(m,n) = 1N} = {(m, 1) : m ∈M} ∼= M.

Similarly,

A3
∗ = {(l,m, n) : s2(l,m, n) = n = 1N} = {(l,m, 1) : l ∈ L,m ∈M}

and so we have,

L∗ = {(l,m, 1) : s3(l,m, 1) = (m, 1) = e2(1N) = (1M , 1N)} = {(l, 1, 1) : l ∈ L} ∼= L.

We know that for any 2-cells Γ = (m, 1) : 1N ⇒ ∂1m = n, Γ′ = (m′, 1) : 1 ⇒ ∂1m
′ = n′ in

M∗, the group operation in M∗ is given by,

ΓΓ′ = (m, 1)(m′, 1) =
[

(m′,1)
(m,1)

]
= (m, ∂1m

′)#2(m
′, 1) = (mm′, 1)
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and the group operation in L∗ is given by JJ ′ = (l, 1, 1)(l′, 1, 1) = (ll′, 1, 1). For these
elements, the Peiffer Lifting is

{Γ,Γ′}∗ =
[

e3 (s3((Γ#Γ′)−1#3 ))−1

(Γ#Γ′)−1#3

]
=

[
e3(s3({m,m′}−1,mm′, 1)−1#3 )−1

({m,m′}−1,mm′, 1)−1#3

]
=

[
e3(∂2{m,m′}−1mm′, 1)−1)

({m,m′}, ∂2{m,m′}−1mm′, 1)

]
=

[
(1, (m−1)∂1m(m′), 1)

({m,m′}, ∂1m(m′)m, 1)

]
=({m,m′}, 1, 1)

where {−,−} is the Peiffer lifting of the 2-crossed module L. Thus, we have ∆Θ(L) ∼= L.
Let A∗ be any Gray 3-group. If we apply the functor ∆ to A∗, we obtained a 2-crossed

module as L∗ ∂2 //M∗ ∂1 // N with the Peiffer lifting map {−,−}∗ :M∗×M∗ → L∗ given
above. If we apply the functor Θ to this 2-crossed module ∆(A∗), we have Θ∆(A1) = N

and since ∆( A2

s2,t2 // // A1
e2
oo ) = M∗ ∂1 // N , by applying the functor Θ, we have

Θ(M∗ ∂1 // N ) := M∗ ⋊N
s2,t2 //// N
e2
oo

where s2(Γ, n) = n and t2(Γ, n) = t2(Γ)♮1n with Γ : 1 ⇒ n′ in M∗. We must show that
(M∗ ⋊N ⇒ N) ∼= (A2 ⇒ A1). Define a groupoid morphism

η :

A2
η1 //

t2
��

s2
��

M∗ ⋊N

t2
��

s2
��

A1 η0=id
N

by η1(Γ) = (Γ#2e2s2Γ
−1, s2(Γ)) and η0 = id. In this case, we obtain s2(Γ#2e2s2Γ

−1, s2(Γ)) =
s2(Γ) and t2(Γ#2e2s2Γ

−1, s2(Γ)) = t2(Γ). Conversely, define a groupoid morphism

ψ :

M∗ ⋊N
ψ1 //

t2
��

s2
��

A2

t2
��

s2
��

N
Ψ0=id

A1

by ψ1(Γ, n) = Γ#2e2(n) where Γ : 1 ⇒ n′ in M∗. Therefore, for all Γ ∈ A2, we have

ψ1 ◦ η1(Γ) = ψ1(Γ#2e2s2Γ
−1, s2(Γ)) = Γ#2e2s2Γ

−1#2e2s2Γ = Γ
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and for all (Γ, n) ∈M∗ ⋊N with Γ : 1 ⇒ n′, we have

η1 ◦ ψ1(Γ, n) =η1(Γ#2e2(n))

=(Γ#2e2(n)#2e2s2(Γ#2e2n)
−1, s2(Γ#2e2(n)))

=(Γ#2e2(n)#2e2(n)
−1, n) (∵ s2(Γ) = 1)

=(Γ, n).

Thus, we have (A2 ⇒ A1) ∼= (M∗ ⋊N ⇒ N). Now, we must show that

(A3 ⇒ A2) ∼= (L∗ ⋊M∗ ⋊N ⇒M∗ ⋊N).

Define a groupoid morphism

β :

A3
β1 //

t3
��

s3
��

L∗ ⋊M∗ ⋊N

t3
��

s3
��

A2 β0
//M∗ ⋊N

by β1(J) = (J#1e3s3J
−1, s3(J)♮1t2(J)

−1, t2(J)) and β0(Γ) = η1(Γ). Then, by taking J =
(l,m, n), we can check that by

β1(J) =(J#1e3s3J
−1, s3(J)♮1t2(J)

−1, t2(J))

=((l,m, n)#1(1,
n−1

m−1, n−1), (m,n)♮1n
−1, n)

=((l, 1, 1), (m, 1), n) ∈ L∗ ⋊M∗ ⋊N.

Conversely, define a groupoid morphism

α :

L∗ ⋊M∗ ⋊N
α1 //

t3
��

s3
��

A3

t3
��

s3
��

M∗ ⋊N α0

// A2

by α1(J,Γ, n) = J#1e3(Γ)#1e3(n) and α0(Γ, n) = ψ1(Γ, n) where s3(J) = e2(1A1), Γ : 1 ⇒
n′. In this case, by taking J = (l, 1, 1) ∈ L∗,Γ = (m, 1) ∈ M∗ and n ∈ N we can check it
by

α1(J,Γ, n) = (l, 1, 1)#1e3(m, 1)#1(1, 1,m) = (l, 1, 1)#1(1,m, 1)#1(1, 1, n) = (l,m, n).

On the other hand, for all J ∈ A3, we have

α1 ◦ β1(J) =α1(J#1(e3s3J)
−1, s3(J)♮1t2(J)

−1, t2(J))

=J#1e3s3J
−1#1e3(s3J♮1t2(J)

−1)♮1e3t2(J)

=J#e3s3J
−1#1e3s3J#1e3t2(J)

−1#1e3t2(J)

=J
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and similarly for all (J,Γ, n) ∈ L∗ ⋊M∗ ⋊N , we have

β1 ◦ α1(J,Γ, n) =β1(J#1e3Γ#1e3n)

=(J#1e3(Γ)#1e3(n)#1e3s3(J#1e3Γ#1e3(n))
−1,

s3(J#1e3Γ#e3n)♮1t2(J#1e3Γ#1e3n)
−1, t2(J#1e3Γ#e3n))

=(J#1e3(Γ)#1e3(n)#1e3n
−1#1e3Γ

−1, (Γ♮1n)♮1n
−1, n) (∵ s3(J) = e2(1A1))

=(J,Γ, n)

By taking J = (l, 1, 1) ∈ L∗, Γ = (m, 1) ∈M∗ and n ∈ N , we can check it by

β1 ◦ α1((l, 1, 1), (m, 1), n) =β1((l, 1, 1)#1e3(m, 1)#1e3(n))

=β1((l, 1, 1)#1(1,m, 1)#1(1, 1, n))

=β1(l,m, n)

=((l, 1, 1), (m, 1), n).

Therefore, we have; ( A3

s3,t3 // // A2
e3
oo ) ∼= (L∗ ⋊M∗ ⋊N ⇒M∗ ⋊N). Consequently, we obtain

that Θ∆(A∗) ∼= A∗ and ∆Θ(L) ∼= L. Thus, we get the following result.

5.1. Theorem. X2Mod is equivalent to Gray.

6. A linear representation of 2-crossed modules

A common approach to representations of groups is via modules over a group or an algebra
[12], [17]. Linear representations of a group G are in one-to-one correspondence with
modules over its group algebra, K(G), see [5], where K is the group algebra functor from
the category of groups to that of algebras. A linear representation of a cat1-group or
(indirectly) a crossed module has been obtained by Barker [5]. Barker’s result, of course,
was a 2-dimensional generalisation of a linear representation of groups. In [5], Barker has
proven that the category Ch1

K of chain complexes over vector spaces on a fixed field K is a
2-category. Using this result, a linear representation of a crossed module or equivalently of
a cat1-group C is a 2-functor C −→ Aut(δ) ⩽ Ch1

K , where Aut(δ) is a cat1-group obtained
from Ch1

K . The subcategory Aut(δ) is considered automorphism cat1-group. In Ch1
K , by

considering only the invertible chain maps over a fixed linear transformation δ : V1 −→ V0
of vector spaces, Aut(δ) has a 2-groupoid structure with a single object δ. In this section,
we will explain 2-dimensional version of these results for 2-crossed modules.

6.1. A Gray 3-group from chain complexes of length-2. Let K be a field and
Vi(i ∈ Z) be vector spaces over K. Consider the chain complexes of linear transformations

V := · · · Vn Vn−1 · · ·V1 V0 V−1 · · ·dn d1 d0
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A chain map between chain complexes V and V ′ ; F : V −→ V ′ consists of components
Fi : Vi −→ Vi

′ such that Fi−1di = di
′Fi for all i ∈ Z where each Fi is a linear transformation.

We can say that the following diagram is commutative.

· · · // Vn+1
dn+1 //

Fn+1

��

Vn
dn //

Fn

��

Vn−1
dn−1 //

Fn−1

��

· · ·

· · · // V ′
n+1 d′n+1

// V ′
n d′n

// // V ′
n−1 d′n−1

// · · ·

Let F : V −→ V ′ and G : V ′ −→ V ′′ be chain maps. The composition GF : V −→ V ′′ is
defined (GF )i = GiFi for all i, where GiFi is the usual composition of linear transforma-
tions.

Let F and G be chain maps from the chain complex V to the chain complex V ′. A
chain homotopy from F to G ; H : F ≃ G consists of a linear map H ′

n : Vn −→ V ′
n+1

satisfying the condition
Gn − Fn = d′n+1H

′
n +H ′

n−1dn

for each n ∈ Z.
The category of chain complexes will be shown byCh. Kamps and Porter in [22] showed

that Ch has a 2-groupoid enriched Gray category. We will consider in this section non-
negative chain complexes in which the subscripts are non-negative integers. Now, recall
from [1] and [22],the construction of a Gray category structure from the chain complexes
of length-2 of vector spaces. Suppose that

V := V2 V1 V0
δ2 δ1

is a chain complex of vector spaces of length-2. By considering all chain complexes of
length-2 as objects, we can create the category Ch2

K whose morphisms are chain maps
between chain complexes of length-2.

A chain map F = (F2, F1, F0) from V to V ′ is given by following commutative diagram:

V2
δ2 //

F2

��

V1
δ1 //

F1

��

V0

F0

��
V ′
2 δ′2

// V ′
1 δ′1

// V ′
0

where Fi is a linear transformation for i = 0, 1, 2.
Thus, we can consider the chain maps F := (F2, F1, F0) as 1-cells for Ch2

K . Now
suppose that F and G are chain maps between the chain complexes of length-2 V and V ′.
A 1-homotopy (H,F ) := ((H ′

1, H
′
2), F ) from F to G with the chain homotopy components
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H ′
1, H

′
2 can be represented pictorially as

V2
δ2 //

G2

��

F2

��

V1

H′
2

��

δ1 //

G1

��

F1

��

V0

H′
1

��

G0

��

F0

��
V ′
2 δ′2

// V ′
1 δ′1

//// V ′
0

For the homotopy components H ′
1 and H ′

2 the following conditions are satisfied.

1. δ′1H
′
1 = G0 − F0,

2. H ′
1δ1 + δ′2H

′
2 = G1 − F1,

3. H ′
2δ2 = G2 − F2.

Thus, we can consider the 1-homotopies (H,F ) from F to G as 2-cells for Ch2
K . Now,

we briefly describe a 3-cell for Ch2
K , using the definition of a 2-homotopy between 1-

homotopies given in [1]. Suppose that (H,F ) := (H ′
1, H

′
2, F ) and (K,F ) := (K ′

1, K
′
2, F )

are 1-homotopies from F to G. A 2-homotopy from (H,F ) to (K,F ) is given by a triple
α := (α′, H, F ) where α′ : V0 → V ′

2 is the homotopy component linear map satisfying the
conditions; δ′2α

′ = K ′
1 −H ′

1 and α′δ1 = K ′
2 −H ′

2. Therefore, we can represent the cells in
Ch2

K pictorially as

V V′(H,F ) (K,F )

F

G

(α′,H,F )(α′,H,F )

Now, we give the source and target maps. For any 3-cell (α′, H, F ) these maps are given
by

s3(α
′, H, F ) = (H,F ) , s2(α

′, H, F ) = F and s1(α
′, H, F ) = V .

and similarly

t3(α
′, H, F ) = (K,F ) , t2(α

′, H, F ) = G and t1(α
′, H, F ) = V ′.

We will give the definitions of vertical and horizontal compositions of 2-cells and 3-cells.
The 2-vertical composition of α := (α′, H, F ) and β := (β′, K, F ) is defined by[

α
β

]
= β#3α := (β′ + α′, H, F )

where t3(α) = s3(β), that is K
′
1 = H ′

1 + δ′2α
′ and K ′

2 = H2 + α′δ1.
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For any 2-cells, (H,F ) : F =⇒ G and (K,G) : G =⇒ T , the vertical composition #2 is
given by K#2H : F =⇒ T where the chain homotopy component is (K#2H)′ = K ′ +H ′

with K ′ = (K ′
1, K

′
2) and H ′ = (H ′

1, H
′
2). For any 1-cell F ′ : V → V ′ and a 2-cell (K,G),

the right whiskering of F ′ on (K,G) is given by (K,G)♮1F
′ = (K ′

1F
′
0, K

′
2F

′
1, GF

′) where
(K,G) : G =⇒ G′ is a 1-homotopy. Similarly, the left whiskering of a 1-cell G : V ′ → V ′′

on a 2-cell (H,F ) : F =⇒ F ′ : V → V ′ is given by G♮1(H,F ) = (G1H
′
1, G2H

′
2, GF ).

The horizontal compositions of 2-cells

Γ = (K,G) = ((K ′
1, K

′
2), (G2, G1, G0)) : G⇒ G′

and
Γ′ = (H,F ) = ((H ′

1, H
′
2), (F2, F1, F0)) : F ⇒ F ′

are given by [
Γ′

Γ

]
= (K ′

1F
′
0 +G1H

′
1, K

′
2F

′
1 +G2H

′
2, GF )

and [
Γ

Γ′

]
= (K ′

1F0 +G′
1H

′
1, K

′
2F1 +G′

2H
′
2, GF ).

For any 3-cells β := (β′, K,G) : (K,G) ⇛ (K ′, G) and α := (α′, H, F ) : (H,F ) ⇛ (H ′, F ),
the horizontal composition of α and β is given by[

β
α

]
= (G2α

′ + β′F ′
0, (K

′
1F

′
0 +G1H

′
1, K2F

′
1 +G2H

′
2), GF ).

Similarly, [ α β ] can be defined. The verification of Gray 3-group axioms for these structures,
can be found in [1] and [22]. Therefore, we can say thatCh2

K has a Gray category structure.

Suppose now that δ := V2 V1 V0
δ2 δ1 is a fixed chain complex of vector spaces

of length-2. The automorphism cat2-group (cf. [24]) as a Gray 3-groupoid with a single
object δ; Aut(δ) was defined by Al-Asady in [1]. This structure is a Gray 3-group and
consists of

1. Aut(δ)0 = {δ} as a set of 0-cells,

2. Aut(δ)1 is the chain automorphisms F : (F2, F1, F0) : δ =⇒ δ where each Fi is a
linear isomorphism from Vi to Vi,

3. Aut(δ)2 is the group of all 1-homotopies (H,F ) from F to G,

4. Aut(δ)3 is the group of all 2-homotopies (α′, H, F ) from (H,F ) to (K,F ).
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Thus, Aut(δ) can be considered as a Gray 3-group. Any 3-cell in Aut(δ) can be
represented pictorially as

δ δ(H,F ) (K,F )

F

G

αα

6.2. The linear representation defined. In section 5, we have established the equiv-
alence between the categories of Gray 3-groups and 2-crossed modules. We have, from a
2-crossed module

L := L
∂2 //M

∂1 // N

a Gray 3-group;

Θ(L) := A∗ =



A0 = {∗} and A1 = N,

(A2

s2,t2 // // A1)
e2
oo = (M ⋊N

s,t //// N)
e

oo ,

(A3

s3,t3 //// A2)
e3
oo = (L⋊M ⋊N

s,t // //M ⋊N)
e

oo

and this may be thought of as a graded set with 4 non-empty levels, the lowest of which is
a singleton and various graded maps. Thus, we may look for a linear representation of a
2-crossed module or its associated Gray 3-group as a 3-functor Φ into a suitable 3-category
taking elements of N to 1-cells, the elements of M ⋊ N to 2-cells and the elements of
L⋊M ⋊N to 3-cells, so as to preserve the structures. This suitable 3-category is Ch2

K .
For the 0-cell A0 = {∗}, we can define as(

Φ(∗) = δ
)
:=

(
V2 V1 V0

δ2 δ1
)

where δ is a chain complex of length-2 over vector spaces.
For any n ∈ N , as a 1-cell, we can define Φ(n) = Fi = (F2, F1, F0) as a chain map from

δ to δ. That is

(
∗ n // ∗

)
� Φ //


V2

δ2 //

F2

��

V1
δ1 //

F1

��

V0

F0

��
V2

δ2
// V1

δ1
// V0

 := δ
Φ(n)=F // δ

where Fi is a linear isomorphism of vector spaces for each i.
For any 2-cell (m,n) : n =⇒ ∂1mn inM⋊N , we can define (Φ(m,n) : Φ(n) =⇒ Φ(∂1mn)) :=

(F =⇒ G) as a 1-homotopy in Aut(δ).
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We can represent it pictorially as

 ∗ ∗(m,n)

n

∂1mn

 � Φ //


V2

δ2 //

G2

��

F2

��

V1

H′
2

~~

δ1 //

G1

��

F1

��

V0

H′
1

~~

G0

��

F0

��
V2

δ2
// V1

δ1
// // V0


:= δ δ(H,F )

F=Φ(n)

G=Φ(∂1mn)

For any 3-cell (l,m, n) : ((m,n) ⇛ (∂2lm, n) : n =⇒ ∂1mn) in L ⋊M ⋊ N , we can
define Φ(l,m, n) as a 2-homotopy from Φ(m,n) to Φ(∂2lm, n). We can picture it by

 n ∂1mn(l,m,n)(l,m,n)

(m,n)

(∂2lm,n)

 � Φ //


V2

δ2 //

G2

��

F2

��

V1

H′
2

~~

K′
2

~~

δ1 //

G1

��

F1

��

V0

α′

tt

H′
1

~~

K′
1

~~

G0

��

F0

��
V2

δ2
// V1

δ1
//// V0


:= δ δ.(H,F ) (K,F )

F

G

(α,H,F )(α,H,F )

Since a 2-crossed module L itself is not a category, we should not expect to construct a
direct definition of 2-crossed module representation functorially. But it was shown that
a 2-crossed module can be thought as a Gray 3-group. Thus, an important criterion
for a definition of a 2-crossed module representation is that it should be equivalent to a
representation of the corresponding Gray 3-group A∗ as defined above. Then a definition
of a linear representation of the 2-crossed module L would be to first pass to the associated
Gray 3-group Θ(L) := A∗ as suggested above and find a representation, which will give as
a mapping into the Gray 3-group Aut(δ) for our choice of δ, and then we could then pass
back to the associated 2-crossed module of Aut(δ). Therefore, we can give the following
result.

6.3. Proposition. A linear representation of the 2-crossed module L or associated Gray
3-group A∗ is a 3-functor

Φ : A∗ −→ Ch2
K

as defined above.

Therefore, the image of A∗ lies in Aut(δ), where δ is the chain complex of length-2.
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[14] D. Conduché. Modules croisés généralisés de longueur 2. Journal of Pure and Applied
Algebra, 34, 155-178, 1984.
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