
Theory and Applications of Categories, Vol. 41, No. 43, 2024, pp. 1513–1535.

FROM RAMSEY DEGREES TO RAMSEY EXPANSIONS VIA WEAK
AMALGAMATION

DRAGAN MAŠULOVIĆ AND ANDY ZUCKER

Abstract. In this paper we provide another argument to support the recently rein-
vigorated interest in treating Ramsey-type phenomena categorically. Using purely cat-
egorical strategies we construct a Ramsey expansion for every category of finite objects
with finite small Ramsey degrees. Our construction is based on the relationship be-
tween small Ramsey degrees, weak amalgamation, and recent results about weak Fräıssé
categories. Starting from the fact that weak Fräıssé categories allow for certain model-
theoretic properties to be reflected in the free ω-cocompletion of the category, we show
that classes with finite Ramsey degrees have weak amalgamation and then invoke the ma-
chinery of weak Fräıssé categories to perform the construction. This improves previous
similar results where an analogous construction was carried out under the assumption
that everything sits comfortably in a bigger class with enough infrastructure, and that
in this wider context there is an ultrahomogeneous structure under whose umbrella the
construction takes place.

1. Introduction

The intimate relationship between category theory and structural Ramsey theory has
been evident from the very beginnings of structural Ramsey theory in early 1970’s. It
was Leeb who pointed out already in 1970 (see [16]) that the use of category theory
can be quite helpful when trying to understand combinatorial phenomena that deal not
with a single combinatorial object, but require analyzing entire classes of structures. The
categorical approach to Ramsey theory was explicitly applied already in 1972 by Graham,
Leeb and Rothschild in [7] where a proof of Rota’s conjecture that finite vector spaces
are Ramsey is given. In 1973 Leeb published a booklet [17] about categorical treatment
of finite Ramsey phenomena, and in 1977 Nešetřil and Rödl published their celebrated
result, the Nešetřil-Rödl theorem, using the language of category theory [23].

This all changed in the second half of 1980’s when one can see a sudden shift away from
category theory and towards the language of model theory. Perhaps the most striking
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example of the shift is Nešetřil and Rödl’s paper [25] where they reprove the Nešetřil-Rödl
theorem, but this time in the context of first-order structures.

Some quarter of a century later the interest in categorical treatment of Ramsey-related
phenomena was reinvigorated when several new Ramsey-type results were published where
the authors explicitly relied in their proofs not only on the choice of objects, but also on
the choice of morphisms between them (see for example [20, 29, 30]). This feeling was
formalized in a 2017 paper [19] where the authors showed that the Ramsey property is
a genuine categorical property (in the sense that it is invariant under categorical equiva-
lence).

Treating Ramsey-type phenomena categorically requires a significant change in the
point of view, but also brings many benefits such as systematic treatment of dual Ramsey
phenomena, results that are not limited to relational languages, and the use of abstract
constructions available in category theory which are often not easy to mimic in the context
of first-order structures.

Ramsey property is closely related to another fundamental structural property – amal-
gamation. On the one hand, amalgamation lies at the heart of the partite method, one of
the most powerful tools for proving the Ramsey property for a class of finite structures
(see, e.g. the proof of the famous Nešetřil-Rödl Theorem [23, 25]). On the other hand,
it is an easy but fundamental result of Nešetřil and Rödl from 1977 that every class of
structures with the Ramsey property has the amalgamation property [23].

Many natural classes of finite structures with the amalgamation property (such as
finite graphs and finite partially ordered sets) do not enjoy the Ramsey property. It is
quite common, though, that the structures can be expanded by a few carefully chosen
relations so that the resulting class of expanded structures has the Ramsey property. We
then say that the class of structures has a Ramsey expansion.

In the late 1990s it was observed that many concrete classes of finite structures where
a Ramsey expansion had been identified also enjoyed a weaker property of having finite
Ramsey degrees [4, 5, 6]. For Fräıssé classes, that this is not a mere coincidence was
proven in one direction in [9], who prove that classes with a Ramsey expansion have
finite Ramsey degrees, and in the other by the second author in [30], showing that small
Ramsey degrees suffice for the existence of a Ramsey expansion. A more combinatorial
proof of the same fact can be found in [27], and a reinterpretation of the latter proof in
the language of category theory in [18]. All these proofs make key use of the fact that
the classes are Fräıssé, in the sense that everything sits comfortably in a bigger class
with enough infrastructure, and that in this wider context there is an ultrahomogeneous
structure under whose umbrella the construction takes place.

In this paper we show that the assumption about the ambient class in which an
ultrahomogeneous object oversees the construction is unnecessary. Imposing no addi-
tional assumptions, for each category of finite objects with finite small Ramsey degrees
(the definitions are given below) we construct a Ramsey expansion. The expansion is
not constructed from scratch, though. Section 3 starts with our first insight, where we
show (Theorem 3.2) that classes with finite Ramsey degrees have the weak amalgamation
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property. This is an analogue of Nešetřil and Rödl’s result [23] that the Ramsey property
implies amalgamation. In the remainder of the section we recall from [15, 14] how an am-
bient category and a weakly homogeneous object in it can be constructed from a category
with weak amalgamation by taking the free ω-cocompletion of the original category.

In Section 4 we then upgrade the results from [18] to show that if everything sits in a
bigger category in which there is a weakly homogeneous and locally finite object universal
for the category we are trying to expand, then there is a convenient expansion which can
be trimmed down to a Ramsey expansion. Finally, in Section 5 we put all the ingredients
together to prove the main result of the paper. As a corollary, we specialize the main
result of the paper to arbitrary first-order structures, and then give a dual result about
the relationship of small dual Ramsey degrees and dual Ramsey expansions.

2. Preliminaries

Let us quickly fix some notation and conventions. All the categories in this paper are
locally small. Let C be a category. By Ob(C) we denote the class of all the objects in
C. Hom-sets in C will be denoted by homC(A,B), or simply hom(A,B) when C is clear
from the context. The identity morphism will be denoted by idA and the composition of

morphisms by · (dot). If homC(A,B) ̸= ∅ we write A
C−→ B. Recall that a morphism is

mono if it is left cancellable, and epi if it is right cancellable. Let isoC(A,B) denote the set
of all the invertible morphisms from homC(A,B), and let AutC(A) = isoC(A,A) denote
the set of all the automorphisms of A. We write A ∼= B to denote that isoC(A,B) ̸= ∅.
A skeleton of a category C is a full subcategory S of C such that no two objects in S are
isomorphic and for every C ∈ Ob(C) there is an S ∈ Ob(S) such that C ∼= S. As usual,
Cop denotes the opposite category. Whenever the category C is fixed we shall simply
write hom(A,B), Aut(C), t(A), etc.

A category C is directed if for all A,B ∈ Ob(C) there is a C ∈ Ob(C) such that

A
C−→ C and B

C−→ C. A subcategory D of C is cofinal in C if for every C ∈ Ob(C) there

is a D ∈ Ob(D) such that C
C−→ D. Directedness and cofinality as we have introduced

them here refer to the underlying preorder
C−→ of the category C, which differs from other

uses of these two notions that can be found in the literature (see for example [1]).
An ω-chain in C is a functor F : ω → C where ω denotes the poset category 0 < 1 <

2 < . . .. A category D is ω-cocomplete if every ω-chain in D has a colimit in D. An ω-
cocompletion of a category C is an ω-cocomplete category D together with an embedding
E : C → D. An ω-cocompletion E : C → D of a category C is free if for every other
ω-cocompletion E ′ : C→ D′ of C there is a unique (up to natural isomorphism) ω-colimit
preserving functor H : D→ D′ such that H ◦ E is naturally isomorphic to E ′.

For k ∈ N, a k-coloring of a set S is any mapping χ : S → k, where, as usual, we
identify k with {0, 1, . . . , k − 1}. For positive integers k, t ∈ N and objects A,B,C ∈
Ob(C) such that A

C−→ B we write C −→ (B)Ak,t to denote that for every k-coloring
χ : hom(A,C)→ k there is a morphism w ∈ hom(B,C) such that |χ(w ·hom(A,B))| ⩽ t.
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(For a set of morphisms F we let w · F = {w · f : f ∈ F}.) In case t = 1 we write
C −→ (B)Ak .

A category C has the Ramsey property if for every integer k ∈ N and all A,B ∈ Ob(C)
there is a C ∈ Ob(C) such that C −→ (B)Ak .

For A ∈ Ob(C) let tC(A), the Ramsey degree of A in C (sometimes called the small
Ramsey degree) denotes the least positive integer n such that for all k ∈ N and all
B ∈ Ob(C) there exists a C ∈ Ob(C) such that C −→ (B)Ak,n, if such an integer exists.
Otherwise put tC(A) = ∞. A category C has finite small Ramsey degrees if tC(A) < ∞
for all A ∈ Ob(C).

2.1. Example. The Ramsey property imposes severe restrictions on the class of finite
structures under consideration. A class K of finite structures with the Ramsey property
for embeddings has amalgamation [23] and consists of rigid objects [21]. Therefore, the
class of all finite graphs does not have the Ramsey property (finite graphs are in general
not rigid), but the class of all finite ordered graphs does [23]. Analogously, the class of all
finite partial orders does not have the Ramsey property, but the class of finite structures
consisting of a finite partial order and a linear extension of that partial order does. The
fact that such a natural class of finite objects such as graphs does not enjoy such a relevant
property such as the Ramsey property is somewhat annoying, so the introduction of the
concept of small Ramsey degrees [4, 5, 6] rectified this injustice: the class of all finite
graphs has finite small Ramsey degrees. In fact, it is an open question [3] if any Fräıssé
class in a finite relational language has finite small Ramsey degrees.

As in [18] we shall be working in the following setup. Let C be a locally small category
and let Cfin be a full subcategory of C such that the following holds:

(C1) all the morphisms in C are mono;

(C2) Ob(Cfin) is a set;

(C3) for all A,B ∈ Ob(Cfin) the set hom(A,B) is finite;

(C4) for every F ∈ Ob(C) there is an A ∈ Ob(Cfin) such that A→ F ; and

(C5) for every B ∈ Ob(Cfin) the set {A ∈ Ob(Cfin) : A→ B} is finite.

We think of objects in Cfin as templates of finite objects in C. For the remainder of the
section let us fix a locally small category C and its full subcategory Cfin which satisfies
(C1)–(C5).

Let A be a full subcategory of C. An object F ∈ Ob(C) is ultrahomogeneous for
A if for every A ∈ Ob(A) and every pair of morphisms e1, e2 ∈ hom(A,F ) there is a
g ∈ Aut(F ) such that g · e1 = e2:

F F

A

g

e1 e2
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An object F ∈ Ob(C) is ultrahomogeneous in C (with respect to Cfin) if it is ultrahomo-
geneous for Cfin .

Recall that an object F is universal for A if A→ F for all A ∈ Ob(A). We shall say
that F is universal in C (with respect to Cfin) if it is universal for Cfin . Let us define the
age of F in C with respect to Cfin as

Age(C,Cfin )
(F ) = {A ∈ Ob(Cfin) : A

C−→ F}.

Clearly, every F is universal for its age. Whenever C and Cfin are fixed we shall simply
write Age(F ).

Let D be a full subcategory of a locally small category C. An F ∈ Ob(C) is locally
finite for D if:

• for every A,B ∈ Ob(D) and every e ∈ hom(A,F ), f ∈ hom(B,F ) there exist
D ∈ Ob(D), r ∈ hom(D,F ), p ∈ hom(A,D) and q ∈ hom(B,D) such that r · p = e
and r · q = f :

D F

A B

r

p
e q

f

• and for every H ∈ Ob(C), r′ ∈ hom(H,F ), p′ ∈ hom(A,H) and q′ ∈ hom(B,H)
such that r′ · p′ = e and r′ · q′ = f there is an s ∈ hom(D,H) such that the diagram
below commutes

D F H

A B

r

s

r′

p

e
p′

q f

q′

An F ∈ Ob(C) is locally finite in C (with respect to Cfin) if it is locally finite for Cfin .

2.2. Example. The notion of local finiteness as presented here captures the usual model-
theoretic notion: a first-order structure is locally finite if every finitely generated substruc-
ture is finite. All relational structures are trivially locally finite. This can change in the
presence of functional symbols in the language. For example, the additive group of the
integers (Z,+) is not locally finite since every 1-generated subgroup is infinite.

An expansion of a category C is a category C∗ together with a faithful functor U :
C∗ → C which is surjective on objects. We shall generally follow the convention that
A,B,C, . . . denote objects from C while A∗, B∗, C∗, . . . denote objects from C∗. Since U
is injective on hom-sets we may safely assume that homC∗(A∗, B∗) ⊆ homC(A,B) where
A = U(A∗), B = U(B∗). In particular, id∗

A = idA for A = U(A∗). Moreover, it is safe to
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drop subscripts C and C∗ in homC(A,B) and homC∗(A∗, B∗), so we shall simply write
hom(A,B) and hom(A∗, B∗), respectively. Let U−1(A) = {A∗ ∈ Ob(C∗) : U(A∗) = A}.
Note that this is not necessarily a set. Therefore, we say that an expansion U : C∗ → C
is precompact (cf. [26]) if U−1(A) is a set for all A ∈ Ob(C), and it is a finite set for all
A ∈ Ob(Cfin).

An expansion U : C∗ → C is reasonable (cf. [9]) if for every e ∈ hom(A,B) and every
A∗ ∈ U−1(A) there is a B∗ ∈ U−1(B) such that e ∈ hom(A∗, B∗):

A∗ B∗

A B

e

U U

e

An expansion U : C∗ → C has unique restrictions if for every B∗ ∈ Ob(C∗) and every
e ∈ hom(A,U(B∗)) there is a unique A∗ ∈ U−1(A) such that e ∈ hom(A∗, B∗):

B∗↾e = A∗ B∗

A B

e

U U

e

We denote this unique A∗ by B∗↾e and refer to it as the restriction of B∗ along e.

2.3. Example. Let C be the category of finite and countably infinite graphs with embed-
dings as morphisms, let C∗ be the category of finite and countably infinite linearly ordered
graphs with embeddings as morphisms, and let U : C∗ → C be the functor that forgets
the order. Then this is a precompact reasonable expansion with unique restrictions.

Let A and A∗ be categories and U : A∗ → A and expansion. Following [26] we
say that U : A∗ → A has the expansion property if for every A ∈ Ob(A) there exists a
B ∈ Ob(A) such that A∗ → B∗ for all A∗, B∗ ∈ Ob(A∗) with U(A∗) = A and U(B∗) = B.
If A∗ is directed and all the morphisms in A are mono, and if U : A∗ → A is a reasonable
expansion with unique restrictions such that U−1(A) is finite for all A ∈ Ob(A) then
U : A∗ → A has the expansion property if and only if for every D∗ ∈ Ob(A∗) there is a
B ∈ Ob(A) such that for all B∗ ∈ Ob(A∗) with U(B∗) = B we have D∗ → B∗ [18].

2.4. Example. The expansion property is a generalization of the ordering property in-
troduced in [22, 24]. In many cases expanding the structures from a class with no Ramsey
property with appropriately chosen linear orders results in a class of expanded structures
with the Ramsey property. But there are notable exceptions: in [11] the authors prove
that no expansion of the class of finite distributive lattices by linear orders satisfies the
Ramsey property. However, an expansion of the class of all finite distributive lattices by
particular ternary relations will result in a class with the Ramsey property.

Let F be a locally finite object. For A ∈ Ob(Cfin) such that A → F and e1, e2 ∈
hom(A,F ) let NF (e1, e2) = {f ∈ Aut(F ) : f · e1 = e2}. Then

MF = {NF (e1, e2) : A ∈ Ob(Cfin), A
C−→ F and e1, e2 ∈ hom(A,F )}.



FROM RAMSEY DEGREES TO RAMSEY EXPANSIONS 1519

is a base of a topology τF on Aut(F ) [18].
Let U : C∗ → C be a reasonable precompact expansion with unique restrictions and

let F ∈ Ob(C). For A ∈ Ob(Cfin), e ∈ hom(A,F ) and A∗ ∈ U−1(A) let

N(e, A∗) = {F ∗ ∈ U−1(F ) : e ∈ hom(A∗, F ∗)}.

Then SF = {N(e, A∗) : U(A∗) ∈ Ob(Cfin), e ∈ hom(U(A∗), F )} is a base of clopen sets of
a topology σF on U−1(F ) [18].

Each reasonable expansion with unique restrictions yields an action of Aut(F ) on
U−1(F ) for every F ∈ Ob(C): for F ∈ Ob(C), g ∈ Aut(F ) and F ∗ ∈ U−1(F ) let F ∗ · g
denote the unique element of U−1(F ) satisfying g ∈ hom(F ∗ ·g, F ∗). (See [18] for details.)
This action is continuous with respect to topologies τF on Aut(F ) and σF on U−1(F ) and
will be referred to as logical.

That every Fräıssé class with finite Ramsey degrees has a Ramsey expansion was first
established in 2016 in [30]. A combinatorial proof of the same fact was then given in [27],
and this was put into the context of category theory in [18]. The categorical version takes
the following form:

2.5. Theorem. [30, 27, 18] Let C be a locally small category and let Cfin be a full
subcategory of C such that (C1) – (C5) hold. Let F ∈ Ob(C) be an ultrahomogeneous
locally finite object, and let A be the full subcategory of Cfin spanned by Age(F ). Then
the following are equivalent:

(1) A has finite Ramsey degrees.
(2) There is a reasonable precompact expansion with unique restrictions U : C∗ → C

and a full subcategory A∗ of C∗ which is directed, has the Ramsey property and U↾A∗ :
A∗ → A has the expansion property.

3. Weak amalgamation and weak Fräıssé categories

The weak amalgamation property was introduced independently by Ivanov [8] and Kechris
and Rosendal [10] to describe the behaviour of generic automorphisms of first-order struc-
tures. In this setting we let C be a locally small category whose morphisms are mono.
We say that C has the weak amalgamation property [8, 10, 15] if for any A ∈ Ob(C)
there is A′ ∈ Ob(C) and a morphism f ∈ hom(A,A′) so that whenever we are given
B,C ∈ Ob(C) and morphisms g ∈ hom(A′, B) and h ∈ hom(A′, C) there are D ∈ Ob(C)
and morphisms r ∈ hom(B,D) and s ∈ hom(C,D) so that r · g · f = s · h · f :

A′ B

A D

A′ C

g

rf

f

h

s

When f is as above we call such an f an amalgamation arrow for A.
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3.1. Example. Clearly, every class with the amalgamation property has the weak amal-
gamation property, but the converse is not true [12]. Here is an example from [12]. Let
G be the class of all finite acyclic undirected graphs in which no two vertices of degree
greater than 2 are adjacent. Then G fails the amalgamation property but has the weak
amalgamation property.

3.2. Theorem. Let C be a locally small directed category with finite Ramsey degrees.
Then C has the weak amalgamation property.

Proof. The following weakening of the amalgamation property will be useful during the
course of the proof. Let C be a locally small category whose morphisms are mono and fix
k < ω. We say that A ∈ Ob(C) has 2-out-of-k-amalgamation if for any B0, . . . , Bk−1 ∈
Ob(C) and morphisms gi ∈ hom(A,Bi) there are C ∈ Ob(C), i ̸= j < k and morphisms
r ∈ hom(Bi, C) and s ∈ hom(Bj, C) with r · gi = s · gj:

C

B0 · · · Bi · · · Bj · · · Bk−1

A

r s

g0

gi gj

gk−1

The proof now proceeds in two steps.

Claim 1. Assume that tC(A) = k − 1 for some A ∈ Ob(C). Then A has 2-out-of-k-
amalgamation.

Proof. Fix morphisms fi ∈ hom(A,Bi) with Bi ∈ Ob(C) for each i < k. Then use the
fact that C is directed to find some C ∈ Ob(C) and morphisms gi ∈ hom(Bi, C) for each
i < k. Next find D ∈ Ob(C) satisfying

D −→ (C)Ak,k−1.

Consider the coloring χ : hom(A,D)→ k where χ(h) = i < k−1 if i is least so that there
is g ∈ hom(Bi, D) with h = g · fi, or set χ(h) = k − 1 if there is no such i < k − 1. Then
there is an x ∈ hom(C,D) such that |χ(x · hom(A,C))| ⩽ k − 1. In particular, there is
some color j < k which is avoided, that is, j /∈ χ(x · hom(A,C)). Then consider the value
of χ(x · gj · fj) = i ̸= j. So there is g ∈ hom(Bi, D) with g · fi = x · gj · fj, showing that
fi and fj can be amalgamated. This concludes the proof of Claim 1.

Claim 2. Suppose for every A ∈ Ob(C) there is some k ∈ N so that A has 2-out-of-k-
amalgamation. Then C has the weak amalgamation property.

Proof. Suppose C failed to have the weak amalgamation property as witnessed by
A ∈ Ob(C). Then the identity map idA is not an amalgamation arrow. Set C0 = A
and idA = f0 ∈ hom(A,C0). Now suppose fi ∈ hom(A,Ci) has been defined. Then
fi is not an amalgamation arrow, so we may find Bi+1, Ci+1 ∈ Ob(C) and morphisms
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gi ∈ hom(Ci, Bi+1) and hi ∈ hom(Ci, Ci+1) so that gi ·fi and hi ·fi cannot be amalgamated.
Then set fi+1 = hi · fi. We can continue this as long as we would like, obtaining arrows
{gi · fi : i < ω} no pair of which can be amalgamated. Therefore, A does not have 2-out-
of-k-amalgamation. This concludes the proof of Claim 2 and proof of the theorem.

3.3. Example. Let K be the class of finite graphs G with the property that there is no
injective homomorphism C4 → G, where, as usual, C4 denotes the cycle on four vertices.
In [28] the authors show that the class K does not have the weak amalgamation property
(with respect to embeddings). Therefore, by the above theorem, the class K does not
have finite small Ramsey degrees.

3.4. Example. Another example can be found in [13]. This time let K be the class of
finite graphs in which different cycles of the same length are disjoint. Then K fails the
weak amalgamation property and hence does not have finite small Ramsey degrees.

The remainder of this section is devoted to the exposition of key notions of weak
Fräıssé theory [15] which is one of the building blocks of our construction. Let us stress
that in [15] the author considers the free ω-cocompletion of a category and demonstrates
how certain model-theoretic properties of the original category reflect on some special
objects in the cocompletion.

A subcategory D of C is weakly dominating in C [15] if it is cofinal in C and for
every D ∈ Ob(D) there exist a D′ ∈ Ob(D) and a j ∈ homD(D,D

′) such that for
every C ∈ Ob(C) and every f ∈ homC(D

′, C) there is an E ∈ Ob(D) and a morphism
g ∈ homC(C,E) such that g · f · j is a morphism in D.

C C

D D′ E D

g

j

g·f ·j

f

A categoryC is a weak Fräıssé category [15] if it is directed, has the weak amalgamation
property and is weakly dominated by a countable subcategory.

A sequence W = (Wn, w
m
n )n⩽m∈ω is a weak Fräıssé sequence [15] if the following is

satisfied:

• for every C ∈ Ob(C) there is an n ∈ ω such that C
C−→ Wn; and

• for every n ∈ ω there exists an m ⩾ n such that for every f ∈ homC(Wm, C) there
are k ⩾ m and g ∈ homC(C,Wk) satisfying g · f · wmn = wkn.
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· · · Wn Wm Wk · · ·

Wm C

wmn

wmn

wkm

f

g

If follows immediately that every category with a weak Fräıssé sequence is directed
and has the weak amalgamation property [15].

A particularly important class of weak Fräıssé categories is the category of chains
formed from a category with a weak Fräıssé limit [15, 14, 2]. Let ω = {0, 1, 2, . . .} denote
the chain of nonnegative integers treated here as a poset category (that is, for all n,m ∈ ω
such that n ⩽ m there is a single morphism n→ m). A sequence in a category C is any
functor X : ω → C. We shall find it more convenient to describe functors X : ω → C as
(Xn, x

m
n )n⩽m∈ω where Xn = X(n) ∈ Ob(C) and xmn ∈ homC(Xn, Xm) is the image under

X of the only morphism n → m. Then, clearly, xnn = idXn and xkm · xmn = xkn whenever
n ⩽ m ⩽ k.

The next step is to define morphisms between sequences in such a way that a morphism
from a sequence X to a sequence Y induces a morphism from the colimit of X into the
colimit of Y whenever the category of sequences is embedded into a category in which
sequences X and Y have colimits. This is a two-phase process: the idea is to start with
the category of sequences and transformations σ1C and then factor this category by a
congruence to arrive at the category σ0C of sequences and morphisms between them.
Hence, a morphism of sequences is an equivalence class of transformations between them.

Let (Xn, x
m
n )n⩽m∈ω and (Yn, y

m
n )n⩽m∈ω be sequences in C. A transformation from

(Xn, x
m
n )n⩽m∈ω to (Yn, y

m
n )n⩽m∈ω is a pair (F, φ) where φ : ω → ω is a functor such that

φ(ω) is cofinal in ω and F : X → Y ◦ φ is a natural transformation. In other words, φ is
a nondecreasing cofinal map ω → ω (that is, i ⩽ j ⇒ φ(i) ⩽ φ(j) and for every n there is
an m such that n ⩽ φ(m)) and there is a family of arrows Fn : Xn → Yφ(n), n ∈ ω, such
that

Xn Xm

Yφ(n) Yφ(m)

Fn

xmn

Fm

y
φ(m)
φ(n)

for all n ⩽ m ∈ ω.

All sequences in C and transformations between them form a category that we denote by
σ1C.

Two transformations (F, φ), (G,ψ) : (Xn, x
m
n )n⩽m∈ω → (Yn, y

m
n )n⩽m∈ω are equivalent,

in symbols (F, φ) ≈ (G,ψ), if for every n ∈ ω there exists an m ⩾ max{φ(n), ψ(n)} such
that
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Xn

Yφ(n) Yψ(n) Ym

Fn
Gn

ym
φ(n)

ym
ψ(n)

It is easy to check that ≈ is a congruence of σ1C, so let σ0C = σ1C/≈ be the factor
category. Clearly, each morphism is an equivalence class of transformations. Just as a
quick demonstration of the interaction of all these notions let us show the following

3.5. Lemma. Let C be a locally small category whose morphisms are mono. Then all the
morphisms in σ0C are mono.

Proof. Let X = (Xn, x
m
n )n⩽m∈ω, Y = (Yn, y

m
n )n⩽m∈ω and Z = (Zn, z

m
n )n⩽m∈ω be se-

quences in C, and let (F, φ) : Y → Z and (G,ψ), (H, θ) : X → Y be transformations such
that (F, φ) · (G,ψ) ≈ (F, φ) · (H, θ). We are going to show that (G,ψ) ≈ (H, θ).

Note that (F, φ) · (G,ψ) ≈ (F, φ) · (H, θ) means that for every n ∈ ω there is an
m ⩾ max{φ(ψ(n)), φ(θ(n))} such that

zmφ(ψ(n)) · Fψ(n) ·Gn = zmφ(θ(n)) · Fθ(n) ·Hn (1)

Xn

Yψ(n) Yθ(n)

Zφ(ψ(n)) Zφ(θ(n)) Zm

Gn
Hn

Fψ(n) Fθ(n)

Since φ, ψ and θ are nondecreasing and cofinal, φ ◦ θ and φ ◦ ψ are also nondecreasing
and cofinal, so there is a k ∈ ω such that θ(k) > θ(n) and φ(θ(k)) > m, and an s ∈ ω
such that ψ(s) > θ(k) and φ(ψ(s)) > φ(θ(k)):

Xn

Yψ(n) Yθ(n) Yθ(k) Yψ(s)

Zφ(ψ(n)) Zφ(θ(n)) Zm Zφ(θ(k)) Zφ(ψ(s))

Gn

Hn

Fψ(n) Fθ(n) Fθ(k) Fψ(s)
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The rest of the proof reduces to straightforward calculation. Multiplying (1) by z
φ(ψ(s))
m

from the left we get

zφ(ψ(s))m · zmφ(ψ(n)) · Fψ(n) ·Gn = zφ(ψ(s))m · zmφ(θ(n)) · Fθ(n) ·Hn

that is
z
φ(ψ(s))
φ(ψ(n)) · Fψ(n) ·Gn = z

φ(ψ(s))
φ(θ(n)) · Fθ(n) ·Hn.

Using the fact that F : Y → Z is a transformation as the next step we have

Fψ(s) · yψ(s)ψ(n) ·Gn = Fψ(s) · yψ(s)θ(n) ·Hn.

Finally, Fψ(s) is mono as a morphism in C, whence

y
ψ(s)
ψ(n) ·Gn = y

ψ(s)
θ(n) ·Hn.

This shows that (G,ψ) ≈ (H, θ).

The categoryC embeds fully into σ0C as follows. ForA ∈ Ob(C) letA = (A, idA)n⩽m∈ω
denote the constant sequence such that An = A for all n ∈ ω and amn = idA for
all n ⩽ m ∈ ω. Every morphism f ∈ homC(A,B) gives rise to a unique transfor-
mation f = (Constf , idω) where (Constf )n = f , n ∈ ω. It is easy to check that
J : C → σ0C : A 7→ A : f 7→ f/≈ is indeed a full functor injective on objects, and
hence an embedding [14].

It is a bit technical but easy to show (see [14]) that σ0C is a cocompletion of C: for
every sequence X = (Xn, x

m
n )n⩽m∈ω in C we have simply added a formal colimit to σ0C

and adjusted the morphisms so that X is the colimit of J(X) in σ0C. More precisely, the
following holds in σ0C (see [14] for details):

X = colim(X0

x10−→ X1

x21−→ · · · )
Clearly, every element in Ob(σ0C) is a colimit of a sequence in C.

It comes as no surprise that weak Fräıssé sequences should demonstrate a certain level
of homogeneity in σ0C with respect to objects from J(C). In the setting of weak Fräıssé
theory the corresponding notion is referred to as weak homogeneity.

Let C be a locally small category whose morphisms are mono, let D be a full subcat-
egory of C and let S ∈ Ob(C). We say that S is weakly homogeneous for D [15] if for
every A ∈ Ob(D) and every f ∈ hom(A, S) there is a B ∈ Ob(D), an e ∈ hom(A,B) and
an i ∈ hom(B, S) such that

(W1) f = i · e, and

(W2) for every j ∈ hom(B, S) there is an h ∈ Aut(S) such that i · e = h · j · e:

B S

A

B S

i

e

e

f

j

h
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3.6. Theorem. [15] Let C be a category.
(a) C is a weak Fräıssé category if and only if there is a weak Fräıssé sequence in C.
(b) A category may have, up to isomorphism, at most one weak Fräıssé sequence.
(c) If C is a weak Fräıssé category and W a weak Fräıssé sequence in C then W as

an object of σ0C is weakly homogeneous for C.

In case C is a class of finite first-order structures of the same first-order signature
Θ, we can think of C as a category where embeddings serve as morphisms, and in this
particular case we can take σ0C to be the class of all structures isomorphic to the unions of
countable chains in C. Recall that the morphisms between sequences in σ0C are defined
in a rather convoluted manner to ensure that in the context of first-order structures a
morphism from a sequence X to a sequence Y correspond uniquely to an embedding of
the colimit of X into the colimit of Y .

4. Weak homogeneity and precompact expansions

The purpose of this section is to prove a generalization of Theorem 2.5 where ultrahomo-
geneity is replaced by weak homogeneity. Interestingly, the proof as we have presented
it in [18] remains largely the same, so we cover only the differences here. We strongly
suggest the reader to have a copy of the proof given in [18] at hand while reading this
section.

4.1. Lemma. Let U : C∗ → C be a reasonable expansion with unique restrictions. Let F
be a locally finite object of C which is weakly homogeneous for its age and let G = Aut(F ).
Then for F ∗, F ∗

1 ∈ U−1(F ) we have F ∗
1 ∈ F ∗ ·G (where the closure is computed in σF ) if

and only if Age(F ∗
1 ) ⊆ Age(F ∗).

Proof. (⇒) The same as the proof of direction (⇒) in [18, Lemma 5.11].
(⇐) Assume that Age(F ∗

1 ) ⊆ Age(F ∗) and let us show that every neighborhood of
F ∗
1 intersects F ∗ · G. Let N(e, A∗) be a neighborhood of F ∗

1 . Then e ∈ homC∗(A∗, F ∗
1 )

and e ∈ homC(A,F ). Our intention now is to show that e ∈ homC∗(A∗, F ∗ · g) for some
g ∈ G.

Since F is weakly homogeneous there exists a B ∈ Ob(Cfin) and morphisms h ∈
homC(A,B) and i ∈ homC(B,F ) such that e = i · h. Let B∗

1 = F ∗
1 ↾i. Then B∗

1 ∈
Age(F ∗

1 ) ⊆ Age(F ∗), so there exists a morphism f ∈ hom(B∗
1 , F

∗). Since F is weakly
homogeneous, there is a g ∈ Aut(F ) such that g · f · h = i · h = e:

B F

A

B F

i

h

h

e

f

g

But then (see [18, Lemma 5.1 (c)]):
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A∗ B∗
1 F ∗ F ∗ · g−1

A B F F

h

e

U

f

U

g

U U

h

e

f g

whence follows that F ∗ · g−1 ∈ N(e, A∗).

4.2. Proposition. Let U : C∗ → C be a reasonable precompact expansion with unique
restrictions. Let F be a locally finite weakly homogeneous object in C and assume that
U−1(F ) is compact with respect to the topology σF . Let G = Aut(F ) and let F ∗ ∈ U−1(F )
be arbitrary. Then U↾Age(F ∗) : Age(F

∗)→ Age(F ) has the expansion property if and only

if Age(F ∗) = Age(F ∗
1 ) for all F ∗

1 ∈ F ∗ ·G.

Proof. (⇒) The same as the proof of direction (⇒) in [18, Lemma 5.12].
(⇐) Assume that Age(F ∗) ⊆ Age(F ∗

1 ) for all F ∗
1 ∈ F ∗ ·G. Let A∗ ∈ Age(F ∗) be

arbitrary and let A = U(A∗). For e ∈ hom(A,F ) let

Xe = F ∗ ·G ∩N(e, A∗).

Let us show that
F ∗ ·G =

⋃
{Xe : e ∈ hom(A,F )}.

The inclusion ⊇ is trivial, while the inclusion ⊆ follows from the assumption. Namely,
if F ∗

1 ∈ F ∗ ·G then Age(F ∗) ⊆ Age(F ∗
1 ); so A

∗ ∈ Age(F ∗
1 ), or, equivalently, there is a

morphism f ∈ hom(A∗, F ∗
1 ), whence F

∗
1 ∈ Xf .

By construction each Xe is open in F ∗ ·G. Since F ∗ ·G is compact (as a closed sub-
space of the compact space U−1(F )), there is a finite sequence e0, . . . , ek−1 ∈ hom(A,F )
such that

F ∗ ·G =
⋃
{Xej : j < k}.

Since F is locally finite, there exist B ∈ Ob(Cfin) and morphisms r ∈ hom(B,F )
and pi ∈ hom(A,B) such that r · pi = ei, i < k. Moreover, F is weakly homogeneous
so for r ∈ hom(B,F ) there exist C ∈ Ob(Cfin) and morphisms h ∈ hom(B,C) and
i ∈ hom(C,F ) such that (W1), that is i · h = r, and (W2) are satisfied. Let us show that

for every C∗ ∈ U−1(C) we have that A∗ C∗
−→ C∗.

Take any C∗ ∈ Age(F ∗) such that U(C∗) = C and let s ∈ hom(C∗, F ∗) be any
morphism. Then, s ∈ hom(C,F ), so by (W2) there is a g ∈ G such that g ·s ·h = i ·h = r.
Furthermore, let B∗ = C∗↾h. Since g ∈ hom(F ∗, F ∗ · g−1) we have that
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F ∗ · g−1 B∗ C∗ F ∗

F B C F

U U

g·s·h
h

U

s

U

g

hr s

g

In particular, r = g · s · h ∈ hom(B∗, F ∗ · g−1), so B∗ ∈ Age(F ∗ · g−1). Now, F ∗ · g−1 ∈
F ∗ ·G =

⋃
{Xej : j < k}, so F ∗ · g−1 ∈ Xei for some i. Moreover, r · pi = ei by the

construction of B. Therefore:

A∗ F ∗ · g−1 B∗

A F B

U

ei

U U

r

pi

ei r

Let A∗
1 = B∗↾pi . Since B∗ = F ∗ · g−1↾r we have A∗

1 = (F ∗ · g−1↾r)↾pi = F ∗ · g−1↾r·pi =
F ∗ · g−1↾ei = A∗. Consequently, pi ∈ hom(A∗, B∗) which, together with h ∈ hom(B∗, C∗)

concludes the proof that A∗ C∗
−→ C∗.

Putting it all together and having in mind parts of the proof from [18] that do not
depend on F being homogeneous we finally get the following:

4.3. Theorem. Let C be a locally small category and let Cfin be a full subcategory of
C such that (C1) – (C5) hold. Let F ∈ Ob(C) be a weakly homogeneous locally finite
object, and let A be the full subcategory of Cfin spanned by Age(F ). Then the following
are equivalent:

(1) A has finite Ramsey degrees.
(2) There is a reasonable precompact expansion with unique restrictions U : C∗ → C

and a full subcategory A∗ of C∗ which is directed, has the Ramsey property and U↾A∗ :
A∗ → A has the expansion property.

For reader’s convenience we conclude the section with the quick recapitulation of the
construction of C∗ and A∗. The category C∗ is constructed from C by adding structure
to objects of C. The language convenient for the efficient description of the additional
structure is that of essential colorings which capture the small Ramsey degree of an object
by identifying the “unavoidable coloring” (see [30] and also [27]). Given a locally finite
F ∈ Ob(C), a coloring λ : hom(A,B) → t, t ⩾ 2, is essential at B if for every coloring
χ : hom(A,F )→ k there is a w ∈ hom(B,F ) such that kerλ ⊆ kerχ(w), where χ(w)(f) =
χ(w · f). A coloring γ : hom(A,F ) → t, t ⩾ 2, is essential if for every B ∈ Ob(A) such

that A
C−→ B and every w ∈ hom(B,F ) the coloring γ(w) : hom(A,B) → t is essential

at B. The key observation now is that for every A ∈ Ob(A) there is an essential coloring
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γA : hom(A,F )→ tA(A) (see [30, 27] for the original statement and [18] for the proof of
the result in the categorical setting).

Let C∗ be the category whose objects are pairs Cθ = (C, θ) where C ∈ Ob(C) and
θ = (θA)A∈Ob(A) is a family of colorings

θA : hom(A,C)→ tA(A)

indexed by the objects of A. Morphisms in C∗ are morphisms from C that preserve
colorings. More precisely, f is a morphism from Cθ = (C, θ) to Dδ = (D, δ) in C∗ if
f ∈ hom(C,D) and

δ(f · e) = θ(e), for all e ∈
⋃

A∈Ob(A)

hom(A,C).

Let U : C∗ → C be the obvious forgetful functor (C, θ) 7→ C and f 7→ f . This is a
reasonable precompact expansion with unique restrictions [18].

Let γ = (γA)A∈Ob(A), and let Fγ = (F, γ) ∈ Ob(C∗) be an arbitrary expansion of F (the
weakly homogeneous locally finite object from the proof). As we have seen, expansions
with unique restrictions induce group actions. Moreover, the action of G = Aut(F ) on
U−1(F ) is continuous [18]. Since U−1(F ) is compact [18] there is an F ∗ = (F, φ∗) ∈ Fγ ·G
such that F ∗ ·G is minimal with respect to inclusion. We then let A∗ = Age(F ∗).

5. The Main Result

We have now set up all the infrastructure necessary for the main result of the paper. We
shall say that C is a category of finite objects if C has a skeleton S with the following
properties:

• S is a countable category,

• homS(A,B) is finite for all A,B ∈ S,

• for every B ∈ Ob(S) the set {A ∈ Ob(S) : A
S−→ B} is finite, and

• every A ∈ Ob(S) is locally finite for S.

Whenever C is a category of finite structures, we take Cfin to be whole of C. Conse-
quently, a precompact expansion U : C∗ → C has the property that U−1(A) is finite for
all A ∈ Ob(C).

5.1. Theorem. Let C be a directed category of finite objects whose morphisms are mono.
Then C has finite Ramsey degrees if and only if there exists a category C∗ with the Ramsey
property and a reasonable precompact expansion with unique restrictions U : C∗ → C with
the expansion property. (Such an expansion is usually referred to as a Ramsey expansion.)
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Proof. (⇐) See [18].
(⇒) Since C is a category of finite objects it has a skeleton S with the properties listed

above.

Step 1. Let us first show that there exists a category S∗ with the Ramsey property and
a reasonable expansion with unique restrictions V : S∗ → S with the expansion property.

The category S is clearly directed, so the fact that it has finite Ramsey degrees ensures
by Theorem 3.2 that it also has the weak amalgamation property. Since S is trivially
weakly dominated by itself, it follows that S is a weak amalgamation category and it has
a weak Fräıssé sequence W = (Wn, w

m
n )n⩽m∈ω (Theorem 3.6 (a)). Let D = σ0S and let

Dfin = J(S). Let us show that (C1) – (C5) are satisfied.
(C1) Morphisms in D are mono by Lemma 3.5
(C2) Ob(Dfin) = Ob(J(S)) is a set because Ob(S) is a set by the assumption (actually,

a countable one).
(C3) and (C5) follow from the fact that S is a skeleton of a category of finite objects.
(C4) take any X = (Xn, x

m
n )n⩽m∈ω ∈ Ob(D) and note that there is a morphism

X0 → X given by

X0 X0 X0 · · ·

X0 X1 X2 · · ·

id

id

id

x10

id

x20

x10 x21 x32

It is easy to see thatW as an object of D is universal for J(S). Moreover, W is weakly
homogeneous for J(S) by Theorem 3.6 (c). Let us show that W is locally finite for J(S).

Take anyA,B ∈ Ob(S) and arbitrary morphisms (E, ε)/≈ ∈ homD(A,W ), (F, φ)/≈ ∈
homD(B,W ). Without loss of generality we may assume that the transformations (E, ε)
and (F, φ) are chosen so that ε(0) = φ(0). Let k = ε(0) = φ(0). Then the fact that
every object in S is locally finite for S implies that there is a D ∈ Ob(S) and morphisms
p ∈ homS(A,D), q ∈ homS(B,D) and r ∈ homS(D,Wk) such that

D Wk

A B

r

p
E0 q

F0

and D is the “smallest” such object in the sense that for every other contender there is a
morphism from D into the contender such that everything commutes.

Let (G, γ) be the transformation D → W there γ : ω → ω : n 7→ n + k and Gn ∈
homS(D,Wn+k) is given by Gn = wk+nk · r:

D D D · · ·

W0 · · · Wk Wk+1 Wk+2 · · ·

id

G0=r

id

G1

id

G2

wk+1
k wk+2

k+1 wk+3
k+2
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Let us show that (G, γ) · p ≈ (E, ε). Take any n ∈ ω and let m = 1 + max{k + n, ε(n)}.
Note that En = w

ε(n)
k ·E0 because (E, ε) is a transformation A→ W (recall that k = ε(0)):

A A

Wk Wε(n)

id

E0 En

w
ε(n)
k

Therefore, wmε(n) · En = wmε(n) · w
ε(n)
k · E0 = wmk · E0 = wmk+n · wk+nk · r · p = wmk+n ·Gn · p.

A

D

Wk Wk+n Wε(n) Wm

E0
p

En

r
Gn

wk+nk

wmk+n

wm
ε(n)

The proof of (G, γ) · q ≈ (F, φ) is analogous.
To complete the proof that W is locally finite for J(S) assume now that there is a

contender C ∈ J(S) with morphisms u/≈ : A→ C, v/≈ : B → C and (H, θ)/≈ : C → W ,
where u ∈ homS(A,C) and v ∈ homS(B,C). Without loss of generality we may assume
that the transformation (H, θ) was chosen so that θ(0) = k. Then we have the following
configuration in S:

D Wk C

A B

r H0

p E0

uq

F0
v

By the choice of D there is a morphism s ∈ homS(D,C) such that

D Wk C

A B

r

s

H0

p E0

uq

F0
v

Note that everything still commutes when this diagram is transposed to D. The proof is
straightforward. For example, (H, θ) · s ≈ (G, γ) follows from
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D D

C C

Wk Wk+n

id

s

G0=r

s

Gn
id

H0 Hn

wk+nk

Therefore, D is a locally small category and, Dfin = J(S) ∼= S is a full subcategory of
D and (C1) – (C5) hold. Moreover, W is a weakly homogeneous locally finite object and
Age(F ) is the whole of Dfin

∼= S. Since S has finite Ramsey degrees, Theorem 4.3 ensures
that there is a reasonable precompact expansion with unique restrictions V : D∗ → D and
a full subcategory S∗ of D∗ which is directed, has the Ramsey property and V ↾S∗ : S∗ → S
has the expansion property.

Step 2. Since S is a skeleton of C we can now easily expand S∗ to C∗ and V : S∗ → S
to U : C∗ → C as follows. Let F : C → S be a functor that takes C ∈ Ob(C) to the
unique S ∈ Ob(S) such that C ∼= S. Next, for each C ∈ Ob(C) fix an isomorphism
ηC : C → F (C) and define F on morphisms so that F takes f : C → D to F (f) : F (C)→
F (D) where F (f) = ηD · f · η−1

C . This turns η into a natural transformation ID → F .

Now take C∗ to be the pullback of C
F−→ S

V←− S∗ in the quasicategory of all locally
small categories and functors between them, and let U : C∗ → C be the corresponding
functor in the pullback diagram:

C∗ S∗

C S

F ∗

U V

F

It is easy to see that S∗ is a skeleton of C∗ and that C∗ ∼= F ∗(C∗) for every C∗ ∈ Ob(C∗).
Therefore, C∗ has the Ramsey property and U : C∗ → C is a reasonable expansion with
unique restrictions and with the expansion property.

The above result easily specializes to classes of first-order structures. Let Θ be a first-
order signature (that is, a set of functional, relational and constant symbols) and let K
be a class of finite Θ-structures. Then K can be treated as a category with embeddings as
morphisms. So, when we stipulate that a class of first-order structures has certain prop-
erties we have introduced in the context of categories (Ramsey property, finite Ramsey
degrees, . . . ) we have this interpretation in mind. Historically, structural Ramsey phe-
nomena we consider in this paper were first identified in classes of first-order structures
and were later transposed to the context of abstract categories. For historical reasons
we shall, therefore, say that a class of first-order structures K has the joint embedding
property if for all A,B ∈ K there is a C ∈ K such that A ↪→ C ←↩ B. Clearly, K has the
joint embedding property if and only if K is directed as a category.
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Let Θ∗ ⊇ Θ be a first-order signature that contains Θ and let K∗ be a class of Θ∗-
structures. Let K be a class of Θ-structures and let U : K∗ → K be the forgetful functor
that forgets the extra structure from Θ∗ \ Θ so that U takes a structure from K∗ to its
Θ-reduct (and takes homomorphisms to themselves). We then say thatK∗ is an expansion
of K, and that it is a reasonable expansion with unique restrictions and with the expansion
property if U : K∗ → K is.

5.2. Corollary. Let Θ be a first-order signature and let K be a class of finite Θ-
structures such that there are at most countably many pairwise nonisomorphic structures
in K and K has the joint-embedding property. Then: K has finite Ramsey degrees if and
only if there exists a first-order signature Θ∗ ⊇ Θ and a class K∗ of Θ∗-structures such
that K∗ has the Ramsey property and K∗ is a reasonable precompact expansion of K with
unique restrictions and with the expansion property.

Proof. (⇐): Immediate from Theorem 5.1.
(⇒): To show that this direction also follows from Theorem 5.1 we have to show that

the expansion constructed in Theorem 5.1 can be performed in the realm of first-order
structures.

Let Am, m ∈ N, be an enumeration of all representatives of isomorphism types in K
where Am is a Θ-structure whose underlying set is Am = {am,1, . . . , am,nm}, nm = |Am|.
Clearly (with a slight abuse of terminology), A = {Am : m ∈ N} is the skeleton of K.

The first step in the proof of Theorem 5.1 begins with the construction of the ambient
category D = σ0S in which weakly homogeneous locally finite universal objects dwell.
Since A is a set of finite Θ-structures in the context of first-order structures we can take
D = σ0A to be the class of all structures isomorphic to the unions of countable chains in
A. Recall that the morphisms between sequences are defined so that a morphism from a
sequence X to a sequence Y corresponds uniquely to an embedding of the colimit of X
into the colimit of Y . Therefore, the ambient category D is a category whose objects are
finite or countably infinite Θ-structures which can be constructed as limits of countable
chains in A. Morphisms in D are embeddings.

Next, Theorem 4.3 is invoked to produce a Ramsey expansion by adding additional
structure to objects from D so that for each D ∈ Ob(D) we add to Ob(D∗) all pos-
sible pairs (D, (δA)A∈Ob(A)) where δA : hom(A,D) → tA(A) is an arbitrary coloring.
This particular construction specializes to first-order structures as follows (cf. [27]). Let
tK(Am) = tA(Am) = tm ∈ N and let us expand Θ with countably many relational symbols
Rm,j, m ∈ N, 1 ⩽ j ⩽ tm, where the arity of Rm,j is nm = |Am|:

Θ′ = Θ ∪ {Rm,j : m ∈ N, 1 ⩽ j ⩽ tm}.

Now, for each Θ-structure D = (D,ΘD) ∈ Ob(D) we add to Ob(D∗) all possible Θ′-
structures

D∗ = (D,ΘD ∪ {RD∗

m,j : m ∈ N, 1 ⩽ j ⩽ tm})

where, for each m ∈ N:
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• RD∗
m,1, . . . , R

D∗
m,tm are pairwise disjoint, some of them possibly empty;

• if (d1, . . . , dnm) ∈ RD∗
m,j then the map

( am,1 ... am,nm
d1 ... dnm

)
is an embedding Am ↪→ D,

1 ⩽ j ⩽ tm; and

• if
( am,1 ... am,nm

d1 ... dnm

)
is an embedding Am ↪→ D then (d1, . . . , dnm) ∈ RD∗

m,j for some
1 ⩽ j ⩽ tm.

Morphisms in D∗ are embeddings. By Theorem 4.3 the obvious forgetful functor V :
D∗ → D which takes a Θ′ structure to its Θ-reduct is a reasonable precompact expansion
with unique restrictions and there is a full subcategory A∗ of D∗ which is directed, has
the Ramsey property and V ↾A∗ : A∗ → A has the expansion property.

The final step in the proof of Theorem 5.1 consists of spreading the construction that
we performed on A to the whole of K, and in the context of first-order structures this
reduces to constructing isomorphic copies of elements of A∗ simply by renaming elements.

Moreover, the dual of Theorem 5.1 holds as well. We shall say that C is a category of
finite quotients if C has a skeleton S with the following properties:

• S is a countable category,

• homS(A,B) is finite for all A,B ∈ S,

• for every B ∈ Ob(S) the set {A ∈ Ob(S) : B
S−→ A} is finite, and

• every A ∈ Ob(S) is dually locally finite for S.

Here, A ∈ Ob(S) is dually locally finite for S if A ∈ Ob(S) is locally finite for Sop.
Continuing in the same fashion, we say that C is dually directed if Cop is directed; that
C has small dual Ramsey degrees if Cop has small Ramsey degrees; that C has dual
Ramsey property if Cop has the Ramsey property; that an expansion U : C→ D is dually
reasonable if U : Cop → Dop is reasonable; that an expansion U : C → D has unique
quotients if U : Cop → Dop has unique restrictions; and that an expansion U : C → D
has the dual expansion property if U : Cop → Dop has the expansion property.

5.3. Corollary. Let C be a dually directed category of finite quotients whose morphisms
are epi. Then C has finite dual Ramsey degrees if and only if there exists a category C∗

with the dual Ramsey property and a dually reasonable precompact expansion with unique
quotients U : C∗ → C with the dual expansion property.
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[6] W. L. Fouché. Symmetry and the Ramsey degrees of finite relational structures. J. Comb.
Theory Ser. A 85 (1999), 135–147.

[7] R. L. Graham, K. Leeb, B. L. Rothschild. Ramsey’s theorem for a class of categories. Adv. Math.
8 (1972) 417–443.

[8] A. Ivanov. Generic expansions of ω-categorical structures and semantics of generalized quantifiers.
J. Symbolic Logic 64 (1999), 775–789.
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Sandra Mantovani, Università degli Studi di Milano: sandra.mantovani@unimi.it
Matias Menni, Conicet and Universidad Nacional de La Plata, Argentina: matias.menni@gmail.com
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Giuseppe Rosolini, Università di Genova: rosolini@unige.it
Michael Shulman, University of San Diego: shulman@sandiego.edu
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
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