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MONADIC FUNCTORS FORGETFUL OF (DIS)INHIBITED ACTIONS

ALEXANDRU CHIRVASITU

Abstract. We prove a number of results of the following common flavor: for a cat-
egory C of topological or uniform spaces with all manner of other properties of com-
mon interest (separation / completeness / compactness axioms), a group (or monoid)
G equipped with various types of topological structure (topologies, uniformities) and
the corresponding category CG of appropriately compatible G-flows in C, the forgetful
functor CG // C is monadic. In all cases of interest the domain category CG is also
cocomplete, so that results on adjunction lifts along monadic functors apply to provide
equivariant completion and/or compactification functors. This recovers, unifies and gen-
eralizes a number of such results in the literature due to de Vries, Mart’yanov and others
on existence of equivariant compactifications / completions and cocompleteness of flow
categories.

Introduction

The general theme underlying the sequel is that of equivariant topologically-flavored struc-
tures: topologies, quasi-topologies, uniformities and the like, and their behavior in the
presence of an action by a group (or more generally monoid) G. We refer to such a
structure as a G-flow in the relevant category (of topological spaces, etc.: Definition 2.1
makes this precise), with the understanding that the unqualified term does not entail any
default continuity assumptions on the map G ˆ X //X implementing the flow.

Universal compactifications of G-flows offer part of the motivation. Recall [13, §4.4.4]
that for any topological group G, the inclusion functor

continuous compact Hausdorff G-flows “: CpctG
ι T2

ãÝÝÑ TopG
ι :“ continuous G-flows

(0-1)
has a left adjoint (Notation 2.3 explains the left-hand ‘ι’ subscripts). In other words, the
full left-hand subcategory is reflective [8, Definition 3.5.2]), associating to G ˆ X // X
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the familiar universal G-equivariant compactification βGX of X ([18, §1], [5, 29, 30],
their many references, etc.). The inclusion (0-1) and its reflection moreover fit into a
richer picture: a G-action G ˆ X

Ź
ÝÑ X on X equips the latter with a uniform structure

[20, Definition 7.1] pX,UŹq defined as the finest among those satisfying the following
requirements:

• its induced topology on X is coarser than the original one;

• the uniformity is compatible with the action in the sense that elements of G send
entourages to entourages;

• and the action is in addition bounded with respect to the uniformity, in the sense of
[15, §2, p.276]:

@ entourage V Ď Y 2, D nbhd N Q 1 P G with tps Ź y, yq | s P N, y P Y u Ď V. (0-2)

The left adjoint βG to (0-1) then factors through the category unif of uniform spaces
(with uniformly continuous maps [20, Definition 7.7] as morphisms). The embedding

CpctT2 ãÝÝÑ Unif

obtained by equipping every compact Hausdorff space with its unique uniformity [20,
Proposition 8.20] compatible with its topology also has a left adjoint

Unif Q pX,Uq
β‚

ÞÝÝÝÝÝÑ βUX P CpctT2 ,

assigning to a uniform space pX,Uq its Samuel compactification βUX of [19, Theorem
II.32]. The equivariant compactification βGX is then nothing but βUŹ

X, equipped with
the natural G-action the latter inherits from X. Thus:

TopG
ι

UnifG
b

CpctG
ι T2

Unif
CpctT2

ŹÞÑUŹ β‚

βG

(0-3)

with forgetful unmarked downward arrows. The symbol UnifG
b stands for the category

of uniform spaces pY,Uq equipped with bounded G-flows G ˆ Y
Ź
ÝÑ Y (the EUnifG of

[30, Definition 3.2(2)], etc.). Indeed, to verify that βGX – βUŹ
X, note that

• the action of G travels to a continuous one on X topologized with its induced UŹ-
topology by the assumed coarseness of that topology;

• thence also to a continuous action on the Samuel compactification βUŹ
X by [18,

Proposition 2.2];
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• on the one hand the pullback of the unique [39, Theorem 36.19] compatible uni-
formity on βGX along X // βGX has the required properties, so the universality of βUŹ

provides an equivariant map βUŹ
X // βGX;

• and conversely, the universality of βG ensures the existence of an inverse βGX //βUŹ
X

for the map in the preceding item.

Given that the left adjoint to (0-1) is a G-equivariant version of the much more famil-
iar Stone-Čech compactification [8, Example 3.3.9.c], it seems reasonable to fit such left
adjunctions into a broader framework whereby the G-actions “come along for the ride”.
Formally, the observation is that in all instances discussed above (and more), equivariant
and “absolute” or “plain” compactifications are related through adjunction lifting [7, §4.5]
along monadic functors [7, Definition 4.4.1]; we elaborate below, after a brief reminder
([7, §§4.1, 4.2] or [6, §§3.1, 3.2] or [24, §§VI.1-3] for the standard theory, [16, §II] for the
enriched-category version, and so on).

• A monad (or triple) on a category C is an endofunctor C T
ÝÑ C equipped with natural

transformations

T ˝ T
µ

ÝÝÝÝÝÝÑ
associative

T and id
η

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ
unital with respect to µ

T.

In short: a monoid in the monoidal category of endofunctors of C with composition for
its monoidal structure.

• An algebra over a monad T (or T -algebra) is an object X P C equipped with a
morphism TX //X appropriately associative and unital with respect to µ and η.

T -algebras form Eilenberg-Moore category CT of T -algebras, equipped with a functor
CT fgt

ÝÝÑ C forgetting the algebra structure maps TX //X: [7, Definition 4.1.2] for plain
categories, or [16, §II.1, preceding Proposition II.1.1] for the enriched version.

• A functor C 1 // C is monadic (or tripleable) if it fits into a diagram

C 1

C
CT ,

»

fgt

commutative up to natural isomorphism.

The point now is that each square in the commutative functor diagram

CpctG
ι T2

UnifG
b TopG

ι

CpctT2 Unif Top

(0-4)

with forgetful downward arrows, and analogous squares involving “interpolating” cate-
gories such as TopT2 (Hausdorff spaces) and TopT

3 1
2

(Tychonoff spaces), fits into the
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framework of the adjunction lifting theorem [7, Theorem 4.5.6 and Exercise 4.8.5]: the
downward arrows are monadic and the top categories have appropriate colimits, and hence
the top horizontal functors have left adjoints as soon as the bottom ones do. A heav-
ily abbreviated sampling of Theorems 2.10 and 2.11 and Corollary 2.12, then, reads as
follows.

Theorem A (1) For every topological group G the forgetful functors CG
¨

//C are all
monadic, with ¨ P tι, bu as appropriate and C ranging over any of the categories

- Top‚ with ‚ P tblank, T2, T2f “ functionally Hausdorff, T3 1
2
u;

- or Unif‚ with ‚ P tblank, T2 “ Hausdorff, pT2, cq “ complete Hausdorffu;

- or CpctT2.

(2) The categories CG
¨ of (1) are all also cocomplete

(3) Consequently, for any of the reflective inclusion functors C ã //D the correspond-
ing CG

¨ ã // DG
¨ is also reflective by monadic left-adjoint lifts.

Recall [1, Definition 12.2] that cocomplete categories C are those for which all functors
D //C with small D have colimits. Equivalently [1, Theorem 12.3], C admits coequalizers
for parallel pairs of arrows and coproducts of arbitrary families of objects.

Offshoots of this main thread include

• a generalization (Corollary 2.13) of the main result of [25] to the effect that for a
Hausdorff topological group G the category of G-Tychonoff flows (i.e. [27, p.220] those
embedding homeomorphically onto their image in the G-equivariant compactification) is
cocomplete;

• left adjoints of which the construction pX,Uq ÞÑ pX,UGq of [30, Lemma 3.8], uni-
versally attaching a bounded flow in Unif to a quasi-bounded one [30, Definition 3.2(4)],
is a particular case.

1. Preliminaries

Some commonly-employed notation and terminology:

• The hom space of morphisms X // Y in a category C is CpX, Y q. On the few
occasions when they come up, opposite categories carry a ‘˝’ superscript (as in C˝).

• Set, Top, Cpct and Unif denote the categories of sets and topological, compact
and uniform spaces respectively; for the latter we refer the reader to [20, Chapter 7], [9,
Chapter II], etc., with more specific citations below, as needed.
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• We will often speak of D-concrete categories pC, Uq, i.e. [1, Definition 5.1] faithful
functors C U

ÝÑ D. Set-concrete categories (the constructs of [1, Definition 5.1(2)]) are just
plain concrete.

• Separation axioms ([39, §13 and §35] for topologies and uniformities respectively)
occasionally decorate the main category symbols as subscripts: TopT2 and UnifT2 for
Hausdorff topological and uniform spaces respectively, for instance, TopT

3 1
2

for Tychonoff
[39, Definition 14.8] (or Hausdorff completely regular) spaces, etc. Another example of
occasional interest (for instance through its relevance to operator algebras [33, Definition
2.2]) is the category TopT2f

of functionally Hausdorff spaces [39, Problem 14G]: those
admitting continuous real-valued functions assigning any two distinct points distinct val-
ues.

• Topκ is the category of compactly generated spaces (or κ-spaces), i.e. [39, Definition
43.8] the spaces whose open sets are precisely those whose intersection with every compact
subspace is open (equivalently: carrying the final topology [9, §I.2.4, Proposition 6] induced
by the inclusions of its compact subspaces).

Topκ is coreflective in Top ([24, §VII.8, Proposition 2] for the Hausdorff version
TopT2,κ Ă TopT2), so in particular (co)complete. By [24, §VII.8, Theorem 3] (and its
non-Hausdorff counterpart) Topκ and TopT2,κ are also Cartesian closed [24, §IV.6] for
their product ˆκ (henceforth the κ-product) obtained by composing the usual Cartesian
product with the coreflection TopT2

//TopT2,κ: all endofunctors ´ˆκX are left adjoints.

• We also write UnifT2,c for the category of complete [9, §II.3.3, Definition 3] Haus-
dorff uniform spaces (completeness makes sense without separation, but is better behaved
categorically in its presence). For equivariant completions (rather than compactifications)
the reader can consult, say, [28] and its sources.

• For a monoidal category [7, Definition 6.1.1] pC,b, 1Cq we write GrpCq or MonpCq

for the categories of groups or respectively monoids internal to it: objects X P C equipped
with associative morphisms X bX //X and units 1C //X, along also with an inversion
X

p´q´1

ÝÝÝÑ X in the case of Gr, all mutually compatible in the familiar sense (see e.g. [24,
§III.6] for Cartesian monoidal categories, i.e. those with finite products and b “ ˆ).

Whenever an object Y in a monoidal category pV ,b, 1Vq is exponentiable in the sense [7,
Definition 7.1.3] that V ´bY

ÝÝÝÑ V is left adjoint to a functor rY,´s, there is a correspondence

ˆ

morphisms X b Y // Z

˙

–

ˆ

morphisms X // rY, Zs

˙

currying

uncurrying



MONADIC FUNCTORS FORGETFUL OF (DIS)INHIBITED ACTIONS 1541

(in terminology well familiar to theoretical computer scientists [38, §5.1] and also occasion-
ally in use in category theory [4, Definition 14]). We frequently (and sometimes tacitly)
take this for granted, often for set maps, with b “ ˆ and rX, Y s “ functions X // Y .

2. Monadic compactification / completion lifts

The central objects under consideration are flows in categories.

Definition 2.1 For a monoid M a flow on an object X P C of a category C is a monoid
morphism M // CpX,Xq. ♦

Remarks 2.2 (1) The term ‘flow’ is in wide use in the literature (e.g. [3]), and its
advantage over ‘action’ is that it seems somewhat more natural to transport attributes of
the underlying space X to the former (rather than the latter): compact (Hausdorff) flows
are those for which X is compact (Hausdorff), similarly for Tychonoff spaces/flows, etc.

(2) The categories of interest in the present section are all concrete, and hence flows
can always be interpreted as just plain uncurried set maps G ˆ X

Ź
ÝÑ X (unital and

associative, as usual). Even when G is topological and C is some category of topological
spaces, though, it is occasionally convenient to consider flows whose underlying map Ź is
not necessarily continuous. We allow for this by further qualifying the flow:

• If G is a topological group then a flow on X in a Top-concrete category is continuous
if the map G ˆ X

Ź
ÝÑ X is.

• Under the same circumstances the flow is only separately continuous if sŹ x, s P G,
x P X is continuous in each variable if the other is kept fixed, etc. ♦

Notation 2.3 For monoidal C and internal monoids M P MonpCq one can also consider
the category CM

ι of objects X P C equipped with appropriately unital associative mor-
phisms MbX //X in C (the left-hand subscript stands for ‘internal’). We apply this to
subcategories D Ď C as well, writing DM

ι for the internal flows MbX //X with X P D
(even when M itself is not an object of D, but only of the larger C).

TopG
ι , for instance, is the category of continuous flows for topological groups G. In

practice, such internal actions will always also be flows in the sense of Definition 2.1
by (un)currying, so we refer to them as such. Other left-hand decorations occasionally
appear, as in (0-3).

For more general families F of conditions we might demand flows satisfy we employ
the generic symbol CM

F for the category of flows in C meeting those requirements. ♦

Remark 2.4 The boundedness of (0-2) can be phrased in the spirit of UnifG
ι , as the

requirement that the action GˆY
Ź
ÝÑ Y be uniformly continuous for appropriate uniform

structures on its (co)domain:
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• equip the left-hand Y with the discrete uniformity [36, Examples 0.6], consisting of
all subsets of Y ˆ Y containing the diagonal;

• G with its right uniformity [36, Lemma-Definition 2.1], with entourages consisting
of ps1, sq P G2 with s1s´1 close to 1 P G;

• the product G ˆ Y with the resulting product uniformity ([36, Example 0.20(b)] of
the two;

• and the right-hand (codomain) Y with its original uniformity.

Indeed, uniform continuity for said structures translates to

@ entourage V Ď Y 2, D nbhd N Q 1 P G with tpss1
Źy, s1

Źyq | s P N, s1
P G, y P Y u Ď V,

plainly equivalent to (0-2) by simply rewriting

pss1
Ź y, s1

Ź yq “ ps Ź ps1
Ź yq, s1

Ź yq “ ps Ź y1, y1
q

for y1 :“ s1 Ź y. ♦

Constraints one might impose on flows in Top or Unif or any number of analogues
(Hausdorff spaces, etc.) include the following.

Examples 2.5 (1) When M P MonpTopq and C Ď Top is a subcategory we have
the continuous flows therein, making up the category CM

ι of Notation 2.3.

(2) Still assuming M topological, there are also the separately continuous flows men-
tioned in Remark 2.2(2).

(3) It is natural at this stage to regard the two preceding examples as polar extremes
along a topological-action-strength axis, with (1) most and (2) least constraining. Mix-
tures are conceivable: one might consider, for instance, separately continuous actions
M ˆ X //X that are jointly continuous when restricted to a fixed submonoid L ď M.

(4) Take C “ Unif (or subcategories thereof: UnifT2 , etc.) and G a topological
group. We have already recalled in (0-2) the bounded (or equiuniform) flows, constituting
the category denoted by EUnifG in [30, Definition 3.2(3)] and UnifG

b in (0-3).

(5) With C and G as in (4), there is the category of π-uniform actions (or quasi-bounded
G-flows in Unif) of [30, Definition 3.2(4)], denoted there by UnifG. The requirement is
that for every entourage W Ď X2, the action GˆX //X (or rather its Cartesian square)
map some

∆N ˆ V :“ tps, sq | s P Nu ˆ V Ď G2
ˆ X2

– pG ˆ Xq
2

into W for an identity neighborhood N Q 1 P G and an entourage V Ď X2 over the
entourages of the uniformity on X.
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(6) As the nomenclature (bounded vs. quasi-bounded) suggests, and [30, Remark 3.3(5)
and paragraph preceding Remarks 3.3] observe, (4) constrains G-flows in Unif strictly
more onerously than (5). In the hybridization spirit of (3), one could concoct categories
of flows quasi-bounded globally and bounded when restricted to subgroups H ď G.

(7) Mimicking continuous flows in Top, where the action G ˆ X // X must be a
morphism in that category, appropriate choices of F will model as UnifG

F categories of
flows for which G ˆ X //X is uniformly continuous when

• X is given its original uniformity on both sides;

• G is given its right or left uniformity, or the bilateral [36, Definition-Proposition 2.2]
analogue;

• and G ˆ X its product uniformity.

Note, however, that G might not be an internal group in Unif for some of these choices:
the inversion map interchanges the left and right uniformities, so cannot be uniformly
continuous for either of these if the two uniformities do not coincide.

(8) Once more as in (2), having equipped M with a uniformity, we can recover the
category of separately uniformly continuous flows M ˆ X //X in Unif as a CM

F . ♦

Remark 2.6 The distinction drawn in Example 2.5(2) between joint and separate conti-
nuity does matter in practice. Linear representations G ˆ E // E of compact Hausdorff
topological groups on topological vector spaces, usually [35, §2, p.13] assumed separately
continuous, can easily fail to be jointly continuous ([11, Example 2.2], for instance). Joint
continuity is, however, automatic [10, p.VIII.9, Proposition 1] if the topological vector
space E is barreled [22, §21.2]. ♦

One can rework much of the above internally to compactly generated spaces.

Examples 2.7 (1) For M P MonpTopκq there are categories CM
ι of flows continuous

for the κ-product.

[13, §5.1] writes KR for TopT2,κ and KRGRP for GrpTopT2,κq. The resulting category
of G-flows discussed here is the k-KRG of [13, §5.3].

(2) As in Example 2.5(2), one can weaken the preceding constraint to separate conti-
nuity.

(3) Take C “ TopT2,κ and M P MonpCq as in Example 2.7(1), but strengthen that
constraint (as opposed to weakening it, as (2) does): consider actions MˆX //X jointly
continuous for the usual product topology (rather than the finer κ-product).

Per Proposition 2.8 below, this product-structure mixture (ordinary versus κ) produces
a flow category that is less well-behaved for our purposes (monadicity, etc.). ♦
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Proposition 2.8 For an internal monoid M P MonpTopT2,κq the following conditions
are equivalent.

(a) M is locally compact.

(b) The forgetful functor TopM
c T2,κ

U
ÝÑ TopT2,κ from flows M ˆ X // X jointly con-

tinuous for the Cartesian product is monadic.

(c) U is a right adjoint.

(d) U is continuous.

(e) U preserves products.

(f) U preserves binary products.

(g) U preserves products of the form pM, translation actionq ˆ pX, trivial actionq.

Proof. For (a) ñ (b) recall [7, Proposition 7.2.9] that plain Cartesian products with
locally compact spaces coincide with the corresponding κ-products. U , in that case, will
be the forgetful functor associated to the monad M ˆ ´ (unambiguous product).

The other downward implications being formal, it remains to settle (g) ñ (a). Failure
of local compactness would imply [31, Theorem 3.1 and footnote (5)] the existence of some
X P TopT2,κ for which the κ-product M ˆκ X is strictly finer than the usual product.
But then Example 2.19(2) argues via Lemma 2.18 that the left-hand translation action
on M ˆκ X is not continuous on M ˆ pM ˆκ Xq, negating (g).

Remark 2.9 The appeals to [31, 7] in the proof of Proposition 2.8 both make the Haus-
dorff property crucial at least to the argument. It would be natural, at this point, to
ask to what extent separation can be dropped, and what shape the corresponding (more
general) result would take. ♦

It will be useful to have the monadicity claims made in the Introduction collected
together under one heading, with a more or less common argument. Some are certainly
in the literature, e.g. [13, Theorem 3.1.9] or [14, Theorem 2.3] for C “ Top (which case
is simpler than the others because the left adjoint to TopM

ι
//Top is explicitly Mˆ ´);

I have not been able to trace all back to prior work though.

Theorem 2.10 Let M be a monoid and S,J Ď 2M families of subsets thereof.
The functors CM

F
// C forgetful of actions meeting a constraint F are monadic in all

of the following cases.

(a) M is a topological monoid, C is any of the subcategories Top‚ with

‚ P

!

blank, T0, T1, T2, T2f , T3 1
2

)

or CpctT2, and the actions M ˆ X // X are required to be separately continuous over
S ˆ X, S P S and jointly continuous over J ˆ X, J P J .
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(b) M is equipped with a uniformity, C “ Unif‚ with ‚ P tblank, T2, pT2, cqu, and the
actions are again separately (jointly) uniformly continuous over SˆX, S P S (respectively
J ˆ X, J P J ).

(c) M P MonpTopκq, C “ Top‚,κ with ‚ P tblank, T2u, and the actions are again
jointly or separately continuous respectively over

κpSq ˆ X and κpJq ˆ
κ X, S P S, J P J

where κ is the coreflection Top //Topκ and ˆκ is the κ-product of Section 1.

(d) M is a topological group, C a category of uniform spaces as in (b) above, and
the actions are required to be either bounded (Example 2.5(4)) or quasi-bounded (Exam-
ple 2.5(5)).

Proof. We suppress the left-hand subscript in CM
F

// C to lighten the notation.
The proof is a standard application of Beck’s Precise Tripleability Theorem (PTT)

([6, §3.3, Theorem 10] or [7, Theorem 4.4.4]), whose hypotheses we check in turn (also
recalling them in the process).

(I) CM G
ÝÑ C is a right adjoint. As noted above, some cases are simpler than others:

for C “ Top, for instance, one can simply take the left adjoint of G to be Mˆ ´ with the
left-hand translation action. This move does not apply in general, e.g. for C “ CpctT2 ,
because M is not generally compact Hausdorff. It will thus be cleaner to give a uniform
abstract existence argument for the left adjoints C F

ÝÑ CM by verifying the conditions of
Freyd’s Adjoint Functor Theorem ([1, Theorem 18.12], [24, §V.6]).

First, in all cases, the two categories CM and C are complete (i.e. [24, §V.1] have
arbitrary small limits) and G is continuous (meaning [24, §V.4] that it preserves those
limits). It is enough [1, Theorem 12.3 and Proposition 13.4] to check this for products and
equalizers; these are defined in all cases set-theoretically via subspace/product topologies
and uniformities, the various separation axioms mentioned (T2 and T3 1

2
) survive passage

to both subspaces and products, and M-actions simply come along.

Secondly, the Adjoint Functor Theorem also requires the solution-set condition: for
every object X P C there is a set (as opposed to a proper class) of morphisms X

fi
ÝÑ GYi

such that every X
f
ÝÑ GY factors as

X
GYi

GY .
fi Gg

f

This is achievable by taking for the set tfiu all morphisms from X into M-action carriers
of cardinality ď κ for some κ dependent only on X and M.
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In those cases where it suffices to factor through M-invariant subspaces this is obvious:
a M-invariant space generated by the image of a map defined on X has cardinality at most
|M|¨|X|. When one has to factor through closed subspaces, i.e. when a completion process
is involved (for C “ UnifT2,c and CpctT2), recall [21, §2.4] that there is a uniformly-valid
bound

|Z| ď exp exp |D|, Z P TopT2 , D Ď Z dense.

(II) G reflects isomorphisms. This means that a morphism f in the domain CM of
G is an isomorphism provided Gf is one in the codomain C. The claim is self-evident, as
in each case inverses of M-equivariant maps are again M-equivariant.

(III) CM has coequalizers for the pairs pf, gq with pGf,Ggq contractible and
G preserves them. Recall [6, §3.3, pre Proposition 2] that a pair pφ0, φ1q of morphisms
in a category is contractible (or split) if it fits into a diagram

X 1 X Y

φ0

φ1

φ

r

s , φr “ id, φ0s “ id, φ1s “ rφ (2-1)

(whereupon φ is automatically [6, §3.3, Proposition 2] a coequalizer for pφ0, φ1q).

In all cases M acts by C-isomorphisms, so the action does travel along the coequalizer
φ of (2-1) to give an action M ˆ Y // Y (with φi :“ Gfi, i “ 0, 1). The issue is in every
case checking that that map is continuous in the appropriate sense (plainly continuous
or compatible with the uniformity). This, though, follows from the splitting (2-1): the
action in question factors as

M ˆ Y
M ˆ X X

Y ,
idˆr φ

(2-2)

with the outer bottom arrows morphisms in the desired category C and the middle bottom
morphism continuous in the requisite sense.

The categories CM are also presumably well known to be cocomplete: see [13, §4.3.3]
for C “ Top, TopT2 and CpctT2 for instance. We record the result in full here, for
convenience and uniformity.

Theorem 2.11 The categories CM
F

// C of Theorem 2.10 are all cocomplete.
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Proof. Consider a small-domain functor D F
ÝÑ CM

F
// C. A colimit for F is nothing

but an initial object in the category cocpF q of cocones over F [8, Definitions 2.6.5 and
2.6.6]. Because CM

F
// C is continuous between categories cocpF q is complete as well,

with the forgetful functor cocpF q // CM
F

// C assigning a cocone its tip continuous.
Freyd’s initial-object theorem [24, §V.6, Theorem 1] will thus ensure the existence of

such an initial object assuming, once more, a solution-set condition: a set S of objects in
cocpF q so that every object receives a morphism from some object in S. Exactly as in
the proof of Theorem 2.10, though, it is enough to take for S all flows whose carrier space
X has cardinality bounded by some cardinal dependent only on F and M.

To return to the issue of equivariant compactifications and monadic lifting:

Corollary 2.12 For any of the reflective inclusion functors C ã //D the corresponding
CM

F ã // DM
F is also reflective.

Proof. As sketched before, in the discussion surrounding (0-4):

CM
F

DM
F

C
D

fgt

fgt

has monadic downward arrows by Theorem 2.10, a reflective bottom rightward arrow by
assumption and a cocomplete left-hand corner by Theorem 2.11. The top rightward arrow
must then also be a right adjoint, by the already-referenced adjunction lifting theorem
[7, Theorem 4.5.6] (which in fact would only have required that CM

F have coequalizers
for reflexive pairs in the sense of [7, Exercise 4.8.5]: pairs of morphisms with a common
domain and codomain and a common right inverse).

As an aside, recall ([27, p.220], [2, §4]) that a G-flow of a topological group is G-
Tychonoff if its map to the universal G-equivariant compactification is a homeomorphism
onto its image. Note that the property is one attached to the flow rather than the space:
there are, in general, Tychonoff G-flows that are not G-Tychonoff; indeed, everything in
sight (group and space) can even be metrizable, while the compactification is a singleton
([32], building on [26, 27]). For that reason (dependence on the flow rather than its base
space), we denote the resulting category by

`

TopG
ι

˘

T
3 1
2

. The relatively recent [25] proves
`

TopG
ι

˘

T
3 1
2

cocomplete for Hausdorff G by

• first constructing coequalizers in the larger category TopG
ι T

3 1
2

[25, Theorem 1] and

then transporting those over to
`

TopG
ι

˘

T
3 1
2

[25, Corollary 2];

• and also constructing coproducts in that smaller category directly [25, Theorem 3].
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The cocompleteness result follows from Theorem 2.11 with no separation constraints
on G, but it might be worth recording the natural intermediate generalization between
the two cocompleteness results.

An embedding C ã //D as in Corollary 2.12 will single out a special class of objects
in the larger category DM

F : the full subcategory
`

DM
F

˘

Cã //D ãÝÝÑ DM
F (2-3)

on those objects MˆX //X whose reflection X //Y in CM
F is an isomorphism (uniform

or topological, etc.) onto its image.

Corollary 2.13 For C ã //D as in Corollary 2.12 the subcategory (2-3) is cocomplete.

Proof. An immediate consequence of Theorem 2.11 and Corollary 2.12, since (2-3) is
full reflective: the reflection of an object is its image through the reflection in CM

F .

And returning to the motivating instance:

Corollary 2.14 The category
`

TopG
ι

˘

T
3 1
2

of continuous G-Tychonoff flows of a topolog-

ical group is cocomplete.

Proof. This is indeed a particular case of Corollary 2.13:
`

TopG
ι

˘

T
3 1
2

Ď TopG
ι T

3 1
2

is precisely (2-3) with F :“ ι, C :“ CpctT2 and D :“ TopT
3 1
2

.

Remarks 2.15 (1) The forgetful functors CM
F

//C of Theorem 2.10 are more rarely
cocontinuous:

• For C “ Top, for instance, [13, Theorem 3.4.3] shows that colimits are preserved
when the topological group G is locally compact Hausdorff, but coequalizers are not
preserved generally by [13, §3.4.4].

The crucial property of G in the aforementioned [13, Theorem 3.4.3] is in fact its
exponentiability (i.e. the requirement that Gˆ ´ be a left adjoint on Top, as recalled in
Section 1). Indeed, this will ensure coequalizer preservation and in fact cocontinuity (the
conditions are in fact equivalent: Proposition 2.16): T is precisely the monad attached to
the monadic functor TopG

ι
//Top, and it is a formal exercise to show that in general,

given

– a small category D;

– a category C admitting D-shaped colimits lim
ÝÑ

F , D F
ÝÑ C;

– and a monad C T
ÝÑ C,
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D-shaped colimits exist in the Eilenberg-Moore category CT and are preserved by the
forgetful functor CT G

ÝÑ C if and only if they are preserved by T .
The implication (ð) (also noted in passing in [37, proof of Lemma 5.5]) is [7, Propo-

sition 4.3.2]. Conversely, recall that T can be recovered as

T “ G ˝ pleft adjoint of Gq .

Said left adjoint of course preserves arbitrary colimits, so any colimits preserved by G are
preserved by T also.

Locally compact spaces (separated or not) are exponentiable [7, Proposition 7.1.5],
so [13, Theorem 3.4.3] in fact goes through for possibly non-T2 locally compact groups.
See also [17, Theorem II-4.12] for alternative characterizations of exponentiable spaces.
Exponentiability is equivalent to local compactness assuming T2 (or more generally [17,
Theorem V-5.6], for sober spaces, i.e. [17, Definition O-5.6] those for which irreducible
closed sets are closures of unique singletons).

• For C “ CpctT2 and locally compact Hausdorff G the preservation of coproducts
by CG

ι
// C is equivalent to the discreteness of G [12, Theorem 3.1].

(2) Item (1) above also shows that in proving monadicity, one could not employ some
of the “coarser” versions of Beck’s theorem. The Reflexive Tripleability Theorem (RTT) of
[34, Proposition 5.5.8], for instance, would require the preservation by CM

F
//C of reflexive

coequalizers, i.e. [6, §3.3, p.108] coequalizers of pairs pf, gq of parallel morphisms that
have a common right inverse. In all cases under consideration, though, that would amount
to preservation of arbitrary coequalizers (which we know does not obtain universally):
because coproducts are, space-wise, simply disjoint unions, an arbitrary parallel pair

X Y
f

g

expands into a reflexive pair

X
š

Y Y

pf,idY q

pg,idY q

with the same coequalizer. ♦

Incidentally, the argument in [13, §3.4.4] showing (via [13, Example 1.5.11]) that
ToppQ,`q // Top fails to preserve coequalizers can be amplified into a characterization
of those groups for which such pathologies do not obtain. See also [13, §§6.3.6-7] for
explicit mention and discussion of the comonadicity of TopG

ι
//Top for locally compact

Hausdorff G.
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Proposition 2.16 For a topological group G, the following conditions are equivalent.

(a) G is exponentiable as a topological space, i.e. Top Gˆ´
ÝÝÝÑ Top is a left adjoint.

(b) G ˆ ´ is cocontinuous.

(c) G ˆ ´ preserves Top-coequalizers.

(d) G ˆ ´ preserves quotients in Top by equivalence relations.

(e) TopG
ι

G
ÝÑ Top is comonadic.

(f) TopG
ι

G
ÝÑ Top is a left adjoint.

(g) TopG
ι

G
ÝÑ Top is cocontinuous.

(h) TopG
ι

G
ÝÑ Top preserves coequalizers.

Proof. The downward implications from (a) to (d) are obvious (for arbitrary spaces;
the group structure is irrelevant), and [17, Theorem II-4.12] proves (a) ðñ (d) (for T0

spaces, but that assumption is not crucial). The first four conditions are thus equivalent.
We also plainly have

peq ùùñ pfq ùùñ pgq ùùñ phq. (2-4)

The first implication reverses by any number of comonadicity, dually to Theorem 2.10,
because we already know that G is continuous (so preserves all equalizers). Because
G preserves coproducts, it is cocontinuous precisely when it preserves coequalizers [1,
Proposition 13.4], so the third implication in (2-4) also backtracks. As for the converse
to the second implication, it is a consequence of the adjoint functor theorem [1, Theorem
18.12] provided we verify the solution-set condition. To that end, note that every map
GpY q

f
ÝÑ X in Top factors (just plain set-theoretically) as

GpY q

XG

X

projection at 1PG

f

through the G-equivariant upper left-hand map

GpY q Q y ÞÝÝÑ
`

G Q s ÞÝÝÑ fps Ź yq P X
˘

P XG

(with XG acted upon by G via s Ź φ :“ φp´ ¨ sq). f will thus factor through Gpπq for
some quotient G

π
ÝÑ G in TopG

ι of cardinality |G| ď |XG| (so bounded independently of
G).

We now have

pdq ðñ pcq ðñ pbq ðñ paq
Remark 2.15(1)

ðùùùùùùùùñ phq ðñ pgq ðñ pfq ðñ peq,

and we are done.
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Remark 2.17 It might also be instructive to adapt [13, Example 1.5.11 and §3.4.4] (there
specific to G “ Q) to see directly how coequalizer preservation fails whenever Gˆ´ fails to
preserve a quotient X :“ X{R in Top by an equivalence relation R Ď X2: the implication
(h) ñ (d) of Theorem 2.11, in other words.

Failure of quotient preservation means that the quotient topology G ˆq X is strictly
finer than the usual product topology Gˆπ X. It then follows that the translation action

G ˆ
π

pG ˆ
q Xq ÝÝÑ G ˆ

q X

cannot be continuous. The general phenomenon driving this remark is recorded in
Lemma 2.18 below. ♦

The technical principle noted in Lemma 2.18 below is certainly a simple one, but worth
isolating: it has already surreptitiously come in handy (at least) twice.

Recall [23, Definition 1.2.10] that a colax (sometimes oplax [40, p.271]) monoidal func-
tor D F

ÝÑ C between monoidal categories pD,b, 1q and pC,b, 1q is one equipped with
morphisms

F p‚ b ´q
ϕ‚,´

ÝÝÝÝÝÝÑ F ‚ bF ´ and 1
ϕ

ÝÝÝÝÑ F1,

natural and compatible with the associativity and unitality constraints in the guessable
sense.

Lemma 2.18 Let D F
ÝÑ C be an op-lax monoidal functor,

M b M µ
ÝÝÝÝÑ M, 1

η
ÝÝÝÝÑ M in D

an internal monoid and X P D an object.
If there is a factorization

F pM b M b Xq

F pMq b F pM b Xq

F pM b Xq

ϕM,MbX

F pµbidXq

(2-5)

then F pM b Xq
ϕM,X
ÝÝÝÑ FM b FX has a left inverse. In particular, if ϕM,X is epic then it

is an isomorphism.

Proof. Left-invertible epimorphisms are isomorphisms by (the dual to) [1, Proposition
7.36], hence the second claim given the first. For the latter, fit a factorization (2-5) into
the commutative

F pM b M b Xq

F pMq b F pM b Xq

F pM b Xq:
F pM b Xq

FM b FX

ϕM,MbX

F pµbidXq

F pidM bηbidXq

ϕM,X idFM bF pηbidXq

id
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the triangle commutes by assumption and the upper left-hand square by the naturality
of ϕ‚,´. We have the requisite left inverse to ϕM,X in the composition of the two upper
right-hand maps.

Examples 2.19 The two occasions for applying Lemma 2.18 alluded to above are as
follows.

(1) Take C “ Top with its usual Cartesian monoidal structure (or any number of
satellite variations; TopT2 , etc.). D is the category of equivalence relations

pX,Rq, R Ď X ˆ X, X P C,

again with the Cartesian structure. The functor D F
ÝÑ C is

D Q pX,Rq
F

ÞÝÝÝÝÑ X :“ X{R P C.

The colax structure derives from the familiar observation that quotients of products have
at least a fine a topology as the corresponding products of quotients. The canonical ϕ‚,´

are also plainly epic, being set-theoretic bijections.

Identify M P MonpCq with its diagonal equivalence relation, so that it becomes a
monoid in D as well. Lemma 2.18 then applies, and says that whenever M ˆ ´ fails to
preserve a quotient X :“ X{R the left-hand translation M-action on the quotient space
M ˆq X with the quotient topology fails to be continuous for the Cartesian topology on
M ˆ pM ˆq Xq.

(2) Take for F the full embedding

D :“ TopT2,κ ã
F

ÝÝÝÝÑ TopT2 “: C

of the category of Hausdorff compactly generated spaces, i.e. [39, Definition 43.8] those
X P TopT2 whose open sets are precisely those whose intersection with every compact
subspace is open (equivalently: X carries the final topology [9, §I.2.4, Proposition 6]
induced by the inclusions of its compact subspaces).

TopT2,κ is coreflective in TopT2 [24, §VII.8, Proposition 2], so in particular (co)complete.
It is also Cartesian closed [24, §VII.8, Theorem 3] for its product ˆκ (henceforth the
κ-product) obtained by composing the usual Cartesian product with the coreflection
TopT2

//TopT2,κ; this gives the colaxity

p‚q ˆ
κ

p´q
ϕ‚,´

ÝÝÝÝÑ p‚q ˆ p´q

required by Lemma 2.18, again epic because bijective. Per that result, we will have
M P MonpTopT2,κq failing to operate plain-ˆ-continuously on M ˆκ X whenever the
latter carries a strictly finer topology than M ˆ X. This phenomenon is what drove the
proof of Proposition 2.8. ♦
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There are also functors linking the categories CM
F of Theorem 2.10 for fixed C and M

varying F : one can strengthen the constraint F to F 1 (notation: F ĺ F 1) in the sense of
making it more demanding. Examples include

• enlarging S and/or J ;

• enlarging individual sets belonging to S and/or J ;

• strengthening the quasi-boundedness of Example 2.5(5) to the boundedness of Ex-
ample 2.5(4);

• and in turn strengthening the latter to joint uniform continuity for actions M ˆ

X //X as in Example 2.5(7), upon equipping M with any of its standard uniformities
(left, right, bilateral).

Any such relation F ĺ F 1 produces a full inclusion functor CM
F 1 Ď CM

F . It is at this
point not surprising, perhaps, that those inclusions reflect (i.e. admit left adjoints).

Theorem 2.20 For all listed instances of constraint strengthening F ĺ F 1 in the context
of Theorem 2.10 the resulting inclusion CM

F 1 Ď CM
F is reflective.

Proof. By Theorem 2.10 the categories are complete and the inclusion is continuous
because it fits into a commutative triangle

CM
F 1

C
CM

F .
ι

monadicmonadic

The conclusion now follows from the adjoint functor theorem [1, Theorem 18.12] after
again observing that the solution-set condition is satisfied in all cases: a morphism X //ιY
in the larger category factors through ιY 1 with the cardinality of Y 1 bounded uniformly
in terms of only X and the fixed data C, M, F and F 1.

Remark 2.21 The particular case

quasi-boundedness (Example 2.5(5)) “: F ĺ F 1 :“ boundedness (Example 2.5(4))

of Theorem 2.20 is the construction pX,Uq ÞÑ pX,UGq of [30, Lemma 3.8], attaching a
uniform space carrying a bounded G-action to one carrying only a quasi-bounded one.

[30, Lemma 3.8] does not phrase the construction in terms of universality, but the
check that that universality does obtain is simple enough: the entourages of the original
uniformity U are enlarged by fiat into those of UG so as to render the original action
bounded (hence a uniformly continuous map pX,Uq // pX,UGq), and the enlargement is
plainly optimal subject to this boundedness constraint. ♦
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