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TOWARDS CONSTRUCTIVISING THE FREYD–MITCHELL
EMBEDDING THEOREM

ANNA GIULIA MONTARULI

Abstract. The aim of the paper is to first point out that the classical proof of the
Freyd–Mitchell Embedding Theorem does not work inCZF; then, to show how to embed
in a constructive way a small abelian category into the category of sheaves of modules
over a ringed space.

1. Introduction

What is a good “concrete” description of a small abelian category? Classically, the answer
to this question is given by the Freyd–Mitchell Embedding Theorem, which asserts that
every small abelian category A admits a full, exact embedding into the category R-Mod of
modules over an appropriate ring R (see [Mitchell, 1965, Theorem VI.7.2]). Thanks to this
result, we can think about the objects of A as modules over some ring R, and of the maps
in A as modules homomorphisms. If we analyze some different proofs, however, we come
across constructive issues. In fact, a nonconstructive argument has two shortcomings:
on the one hand, the general project of constructivising mathematics is itself of intrinsic
interest; on the other hand, nonconstructive arguments can often give proofs that are
somehow “mysterious”, while constructive arguments clarify more concretely what exactly
is going on. The motivation of the work presented here lies in this context; indeed, its aim
is to first show and explain what in the proofs of the Freyd–Mitchell Embedding Theorem
fails when working within the constructive frameworks CZF, IZF and IHOL, and then
to propose an alternative constructive embedding of A into the category of sheaves of
modules over a ringed space.

The organization of the paper is as follows. Section 2 recalls some background on IZF,
CZF and IHOL. In Section 3 we analyze the outline of a proof of the Freyd–Mitchell
Embedding Theorem, and in Section 4 we show that, while working in CZF, a particular
small abelian category G gives Brouwerian counterexamples to two of its ingredients,
namely the well-poweredness of the category [A,Ab] of additive functors from A to the
category Ab of abelian groups, and the standard construction of enough injectives in

This work has been carried on under the supervision first of Erik Palmgren, who unexpectly passed
away in November 2019, and then of Peter LeFanu Lumsdaine: I am very grateful to both of them
for their guidance, comments and precious suggestions. Many thanks also to Johan Lindberg for some
interesting discussions.

Received by the editors 2020-07-15 and, in final form, 2024-09-18.
Transmitted by Giuseppe Rosolini. Published on 2024-10-08.
2020 Mathematics Subject Classification: 18E10, 03G30, 18E20, 03F65.
Key words and phrases: abelian categories, embedding, CZF, IZF, constructive mathematics.
© Anna Giulia Montaruli, 2024. Permission to copy for private use granted.

1416



CONSTRUCTIVISING THE FREYD–MITCHELL EMBEDDING THEOREM 1417

[A,Ab]; the unprovability result concerning the existence of enough injectives applies to
the systems IHOL and IZF as well. In this section, we also include an intermediate
result about the existence of enough injectives in the category Ab (Subsection 4.15). In
Section 5 we describe the constructive embedding of A into the category of sheaves of
modules over a ringed space; this is obtained using two already known embeddings, one
of which requires that the site (A, R), where R is the regular topology, has a conservative
set of points. The rest of the paper is devoted to showing that this is the case: Section
6 contains some preliminary definitions and results on points and conservative family of
points for a topos, and in Section 7 we set up a combinatorial machinery for constructing
points, that we use in Section 8 to prove that the site (A, R) has a conservative set of
points.

Throughout all the paper, whenever we reference a result from classical literature
in a constructive proof, this means that the proof of the result referenced also works
constructively. Moreover, the reader will find definitions that are classically well known,
since in a constructive context one must clarify which definition is chosen among classically
equivalent alternatives.

2. Constructive foundational frameworks

Constructive mathematics is, roughly speaking, Mathematics developed without employ-
ing the Law of Excluded Middle (LEM), and turns out to be a generalization of Clas-
sical Mathematics. Various different foundations are used for it: some, as Constructive
Zermelo–Fraenkel Set Theory CZF and Intuitionistic Zermelo–Fraenkel Set Theory IZF,
are more close to the classical foundations, others, as Intuitionistic Higher-Order Logic
IHOL, are more type-theoretic.

CZF and IZF are subsystems of the classical Zermelo–Fraenkel Set Theory ZF, based
on intuitionistic logic (a fragment of classical logic), and aimed to give set theories for
constructive mathematics; because of their nature, all the theorems provable in these two
systems are also provable in ZF. IZF is built in order to be as much close to ZF as
possible, whereas CZF is a subsystem of IZF, and it differs from it mainly for the fact
that it does not assume or prove the Axiom of Power Set. For a more detailed explanation
we refer to [Aczel-Rathjen, Section 3.5] for CZF and to the notes [Scedrov, 1985] for IZF.

IHOL, also called Intuitionistic Type Theory, is a multisorted theory whose class of
types contains the types 1,N,Ω and it is closed under binary products and power set,
and whose logic allows bounded quantification over these types; the main difference with
set theories is the lack of unbounded quantification. We refer to [Lambek-Scott, 1986,
Section II.1] for general background on IHOL, and to the paper [Awodey et al., 2014] for
further details on the relation between IZF and IHOL.

In the following, we briefly look at the axioms of CZF and IZF. Since, as we said,
CZF is a subsystem of IZF, we first list the axioms of CZF, and then we explain how
one can retrieve the axioms of IZF from them.
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2.1. Definition. Constructive Zermelo–Fraenkel Set Theory CZF is the theory in in-
tuitionistic logic whose language is the same as the language of ZF, and whose axioms
are:

1. Extensionality:
∀a∀b(∀x(x ∈ a↔ x ∈ b) → a = b)

2. Pairing:
∀a∀b∃y∀x(x ∈ y ↔ (x = a ∨ x = b))

3. Union:
∀a∃y∀x(x ∈ y ↔ ∃u ∈ a(x ∈ u))

4. Strong Infinity:
∃a(Ind(a) ∧ ∀b(Ind(b) → ∀x ∈ a(x ∈ b)))

where we use the following abbreviations:

Succ((x, y)) := ∀z(z ∈ y ↔ z ∈ x ∨ z = x);

Ind(a) := (∃y ∈ a)(∀z ∈ y)⊥ ∧ (∀x ∈ a)(∃y ∈ a)Succ((x, y)).

5. Set Induction scheme:

∀a(∀x ∈ aϕ(x) → ϕ(a)) → ∀aϕ(a)

for all formulae ϕ(a).

6. Bounded Separation scheme:

∀a∃y∀x(x ∈ y ↔ x ∈ a ∧ ϕ(x))

where ϕ(x) is a ∆0-formula in which y is not free. Here a ∆0-formula (or “restricted
formula”) is a formula where all the quantifiers are bounded.

7. Strong Collection scheme:

∀x ∈ a∃yϕ(x, y) → ∃b(∀x ∈ a∃y ∈ bϕ(x, y) ∧ ∀y ∈ b∃x ∈ aϕ(x, y))

for every formula ϕ(x, y).

8. Subset Collection scheme:

∃c∀u(∀x ∈ a∃y ∈ bψ(x, y, u) →

∃d ∈ c(∀x ∈ a∃y ∈ dψ(x, y, u) ∧ ∀y ∈ d∃x ∈ aψ(x, y, u)))

for every formula ψ(x, y, u).



CONSTRUCTIVISING THE FREYD–MITCHELL EMBEDDING THEOREM 1419

2.2. Definition. Intuitionistic Zermelo–Fraenkel Set Theory IZF is the theory that is
obtained from CZF by performing the following changes:

1. allow separation (Axiom 6) for every formula, not only ∆0-formulae;

2. replace the Strong Collection scheme (Axiom 7) with the less restrictive Collection
scheme:

∀a(∀x ∈ a∃yϕ(x, y) → ∃b∀x ∈ a.∃y ∈ bϕ(x, y))

where ϕ(x, y) is any formula in which b is not free;

3. replace the Subset Collection scheme (Axiom 8) with the Axiom of Power Set, as-
serting that the collection of subsets of any set is still a set.

Since in Proposition 4.8 we use the Axiom of Exponentiation, it is worth to mention
how this can be derived from the Subset Collection Scheme.

2.3. Definition.

1. The Axiom of Exponentiation is the following axiom:

∀a∀b∃c∀f(f ∈ c↔ (f : a→ b))

it postulates that, for all sets a, b, the collection of functions from a to b is a set too;

2. the Axiom of Fullness is the following axiom:

∀a∀b∃cFull(c,mv(ab))

with:

mv(ab) := {r ⊆ a× b | ∀u ∈ a∃v ∈ b(⟨u, v⟩ ∈ r)};
Full(c,mv(ab)) := (c ⊆ mv(ab) ∧ (∀r ∈ mv(ab)∃s ∈ c(s ⊆ r)).

2.4. Lemma. In CZF and in IZF, the Subset Collection Scheme implies the Axiom of
Exponentiation.

Proof. One can prove that the Subset Collection Scheme implies the Axiom of Fullness
and that the Axiom of Fullness implies the Axiom of Exponentiation. The proof of these
implications can be found in [Aczel-Rathjen, Theorem 5.1.2], where it is worked out in
the subsystem ECST (Elementary Constructive Set Theory) of CZF.
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Since this ‘ground-level work’ on the axioms has been developed enough, one can work
in informal mathematical style, reformulating classical results in the constructive setting,
as we do in this paper.

2.5. Brouwerian counterexamples, WLEM. Working within constructive mathe-
matics, in Section 4 we make use of the technique of giving Brouwerian counterexamples.
A Brouwerian counterexample for a statement P is a proof that P implies some classi-
cal/impredicative principle known to be not provable in a theory T; this therefore implies
that P is not provable in T. In particular, a classical principle for which we give Brouw-
erian counterexamples is the Weak Law of Excluded Middle (WLEM):

2.6. Definition. The Weak Law of Excluded Middle for a specific proposition ϕ asserts
that:

¬ϕ ∨ ¬¬ϕ

By Weak Law of Excluded Middle (WLEM) we mean the principle stating that, for every
proposition ϕ, ¬ϕ ∨ ¬¬ϕ holds.

In impredicative systems allowing quantification over all propositions (such as IZF
and IHOL) this can be given as a single statement; in predicative systems such as CZF
it must be understood as a scheme.

In classical Mathematics WLEM is provable, since it follows from the Law of Excluded
Middle; in CZF, IZF and IHOL, however, WLEM is not provable, even for restricted
formulas, i.e. formulas with only bounded quantifiers.

3. Obstacles to constructivising the existing proofs

The Freyd–Mitchell Embedding Theorem asserts that every small abelian category A
admits a full, exact embedding into the category R-Mod of modules over an appropriate
ring R. The proof, as it is presented in [Mitchell, 1965, Theorem VI.7.2], follows this
outline:

1. the functor A → L(A,Ab), sending an object A to HA := HomA(A,−), is a
contravariant, full, exact embedding from A into the abelian category L(A,Ab) of
left exact additive functors from A to Ab;

2. by composing this embedding with the duality functor (−)op on L(A,Ab), we obtain
a full, exact, covariant embedding S : A → L(A,Ab)op;

3. by [Mitchell, 1965, Theorem VI.6.2], L(A,Ab) has an injective cogenerator, and so
L(A,Ab)op has a projective generator P ;

4. every object in the image of S is finitely generated with respect to the family {P ′ :=∐
A∈A

f :P→(HA)
op

P} (finitely generated in the sense of [Mitchell, 1965, pag.72]);
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5. by [Mitchell, 1965, Theorem IV.4.1], defining R := Hom(P ′, P ′), we see that the
functor T : L(A,Ab)op → R-Mod sending X to HomL(A,Ab)op(P

′, X) is a full, exact
embedding;

6. the composition T ·S : A → R-Mod is the full, exact embedding we are looking for.

Some parts of this proof present nonconstructive features. Indeed, to prove that
L(A,Ab) is abelian, [Mitchell, 1965, Paragraph VI.6] shows that this category is the cate-
gory of pure objects with respect to the category of monofunctors (i.e. functors preserving
monomorphisms); to achieve this, A is supposed to be well-powered (i.e. any subobject
collection of A is a set), and the category [A,Ab] of additive functors from A to Ab is
supposed to have injective envelopes. Moreover, to conclude that the category L(A,Ab)
has an injective cogenerator, the proof relies on the fact that the category [A,Ab] has
enough injectives (weaker than the existence of injective envelopes, but still suspicious)
and is well-powered. Also, we remark that the proof that every object in the image
of S is finitely generated with respect to {P ′} is based on the assumption that every
HomL(A,Ab)op(P, (H

A)op) is detachable from
∐
A∈A

HomL(A,Ab)op(P, (H
A)op) or, equivalently,

that the set of objects of A has decidable equality. There are also other slightly different
proofs of the theorem; nevertheless, all of them seem to have similar issues.

In Section 4 we show that, working in Constructive Zermelo–Fraenkel Set Theory
(CZF), a certain small abelian subcategory G of Ab gives us Brouwerian counterexam-
ples to the well-poweredness of [A,Ab] and to the standard way of constructing enough
injectives in [A,Ab], i.e. it shows that each of these implies a classicality/impredicativity
principle which is known to be unprovable in CZF. As we mention, the unprovability
result about the standard construction of enough injectives apply also to IZF and IHOL.

4. Two Brouwerian counterexamples

4.1. The category G of finite direct powers of Z2. We define G as the full
subcategory of Ab whose collection of objects is given by {Z⊕n

2 }n∈N. We identify the
object Z⊕0

2 with the zero object {0}.
A map Z⊕n

2

f−→ Z⊕m
2 is specified by a matrix [fi,j]

i∈n
j∈m, whose components are given

by the composition:

Z⊕n
2

f // Z⊕m
2

πj

��
Z2

mi

OO

fi,j
// Z2

where the arrows {mi}i∈n (resp. {πj}j∈m) are the canonical injections (resp. projections)
of the biproduct Z⊕n

2 (resp. Z⊕m
2 ).

Note that, since every fi,j is a group homomorphism from Z2 to Z2, then it can only
be either equal to idZ2 or to the zero map. Hence equalities of maps from Z2 to Z2
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are decidable, meaning that, for any two maps f and g, either f = g or f ̸= g. This
decidability can be extended (componentwise) to a decidability of equality of arrows in
G.

It is easy to see that the category G defined above is small. Furthermore, being a full
subcategory of Ab, G will have kernels (resp. cokernels) exactly when, for every map f in
G, a kernel (resp. a cokernel) of f in Ab will lie in G.

4.2. Lemma. The category G has kernels.

Proof. In order to prove that the category G has kernels, it is enough to show that any
subgroup K of Z⊕n

2 is isomorphic to Z⊕p
2 for some p ≤ n. We already know that this

result is valid in a classical setting; here, we explicitly rewrite the proof, in order to show
its constructiveness.

First, note that, by Lagrange’s Theorem (whose proof still works constructively), and
due to the fact that the cardinality of Z⊕n

2 is 2n, K must have cardinality equal to 2p for
some p ≤ n. We also know that every element of it (which is also an element of Z⊕n

2 )
either is 0 or has order 2. These two facts allow us to conclude that K ∼= Z⊕p

2 . Indeed,
one can show that, if S is a maximal set of elements which are linearly independent in K,
then |S| = p. Moreover, given any such set {x1, . . . , xp}, K ∼= ⊕

i=1,...,p
⟨xi⟩ ∼= Z⊕p

2 .

4.3. Lemma. The category G has cokernels.

Proof. In order to prove that the category G has cokernels, it is enough to show that, for
any given map f : Z⊕n

2 → Z⊕m
2 , a cokernel of this map in Ab is isomorphic to an object

of G. Consider the diagram:

Z⊕n
2

f //

e

"" ""

Z⊕m
2

q // // Z⊕m
2 /Imf

Imf

j
<<

where q is a cokernel of f in Ab. From Lemma 4.2 it follows that Imf , being a subgroup
of Z⊕m

2 , is isomorphic to Z⊕p
2 for some 0 ≤ p ≤ m, and its cardinality is 2p. Hence,

Z⊕m
2 /Imf has cardinality 2m−p. Moreover, every element of Z⊕m

2 /Imf either is 0 or has
order 2. As in Lemma 4.2, we can conclude that Z⊕m

2 /Imf ∼= Z⊕m−p
2 .

4.4. Proposition. The full subcategory G of Ab, whose objects are the finite direct
powers of Z2, is an abelian category.

Proof. G has zero object Z⊕0
2 , kernels (see Lemma 4.2) and cokernels (see Lemma 4.3);

it also inherits biproducts from Ab, by identifying (Z⊕n
2 ) ⊕ (Z⊕m

2 ) with Z⊕(n+m)
2 . In

order to be able to conclude that the category G is abelian, we need to verify that every
monomorphism is a kernel and that every epimorphism is a cokernel; these properties are
inherited from the category Ab, using the fullness of G. Indeed, given a monomorphism
l : Z⊕n

2 ↣ Z⊕m
2 in G, we can show that this is the kernel of its cokernel. From Lemma
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4.3 we know that the cokernel of l in G is some arrow coker(l) : Z⊕m
2 ↠ Z⊕m−n

2 . Clearly,
coker(l) · l = 0; it remains to show that l has the universal property: but this is inherited
from the one in Ab. In the same way, it is possible to show that every epimorphism is
the cokernel of its kernel.

4.5. Remark. Note that the category G is strongly equivalent to the category
Z2-FdMod of finite-dimensional Z2-modules equipped with a chosen basis. Indeed, the
functor F : G → Z2-FdMod, which sends Z⊕n

2 to Z⊕n
2 equipped with the obvious basis,

and the functor G : Z2-FdMod → G, which sends M equipped with a base B to Z⊕|B|
2 ,

are quasi-inverses.

4.6. The first counterexample. The aim of this subsection is to witness the first
constructive issue previously mentioned: the well-poweredness of [A,Ab]. Throughout
all the subsection, G denotes the small abelian category of finite direct powers of Z2

introduced in Subsection 4.1.
In CZF, the Axiom of Power Set implies the well-poweredness of [G,Ab]. In fact,

they are equivalent: we prove here that, in CZF, the well-poweredness of [G,Ab] implies
the Axiom of Power Set.

4.7. Lemma. For every F, S ∈ [G,Ab], S is a subfunctor of F if and only if S(Z2) is
isomorphic to a subgroup of F (Z2).

Proof. If S is a subfunctor of F , then there exists a monomorphism S(Z2)
f
↣ F (Z2).

Hence S(Z2) ∼= Imf ≤ F (Z2).
To prove the other implication, note that every functor F ∈ [G,Ab] is uniquely deter-

mined on objects by its behaviour on Z2. Furthermore, looking at the diagram:

F (Z⊕n
2 )

F (f) //

≀ϕn
��

F (Z⊕m
2 )

≀ϕm
��

F (Z2)
⊕n ϕm·F (f)·ϕ−1

n // F (Z2)
⊕m

πj
����

F (Z2)

mi

OO

F (fi,j) // F (Z2)

where ϕn and ϕm are the canonical isomorphisms, it is easy to see that ϕm ·F (f) ·ϕ−1
n (and

hence also F (f)) is uniquely determined by the maps F (fi,j) : F (Z2) → F (Z2). Since F
is additive,

fi,j = idZ2 ⇒ F (fi,j) = idF (Z2); fi,j = 0 ⇒ F (fi,j) = 0

Hence F (fi,j) = idF (Z2) or F (fi,j) = 0, and the behaviour of F on f is uniquely determined
by f itself. It follows that, to define a functor in [G,Ab], it is enough to declare its image
at Z2 and, to define a natural transformation between two functors of [G,Ab], it is enough
to define its behaviour at Z2.



1424 ANNA GIULIA MONTARULI

To complete the proof note that, given any group S which admits a monomorphism
f (not necessarily an inclusion) into F (Z2), we can define the functor S ∈ [G,Ab] as
S(Z2) := S, and the monomorphism f. : S ↣ F as the natural transformation which
gives f when evaluated at Z2.

Using Lemma 4.7, we can prove:

4.8. Proposition. If the category [G,Ab] is well-powered, then the Axiom of Power Set
holds.

Proof. Consider the functor F which acts as the inclusion of G into Ab. From the dis-
cussion above, we see that the collection Sub(F ) of all subobjects (in this case isomorphic
classes of subfunctors) of F can be identified with the collection of all subgroups of Z2 in
Ab. Hence, if Sub(F ) is a set, then the collection {subgroups of Z2} is a set too. This
clearly implies that the power set of the singleton is a set, which is equivalent (assuming
the Axiom of Exponentiation) to have the full Axiom of Power Set.

4.9. The second counterexample. The aim of this subsection is to witness the sec-
ond constructive issue previously mentioned: the exixtence of enough (decidable-valued)
injectives in [A,Ab]. Throughout all the subsection, G denotes the small abelian category
of finite direct powers of Z2 introduced in Subsection 4.1.

Injectivity and the existence of enough injectives are defined constructively just like
classically:

4.10. Definition. An object I of a category C is called injective if, given any monomor-
phism f : A ↣ B of C and any map h : A → I, there exists a map g : B → I such that
g · f = h.

We say that C has enough injectives if, for every object A of C, there exists a monomor-
phism from A into an injective object of C.

In the following, we are considering injectives which are decidable-valued functors.

4.11. Definition. A functor whose target category is concrete is said to be a decidable-
valued functor if it is valued in objects whose underlying sets have decidable equalities.

We are now going to show that, in [G,Ab], the existence of enough decidable-valued
injectives implies WLEM (Definition 2.6) for restricted formulas. Analogous results for
sets have been given in the paper [Aczel et al., 2013].

4.12. Proposition. If the category [G,Ab] has enough decidable-valued injectives, then
WLEM holds for restricted formulas.

Proof. Fix a formula ϕ with only bounded quantifiers, and define the set:

p := {x ∈ N | (x = 0) ∧ ϕ} (1)

By identifying ⊥ with the empty set and ⊤ with the singleton {0}, we clarly have:

¬ϕ⇔ p = ⊥ and ¬¬ϕ⇔ p ̸= ⊥
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and so:
¬ϕ ∨ ¬¬ϕ⇔ p = ⊥ ∨ p ̸= ⊥ (2)

For a given set J , let A⊕J be the external direct sum defined as in [Mines et al., 1988,
Section II.4].

Consider the monomorphism in [G,Ab]:

l. : Hom(Z2,−)⊕{⊥,⊤} ↣ Hom(Z2,−)⊕{⊥,⊤,p}

whose component at Z⊕n
2 acts as:

lZ⊕n
2

: Hom(Z2,Z⊕n
2 )⊕{⊥,⊤} ↣ Hom(Z2,Z⊕n

2 )⊕{⊥,⊤,p}

(α⊥, α⊤) 7−→ (α⊥, α⊤, 0p)

where, in the indices, we keep track of the generator involved (e.g. α⊥ indicates that we
take the map α in the hom-set corresponding to the generator ⊥). Note that, if p = ⊥ or
if p = ⊤, then l. turns out to be the identity map.

Assuming that the category [G,Ab] has enough injectives, there exists a monomor-
phism f. : Hom(Z2,−)⊕{⊥,⊤} ↣ I, where I is an injective object of [G,Ab].

This implies that we have a commutative diagram of the shape:

I

Hom(Z2,−)⊕{⊥,⊤}

f.

OO

l.
// Hom(Z2,−)⊕{⊥,⊤,p}

g.

kk

that, evaluated at Z2, gives the commutative diagram of abelian groups:

I(Z2)

Hom(Z2,Z2)
⊕{⊥,⊤}

fZ2

OO

lZ2

// Hom(Z2,Z2)
⊕{⊥,⊤,p}

gZ2

kk

Call y := gZ2(0⊥, 0⊤, idp), and consider p. If p = ⊥, then lZ2 is the identity, and
y = fZ2(id⊥, 0⊤). Suppose now that y = fZ2(id⊥, 0⊤); if p = ⊤, using the fact that f.
is pointwise a monomorphism, y = fZ2(0⊥, id⊤) ̸= fZ2(id⊥, 0⊤); hence p is not inhabited,
and therefore p = ⊥.

Thus, we have:
p = ⊥ ⇔ y = fZ2(id⊥, 0⊤)

from which:

¬ϕ ∨ ¬¬ϕ⇔ p = ⊥ ∨ p ̸= ⊥ ⇔ y = fZ2(id⊥, 0⊤) ∨ y ̸= fZ2(id⊥, 0⊤)

Then, as long as y = fZ2(id⊥, 0⊤) ∨ y ̸= fZ2(id⊥, 0⊤) is true, we are done. This is the
case, for instance, if the abelian group I(Z2) has decidable equality.
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The discussions in Subsections 4.6 and 4.9 can be summarized with the following
results.

4.13. Theorem.

1. If, for all small abelian categories A, [A,Ab] is well-powered, then the Axiom of
Power Set holds.

2. If, for all small abelian categories A, [A,Ab] has enough decidable-valued injectives,
then WLEM holds for restricted formulas.

Proof. By Propositions 4.8 and 4.12, instantiating A with the category G of finite direct
powers of Z2 shows both these implications.

4.14. Corollary.

1. The statement “for every small abelian category A, [A,Ab] is well-powered” is not
provable in CZF.

2. The statement “for every small abelian category A, [A,Ab] has enough decidable-
valued injectives” is not provable in IZF, IHOL, CZF.

Proof. From the fact that the Axiom of Power Set is not provable in CZF, and that
WLEM for restricted formulas is not provable in IZF, IHOL and CZF.

4.15. About the existence of injective abelian groups. As we have shown
that the existence of enough decidable-valued injectives in the category [G,Ab] implies
WLEM for restricted formulas, one can also show that the existence of enough injectives
with decidable equalities in the category Ab implies WLEM for restricted formulas.

4.16. Lemma. If there exists a monomorphism f in Ab from Z{⊥,⊤} into an injective
object I which has decidable equality, then WLEM holds for restricted formulas.

Proof. Given p as in (1), consider the monomorphism:

l : Z⊕{⊥,⊤} ↣ Z⊕{⊥,⊤,p}

(a⊥, b⊤) 7−→ (a⊥, b⊤, 0p)

Using the injectivity of I, we get a commutative diagram of abelian groups:

I

Z⊕{⊥,⊤}

f

OO

l
// Z⊕{⊥,⊤,p}

g
ff

Note that, if p = ⊥, then g(0⊥, 0⊤, 1p) = f(1⊥, 0⊤). Suppose now that g(0⊥, 0⊤, 1p) =
f(1⊥, 0⊤): if p = ⊤, then g(0⊥, 0⊤, 1p) = f(0⊥, 1⊤); but, since f is injective, f(0⊥, 1⊤) ̸=
f(1⊥, 0⊤); therefore p cannot be inhabited, and so p = ⊥.
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Hence, called y := g(0⊥, 0⊤, 1p),

p = ⊥ ∨ p ̸= ⊥ ⇔ y = f(1⊥, 0⊤) ∨ y ̸= f(1⊥, 0⊤)

Then, as long as y = f(1⊥, 0⊤) ∨ y ̸= f(1⊥, 0⊤) is true, and using (2), we are done; if
I has decidable equality, this is the case.

4.17. Corollary. The statement “the category Ab has enough injectives with decidable
equalities” implies WLEM for restricted formulas.

Proof. Straightforward from Lemma 4.16.

4.18. Corollary. The statement “either Q or Q/Z is injective in Ab” implies WLEM
for restricted formulas.

Proof. We instantiate the map f of Lemma 4.16 with the morphism sending (1⊥, 0⊤) to
1
2
and (0⊥, 1⊤) to

1
3
(resp. sending (1⊥, 0⊤) to [1

2
]Z and (0⊥, 1⊤) to [1

3
]Z, where [x]Z denotes

the projection of x onto Q/Z); even if this is not a monomorphism, the rest of the proof
of Lemma 4.16 still works. Since the equality of Q (resp. Q/Z) is decidable, we get that
the injectivity of Q (resp. Q/Z) implies WLEM for restricted formulas.

In the constructive approach, divisible groups are defined as follows:

4.19. Definition. An abelian group G is called “divisible” if, for any x ∈ G and for any
n ∈ N, there exists y ∈ G such that ny = x.

4.20. Corollary.The statement “any divisible abelian group is injective” implies WLEM
for restricted formulas.

Proof.Direct from the proof of Corollary 4.18, since the classical proofs of the divisibility
of Q and of Q/Z work constructively.

4.21. Corollary.

1. The statement “the category of abelian groups has enough injectives with decidable
equalities” is not provable in IZF, IHOL, CZF.

2. The statement “either Q or Q/Z is injective in Ab” is not provable in IZF, IHOL,
CZF.

3. The statement “any divisible abelian group is injective” is not provable in IZF,
IHOL, CZF.

Proof. From the fact that WLEM for restricted formulas is not provable in IZF, IHOL
and CZF.
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4.22. Remark. Point (2) of Corollary 4.21 shows that the standard construction of
enough injectives, performed using injectivity of Q/Z (see Proposition [Hilton, 1971,
I.8.3]), doesn’t work constructively.

4.23. Remark. It is already known that, in ZFA (i.e. the Zermelo–Fraenkel set theory
with atoms), the statement “every divisible abelian group is injective” is equivalent to
the Axiom of Choice (see [Blass, 1979, Theorem 2.1]).

4.24. Remark. One might ask if Corollary 4.17 can be strengthened, getting rid of the
hypothesis on decidable equality or deriving LEM instead of WLEM. We point out that
the statement “for every ringR, R-Mod has enough injectives” holds in the stack semantics
of any Grothendieck topos. Indeed, as shown in [Stacks project, Theorem 01DU], for every
Grothendieck topos E and for every R ∈ Ring(E), E has enough external injective R-
modules, and, as stated after [Blechschmidt, 2018, Theorem 3.8], any externally injective
R-module is also internally injective, if E is supposed to have a natural number object.
From this, one can derive that “for every ring R, R-Mod have enough injectives” holds
in the stack semantics of the topos E . Hence, in the logic of a Grothendieck topos stack
semantics, the statement “for every ring R, R-Mod has enough injectives” can’t imply
any classicality principle. With a little extra work, this should imply that the same
statement can’t imply any classicality principle in IZF. A similar remark can be found
in [Blechschmidt, 2018, pag.15]

5. Description of the new embedding

In this section we describe how to embed a small abelian category A into the category
of sheaves of modules over a ringed space. The embedding we construct is given by the
composition of two ingredients.

First, as detailed in [Bühler, 2010, Appendix A], we know the Yoneda functor gives a
full, exact embedding:

A → Ab(A, R)
where R is the regular topology, i.e. the topology whose covering families are given by
single regular epimorphisms, and Ab(A, R) is the category of sheaves of abelian groups
over the site (A, R) or, equivalently, the category of abelian group objects of the category
Sh(A, R) of sheaves over the same site.

Then, for any given topos T with a conservative set of points, the paper [Butz-
Moerdijk, 1999] constructs a topological space XT and a geometric morphism:

Sh(XT )
Φ−→ T

(here Sh(XT ) denotes the category of sheaves over XT ), whose inverse image:

ϕ∗ : T −→ Sh(XT )

is a full and exact embedding.
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Suppose that the topos Sh(A, R) has a conservative set of points. Considering, as T ,
the topos Sh(A, R), and looking at the diagram:

A
J
// Ab(A, R)

��

ϕ∗|Ab(A,R) // Ab(XSh(A,R))

��
Sh(A, R) ϕ∗ // Sh(XSh(A,R))

we can see that, since ϕ∗ is exact, it sends abelian group objects to abelian group objects;
moreover the lifting of ϕ∗ to Ab(A, R) is a full, exact embedding into Ab(XSh(A,R)), the
category of sheaves of abelian groups over the topological space XSh(A,R).

Hence the composition:

A
ϕ∗|Ab(A,R)

·J
−−−−−−→ Ab(XSh(A,R)) (3)

is a full, exact embedding of the abelian category A into Ab(XSh(A,R)), or, equivalently,
into sheaves of modules over the ringed space (XSh(A,R),ZXSh(A,R)

), where ZXSh(A,R)
is the

constant sheaf on XSh(A,R) with image Z.
To be able to state the existence of Embedding (3), it remains to prove that the topos

Sh(A, R) has a conservative set of points. This is classically true (see [Artin et al., 1973,
Exposé VI, Appendix] and [Johnstone, 2002, Corollary 2.2.12]); in the next two sections,
we show that it is also possible to give a constructive proof for it.

6. A conservative family of points for a site, constructively

In all the following, we assume the reader has some familiarity with sheaf theory. We
refer to the book [MacLane-Moerdijk, 1994] and to [Stacks project] for basic definitions
and results.

A point of a topos T is defined as a geometric morphism p from Set to T (see, for
instance, the book [MacLane-Moerdijk, 1994]). If (C, I) is a site of definition of T , points
can be equivalently defined in terms of the site, as follows.

6.1. Definition. A point for the site (C, I) is a functor u : C → Set such that:

1. for every covering family {Uk → U}k∈K of (C, I), the map
∐
k∈K

u(Uk) → u(U) is

surjective;

2. for every covering family {Uk → U}k∈K and for every morphism V → U , the maps
u(Uk ×U V ) → u(Uk)×u(U) u(V ) are bijective;

3. the stalk functor (−)p : Sh(C) → Set associated to u, defined by:

F 7−→ Fp := colim
{(U,x)|U∈C,x∈u(U)}op

F (U)

is left exact.
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For the equivalence between the two definitions, see [Stacks project, Section 00Y3].
Note that, even if this is a classical reference, it is possible to show that the proof we refer
to still works constructively.

We will often pass without comment between viewing a point as a functor u on the
site, and as its associated geometric morphism p.

6.2. Definition. A family {pk}k∈K of points for the site (C, I) is said to be conservative
if, for every map Φ : F → G in Sh(C, I), if for all k ∈ K Φpk : Fpk → Gpk is an
isomorphism, then Φ is an isomorphism.

More than Definition 6.2, in this paper we will use the following sufficient condition,
which is a constructive partial reformulation of the one that can be found in [Stacks
project, Lemma 00YM].

6.3. Lemma. Let {pk}k∈K be a family of points for the site (C, I). Suppose that, for every
F ∈ Sh(C, I), for every U ∈ Ob(C) and for every s, s′ ∈ F (U), there exists some k ∈ K
and x ∈ uk(U) such that, if (U, x, s) = (U, x, s′) in Fpk , then s = s′. Then the family
{pk}k∈K is conservative.

Proof. Let Φ : F → G be a map of sheaves, and suppose that, for every k ∈ K, Φpk is
an isomorphism. We want to show that Φ is an isomorphism too. Indeed:

⋄ fixed U ∈ Ob(C), and given y, y′ in G(U), suppose that ΦU(y) = ΦU(y
′). Then, for

every k ∈ K and for every x ∈ pk(U), (U, x,ΦU(y)) = (U, x,ΦU(y
′)) in Gpk .

Since, for every k ∈ K, Φpk is an isomorphism, and since, for every k ∈ K and for
every x ∈ pk(U), Φpk(U, x, y) = (U, x,ΦU(y)) = (U, x,ΦU(y

′)) = Φpk(U, x, y
′), then,

for every k ∈ K and for every x ∈ pk(U), (U, x, y) = (U, x, y′). By hypothesis, we can
conclude that y = y′. Hence Φ is a monomorphism, because it is so componentwise;

⋄ we can show that G ⨿F G → G is an isomorphism (equivalent to say that Φ is an
epimorphism). The surjectivity follows from the definition of the map, whereas the
injectivity can be shown as we did for Φ, since the stalk functor is exact, and so the
codiagonal map is stalkwise an isomorphism.

Sections 7 and 8 are devoted, respectively, to constructing a set of points for the site
(A, R), with A a small abelian category and R the regular topology on it, and to proving
that the set obtained is conservative.

7. Constructing points for a regular site

The construction we are going to perform was inspired by [Stacks project, Section 00YN];
however, it has been modified for constructive purposes. Throughout the whole Section
7, (C, R) will denote a small site equipped with the regular topology.

https://stacks.math.columbia.edu/tag/00Y3
https://stacks.math.columbia.edu/tag/00YM
https://stacks.math.columbia.edu/tag/00YN
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Consider a directed set (J,≤), and a functor GJ : J → C, where J := (J,≤)op. We
define the functor uJ : C → Set as:

uJ(V ) := colim
j∈J

HomC(GJ(j), V ) (4)

Note that the associated stalk (we allow this naming, even if pJ may or may not be a
point) turns out to be:

FpJ = colim
j∈J

F (GJ(j))

7.1. Definition. Given two pairs (J1, GJ1) and (J2, GJ2) as above, we say that (J2, GJ2)

is a refinement of (J1, GJ1) if it is equipped with a full, faithful functor J1
i→ J2 such that

GJ2 · i = GJ1.

If (J2, GJ2) is a refinement of (J1, GJ1), then we have two natural transformations,
given, componentwise, by the universal maps of the colimits involved:

(ψJ,I). : uJ → uI (ψJ,I). : FpJ → FpI

Let (J, GJ) be a pair as above. We define EJ to be the collection of all the triples

(j, f, ϵ) such that j ∈ J, f is a map from GJ(j) to some W ∈ C, and {W ′ ϵ−→ W} is
a covering family for (C, R) (i.e. ϵ is a regular epimorphism in C). The smallness of C
ensures that EJ is a set.

7.2. Definition. Given (J1, GJ1) and (J2, GJ2) as in Definition 7.1, and e := (j, f,W ′ ϵ−→
W ) ∈ EJ1, we say that (J2, GJ2) is good for e if (ψJ1,J2)W (j, f) ∈ Im(uJ2(ϵ)).

We say that (J2, GJ2) is good for EJ1 if it is good for all its elements.

Definition 7.2 and the following construction are all motivated by the need to find a
refinement (I, GI) of a given (J, GJ) which is good for the whole set EI: this condition will
ensure us that the associated functor uI defines a point pI.

7.3. Lemma. Let (J2, GJ2) be a refinement of (J1, GJ1), and let e be an element of EJ1.
If (J2, GJ2) is good for e, then every refinement of (J2, GJ2) is so.

Proof. Suppose e = (j, f, ϵ), and let W be the codomain of ϵ and of f ; by hypothesis,
(ψJ1,J2)W (j, f) ∈ Im(uJ2(ϵ)). Given a refinement (J3, GJ3) of (J2, GJ2), from the commu-
tative diagram:

uJ1(W
′)

uJ1 (ϵ)

��

(ψJ1,J2 )W ′
// uJ2(W

′)

uJ2 (ϵ)

��

(ψJ2,J3 )W ′
// uJ3(W

′)

uJ3 (ϵ)

��
uJ1(W

′)
(ψJ1,J2 )W

// uJ2(W
′)
(ψJ2,J3 )W

// uJ3(W )

and from the fact that (ψJ1,J3)W = (ψJ2,J3)W · (ψJ1,J2)W , we see that:

(ψJ1,J3)W (j, f) ∈ Im((ψJ2,J3)W · uJ2(ϵ)) = Im(uJ3(ϵ) · (ψJ2,J3)W ′) ⊆ Im(uJ3(ϵ))
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Fixing a pair (J, GJ), and writing π : EJ → J for the projection onto the first compo-
nent, we construct, for every S ∈ PFin(EJ), a new pair (JS, GJS) as follows:

1. Ob(JS) :=
∐

T∈P(S)

Ob(J/T ), where J/T is the multisliced category, defined, for every

T = {e1, . . . , et} with π(ek) = jk, as the category whose objects are the diagrams in
J of the following shape:

j

ww ~~ ''
j1 j2 . . . . . . jt

and whose morphisms are defined in the obvious way. If T = ∅, then J/T = J. If
T = {e1} is a singleton, then the category J/T is the slice category over π(e1).

2. Given T = {e1, . . . , et}, T ′ = {e′1, . . . , e′t′} ⊆ S, if T ⊆ T ′, we can define the forgetful
functor HT ′,T : J/T ′ → J/T , which acts: as

j′

}} �� ""

j′

}} �� ""

� HT ′,T //

j′1 j′2 . . . . . . j′t′ j1 j2 . . . . . . jt

We define HT := HT,∅ : J/T → J.
The maps of the category JS will be generated by:

⋄ all the maps inside every J/T ;

⋄ for every T ⊆ T ′ ⊆ S, and for every ĵ′ ∈ J/T ′, a map H
(ĵ′)
T ′,T : ĵ′ → HT ′,T (ĵ′).

Given an object ĵ′ ∈ J/T ′ and an object ĵ ∈ J/T , then:

HomJS(ĵ
′, ĵ) ∼=

{
HomJ/T (HT ′,T (ĵ′), ĵ) if T ⊆ T ′

∅ otherwise

3. If T = {e1, . . . , et} and ĵ ∈ J/T is the diagram:

j

~~
�� ��

j1 . . . jt
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then GJS(ĵ) is defined as the limit of the diagram:

P e1
HT,{e1}(ĵ))

%%

. . .

��

P et
HT,{et}(ĵ))

yy
GJ(j)

where, given e = (j1, f1, ϵ1) ∈ EJ and ĵ′ = (j′ → j1) ∈ J/{e}, we define P e
ĵ′

as

GJ(j
′)×W W ′, i.e. the pullback:

GJ(j
′)×W W ′ //

��

W ′

ϵ1

��
GJ(j

′)
f1·GJ(j

′→j1)
//W

Note that, if T = ∅, then GJS(ĵ) = GJ(ĵ), whereas, if T = {e1} is a singleton, then
GJS(ĵ) = P e

ĵ
.

Given ĵ, ĵ′ ∈ JS, the map GJS(ĵ
′ → ĵ) is given by the universal property of limits.

One can easily check the functoriality of GJS . Moreover, as a particular case of this

definition, we get, when ĵ = HT ′,T (ĵ′), the definition of GJS(H
(ĵ′)
T ′,T ).

Note that GJS does not depend on the order of the elements of T ⊆ S.

A few considerations can be made on the data (JS, GJS) .

7.4. Proposition. Every JS is the dual of a directed set.

Proof. Define JS := Ob(JS), and ≤S as the relation given by ĵ ≤S ĵ′ ⇔ (ĵ′ → ĵ). JS is
inhabited (because so is J). Moreover:

1. the identity maps in JS give the reflexivity of ≤S;

2. the composition of maps in JS gives the transitivity of ≤S;

3. for every ĵ, ĵ′ ∈ JS, with ĵ ∈ J/T and ĵ′ ∈ J/T ′, there exists z ∈ J such that
HT (ĵ) ≤J z and HT ′(ĵ′) ≤J z. Call ẑ the object:

z

{{ ##
j

�� ""

j′

|| ��
j1 . . . jt j′1 . . . jt′

in J/(T
∐
T ′); in JS we have the maps ẑ → HT

∐
T ′,T (ẑ) → ĵ and ẑ → HT

∐
T ′,T ′(ẑ) →

ĵ′; hence ĵ ≤S ẑ and ĵ′ ≤S ẑ.
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7.5. Proposition. Let E : (PFin(EJ),⊆) → Set be the diagram which sends every S to
JS and every inclusion S ⊆ S ′ to the map iS,S′ : JS → JS′. Then J+ := colim

S∈PFin(EJ)
E(S) is

the opposite of a directed set, and there is a functor GJ+ : J+ → C, defined as GJ+(S, ĵ) :=
GJS(ĵ).

Proof. First of all, note that PFin(EJ) is a filtered category, since every finite diagram
D : X → PFin(EJ) has a cocone, namely

⋃
S∈D(X)

S. Then J+ := colim
S∈PFin(EJ)

E(S) is a filtered

colimit. It follows that J+ is the opposite of a directed set (J+,≤J+), since every JS is so.

GJ+ is well defined: if (S, ĵ) = (S ′, ĵ′) in J+, then S ⊆ S ′ and iS,S′(ĵ) = ĵ′ (or S ′ ⊆ S
and iS′,S(ĵ′) = ĵ); hence, GJ+(S

′, ĵ′) = GJS′ (ĵ′) = GJS′ (iS,S′(ĵ)) = GJS(ĵ) = GJ+(S, ĵ) (or

GJ+(S, ĵ) = GJS(ĵ) = GJS(iS′,S(ĵ′)) = GJS′ (ĵ′) = GJ+(S
′, ĵ′)).

7.6. Proposition. (J+, GJ+) is a refinement of every (JS, GJS), and it is good for every
element of EJ.

Proof. The maps mS : JS → J+ given by the colimit are monomorphisms. Moreover,
the equality GJ+ ·mS = GJS follows from the way we have defined GJ+ .

Consider an element e = (j, f, ϵ) ∈ EJ. Because of the way we have defined the generic
GJS , the pair (J{e}, GJ{e}) is good for e. Hence, using Lemma 7.3, we can conclude that
the pair (J+, GJ+) is good for e too.

Neverthless, (J+, GJ+) might not be good for every element of EJ+ . In order to obtain
a pair (I, GI) which is good for every element in EI, we make use of the following trick:
given (J, GJ), we have constructed (J+, GJ+). We call (J1, GJ1) := (J+, GJ+). Starting
from (J1, GJ1), we can define a new pair (J2, GJ2) := ((J1)+, G(J1)+). By repeating this
procedure for every n ∈ N, we obtain a sequence of embeddings:

J := J0 l0,1→ J1 l1,2→ J2 → . . .
ln−1,n→ Jn → . . .

where, for every n ∈ N, Jn+1 = (Jn)+. Moreover, every pair (Jn+1, GJn+1) is a refinement
of (Jn, GJn), and it is good for every element of EJn .

7.7. Definition. Define I := colim
n∈N

(Jn) and GI : I → C as the functor which sends (n, j)

to GJn(j).

7.8. Remark. Note that GI is well defined, since (n, j) = (n′, j′) in I if and only if
n ≤ n′ (or n′ ≤ n) and j′ = ln,n′(j), where ln,n′ := ln′−1,n′ · · · · · ln,n+1 (or j = ln′,n(j

′)).
Hence, if (n, j) = (n′, j′), then GI(n

′, j′) = GJn′ (j′) = GJn′ (ln,n′(j)) = GJn(j) = GI(n, j)
(or GI(n, j) = GJn(j) = GJn(ln′,n(j

′)) = GJn′ (j′) = GI(n
′, j′)). Moreover, (I, GI) is a

refinement of each (Jn, GJn).

7.9. Lemma. (I, GI) is good for every e ∈ EI.
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Proof. If e = (i, f, ϵ) ∈ EI, then i = (i, f) for some n ∈ N and i ∈ Jn. Moreover,
(ψJn,I)W (i, f) = (i, f). Hence, since (Jn+1, GJn+1) is good for (i, f, ϵ) ∈ EJn , then, by
Lemma 7.3, (I, GI) is good for it as well. Hence ψI,I(i, f) = (i, f) = ψJn,I(i, f) ∈ Im(uI(ϵ)),
and so (I, GI) is good for e.

Throughout this section, once that we have fixed (J, GJ), the pair (I, GI) will be defined
as in Definition 7.7.

7.10. Lemma. For every (J, GJ), the map ψJ,I is injective.

Proof. Consider two elements (j, t) and (j′, t′) of FpJ . By construction, ψJ,I sends (j, t)

to (j, t), where j = (0, j) ∈ I. In the same way, ψJ,I(j
′, t′) = (j′, t′), where j′ = (0, j′).

Now, (j, t) = (j′, t′) means that there exists a map j′ → j (or j → j′) in I such that
F (GI(j′ → j))(t) = t′ (or F (GI(j → j′))(t′) = t). Note that HomI(j′, j) ∼= HomJ(j

′, j).
Using this, together with the definition of GI, we conclude that there exists j′ → j
(or j → j′) in J such that F (GJ(j

′ → j))(t) = t′ (or F (GJ(j → j′))(t′) = t). Hence
(j, t) = (j′, t′), and we have the injectivity of ψJ,I.

To show that pI is a point, we first recall (part of) a lemma from [Stacks project,
Proposition 00YC]; we also give a sketch of the proof, to witness that the proof is valid
in the constructive setting.

7.11. Lemma. Let (C, I) be a site, and suppose that C is finitely complete. Let u : C → Set
be a functor such that:

1. u commutes with finite limits;

2. for every {Ui → U}i∈I covering family,
∐
i∈I
u(Ui) → u(U) is surjective.

Then u is a point.

Proof. The only nontrivial part of the proof consists in deriving Point (3) of Definition
6.1, i.e. that the stalk functor is left exact. Since finite limits commute with filtered
colimits, it is enough to show that the category {(U, x) | U ∈ C, x ∈ u(U)} is cofiltered
(so that the opposite of this category turns out to be filtered). Indeed, it is inhabited, since
we can take the neighborhood given by the final object in C together with the element
of the singleton set. Then, for every pair of objects (U, x) and (V, y), the fact that u
commutes with products gives the existence of a neighborhood (U × V, z) which can be
mapped to both (U, x) and (V, y). Third, it is possible to prove that the category has
equalizers, and this completes the proof of the cofilteredness.

With this we show:

7.12. Lemma. Let (C, R) be a small site equipped with the regular topology, and suppose
that C is finitely complete. Then the functor uI, defined as in Equation (4), gives a point
pI.

https://stacks.math.columbia.edu/tag/00YC
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Proof. We check that conditions (1) and (2) of Lemma 7.11 are satisfied:

1. since it is defined as a filtered colimit in Set, uI commutes with finite limits;

2. since covering families are given by single epimorphisms, we have to verify that, for
every epimorphism ϵ : W ′ ↠ W , uI(ϵ) : uI(W

′) → uI(W ) is surjective. This is a
consequence of the fact that (I, GI) is good for EI: indeed, if (i, f) ∈ uI(W ), then
i = (n, i) for some n ∈ N and some i ∈ Jn. By construction, (Jn+1, GJn+1) is good
for e := (i, f, ϵ). Since (I, GI) is a refinement of (Jn+1, GJn+1), then (I, GI) is good for
e too. Hence, (i, f) = ψJn,I(i, f) ∈ Im(uI(ϵ)), and we have the surjectivity of uI(ϵ).

8. A conservative set of points for the regular site

In this section we prove that a small regular site has a conservative set of points. As a
direct consequence, we obtain the embedding of a small abelian category A into a category
of sheaves of modules over a ringed space, already described in Section 5.

8.1. Theorem. Let (C, R) be a small site equipped with the regular topology. If C is
finitely complete, then (C, R) has a conservative set of points.

Proof. To prove the claim, we want to use Lemma 6.3. We start by fixing an object U
of C, and by considering the directed set ({∗},≤J), where ≤J is the trivial relation. Let J
be its dual, and define GJ(∗) := U . Constructing the corresponding pair (I, GI), we obtain
a point pI such that, for any given F ∈ Sh(C, R), the map ψJ,I : FpJ → FpI is injective.
Note that FpJ = F (U) because of the way we have defined GJ.

Repeating this for every U ∈ C, we obtain a colelction of points {pU}U∈C satisfying
the hypothesis of Lemma 6.3. The collection of all this points is thus a conservative set,
and the site (C, R) has enough points.

8.2. Remark. Theorem 8.1 might seem surprising, since results on enough points cor-
respond to completeness theorems and are often not provable constructively; however
the present case is comparable to the completeness for regular logic proven in [Forssell-
Lumsdaine, 2019, Corollary 4.16], and another proof of the result can be deduced from
that.

As an immediate consequence of this, we achieve that:

8.3. Corollary. If A is a small abelian category and R is the regular topology on it,
then the site (A, R) has a conservative set of points.

Proof. The thesis follows from Theorem 8.1, using the finite completeness and the small-
ness of A.
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We are now able to state the main goal of the second part of the paper.

8.4. Theorem. Any small abelian category A admits a full, exact embedding into the
category of sheaves of modules over the ringed space (XSh(A,R),ZXSh(A,R)

).

Proof. This comes as a consequence of the discussion in Section 5 and of Corollary 8.3.

8.5. Remark. Recalled from [MacLane-Moerdijk, 1994, Corollary II.6.3] that, for every
topological space X, Sh(X) is equivalent to Etale(X), and that this last one is a full
subcategory of Top/X, we can also conclude that any small abelian category A embeds
fully into the category Ab(Top/XSh(A,R)) of abelian group objects of Top/XSh(A,R).

9. Conclusion and further developments

As promised at the beginning of the paper, we first showed the constructive issues con-
tained in the proofs of the Freyd–Mitchell Embedding Theorem, and then we presented a
constructive way to embed a small abelian category into the category of sheaves of mod-
ules over a ringed space. At this point, one might ask if this is the best we can achieve
in CZF, IZF and IHOL, or if we can go a step further, and find an embedding into a
category of modules over a ring. As far as we know, this question is still open.
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Sandra Mantovani, Università degli Studi di Milano: sandra.mantovani@unimi.it
Matias Menni, Conicet and Universidad Nacional de La Plata, Argentina: matias.menni@gmail.com
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