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A 2-CATEGORICAL ANALYSIS OF CONTEXT COMPREHENSION

GRETA CORAGLIA AND JACOPO EMMENEGGER

Abstract. We consider the equivalence between the two main categorical models
for the type-theoretical operation of context comprehension, namely P. Dybjer’s cate-
gories with families and B. Jacobs’ comprehension categories, and generalise it to the
non-discrete case. The classical equivalence can be summarised in the slogan: “terms
as sections”. By recognising “terms as coalgebras”, we show how to use the structure-
semantics adjunction to prove that a 2-category of comprehension categories is biequiva-
lent to a 2-category of (non-discrete) categories with families. The biequivalence restricts
to the classical one proved by Hofmann in the discrete case. It also provides a framework
where to compare different morphisms of these structures that have appeared in the lit-
erature, varying on the degree of preservation of the relevant structure. We consider in
particular morphisms defined by Claraimbault–Dybjer, Jacobs, Larrea, and Uemura.

1. Introduction

The problem of modelling the structural rules of type dependency using categories has
motivated the study of several structures, varying in generality, occurrence in nature, and
adherence to the syntax of dependent type theory. One aspect, that involving free vari-
ables and substitution, is neatly dealt with using (possibly refinements of) Grothendieck
fibrations. The other main aspect of type dependency is the possibility of making as-
sumptions as encoded in the two rules below

Γ ⊢ A Type

⊢ Γ.A ctx

Γ ⊢ A Type

Γ.A ⊢ vA : A

where the first one (context extension) extends the context Γ with the type A, and the
second one (assumption) provides a “generic term” of A in context Γ.A. In the first
order setting, they allow us to add assumptions to a context, and to prove what has been
assumed, respectively.
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The present paper provides a purely 2-categorical comparison of the two main cate-
gorical accounts of these two rules: Jacobs’ comprehension categories [Jacobs, 1999] and
Dybjer’s categories with families [Dybjer, 1996]. They differ in that the former gives
prominence to context extension, and the latter to assumption. For the comparison, a
taxonomy of morphisms of both structures is proposed, from lax versions to strict ones,
and a general biequivalence between 2-categories of lax morphisms is proved. This then
specialises to (possibly stricter) equivalences between subcategories.

The taxonomy that we propose is based on the one, well established, for morphisms
between comonads and between adjunctions [Kelly and Street, 1974]. The fact that com-
prehension categories can be formulated as a pair of a fibration and a (suitable) comonad
has been known since the early days. In fact, Jacobs introduces these weakening and con-
traction comonads first1 and uses them to justify comprehension categories [Jacobs, 1999,
Definition 9.3.1, Theorem 9.3.4] (whose definition appears in a theorem). We call them
w-comonads for short. On the other hand, the formulation of categories with families
as a pair of discrete fibrations over the same base connected by a (suitable) adjunction
is also known, but its formulation took some time and the observations (and proofs) of,
among others, Fiore [2008], Awodey [2018], and Uemura [2023, Section 3]. In order to
have a uniform comparison with comprehension categories, we drop the assumption of dis-
creteness on the two fibrations and call the resulting structure a generalised category with
families, see Definition 3.15, which has previously appeared in [Coraglia and Di Liberti,
2022] under a different name.

Figure 1: The underlying diagrams in Cat of, from left to right, a comprehension category,
a w-comonad, and a generalised category with families.
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The correspondence between categories with families and comprehension categories
is well-understood at the level of the objects. Indeed, categories with families are in
bijection with Cartmell’s categories with attributes [Cartmell, 1986; Moggi, 1991], which
can be identified, via the Grothendieck construction, with comprehension categories with
discrete fibration. The original proof is due to Hofmann [1997, Section 3], and can be easily
extended to an equivalence between categories of strict morphisms. This is made explicit
in [Blanco, 1991], which provides a comprehensive investigation of the relations among
several categories of structures for type dependency. The morphisms considered there are,
however, only strict morphisms: they preserve comprehensions on the nose. If we wish to

1Actually, they are introduced first in [Jacobs, 1999], but in the earlier [Jacobs, 1993] they do not
appear, in fact.
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compare categories with families with structures not arising from syntax, strict morphisms
are no longer useful. As a case in point, consider Claraimbault and Dybjer’s biequivalence
between extensional type theories and locally cartesian closed categories [Clairambault
and Dybjer, 2014]. Extensional type theories are there presented by certain categories
with families with additional structure. The morphisms between them needed to make
the biequivalence work, called pseudo cwf-morphisms, are not the strict morphisms of
cwfs defined by Dybjer [1996] and considered by Blanco [1991]. In fact, these pseudo cwf-
morphisms are not morphisms of discrete fibrations, and do not strictly preserve generic
terms. They are, however, morphisms of (certain) generalised categories with families.

Categories with families are in bijection with discrete comprehension categories be-
cause, for every object A of U , the objects of U̇ mapped to A (the terms) are in bijection
with sections of the display map χA. But sections can be describes as coalgebras, and
these sections are the coalgebras of the w-comonad K induced by χ. This simple ob-
servation suggests that the classical correspondence between categories with families and
comprehension categories could be phrased within the framework of the correspondence
between adjunctions and comonads. The internal structure-semantics adjunction [Street,
1972] can be used to show that comonads are 2-reflective in a suitable 2-category of ad-
junctions, where the 1-cells are pairs of functors commuting with the left adjoints. Of
course, this reflection is in general far from being an equivalence. Nevertheless, we show
that it lifts to a 2-reflection between generalised categories with families and w-comonads
which becomes a biequivalence if one takes as morphisms of generalised categories with
families functors that commute with left adjoints up to a natural vertical iso. We call
these loose morphisms. In type theoretic terms, this means preserving typing only up to
iso. The discrete case is recovered thanks to the fact that vertical isos in discrete fibrations
are identities.

Section 2 reviews the taxonomy of morphisms of (co)monads and adjunctions and
the details of the 2-reflection between them (2.9), and extends it to the case of loose
morphisms of adjunctions in (2.14). Section 3 defines the 2-categories of interest: in order,
those of comprehension categories in (3.7), of w-comonads in (3.13), and of generalised
categories with families in (3.22). Section 4 proves the biequivalence of comprehension
categories and generalised categories with families by establishing first a biequivalence
between comprehension categories and w-comonads in (4.9), and then a biequivalence
between the latter and generalised categories with families in (4.11). We conclude in (4.18)
considering the discrete case, and the case of full comprehension categories.

2. A biadjunction between comonads and adjunctions

Every adjunction L ⊣ R determines a comonad on the composite LR (and a monad
on RL), as it was observed in [Huber, 1961]. Conversely, every comonad determines an
adjunction via the Eilenberg–Moore construction of the category of coalgebras [Eilenberg
and Moore, 1965]. In fact it determines two adjunctions—the second one being given
by the Kleisli construction [Kleisli, 1965] of the category of free algebras, but we shall
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only be interested in the former. As it turns out, the Eilenberg–Moore construction
provides a fully faithful embedding of comonads into adjunctions, with a reflector given
by the comonad induced by an adjunction. This can be seen restricting (and dualising)
the classical structure-semantics adjunction [Dubuc, 1970]. In this section we shall recall
some details of this construction, which we need to show that it extends to a 2-reflection,
and that it further extends to the case of loose morphisms of adjunctions.

2.1. Morphisms of adjunctions and of comonads. The 2-category of comonads
can be defined as a suitable dual of a 2-category of formal monads. We refer to the original
source [Street, 1972] for what we need of the theory of formal monads in a 2-category.

Given a 2-category C, we write Cop for the 2-category with the 1-cells reversed, and
Cco for the 2-category with the 2-cells reversed.

2.2. Definition. The 2-category Cmd is defined as Mnd(Catco)co, where Mnd(X)
denotes the 2-category of formal monads in a 2-category X. The definition unfolds as
follows.

A 0-cell is a pair of a category C and a comonad (K, ϵ, ν) on C.
A 1-cell from (C, K, ϵ, ν) to (C ′, K ′, ϵ′, ν ′) is a (lax) morphism of comonads, that is, a

pair (H, θ) of a functor H : C → C ′ and a natural transformation θ : HK ⇒ K ′H such
that the diagrams below commute.

HK K ′H

H

Hϵ

θ

ϵ′H

HK K ′H

HK2 K ′HK K ′2H

Hν

θ

ν′H

θK K′θ

The composite of two (composable) morphisms of comonads (H1, θ1) and (H2, θ2) is
(H2H1, (θ2H1)(H2θ1)).

A 2-cell from (H1, θ1) to (H2, θ2) is a natural transformation ϕ : H1 ⇒ H2 such that
(K ′ϕ)θ1 = θ2(ϕK).

A morphism of comonads (H, θ) is a pseudo (respectively, strict) morphism if θ is
invertible (respectively, the identity). The identity morphism is strict, and it is clear that
pseudo and strict morphisms are closed under composition. We write Cmdps and Cmdstr

for the 2-full 2-subcategories of Cmd with the same 0-cells, and only those 1-cells (H, θ)
which are pseudo (respectively, strict) morphisms of comonads.

2.3. Remark. The right-hand diagram in the definition of lax morphism of comon-
ads (2.2) can be read as saying that, given a lax morphism of comonads (H, θ) : (K, ϵ, ν) →
(K ′, ϵ′, ν ′), each component θE is a morphism of coalgebras from (HKE, θKE ◦ HνE) to
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(K ′HE, ν ′HE). This means that θ lifts to θ̂ below, in the sense that UK′ θ̂ = θ.

C C ′

CoAlg(K) CoAlg(K ′)

RK

H

RK′

CoAlg(H,θ)

θ̂

Several kinds of morphisms between adjunctions can be considered. The list below
is compiled from the squares of one of the two double categories of adjunctions defined
in [Kelly and Street, 1974, pg. 86]. In particular, all these morphisms have unital and
associative compositions. The double category defined by Kelly and Street consists of:
objects are categories, vertical morphisms given by adjunctions, directed according to the
left adjoint; horizontal morphisms given by functors; squares given by natural transfor-
mations filling the square involving left adjoints, as in the left-hand square below.

D D′

C C ′

L

G

L′

F

ζ

D D′

C C ′

G

R

F

R′
ξ

(1)

The other one is defined similarly, but using right adjoints instead as in the right-hand
square above. These two double categories are isomorphic [Kelly and Street, 1974, Propo-
sition 2.2]. The isomorphism is the identity on everything but 2-cells, and maps 2-
cells ζ : L′G ⇒ FL and ξ : GR ⇒ R′F to their mates ζ# := (R′Fϵ)(R′ζR)(η′GR) and
ξ# := (R′Fϵ)(R′ζR)(η′GR), as shown below in (2).

C D D′

C C ′ D′Id

R

L

G

L′
Id

F R′

ζ η′ϵ

D D′ C ′

D C C ′

G L′

L

Id

R

F

R′

Id
ξη ϵ′

(2)

As we are not interested in composing adjunctions, we take adjunctions as objects
and consider the squares, i.e. the triples consisting of two functors and the natural trans-
formation, as morphisms. Moreover, we shall only be interested in those squares whose
transformation is invertible.

2.4. Definition. Let (L,R, η, ϵ) and (L′, R′, η′, ϵ′) be adjunctions, where L : D → C and
L′ : D′ → C ′.

A left loose morphism of adjunctions from (L,R, η, ϵ) to (L′, R′, η′, ϵ′) is a triple
(F,G, ζ) where F : C → C ′ and G : D → D′ are functors, and ζ : L′G

∼⇒ FL is a nat-
ural iso.
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A right loose morphism of adjunctions is defined dually as a triple (F,G, ξ) where
F : C → C ′ and G : D → D′ are functors, and ξ : GR

∼⇒ R′F is a natural iso.
A left morphism of adjunctions is a left loose morphism of adjunctions with ζ = id.

In particular, in this case L′G = FL. Similarly, a right morphism of adjunctions is a
right loose morphism of adjunctions with ξ = id.

A left loose morphism of adjunctions (F,G, ζ) is a pseudo left loose morphism if the
mate ζ# is invertible. It is a strict left loose morphism if the mate ζ# is the identity. In
particular, in this case GR = R′F .

2.5. Remark. It follows from [Melliès and Rolland, 2020, Proposition 12] that a left loose
morphism of adjunctions (F,G, ζ) : (L,R) → (L′, R′) gives rise to a formal adjunction in
the 2-category Funps, which consists of functors, squares commuting up to a natural iso,
and pairs of compatible natural transformations. The formal adjoints are the two 1-cells
(L,L′, ζ−1) : (D,D′, G) → (C, C, F ) and (R,R′, ζ#) : (C, C, F ) → (D,D′, G). However,
note that our objects are adjunctions whereas their objects are functors: this setting
seems somewhat orthogonal to ours and not easily comparable.

The composite of two (composable) left loose morphisms of adjunctions (F1, G1, ζ1)
and (F2, G2, ζ2) is (F2F1, G2G1, (F2ζ1)(ζ2G1)). It follows from (2.6.1) below that pseudo
and strict left loose morphisms are closed under composition. The same is true for right
loose morphisms.

2.6. Remark. Using naturality of the arrows involved and the triangular identities, it is
straightforward to verify the following facts about mates of left loose morphisms.

1. Let (F1, G1, ζ1) and (F2, G2, ζ2) be two composable left loose morphisms of adjunc-
tions. Then

(F2ζ1 ◦ ζ2G1)
# = ζ#2 F1 ◦G2ζ

#
1 .

2. Let (F,G, ζ) be a left loose morphism of adjunctions. Then the two squares below
commute.

G R′L′G

GRL R′FL

Gη

η′G

R′ζ

ζ#L

L′GR FLR

L′R′F F

L′ζ#

ζR

Fϵ

ϵ′F

3. Consider two left loose morphisms of adjunctions (F1, G1, ζ1) to (F2, G2, ζ2) and a
pair (ϕ, ψ) of natural transformations ϕ : F1 ⇒ F2 and ψ : G1 ⇒ G2. Then the
left-hand square below commutes if and only if the right-hand one does.

L′G1 F1L

L′G2 F2L

L′ψ

ζ1

ϕL

ζ2

G1R R′F1

G2R R′F2

ψR

ζ#1

R′ϕ

ζ#2
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2.7. Definition. The 2-category LAdj
∼= is defined as follows.

A 0-cell is an adjunction.
A 1-cell is a left loose morphism of adjunctions.
A 2-cell from (F1, G1, ζ1) to (F2, G2, ζ2) is a pair (ϕ, ψ) of natural transformations

ϕ : F1 ⇒ F2 and ψ : G1 ⇒ G2 such that the left-hand square above in (2.6.3) commutes.
Pasting squares, we see that the 2-cells are closed under component-wise composition.

The 2-category LAdj is the 2-full sub-2-category of LAdj
∼= on the 1-cells which are

left morphisms of adjunctions. Here the 2-cells are pairs (ϕ, ψ) such that L′ψ = ϕL.
We write LAdj

∼=
ps, LAdjps, LAdj

∼=
str, and LAdjstr for the 2-full sub-2-categories on

pseudo and strict left (loose) morphisms, respectively. In the last two cases the 2-cells are
pairs (ϕ, ψ) such that R′ϕ = ψR.

The 2-categories RAdj
∼= and RAdj are defined similarly to LAdj

∼= and LAdj, re-
spectively, but using right (loose) morphisms instead of left ones.

In other words, RAdj
∼= and LAdj

∼= are the categories of vertical arrows and pseudo
squares of the two double categories of adjunctions defined in [Kelly and Street, 1974,
pg. 86], together with the 2-cells defined above. Actually, Kelly and Street work in a (suit-
able) 2-category X, and define adjunctions and morphisms of them internally to X. From
this more general perspective, it is possible to observe that RAdj(X) = LAdj(Xco)co

and, dually, LAdj(X) = RAdj(Xco)co. The same holds of course for LAdj
∼=(X) and

RAdj
∼=(X) (and for the 2-categories whose morphisms are the squares of Kelly and

Street’s double categories).

2.8. The 2-reflection between comonads and adjunctions. Let X be a 2-
category that admits the construction of algebras. The 2-category of formal monads
on some object X in X is 2-reflective in a suitable full sub-2-category of X/X: this is
the content of the (internal) structure-semantics adjunction [Street, 1972, Theorem 6],
see [Dubuc, 1970] for the enriched version. The construction of algebras for a monad t
in X provides a “forgetful” 1-cell X t → X, where X t is the object of algebras: this is
the semantic functor. The subcategory of X/X consists of those 1-cells A → X, called
tractable, that induce a monad on X (in a suitably universal way): this is the structure
functor. The reflection is based on the observation that, given a 1-cell f : A → X and a
monad t : X → X, 1-cells g : A → X t over X are in bijection with algebra structures on
f , that is, 2-cells ψ : tf ⇒ f making the usual diagrams involving unit and multiplication
commute (this is obvious when X = Cat, and follows from the universal property of
X t in general). But then the pair (f, ψ) is precisely a (lax) morphism of monads from
the identity monad on A to t. The definition of tractable functor ensures that these
are in bijection with (lax) morphisms of monads from the monad induced by f , called
codensity monad, to t.2 In practice, tractable functors can be defined via right Kan ex-
tensions [Dubuc, 1970], or via cocartesian lifts [Street, 1972], but we do not need the

2In Dubuc the adjunction involves the opposite of the category of monads over a fixed category B:
this is because his morphisms of monads are the oplax ones, instead of lax ones. Over B it is enough to
take the opposite since (Mndoplax

B )op = Mndlax
B . However, this is no longer true if we do not work over

a fixed base.
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precise definition. For us, it is enough to observe that right adjoint functors are tractable:
in this case the codensity monad is the monad induced by the adjunction. More pre-
cisely, let us consider the 2-category Radj(X), which is defined as RAdj in (2.7) but
internally to X. Its sub-2-category Radj(X)X on the adjunction whose right adjoint has
codomain X (and both 1- and 2-cells are identities) embeds fully into the full sub-2-
category of X/X on the tractable functors. Since the semantics functor clearly lands in
Radj(X)X , the 2-reflection restricts between Mnd(X)X and Radj(X)X . Moreover, the
family of 2-reflections extends to a 2-reflection between the global 2-categories of monads
and adjunctions over the 2-category of arrows of X, as shown in (3) below.

Mnd(X) Radj(X)

X2
EM

EM

M⊣

(3)

By taking X = Catco and recalling that Cmd = Mnd(Catco)co and LAdj =
RAdj(Catco)co, we see that the 2-category Cmd is a 2-reflective sub-2-category of LAdj.
It is also straightforward to verify that the reflection restricts to the sub-2-categories of
pseudo and strict morphisms. We record this fact in the theorem below.

2.9. Theorem. There is a 2-reflection

Cmd LAdj
EM

⊣C

such that the counit is the identity C ◦ EM = IdCmd. In particular, the right adjoint EM
is injective on objects and fully faithful.

The 2-reflection restricts between the wide 2-full sub-2-categories on the pseudo and
strict morphisms.

In fact, the 2-reflection in Theorem 2.9 can be extended to a bireflection involving the
2-category whose 1-cells are left loose morphisms of adjunctions. This is not hard to see,
but we find it convenient to first recall some details of the proof of (2.9). These details
will also be helpful in clarifying the proof of our main result in (4).

2.9.1. The right adjoint EM. The 2-functor EM maps a comonad (K, ϵ, ν) to the
Eilenberg–Moore adjunction of coalgebras [MacLane, 1978, VI.3]:

CoAlg(K) C
UK

⊣

RK

whose counit is ϵ : UKRK = K ⇒ IdC and whose unit ηK : IdCoAlg(K) ⇒ RKUK has
component at a coalgebra (A, a : A → KA) the arrow a itself seen as a morphism of
coalgebras (A, a) → (KA, νA).
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A lax morphism of comonads (H, θ) : K → K ′ induces a functor CoAlg(H, θ) from
CoAlg(K) to CoAlg(K ′) which maps a K-coalgebra (A, a) to the K ′-coalgebra (HA, θA ◦
Ha). Clearly, UK′CoAlg(H, θ) = HUK . Therefore the pair (H,CoAlg(H, θ)) is a left
morphism of adjunctions, which gives the action of the 2-functor EM on 1-cells.

Finally, it is easy to see that every 2-cell ϕ in Cmd lifts to a natural transforma-
tion CoAlg(ϕ) : CoAlg(H1, θ1) ⇒ CoAlg(H2, θ2) whose component at (A, a) is ϕA itself.
Therefore (ϕ,CoAlg(ϕ)) is a 2-cell in LAdj, which gives the action of EM on 2-cells.

It is straightforward to verify that the mate of id : UK′CoAlg(H, θ) = HUK is θ itself.
It follows that the functor EM restricts to the sub-2-categories on pseudo and strict
morphisms.

2.9.2. The 2-reflector C. The 2-functor C maps an adjunction (L,R, η, ϵ) to the
comonad (LR, ϵ, LηR).

A left morphism of adjunctions (F,G) induces a lax morphism of comonads C(F,G) =
(F,L′id#), as we will see in (2.12). It is then clear that C restricts to the sub-2-categories
on pseudo and strict morphisms.

A 2-cell (ϕ, ψ) in LAdj is simply mapped to ϕ. A proof that this gives a 2-cell in
Cmd is in (2.12).

2.9.3. The counit. We have
C ◦ EM = Id.

On objects, this follows from UKRK = K and UKηRK = ν. To see that C ◦ EM(H, θ) =
(H, θ) for a lax morphism of comonads (H, θ), recall that η′(A,a) = a and use the two

diagrams in (2.2) to show that UK′ id#
E = K ′HϵE ◦ UK′(θKE ◦ HνE) equals θE. Finally,

both functors act identically on 2-cells.

2.9.4. The unit. Every adjunction (L,R, η, ϵ) gives rise to a canonical comparison func-
tor KL,R making the diagram below commute.

D CoAlg(LR)

C
L

KL,R

ULR

Recall that KL,R maps an object A to the coalgebra LηA : LA→ LRLA.
The unit η of the 2-adjunction C ⊣ EM at (L,R, η, ϵ) is defined as the strict left mor-

phism of adjunctions (Id,KL,R) : (L,R, η, ϵ) → (ULR,RLR, η
LR, ϵ). This family is natural

in (L,R, η, ϵ) since, for every left morphism of adjunctions (F,G),

L′id#
LA ◦ FLηA = L′R′FϵLA ◦ L′η′GRLA ◦ L′GηA

= L′R′FϵLA ◦ L′R′L′GηA ◦ L′η′GA
= L′η′GA

and FLf = L′Gf for A and f in D, imply CoAlg(C(F,G, ζ)) ◦ KL,R = KL′,R′ ◦ G. Note
that this proof heavily relies on L′G = FL.
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2.9.5. The trianguar identities. The two equations below hold.

Cη = idC ηEM = idEM (4)

The left-hand one does since the mate id# : KL,RR ⇒ RLR of id : ULRKL,R ⇒ L is itself
an identity. The right-hand one does since KUK ,RK

= IdCoAlg(K)

Now we turn to the case of left loose morphisms of adjunctions.

2.10. The bireflection for loose morphisms.

2.11. Lemma. Let (F,G, ζ) : (L,R, η, ϵ) → (L′, R′, η′, ϵ′) be a left loose morphism of ad-
junctions. Then the following facts hold.

1. The two diagrams below commute.

FLR L′R′F

F

Fϵ

L′ζ#◦ζ−1R

ϵ′F

FLR L′R′F

F (LR)2 (L′R′)2F

L′R′FLR

FLηR

L′ζ#◦ζ−1R

L′η′R′F

(L′ζ#◦ζ−1R)LR L′R′(L′ζ#◦ζ−1R)

2.

L′G FL

L′R′L′G L′R′FL

L′η′G

ζ

L′ζ#L◦ζ−1RL◦FLη

L′R′ζ

Proof. Using (2.6.2) and naturality of the arrows involved.
1.

ϵ′F ◦ L′ζ# ◦ ζ−1R = Fϵ ◦ ζR ◦ ζ−1R = Fϵ

L′R′(L′ζ# ◦ ζ−1R) ◦ L′ζ#LR◦ζ−1(RL)R ◦ (FL)ηR

= L′R′(L′ζ# ◦ ζ−1R) ◦ L′(ζ#L)R ◦ L′(Gη)R ◦ ζ−1R

= L′R′(L′ζ# ◦ ζ−1R) ◦ L′R′ζR ◦ L′η′GR ◦ ζ−1R

= L′(R′L′)ζ# ◦ L′η′(GR) ◦ ζ−1R

= L′η′R′F ◦ L′ζ# ◦ ζ−1R

2. L′ζ#L ◦ ζ−1RL ◦ FLη ◦ ζ = L′ζ#L ◦ L′Gη = L′R′ζ ◦ L′η′G.
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2.12. Corollary. The 2-functor C extends along LAdj ↪→ LAdj
∼= to a 2-functor

C
∼=

: LAdj
∼= → Cmd by defining

C
∼=

(F,G, ζ) := (F,L′ζ# ◦ ζ−1R) (5)

on 1-cells (F,G, ζ) : (L,R, η, ϵ) → (L′, R′, η′, ϵ′).
This functor restricts between the sub-2-categories on pseudo morphisms. Note that

C
∼=
restricted to LAdj

∼=
str still lands in Cmdps.

Proof. We only need to consider 1-cells and 2-cells. Given a 1-cell (F,G, ζ) : (L,R, η, ϵ) →
(L′, R′, η′, ϵ′), the diagrams in (2.11.1) ensure that (F, θ) is a lax morphism of comonads
C(L,R, η, ϵ) → C(L′, R′, η′, ϵ′), where θ := L′ζ#◦ζ−1R. Functoriality follows from (2.6.1).

It is also clear that (F, θ) is pseudo whenever (F,G, ζ) is. However, the image of a
strict left loose morphism (F,G, ζ) is strict if and only if (F,G, ζ) is in fact a strict left
morphism.

Given a 2-cell (ϕ, ψ) : (F1, G1, ζ1) → (F2, G2, ζ2), we have

L′R′ϕ ◦ L′ζ#1 ◦ ζ−1
1 R = L′ζ#2 ◦ L′ψR ◦ ζ−1

1 R =  L′ζ#2 ◦ ζ−1
2 R ◦ ϕLR.

by (2.6.3). It follows that ϕ is a 2-cell Ĉ
∼=

(F1, G1, ζ1) → Ĉ
∼=

(F2, G2, ζ2).

2.13. Remark. Consider a left loose morphism of adjunctions (F,G, ζ) : (L,R, η, ϵ) →
(L′, R′, η′, ϵ′). Then (2.11.2) entails that the natural iso ζ : L′G

∼⇒ FL lifts to a natural
iso

ζ̂ : KL′,R′ ◦G ∼⇒ CoAlg(C
∼=

(F,G, ζ)) ◦ KL,R

meaning that UL′R′ ζ̂ = ζ.

2.14. Theorem. The 2-reflection from 2.9 extends along LAdj ↪→ LAdj
∼= to a bireflec-

tion

Cmd LAdj
∼=

EM
∼=

⊣C
∼=

such that the counit is the identity C
∼= ◦ EM

∼=
= IdCmd. In particular, the right adjoint

EM
∼=
is injective on objects and fully faithful.

The biadjunction restricts between the wide 2-full sub-2-categories on pseudo mor-
phisms.

Proof. It only remains to show that the unit η : Id ⇒ EM
∼= ◦C

∼=
lifts to a pseudo-natural

transformation η : Id ⇒ EM
∼= ◦C

∼=
. This amounts to give, for every left loose morphism of

adjunctions (F,G, ζ) : (L,R, η, ϵ) → (L′, R′, η′, ϵ′), an invertible 2-cell (F,KL′,R′ ◦G, ζ) →
(F,CoAlg(C

∼=
(F,G, ζ)) ◦KL,R, id) in LAdj

∼=. For this 2-cell we can take (idF , ζ̂), where ζ̂
is the natural iso from 2.13.
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3. The 2-categories of interest

All 2-categories that we shall define below will contain Grothendieck fibrations.

3.1. Definition. The 2-category of fibrations Fib is the 2-full sub-2-category of the 2-
category of arrows Cat2 on those functors which are fibrations, and those morphisms of
functors

E E ′

B B′,

p p′

E

B

such that E maps cartesian arrows to cartesian arrows.

The 2-cells in Fib are the same of Cat2: pairs of natural transformations (ψ, ϕ) with
ψ : B1 ⇒ B2 and ϕ : E1 ⇒ E2 such that p′ϕ = ψp.

3.2. The 2-category of comprehension categories.

3.3. Definition. [Jacobs, 1999, Theorem 9.3.4] A comprehension category (without ter-
minal object) consists of a fibration p and a morphism χ of functors over B as depicted
below

E B2

B
p

χ

codB

such that χ preserves cartesian arrows, that is, it maps them to pullback squares in B.
When χ is full and faithful, the comprehension category is called full.

Comprehension categories are usually required to have terminal objects in B. Here we
dispense with this assumption. Note however that, in all our constructions, the fibration
p remains fixed, and so does its base B.

Examples of comprehension categories abound in the literature. Several of them can be
found in [Jacobs, 1993, 1999]. Here we only mention three classes of examples. Lawvere’s
hyperdoctrines with comprehension [Lawvere, 1970]; the fibration of presheaves over Cat
with comprehension given by the Grothendieck construction [Ehrhard, 1988]; categories
C equipped with a class of morphisms D closed under composition and under pullback
along any arrow, such as fibrations of subobjects, or Brown’s categories with fibrant ob-
jects [Brown, 1973]: the comprehension exhibits D as the full subfibration of cod : C2 → C
on the arrows in D. A variation on the last example, given a topos, consists in taking the
fibration of predicates, i.e. arrows into the subobject classifier Ω, instead of subobjects:
the comprehension of a predicate is the subobject it classifies. Note that the resulting
comprehension category is not full [Jacobs, 1993].
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3.4. Definition. Let (p, χ) and (p′, χ′) be comprehension categories. A lax morphism
of comprehension categories from (p, χ) to (p′, χ′) is a triple (B,H, ζ) as in the diagram
below, such that

1. (B,H) is a 1-cell in Fib, and

2. codζ = IdBp.

B2 B′2

E E ′

B B′

p cod

χ

B

H

B2

p′

χ′

cod

ζ

A lax morphism of comprehension categories (B,H, ζ) is a pseudo (respectively, strict)
morphism of comprehension categories if ζ is invertible (respectively, the identity).

Given two composable lax morphisms of comprehension categories (B1, H1, ζ1) and
(B2, H2, ζ2), their composite is (B2B1, H2H1, (ζ2H1)(B

2
2ζ1)). It is straightforward to verify

that this composition is unital and associative. Pseudo and strict morphisms are clearly
closed under composition.

3.5. Example. Strict morphisms of comprehension categories are considered in [Ja-
cobs, 1993; Blanco, 1991]. Pseudo morphisms of comprehension categories are considered
in [Larrea, 2018]

3.6. Remark. The component at an object E of the natural transformation ζ : B2χ ⇒
χ′H in a lax morphism of comprehension categories consists of just one arrow, making
the triangle below commute.

BXE X ′
HE

BpE = p′HE

BχE

ζE

χ′
HE

3.7. Definition. The 2-category CompCat of comprehension categories is defined as
follows.

A 0-cell is a comprehension category (p, χ).
A 1-cell (p, χ) → (p′, χ′) is a lax morphism of comprehension categories (3.4) from

(p, χ) to (p′, χ′).
A 2-cell (B1, H1, ζ1) ⇒ (B2, H2, ζ2) is a 2-cell (ψ, ϕ) : (B1, H1) ⇒ (B2, H2) in Fib as

in the left-hand diagram below, such that χ′ϕ ◦ ζ1 = ζ2 ◦ ψ2χ. Pasting diagrams, we see
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that 2-cells are closed under component-wise composition.

E E ′

B B′

p

B1

B2

H2

H1

p′

ψ

ϕ B2 B′2

E E ′

χ

H1

H2

B2
1

χ′

ϕ

ζ1

B2 B′2

E E ′

χ

H2

B2
1

χ′

B2
2

ζ2

ψ2

We write CompCatps and CompCatstr for the 2-full 2-subcategory of CompCat with
the same 0-cells and only those 1-cells which are pseudo (respectively, strict) morphisms
of comprehension categories.

It is straightforward to verify that the composition of lax morphisms of comprehension
categories is unital and associative, as it is that of 2-cells.

3.8. Remark. Let (B1, H1, ζ
1), (B2, H2, ζ

2) : (p, χ) → (p′, χ′) be lax morphisms of com-
prehension categories. A 2-cell (ψ, ϕ) : (B1, H1) ⇒ (B2, H2) in Fib is a 2-cell in CompCat
if and only if, for every E in E over X, the top square in the diagram below commutes,

B1XE B2XE

X ′
H1E

X ′
H2E

B1X B2X

χ′
H1E

ζ1E

B1χE

ψX

ψXE

χ′
H2E

ζ2E

B2χE

where the front square is the image under χ′ of ϕE : H1E → H2E, the back square is
naturality of ψ, and the side triangles are those from (3.6).

If (B1, H1, ζ
1) and (B2, H2, ζ

2) are strict morphisms, the top square above commutes
if and only if its horizontal arrows coincide. Therefore (ψ, ϕ) is a 2-cell between strict
morphisms if and only if domχ′ϕ = ψdomχ.

3.9. Weakening and contraction comonads. Here we recall the intermediate no-
tion, the weakening and contraction comonads introduced by Jacobs, that we use to
compare comprehension categories and generalised categories with families.

3.10. Definition. [Jacobs, 1999, Def. 9.3.1] Let p : E → B be a fibration. A weakening
and contraction comonad on p, or w-comonad for short, is a comonad (K, ϵ, ν) on E such
that

1. the counit ϵ is p-cartesian and,
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2. for every cartesian arrow f : A _ B in E the image in B under p

pKA pA

pKB pB

pKf

pϵA

pf

pϵB

of the naturality square of ϵ is a pullback square.

We may write pA.A for pKA, and we may say w-comonad to mean the pair of a fibration
and a w-comonad on it.

3.11. Remark.

1. For every cartesian arrow f , the naturality square of the counit ϵ

KA A

KB B

Kf

ϵA

f

ϵB

is a pullback. This follows from the fact that, in general, a square in E is a pullback
if it has two parallel cartesian sides and it is sitting over a pullback in B.

2. Given a w-comonad (K, ϵ, ν) on a fibration p, the naturality square of ϵ for ϵA itself
is a pullback. It follows that the comultiplication is canonically determined by the
counit ϵ via the two counitality axioms. Thus one could equivalently define a w-
comonad to be a copointed endofunctor which enjoys conditions 1 and 2 in (3.10).
See also [Jacobs, 1999, p.536]. It also follows that coalgebras for the copointed
endofunctor coincide with coalgebras for the comonad.

3.12. Remark. Given any fibration, if a composite gf is cartesian and g is cartesian,
then f is cartesian too. Two immediate consequences of the fact that the counit of a
w-comonad is cartesian are:

1. The functor K in a w-comonad preserves cartesian arrows.

2. If (E, e) is a coalgebra for a w-comonad, then e is a cartesian arrow.

The 2-category of weakening and contraction comonads is a strict 2-pullback over Cat
of the 2-category of fibrations (3.1) and the 2-category of comonads (2.2).

3.13. Definition. The 2-category WCmd of weakening and contraction comonads is
defined as follows.

A 0-cell is a pair (p,K) with p a fibration and K a w-comonad on p.
A 1-cell from (p,K) to (p′, K ′) is a triple (C,H, θ) as in the diagram below, such that
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1. (C,H) : p→ p′ is a 1-cell in Fib

2. (H, θ) : K → K ′ is a 1-cell in Cmd.

E E ′

E E ′

C C ′

H

H

C

K K′

p p′

θ

A 2-cell from (C1, H1, θ1) to (C2, H2, θ2) is a 2-cell (ψ, ϕ) : (C1, H1) → (C2, H2) in Fib
as in the left-hand diagram below, such that ϕ is a 2-cell (H1, θ1) → (H2, θ2) in Cmd, as
in the right-hand side.

E E ′

C C ′

p p′

C1

C2

H1

H2

ϕ

ψ

E E ′ E E ′

E E ′ E E ′

K′K

H1

H2

K′K

H1

H2

H1

H2
θ1

ϕ

ϕ

θ2

=

We write WCmdps and WCmdstr for the 2-full 2-subcategories of WCmd with the
same 0-cells, and only those 1-cells (C,H, θ) such that (H, θ) is a pseudo (respectively,
strict) morphism of comonads.

3.14. The 2-category of generalised categories with families.

3.15. Definition. [Coraglia and Di Liberti, 2022, Def. 3.0.1] A generalised category
with families, gcwf for short, is the data of a morphism Σ of fibrations over the same base
B as depicted below, together with a right adjoint ∆ to Σ such that the components of both
unit and counit are cartesian with respect to u̇ and u, respectively.

U̇ U

B
u̇ u

Σ

∆

⊣

Notice that the adjunction Σ ⊣ ∆ in not fibred: the triangle involving ∆ does not
commute, i.e. ∆ is not a morphism of functors, and the unit and counit are cartesian
rather then vertical. Still, in (3.20) we will show that it inherits some desirable fibrational
properties.

Of course, a category with families [Dybjer, 1996] is the same thing as a generalised
category with families with discrete fibrations u and u̇ and a terminal object in B, as
implied in the following example.

3.16. Example. [The free syntactic (g)cwf] Given a calculus of dependent types à la
Martin-Löf [Martin-Löf, 1984], see [Rijke, 2022] for an introduction, one can build a



1492 GRETA CORAGLIA AND JACOPO EMMENEGGER

(generalised) category with families as follows, see e.g. [Palmgren, 2019, §5.5] for the
proofs and more details.

Γ.A ⊢ vA : A Γ ⊢ A Type

U̇ = {Γ ⊢ a : A} {Γ ⊢ A Type} = U

Γ ⊢ a : A Γ ⊢ A Type

Γ

Ctx

u̇

T

u

V

⊣
First of all, we can define a category Ctx of contexts, whose objects are (equivalence

classes of definitionally equal) well-formed contexts of the form Γ = x1 : A1, . . . , xn : An
and whose morphisms are (equivalence classes of definitionally equal) terms

t = (t1, . . . , tn) : Θ → Γ

where Θ ⊢ t1 : A1 and Θ ⊢ ti : Ai[t1/x1, . . . , ti−1/xi−1] for i = 2 : n. We ought to think
of these as substitutions from Θ into Γ, with composition being iterated substitution and
identity the trivial (x1, . . . , xn) : Γ → Γ. The empty context is the terminal object in Ctx
so defined.

In what follows, in order to improve readability, we omit repeating that all contexts,
types, and terms are intended ‘up to definitional equality’, but it is so throughout this
construction. Now, the category of types U is that of type judgements and type substi-
tutions: mapping each type judgement to its context provides the structure of a discrete
fibration u : U → Ctx. The fibre over each Γ, then, is the set UΓ = {Γ ⊢ A Type} which is
precisely the image of Γ through the presheaf of types Ty : Ctxop → Set in the classical
definition of a cwf, and reindexing along a context morphism t : Θ → Γ precisely computes
substitution in types, Γ ⊢ A Type 7→ Θ ⊢ A[t/x] Type. Similarly we can define a discrete
fibration u̇ : U̇ → Ctx classifying terms: its total category is that of typing judgements
and term substitutions, which are mapped, respectively, to their underlying context and
context morphism.

On top of that we can define an adjoint pair T ⊣ V where the two functors act as in
the two following rules involving the structure of judgements3.

Γ ⊢ a : A

Γ ⊢ A Type
(T)

Γ ⊢ A Type

Γ.A ⊢ vA : A
(V)

Notice that T makes the obvious triangle commute because contexts are preserved and a

3While V is a proper ‘structural’ rule, and it is often assumed, T describes the structure but is usually
derivable in a given calculus of dependent types.
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morphism of typing judgements is in particular a morphism of type judgements.4 Being
both fibrations discrete, T is trivially cartesian: notice that this implies [Streicher, 2022,
Lemma 2.1] that it is itself a fibration, so that terms are fibred over types, as well. On
the other hand, as we said just before this discussion, notice that it is key that V does not
add up to a functor morphism u → u̇, or the context would be preserved and we would
not have context extension.

Finally, we unpack the unit and counit needed: again, they will be cartesian ‘for free’,
since both fibrations are discrete. We begin with the counit, whose components need to
be morphisms of type judgements Γ.A ⊢ A Type → Γ ⊢ A Type: one can show that
the cartesian lifting (i.e. substitution) of (x1, . . . , xn) : Γ.A → Γ at (i.e. in) A has the
desired universal property: it does basically nothing, as expected by weakening. This is
often called projection or display, depending on which model one is considering. The unit,
instead, has less popular correspondents in the literature, and at a term Γ ⊣ a : A it is the
cartesian lifting of (x1, . . . , xn, a) : Γ → Γ.A at vA – that is substituting a into the fresh
free variable produced by context extension.

Examples of generalised categories with families are described in [Coraglia and Di Lib-
erti, 2022, §§3-5]: among others, they arise from categories with finite products, from
Lawvere-style doctrines, from topoi.

3.17. Remark. Since the free syntactic object produced out of a calculus of depen-
dent types produces fibrations that are discrete, one could wonder whether from a type-
theoretic perspective it might only be worth to give an account of the discrete case. Else-
where [Coraglia and Emmenegger, 2023], we argue that the ‘remaining’ vertical portion
of a gcwf is actually apt to describe dependent types with subtyping.

Next, we make few simple observations on generalised categories with families.

3.18. Remark. Each component of the unit in a gcwf is a monic arrow. Indeed, let
f, g : a→ b in U̇ be such that ηbf = ηbg. It follows that

u̇f = (uϵΣb)(u̇ηb)(u̇f) = (uϵΣb)(u̇ηb)(u̇g) = u̇g

and, in turn, that f = g since ηb is cartesian.

3.19. Lemma. Let (u, u̇,Σ ⊣ ∆) be a gcwf. The left adjoint Σ induces a bijection

U̇(a, b) {f ∈ U(Σa,Σb) | (Σηb)f = (Σ∆f)(Σηa)}.∼

Proof. The counter-image of f in the right-hand set is the (only) arrow g in U̇(a, b) over
uf such that ηbg = (∆f)ηa. It exists since ηb is cartesian.

To see that Σ is faithful, use (3.18) and the naturality square of the unit.

4Writing this back to back we realise the way we call the two might lead to some confusion, but we
hope to make the distinction clear along the way.
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The next lemma shows that ∆ is a cartesian functor. Still, recall that ∆ is not (required
to be) a morphism of functors over B.

3.20. Lemma. Let (u, u̇,Σ ⊣ ∆) be a gcwf. Then we have that

1. ∆ preserves cartesian maps iff Σ reflects cartesian maps;

2. ∆ preserves cartesian maps.

3. Σ reflects cartesian maps.

Proof. Let us start with (1). From left to right, let f : a → b in U̇ such that Σf is
cartesian, then ∆Σf is cartesian, and we have the following

a b Σa Σb

∆Σa ∆Σb

f

∆Σf

ηa ηb

Σf

with cartesian units, hence ηbf is cartesian with ηb cartesian. By (3.12), f is cartesian
too. The converse can be worked out the dual way using counits.

Next, we prove (2). Let h : A → B in U be cartesian and consider f : c → ∆B and
ϕ : u̇c→ u̇∆A such that u̇f = u̇∆h ◦ ϕ, as in the left-hand diagrams below.

c Σc

∆A ∆B Σ∆A Σ∆B

A B

u̇c

u̇∆A u̇∆B

uA uB

h

∆h

f

u̇∆h

uh

uϵB

uϵA

u̇f

ϕ

g′

Σ∆h
ϵA

ϵB

Σf

g

Note first that Σ∆h is cartesian by (3.12) because its postcomposition with ϵB is. It
follows that there exists a unique dotted map g : Σc → Σ∆A that post-composed with
Σ∆h is Σf . We can then take the transpose of the composite ϵAg to be g′. The left-hand
triangle commutes since the right-hand diagram does. This g′ the unique such since, in
addition, Σ is faithful by (3.19).
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Morphisms of generalised categories with families are defined using morphisms of fi-
brations (3.1) and morphisms of adjunctions (2.4).

3.21. Definition. Let U = (u, u̇,Σ ⊣ ∆) and U′ = (u′, u̇′,Σ′ ⊣ ∆′) be gcwfs. A (lax)
loose gcwf morphism from U to U′ is a quadruple (C,H, Ḣ, ζ) such that

1. (C,H) : u→ u′ is a 1-cell in Fib,

2. (C, Ḣ) : u̇→ u̇′ is a 1-cell in Fib, and

3. (H, Ḣ, ζ) : (Σ,∆) → (Σ′,∆′) is a 1-cell in LAdj
∼=, i.e. a left loose morphism of

adjunctions. In particular ζ : Σ′Ḣ
∼⇒ HΣ.

U̇ U̇ ′

U U ′

B B′

u u̇ u′ u̇′

C

H

Ḣ

Σ

∆ ∆′

Σ′
⊣ ⊣

A (lax) gcwf morphism from U to U′ is a loose gcwf morphism (C,H, Ḣ, ζ) such that
ζ = id: Σ′Ḣ = HΣ.

A loose gcwf morphism (C,H, Ḣ, ζ) is pseudo (respectively strict) when the corre-
sponding 1-cell in LAdj

∼= is.

The 2-category of generalised categories with families is a pullback, over Cat×Cat×
Cat, involving the 2-category of fibrations (3.1) (two times) and the “left” 2-category of
adjunctions (2.7).

3.22. Definition. The 2-category GCwF
∼= of gcwfs and loose gcwf morphisms has these

as objects and arrows, and a 2-cell (C1, H1, Ḣ1, ζ1) → (C2, H2, Ḣ2, ζ2) is a triple (ϕ, ϕ̇, ψ)
of natural transformations as in the left-hand diagram below, such that

1. (ψ, ϕ) is a 2-cell (C1, H1) → (C2, H2) in Fib (i.e. in Cat2),

2. (ψ, ϕ̇) is a 2-cell (C1, Ḣ1) → (C2, Ḣ2) in Fib, and

3. (ϕ, ϕ̇) is a 2-cell (H1, Ḣ1, ζ1) → (H2, Ḣ2, ζ2) in LAdj
∼=, meaning that the right-hand

diagram below commutes.



1496 GRETA CORAGLIA AND JACOPO EMMENEGGER

U̇ U̇ ′

U U ′

B B′

u

Σ

u̇

Ḣ1

Ḣ2

Σ′

u̇′

H1

H2

u′

C1

C2

ϕ̇

ϕ

ψ

Σ′Ḣ1 H1Σ

Σ′Ḣ2 H2Σ

Σ′ψ

ζ1

ϕΣ

ζ2

The 2-category GCwF of gcwfs and gcwf morphisms is defined as the wide 2-full
sub-2-category of GCwF

∼= on the gcwf morphisms.
We write GCwF

∼=
ps, GCwFps, and GCwFstr for the 2-full 2-subcategories of GCwF

∼=

and GCwF on the 1-cells which are pseudo and strict morphisms, respectively.

4. The biequivalence between comprehension categories and generalised
categories with families

In this section we shall prove the following result.

4.1. Theorem. There is an adjoint biequivalence.

CompCat GCwF
∼=

F

≡
G

such that G ◦ F = Id.
The biequivalence restricts to the wide 2-full sub-2-categories on the pseudo morphisms.

The biequivalence is obtained composing the two biequivalences appearing in the dia-
gram below, which commutes appropriately (left and right adjoints separately) and where
the vertical arrows are the obvious forgetful functors.

All top 2-categories have a forgetful to Fib (for a gcwf (u, u̇,Σ ⊣ ∆) it is u), and all
top 2-functors commute (strictly) with these forgetful 2-functors.
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CompCat WCmd GCwF
∼=

WCmd GCwF

Cmd LAdj
∼=

Cmd LAdj

X

≡
Y

ÊM
∼=

≡
Ĉ

∼=

Id

ÊM

⊣ Ĉ

EM
∼=

⊣C
∼=

Id

EM

⊣C

The adjunction in the bottom-front is the 2-adjunction from Theorem 2.9. The one
in the bottom-back is the biadjunction from Theorem 2.14.

The left-hand biequivalence is proved in Theorem 4.9, the right-hand one is proved in
Theorem 4.11, which also proves the top 2-adjunction.

4.2. Remark. All top 2-categories in the diagram above have a forgetful to Fib (for
a gcwf (u, u̇, . . .) it is u) and, as it is clear from their definitions in (4.6), (4.8), (4.14),
and (4.16), all top 2-functors commute (strictly) with these forgetful 2-functors.

In particular, it follows that the whole diagram restricts to the 2-full sub-2-categories
on objects whose base category has a terminal object and on morphisms preserving it.

4.3. Remark. In the 2-category DscGCwF of discrete generalised categories with fam-
ilies, i.e. those whose fibrations u and u̇ are discrete fibrations, every loose gcwf morphism
is a gcwf morphism since in discrete fibrations all vertical isos are identities. Note however
that it still makes sense to distinguish between lax, pseudo, and strict morphisms, since
the mate of id : Σ′Ḣ = HΣ need not be vertical. In fact, it is vertical if and only if the
morphism strictly preserves comprehensions. Let us identify categories with families with
discrete generalised categories with families:

CwF := DscGCwF, CwFps := DscGCwFps, CwFstr := DscGCwFstr.

Consider also the full sub-2-category DscCompCat of CompCat on those objects
with discrete fibration. Note that 2-cells (ψ, ϕ) in DscCompCat and 2-cells (ψ, ϕ, ϕ̇) in
DscGCwF are determined by ψ since all components of ϕ and ϕ̇ have to be cartesian,
and cartesian lifts are unique in discrete fibrations. In particular, the 2-category CwFps

(together with terminal objects in base categories and morphisms preserving terminal
objects, see (4.2)) is the one described by Uemura in [2023, Example 5.21]: the Beck-
Chevalley condition [Uemura, 2023, Definition 3.13] requires the mate of id : Σ′Ḣ = HΣ
to be invertible. More general morphisms between categories with families, the pseudo
cwf-morphisms of Clairambault and Dybjer in particular, are discussed in (4.21).
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In (4.19), we show that the biequivalence in (4.1) restricts to an adjoint 2-equivalence
between DscCompCat and CwF, which further restricts to their 2-full sub-2-categories
on pseudo and strict morphisms and, in particular, yields the classical equivalence by
Hofmann between discrete comprehension categories and categories with families.

4.4. Remark. The biequivalence also restricts if we require

1. all the components on Fib of the 0-cells to come equipped with a split cleavage and,
for gcwfs, that the functor Σ preserves the cleavage, and

2. all the components on Fib of the 1-cells to preserve the cleavage.

Indeed, the 2-functors X, Y, and Ĉ
∼=

fix the component on Fib of the structures involved.
The 2-functor ÊM

∼=
fixes the first component on Fib and its second Fib component is the

fibration of coalgebras. As observed in 4.13, the fibration of coalgebras of a w-comonad
on a split fibration is also split, and given a lax morphism of w-comonads (C,H, θ) such
that (C,H) preserves the cleavage, the pair (C,CoAlg(H, θ)) also preserves the cleavage.

4.5. The biequivalence between comprehension categories and w-comonads.
First of all, we prove the 2-equivalence suggested in [Jacobs, 1999, 9.3.4]. For the following
result we need to assume that the underlying fibrations of comprehension categories and
w-comonads are cloven. Morphisms, however, are not required to preserve cleavages.

4.6. Lemma. There is a 2-functor X: CompCat → WCmd.
This 2-functor restricts to the wide sub-2-category on the pseudo morphisms.

Proof. Let (p, χ) : E → B2 be a comprehension category together with a cleavage for
p. For each E in E , consider the chosen reindexing of E along its comprehension χE as
below.

KχE E E

XE pE BχE

χE

p (6)

Since cartesian lifts are defined by a universal property, Kχ extends to an endofunctor
Kχ on E . Moreover, Kχ is copointed because the transformation ϵE := χE is natural by
the very definition of Kχ on arrows. It satisfies (3.10.1) by construction and (3.10.2) by
the fact that χ preserves cartesian arrows. Therefore (Kχ, ϵ) is a w-comonad.

A lax morphism of comprehension categories (C,H, ζ) : (p, χ) → (p′, χ′) induces a 1-
cell (C,H) : p→ p′ in Fib by its very definition. To obtain a lax morphism of w-comonads
(C,H, θ) : Kχ → Kχ′ , it only remains to provide θ : HKχ ⇒ Kχ′H that makes (H, θ) into
a lax morphisms of comonads. For E over X, the component θE can be obtained, using
the fact that ϵ′HE is cartesian, as the universal arrow induced by HϵE as in the diagram
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below.
K ′HE BXE

HKE HE X ′
HE BX

H(ϵE) B(χE)

ϵ′HE

θE

χ′
HE

ζE (7)

Naturality of θ follows from that of ϵ and ϵ′ using again the fact that the components of ϵ′

are cartesian. Finally, θ commutes with the counits by definition, and it does so with the
comultiplications since these are canonically determined by counits (3.11.2). This action
is clearly functorial in H and C, and it is so in ζ since θ is defined by a universal property.

It is clear from (7) that θE is invertible if (and only) ζE is invertible.
To conclude the construction, we show that a 2-cell (ψ, ϕ) : (B1, H1, ζ

1) ⇒ (B2, H2, ζ
2)

in CompCat is also a 2-cell (ψ, ϕ) : (B1, H1, θ
1) ⇒ (B2, H2, θ

2) in WCmd. As (ψ, ϕ)
is, in particular, a 2-cell in Fib, it only remains to check that Kχ′ϕ ◦ θ1 = θ2 ◦ ϕKχ.
This amounts to verifying that, for every E over X, the left-hand square in the left-hand
diagram below commutes.

H1KχE B1XE

Kχ′H1E H1E X ′
H1E

B1X

H2KχE B2XE

Kχ′H2E H2E X ′
H2E

B2X

ϵ′H1E

θ1E

H1ϵE

ϕE

ϵ′H2E

ϕKχE

θ2E

H2ϵE

Kχ′ϕE

ζ1E

χ′
H1E

B1χE

ψXE

ζ2E

χ′
H2E

B2χE

ψX

p′

But this follows from the fact that ϵ′H2E
is cartesian once we show that the other faces

and the right-hand diagram commute. The right-hand diagram commutes by 3.8, the two
triangles commute by definition of θ (7), and the back and front squares by naturality of
ϕ and ϵ′, respectively. Functoriality is trivial.

4.7. Remark. Note that the 2-functor X does not necessarily map a strict morphism of
comprehension categories to a strict morphisms of w-comonads. Indeed, it is clear from
the definition of θ in (7) that, if ζ is an identity, θ is only forced to be a vertical iso.

4.8. Lemma. There is a 2-functor Y : WCmd → CompCat, which restricts to the wide
2-full sub-2-categories on the pseudo and invertible morphisms.

Proof. On objects, it suffices to map a pair (p : E → B, K) to χ : E → B2, χ(E) := pϵE.
To define its action on a 1-cell (C,H, θ), we use θ to induce a suitable ζ : C2χ⇒ χ′H
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as follows:

CpKE CpE

p′HKE

p′K ′HE p′HE

CpϵE

p′ϵ′HE

p′θE

id

id

on the top row we read C2χE = CpϵE, on the bottom χ′H = p′ϵ′HE, and the square
commutes because, by hypothesis, Cp = p′H. It follows, thanks also to (3.6), that we
can define ζE := p′θE. With this definition, proving that a 2-cell (ψ, ϕ) in WCmd is also
a 2-cell in CompCat is straightforward using that the θ’s commutes with the counits.
Functoriality is clear.

Jacobs proves in [1999, Theorem 9.3.4] that w-comonads are in bijection with com-
prehension categories. We extend that result to lax morphisms.

4.9. Theorem. The two 2-functors Y : WCmd ⇆ CompCat : X give rise to an adjoint
biequivalence such that Y ◦ X = Id.

The biequivalence restricts to the wide 2-full sub-2-categories on the pseudo morphisms.

Proof. We have to show that Y ◦ X = Id and that there is a natural iso ξ : XY
∼⇒ Id

such that
Yξ = idY and ξX = idX.

The first equation follows from p(χE) = χE and p(θE) = ζE, which hold by construc-
tions (6) and (7), respectively, and the fact that both 2-functors fix the 2-cells.

To obtain the natural iso ξ recall that, in XY(p,K, ϵ), the counit at E is defined as the
(chosen) cartesian lift of pϵE (6). As ϵE is also cartesian over pϵE and into E, it follows
that there is a unique vertical invertible arrow ξ′E between them. The component ξ(p,K)

is then the (invertible) morphism of comonads (Id, Id, ξ′). Naturality is ensured by the
uniqueness of these vertical isos ξ′. The first equation is then clear. The second one holds
since, if (p,K) is in the image of X, also ϵE is a chosen cartesian lift of p. As Y and X fix
p, it is the same (chosen) cartesian lift as the one in XY(p,K).

4.10. The biequivalence between w-comonads and generalised categories
with families. Here we use the two adjunctions from Section 2.

4.11. Theorem. The biadjunction in (2.14) lifts to an adjoint biequivalence Ĉ
∼= ≡ ÊM

∼=

on the left-hand below whose counit components are identities. In particular, Ĉ
∼= ◦ ÊM

∼=
=

Id.
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The biequivalence restricts along GCwF ↪→ GCwF
∼= to a 2-reflection Ĉ ⊣ ÊM on the

right-hand below, lifting the 2-adjunction in (2.9).

WCmd GCwF
∼=

ÊM
∼=

≡
Ĉ

∼=

WCmd GCwF

ÊM

⊣

Ĉ

The biequivalence also restricts to the wide 2-full sub-2-categories on the pseudo mor-
phisms, and the 2-reflection restricts to the wide 2-full sub-2-categories on the pseudo and
on the strict morphisms.

WCmdps GCwF
∼=
ps

ÊM
∼=

≡
Ĉ

∼=

WCmdps GCwFps

ÊM

⊣

Ĉ

WCmdstr GCwFstr

ÊM

⊣

Ĉ

The rest of the section is devoted to the proof of Theorem 4.11. We begin with two
lemmas ensuring that the 2-functors EM and C lift to 2-functors between GCwF and
WCmd. We begin with EM.

4.12. Lemma.

1. If (p,K, ϵ, ν) is a w-comonad, then pUK : CoAlg(K) → B is a fibration.

2. If (B,H, θ) : (p,K, ϵ, ν) → (p′, K ′, ϵ′, ν ′) is a lax morphism of w-comonads, then
(B,CoAlg(H, θ)) : pUK → p′UK′ is a morphism of fibrations.

Proof. (1). Consider the Eilenberg–Moore adjunction associated to (K, ϵ, ν)

CoAlg(K) E
RK

UK

⊣

and let e : E _ KE a coalgebra, σ : X → pE and s : Eσ _ E a p-cartesian lift of σ. To
have a cartesian lift of σ at e in CoAlg(K), it is enough to find an arrow eσ which is a
coalgebra and such that the left-hand square in (8) commutes.

Eσ E K(Eσ) K(E)

K(Eσ) K(E) Eσ E

s

K(s)

eeσ

K(s)

ϵEϵEσ

s

(8)
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The right-hand square in (8) is a pullback by (3.11.1), therefore the span

Eσ Eσ Ee◦sid

induces a (unique) section eσ of ϵEσ which makes the left-hand square in (8) commute.
It is a coalgebra by (3.11.2).

(2). We have p′UK′CoAlg(H, θ) = p′HUK = BpUK , and CoAlg(H, θ) preserves carte-
sian arrows by naturality of θ.

4.13. Remark. The proof of (4.12.1) above shows in particular that a cleavage for p
induces a cleavage for pUK . It is clear that UK maps one to the other. It is also easy to
see, using functoriality of K, that a split cleavage induces a split cleavage.

If (C,H, θ) is a morphism of w-comonads such that (C,H) preserves the cleavage,
then so does (C,CoAlg(H, θ)). For this, it is enough to show that θEσ ◦Heσ equals the
chosen reindexing of θE ◦He over Cσ. Since (C,H) preserves the cleavage, the latter is
the (unique) dashed arrow making the square below commute

H(Eσ) HE

K ′H(Eσ) K ′HE

H(eσ)

θE◦He

K′H(eσ)

The claim follows from the fact that θEσ ◦H(eσ) also makes that square commute.

4.14. Corollary. The 2-functor EM
∼=

: Cmd → LAdj
∼= lifts to a 2-functor

WCmd GCwF
∼=

(p,K, ϵ, ν) (p, pUK ,EM
∼=

(K, ϵ, ν))

(p′, K ′, ϵ′, ν ′) (p′, p′UK′ ,EM
∼=

(K ′, ϵ′, ν ′))

ÊM
∼=

(C,H,θ) (C′,H′,θ′)
(γ,ϕ)

(C,H,CoAlg(H,θ)) (C′,H′,CoAlg(H′,θ))
(γ,ϕ,CoAlg(ϕ))

This 2-functor restricts to 2-functors between the wide 2-full sub-2-categories on the pseudo
and strict morphisms.

Proof. First, we need to verify that (p, pUK ,EM
∼=

(K, ϵ, ν)) is a gcwf. We already know
from (2.9.2) that EM

∼=
(K, ϵ, ν) is an adjunction. The functor pUK is a fibration by (4.12.1).

It only remains to show that the components of the unit and counit of UK ⊣ RK are
cartesian arrows. For the counit this holds by assumption, and the component of the unit
at a coalgebra is the coalgebra structure map, which is cartesian by 3.12.

Given a lax morphism of w-comonads (C,H, θ) : (p,K, ϵ, ν) → (p′, K ′, ϵ′, ν ′), we have
that (C,H) is a morphism of fibrations by assumption, (C,CoAlg(H, θ)) is a morphism of
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fibrations by (4.12.2), and (H,CoAlg(H, θ)) = EM(H, θ) is a left morphism of adjunctions
by (2.9.1). This proves that (C,H,CoAlg(H, θ)) is a gcwf morphism.

Given a 2-cell (γ, ϕ) : (C1, H1, θ1) ⇒ (C2, H2, θ2) in WCmd, the pairs (γ, ϕ) and
(γ,CoAlg(ϕ)) are clearly 2-cells in Fib, and (ϕ,CoAlg(ϕ)) is 2-cell in LAdj

∼= by (2.9.1).
It follows that (γ, ϕ,CoAlg(ϕ)) is a 2-cell in GCwF

∼=.
The 2-functor restricts since EM does by (2.9.2).

We now turn to the 2-functor C from adjunctions to comonads.

4.15. Lemma. If (u, u̇,Σ ⊣ ∆) is a gcwf, then for every cartesian arrow f : A _ B in U
the square

X.A X

Y.B Y

u̇∆f

uϵA

uf

uϵB

is a pullback in B.

Proof. Let k : Z → X and h : Z → pKB be such that (uϵB)h = (uf)k and consider
a cartesian arrow b : M _ ∆B in U̇ over h. The arrow induced by h and k will be the
image under u̇ of a (cartesian) arrow d : M _ ∆A in U̇ such that (∆f)d = b. Note
first that, since f is cartesian, there is a unique arrow a : ΣM → A in U over k such
that the left-hand diagram in (9) commutes. In particular, a is cartesian since f and
ϵB(Σb) : ΣM _ B are.

ΣM A

Σ∆B B

a

f

ϵB

Σb

M ∆A

∆B ∆B

a#

∆fb

id∆B

ΣM A

Σ∆A A

a

idA

ϵA

Σa# (9)

Transposing the left-hand square in (9) yields the central one, while transposing a trivial
square involving a# yields the right-hand one. It follows that all three squares in (9)
commute.

Define
d := a# : M → ∆A,

which is cartesian because d = ∆a ◦ ηM , the unit is cartesian and ∆ preserves cartesian
maps by (3.20). Commutativity of the central and right-hand square in (9) entails that
(u̇∆f)(u̇d) = h and (uϵA)(u̇d) = k, respectively. We are left to prove that u̇d is the unique
such.

Let l : Z → X.A be such that (u̇∆f)l = h and (uϵA)l = k. Since ∆f is cartesian,
there is a unique arrow l′ : M → ∆A over l such that (∆f)l′ = b. Transposing as above
yields fl′# = ϵB(Σb) = fa. As u(l′#) = u(ϵA(Σl′)) = k, it follows that l′# = a, and thus
l′ = d.
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4.16. Corollary. The 2-functor C
∼=

: LAdj
∼= → Cmd lifts to a 2-functor

GCwF
∼= WCmd

(u, u̇,Σ ⊣ ∆) (u,C
∼=

(Σ,∆))

(u′, u̇′,Σ′ ⊣ ∆′) (u′,C
∼=

(Σ′,∆′))

Ĉ
∼=

(C,F,G,ζ) (C′,F ′,G′,ζ′)
(γ,ϕ,ψ)

(C,C
∼=
(F,G,ζ)) (C′,C

∼=
(F ′,G′,ζ′))

(γ,ϕ)

The 2-functor Ĉ
∼=
restricts to a 2-functor between the wide 2-full sub-2-category on the

pseudo morphisms. Its restriction Ĉ to GCwF also restricts to a 2-functor between the
wide 2-full sub-2-category on the strict morphisms.

Proof. We need to verify that, when (u, u̇,Σ ⊣ ∆) is a gcwf, the comonad C(Σ,∆) is a
w-comonad with fibration u. Condition 1 in (3.10) is satisfied since the counit is cartesian
by assumption. Condition 2 in (3.10) follows from (3.11.1) and (4.15).

To verify that (C,C
∼=

(F,G, ζ)) is a morphism of w-comonads whenever (C,F,G, ζ) is
a 1-cell in GCwF

∼= note that the functor component of C
∼=

(F,G, ζ) is F by construc-
tion (2.12). But (C,F ) is a morphism of fibrations by assumption, and we already know
that C

∼=
(F,G, ζ) is a lax morphism of comonads.

Given a 2-cell (γ, ϕ, ψ) : (C1, F1, G1, ζ1) → (C2, F2, G2, ζ2) in GCwF
∼=, it is clear that

(γ, ϕ) : (C1, Ĉ
∼=

(F1, G1, ζ1)) → (C2, Ĉ
∼=

(F2, G2, ζ2)) is a 2-cell in WCmd, since C
∼=

(ϕ, ψ) =
ϕ is a 2-cell in Cmd by (2.12).

The 2-functor restricts as stated because C
∼=

does, see (2.9.2) and (2.12).

Proof of Theorem 4.11. From 4.14 and 4.16 we have two 2-functors

ÊM
∼=

: WCmd ⇆ GCwF
∼= : Ĉ

∼=

We begin by showing that they form a biadjunction by lifting the biadjunction from (2.14).
The 2-adjunction involving GCwF will follow by restriction along the inclusion GCwF ↪→
GCwF

∼=.
As in 2.14, the composite Ĉ

∼= ◦ ÊM
∼=

is the identity on WCmd. Next, we show that
the unit η of C ⊣ EM from (2.14) lifts to a pseudo-natural transformation η̂ : IdWCmd →
Ĉ

∼= ◦ ÊM
∼=

. The component of η at an adjunction Σ ⊣ ∆ is the strict left morphism of ad-
junctions (Id,KΣ,∆), where KΣ,∆ is the canonical comparison functor described in (2.9.2).
Given a gcwf (u, u̇,Σ ⊣ ∆), the component of η at Σ ⊣ ∆ is the strict left morphism
of adjunctions (Id,KΣ,∆). The functor KΣ,∆ preserves cartesian arrows since Σ does and
coalgebra structure maps are cartesian by (3.12). It follows that

η̂u,u̇,Σ⊣∆ = (IdC,ηΣ⊣∆) = (IdC, IdU ,KΣ,∆)

is a strict gcwf morphism. To see that this choice is pseudo-natural in (u, u̇,Σ ⊣ ∆), let
(C,F,G, ζ) : (u, u̇,Σ ⊣ ∆) → (u′, u̇′,Σ′ ⊣ ∆′) be a loose gcwf morphism. The required
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invertible 2-cell (C,ηu′,u̇′(F,G, ζ)) → (C,EMC(F,G, ζ))ηu,u̇) is (idC , idF , ζ̂), where ζ̂ is

the natural iso from 2.13 (and (idF , ζ̂) is the pseudo naturality of η (2.14)). Clearly, if
ζ = id so is ζ̂, and thus the invertible 2-cell, meaning that η̂ is natural with respect to
gcwf morphisms. This last fact proves that the biadjunction will restrict to a 2-adjunction
between WCmd and GCwF.

The triangular identities for Ĉ
∼= ⊣ ÊM

∼=
follow immediately from those of C ⊣ EM

in (4):

Ĉ
∼=
η̂u,u̇,Σ,∆ = (IdC,CηΣ,∆) = idĈ

∼= (u,u̇,Σ⊣∆)

η̂ÊM
∼= (K,ϵ,ν) = (IdB,ηEM(K,ϵ,ν)) = idÊM

∼= (K,ϵ,ν)

It remains to show that the biadjunction Ĉ
∼= ⊣ ÊM

∼=
is in fact a biequivalence. This

amounts to showing that each component of η̂ is an equivalence in GCwF
∼=. As η̂ is

pseudo-natural, so will be the family of its weak inverses. To construct a weak inverse,
consider the functor JΣ,∆ : CoAlg(Σ∆) → U̇ and natural isos ζ : JΣ,∆KΣ,∆

∼⇒ IdU̇ and
ξ : KΣ,∆JΣ,∆

∼⇒ IdCoAlg(Σ∆) from (4.17) below. The quadruple (Id, IdU , JΣ,∆,UΣ∆ξ) is a

loose gcwf morphism (u, uUΣ∆,UΣ∆,RΣ∆) → (u, u̇,Σ ⊣ ∆) since UΣ∆ξ : ΣJΣ,∆
∼⇒ UΣ∆.

Note that the triple (id, id, ξ) is an invertible 2-cell in GCwF
∼= from (Id, Id,KJ,Uξ) to

(Id, Id, IdCoAlg(Σ∆)). Note also that the triple (id, id, ζ) is an invertible 2-cell in GCwF
∼=

from (Id, Id, JK,UξK) to (Id, Id, IdU̇) since Σζ = UξK. This concludes the proof of the
biequivalence.

To see that the biadjunction and the 2-reflection restrict as stated, recall first that
the 2-functors ÊM

∼=
and Ĉ

∼=
restrict in all three cases, see (4.14) and (4.16). The unit η̂

restricts as well since its components are strict gcwf morphisms.
The biequivalence restricts to pseudo morphisms because each component of the mate

of UΣ∆ξ is invertible by (4.17).

In the next lemma we construct the weak inverse used in the proof of (4.11) above.
To prove the lemma we assume that the term fibration u̇ is cloven (since Σ preserves
cartesian maps, u becomes cloven too).

4.17. Lemma. Let (u, u̇,Σ ⊣ ∆) be a generalised category with families. There are a
functor JΣ,∆ : CoAlg(Σ∆) → U̇ and natural isos ζ : JΣ,∆KΣ,∆

∼⇒ IdU̇ and ξ : KΣ,∆JΣ,∆
∼⇒

IdCoAlg(Σ∆) making KΣ,∆ and JΣ,∆ into an adjoint equivalence of categories, meaning that

KΣ,∆ζ = ξKΣ,∆ and JΣ,∆ξ = ζJΣ,∆.

Moreover, each component of ζ, ξ, and the mate of UΣ∆ξ is vertical, and the latter is also
invertible.

Proof. The functor JΣ,∆ is defined on a coalgebra h : A → Σ∆A as the reindexing of
∆A along uh. The action on a morphism of coalgebras f is induced accordingly using the
cartesian lift uh that defines JΣ,∆h as depicted below, where both top squares, in U̇ and
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U respectively, sit on the bottom square.

JΣ,∆k ∆B

JΣ,∆h ∆A

JΣ,∆f

uk

∆f

uh

B Σ∆B

A Σ∆A

f

k

Σ∆f

h

Y Y.B

X X.A

uf

uk

u̇∆f

uh

As the action on arrows is defined by a universal property, functoriality of JΣ,∆ is
straightforward. It is also clear that JΣ,∆ preserves cartesian arrows.

Recall that KΣ,∆a = Σηa. Therefore JΣ,∆◦KΣ,∆a is defined as the domain of a cartesian
lift of u̇ηa into ∆Σa. But the component ηa of the unit at an object a of U̇ is also cartesian
into ∆Σa. Therefore there is a unique vertical iso ζa : JΣ,∆Σηa → a such that ηaζa = u̇ηa.
Naturality can be shown using that ηa is cartesian. It follows that ζ : JΣ,∆KΣ,∆

∼⇒ IdU̇ .
On the other hand, a coalgebra h is cartesian over uh and so is Σuh, since Σ preserves

cartesian arrows. It follows that there is a unique vertical iso ξh : ΣJΣ,∆h → A such
that hξh = Σuh. Again, since h is cartesian, ξh is natural in h, and it follows that
ξ : ΣJΣ,∆

∼⇒ UΣ∆. To obtain a natural iso KΣ,∆JΣ,∆
∼⇒ IdCoAlg(Σ∆), it is enough to show

that ξh is in fact a morphism, and thus an iso, of coalgebras from ΣηJΣ,∆h to h. This
amounts to the commutativity of the square below.

ΣJΣ,∆h A

Σ∆ΣJΣ,∆h Σ∆A

ΣηJh

ξh

Σuh h

Σ∆ξh

The upper-right triangle commutes by definition of ξh. The lower-left triangle is the
image under Σ of the left-hand square below, which is the transpose under Σ ⊣ ∆ of the
right-hand square.

JΣ,∆h ∆ΣJΣ,∆h

∆A ∆A

uh

ηJh

∆ξh

idA

ΣJΣ,∆h ΣJΣ,∆h

Σ∆A A

Σuh

idJh

ξh

ϵA

The right-hand square commutes since Σuh = hξh and ϵAh = idA. It follows that the
other two squares commute as well.

To see that KΣ,∆ζ = ξKΣ,∆ note that, for every a ∈ U̇ , Σηa ◦Σζa = Σu̇ηa by definition
of ζa. It follows that Σζa = ξΣηa as required. The other equation JΣ,∆ξ = ζJΣ,∆ follows
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from the fact that uh is cartesian and

uh ◦ JΣ,∆ξh = ∆ξh ◦ u̇ηJh = ∆ξh ◦ ηJh ◦ ζJh = uh ◦ ζJh,

using definitions of J and of ζ, and commutativity of the left-hand square above.
Finally, to see that the mate (Uξ)# : JΣ,∆RΣ∆ ⇒ ∆ is a vertical natural iso, note first

that (UξRA)ηJRA = uνA, which can be seen post-composing with ∆(ϵΣ∆AνA) and using
the definition of ξ. It follows that (Uξ)#A = (∆ϵA)uνA is cartesian over the identity on
u̇∆A, thus vertical and invertible.

4.18. Discrete and full comprehension categories. Recall that we have defined
CwF = DscGCwF (4.3). As we show below, the biequivalence (4.1) restricts to cate-
gories with families and discrete comprehension categories. The general reason is that,
in discrete fibrations, vertical isos are identities. In particular, as already observed, loose
gcwf morphisms coincide with gcwf morphisms.

4.19. Corollary. The 2-category DscCompCat of comprehension categories with dis-
crete fibration and the 2-category CwF of categories with families are adjoint 2-equivalent.

The adjoint 2-equivalence restricts to the wide 2-full sub-2-categories on the pseudo
and strict morphisms.

Proof. As shown in (4.6), (4.8), and (4.16), the 2-functors X, Y, and Ĉ
∼=

fix the com-
ponent on Fib of the structures involved. The 2-functor ÊM

∼=
fixes the first component

on Fib, and its second component on Fib is the fibration of coalgebras (4.14), which is
clearly discrete if the original fibration is. Therefore all the 2-functors involved restrict to
2-functors between DscCompCat and CwF.

Note also that the invertible 2-cells ζ and ξ witnessing that η̂ is weakly invertible have
vertical components (4.17). Therefore η̂ is, in fact, invertible.

Finally, note that the mate of the (vertical) natural iso Uξ of the inverse to the unit
η̂ is itself a vertical natural iso (4.17). It follows that the inverse of η̂ is also a strict gcwf
morphism. Therefore the 2-equivalence restricts as required.

Recall that a full comprehension category is one whose comprehension functor χ is
fully faithful.

It is well-known that a functor F : C → C ′ factors as an injective-on-objects functor
aF : C → FC followed by a fully faithful one oF : FC → C ′. The category FC has the same
objects of C, and FC(X, Y ) := C ′(FX,FY ). It is also well-known that this factorisation is
part of an orthogonal factorisation on Cat, and that it provides a reflection of the arrow
category Cat2 =: Fun into the full sub-category of fully faithful functors.

f&fFun Fun

⊣

(10)

Moreover, the factorisation extends to morphisms in Cat/B, as well as to morphisms
in FibB, the category of fibrations over B. Similarly, the reflection also works replacing
Cat2 with (Cat/B)2 or Fib2

B. With these observations, it is possible to see that the
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reflection lifts to a reflection of comprehension categories and strict morphisms into full
comprehension categories and strict morphisms, see [Jacobs, 1993, Lemma 4.9] where the
result is attributed to Erhard. The reflector maps (p, χ) to its heart (p♡, χ♡), where
χ♡ = oχ, and p♡ : χE → B is the unique functor induced by the universal property of the
unit aχ.

On the other hand, it is also easy to see that the reflection in (10) lifts to a 2-reflection
on functors and pseudo morphisms.

f&fFunps Funps

⊣

(11)

More precisely, Funps is the 2-category where the 1-cells are squares commuting up to
a natural iso, and the 2-cells are the 2-cells of Cat2 compatible with the natural isos.
This construction does not seem to give a reflection when instead of Funps one considers
Funlax, where 1-cells are squares filled with an arbitrary natural transformation.

4.20. Proposition. The heart of a comprehension category lifts to a 2-reflection to the
inclusion of full comprehension categories and pseudo morphisms into comprehension cat-
egories and pseudo morphisms.

FullCompCatps CompCatps

(−)♡

⊣

(12)

A (split) cleavage on the fibration p induces a (split) cleavage on p♡, so that the 2-
reflection restricts to the full sub-2-categories on split comprehension categories.

Moreover, the 2-reflection also restricts to the 2-full sub-2-categories on split compre-
hension categories, where morphisms preserve the cleavage.

FullSplCompCatps SplCompCatps

(−)♡

⊣

(13)

All these 2-reflections restrict to the sub-2-categories on strict morphisms.

Proof. Note that CompCatps((p, χ), (p′, χ′)) is the limit in Cat of the diagram of
forgetful functors below

Fib(p, p′) Funps(χ, χ
′)

Cat(B,B′) Cat(B2,B′2) Cat(E , E ′)
(−)2

When χ′ is fully faithful, the functor (−) ◦ aχ : f&fFunps(χ
♡, χ′) → Funps(χ, χ

′) is
invertible by (11). It is also follows that the functor (−) ◦ aχ : Fib(p♡, p′) → Fib(p, p′) is
invertible. Therefore

FullCompCatps((p
♡, χ♡), (p′, χ′)) CompCatps((p, χ), (p′, χ′))∼

(−)◦aχ
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as required.
A cartesian lift for p♡ is the image under χ of a cartesian lift for p. This choice is

split since χ is a functor. The claim that the induced 1-cells preserve the cleavage has a
straightforward verification.

It is well known, and easy to verify, that discrete fibrations are 2-coreflective in split
fibrations. The coreflector maps a fibration to its wide subfibration with only the arrows
of the cleavage. The total category is indeed a category since the cleavage is split, and the
fibration is clearly discrete. The 2-coreflection lifts to a 2-coreflection between discrete
comprehension categories and split comprehension categories

DscCompCat SplCompCat

|−|

⊣ (14)

which restricts to subcategories on pseudo and strict morphisms.
By composing the adjunctions in (14) and in (13), one obtains the right-hand 2-

equivalence below. The left-hand one is from (4.19).

CwFps ≡ DscCompCatps ≡ FullSplCompCatps (15)

When restricted to strict morphisms, it is the equivalence in [Blanco, 1991, Proposi-
tion 1.2.4].

4.21. Remark. Note that the 1-cells in the 2-categories in (15) involve functors that
preserve the cleavage, since morphisms in Fib between discrete fibrations must preserve
the (split) cleavage, as those are the only (cartesian) arrows. To obtain more morphisms,
one should use (12) instead of (13) and, given categories with families (u, u̇) and (u′, u̇′),
look at

FullCompCatps(G(u, u̇)♡,G(u′, u̇′)♡). (16)

Note that those in the image of (−)♡ do preserve the cleavage, but the others do not
(necessarily). If we also require the base categories to have terminal objects preserved by
the morphisms then the morphisms in (16) are the pseudo cwf-morphisms between (u, u̇)
and (u′, u̇′) of Clairambault and Dybjer [2014, Definition 3.1].

Indeed, consider first the functor T : Cop → Cat from [Clairambault and Dybjer, 2014,
Proposition 2.7] associated to a category with families (C, T : Cop → Fam). The (split)
fibration πT :

∫
T → C corresponding to T : Cop → Cat under the Grothendieck con-

struction is the underlying fibration of the heart (G(πTyT , πTmT
))♡ of the comprehension

category associated to (C, T ), where (πTyT , πTmT
) is the generalised category with families

described in (3.16).
As observed in [Clairambault and Dybjer, 2014], a pseudo cwf-morphism (F, σ) : (C, T ) →

(C ′, T ′) induces a morphism of fibrations (F,H) : πTyT → πTyT ′ which preserves context
comprehension up a natural iso ρ. This means precisely that (F,H, ρ) is an object in (16).

Conversely, given an object (F,H, ζ) in (16), the isomorphism θ is given by the fact
that H♡ preserves cartesian arrows. It “preserves substitution in terms” since postcompo-
sition with θ preserves sections of display maps. The “coherence conditions” involving θ
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correspond to the fact that the cleavage of the heart of a cwf is split. The iso ρ witnessing
the preservation of context comprehension is ζ itself.
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Categories and Martin-Löf Type Theories. Mathematical Structures in Computer Sci-
ence, 24(05):e240501, April 2014. doi: 10.1017/S0960129513000881.

Greta Coraglia and Ivan Di Liberti. Context, judgement, deduction. Available as
arXiv:2111.09438, 2022.

Greta Coraglia and Jacopo Emmenegger. Categorical models of subtyping. Available as
arXiv:2312.14600, 2023.

Eduardo Dubuc. Kan Extensions in Enriched Category Theory, volume 145 of Lec-
ture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1970. doi: 10.1007/
BFb0060485.

Peter Dybjer. Internal type theory. In Stefano Berardi and Mario Coppo, editors, Types
for Proofs and Programs, pages 120–134, Berlin, Heidelberg, 1996. Springer Berlin
Heidelberg.

Thomas Ehrhard. A categorical semantics of constructions. In Proceedings. Third Annual
Symposium on Logic in Computer Science, pages 264–273, 1988. doi: 10.1109/LICS.
1988.5125.

Samuel Eilenberg and John C. Moore. Adjoint functors and triples. Illinois Journal of
Mathematics, 9(3):381 – 398, 1965. doi: 10.1215/ijm/1256068141.

Marcelo Fiore. Notes on algebraic type theory. Available at https://www.cl.cam.ac.

uk/~mpf23/Notes/att.pdf, 2008.

https://arxiv.org/abs/2111.09438
https://arxiv.org/abs/2312.14600
https://www.cl.cam.ac.uk/~mpf23/Notes/att.pdf
https://www.cl.cam.ac.uk/~mpf23/Notes/att.pdf


A 2-CATEGORICAL ANALYSIS OF CONTEXT COMPREHENSION 1511

Martin Hofmann. Syntax and semantics of dependent types. In Andrew M. Pitts
and P.Editors Dybjer, editors, Semantics and Logics of Computation, Publications
of the Newton Institute, page 79–130. Cambridge University Press, 1997. doi:
10.1017/CBO9780511526619.004.

Peter J. Huber. Homotopy theory in general categories. Mathematische Annalen, 1961.
doi: 10.1007/BF01396534. URL https://doi.org/10.1007/BF01396534.

Bart Jacobs. Comprehension categories and the semantics of type dependency. Theoretical
Computer Science, 107(2):169–207, 1993. ISSN 0304-3975. doi: https://doi.org/10.
1016/0304-3975(93)90169-T.

Bart Jacobs. Categorical logic and type theory. Elsevier, 1999.

Gregory M. Kelly and Ross Street. Review of the elements of 2-categories. In G. M.
Kelly, editor, Category Seminar, pages 75–103, Berlin, Heidelberg, 1974. Springer Berlin
Heidelberg. ISBN 978-3-540-37270-7.

Heinrich Kleisli. Every standard construction is induced by a pair of adjoint functors. Pro-
ceedings of the American Mathematical Society, 16(3):544–546, 1965. ISSN 00029939,
10886826. URL http://www.jstor.org/stable/2034693.

Marco Federico Larrea. Models of Dependent Type Theory from Algebraic Weak Factori-
sation Systems. PhD thesis, University of Leeds, 2018.

F. William Lawvere. Equality in hyperdoctrines and comprehension schema as an adjoint
functor. In A. Heller, editor, Proc. New York Symposium on Application of Categorical
Algebra, pages 1–14. Amer.Math.Soc., 1970. doi: 10.1090/pspum/017.

Saunders MacLane. Categories for the Working Mathematician. Springer, 1978.
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