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CONDENSATION INVERSION AND WITT EQUIVALENCE
VIA GENERALISED ORBIFOLDS

VINCENTAS MULEVIČIUS

Abstract. In [MR1] it was shown how a so-called orbifold datum A in a given modular
fusion category (MFC) C produces a new MFC CA. Examples of these associated MFCs
include condensations, i.e. the categories C◦

B of local modules of a separable commutative
algebra B ∈ C. In this paper we prove that the relation C ∼ CA on MFCs is the same as
Witt equivalence. This is achieved in part by providing one with an explicit construction
for inverting condensations, i.e. finding an orbifold datum A in C◦

B whose associated MFC
is equivalent to C. As a tool used in this construction we also explore what kinds of
functors F : C → D between MFCs preserve orbifold data. It turns out that F need not
necessarily be strong monoidal, but rather a ‘ribbon Frobenius’ functor, which has weak
monoidal and weak comonoidal structures, related by a Frobenius-like property.
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1. Introduction

The notion of amodular fusion category (MFC) was introduced by Turaev [Tu1] in order to
generalise the 3-manifold invariants [RT], obtained from the categories of representations
of modular Hopf algebras, in particular quantum groups at roots of unity. This resulted
in defining a MFC to be a ribbon fusion category C with a non-degenerate braiding. The
3-manifold invariants were later collected into what is now called the Reshetikhin–Turaev
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construction of a topological quantum field theory (TQFT) (see e.g. [Tu2, Ch. IV]), which
is a symmetric monoidal functor

ZRT
C : B̂ordrib

3 (C) → Vectk , (1)

where the source category is a central extension of the category of 3-dimensional bordisms
with embedded ribbon graphs whose components are labelled with objects/morphisms of
the input MFC C.

MFCs also appear in the study of conformal field theories (where categories of represen-
tations of rational vertex operator algebras provide examples of them) and 2-dimensional
topological phases of matter (where the datum of a MFC describes point excitations
(or anyons) of the system, their fusion and spin statistics). Altogether, they consti-
tute interesting mathematical objects, whose classification is an important problem, see
e.g. [BNRW1, BNRW2, Cr, EG, GM, Gr, HRW, JMS, RSW]. Also important are the
constructions allowing one to obtain new MFCs out of a given one. They can be seen e.g.
as a way to ‘engineer’ new topological orders from a one that can already be implemented
in a lab. A myriad of such constructions arise as instances of Hopf monads [CZW]. In this
paper we will look into another construction developed in [CRS3, MR1, MR2, CMRSS2],
called a generalised orbifold which we now review.

Orbifold data in modular categories. Let C be a MFC. An orbifold datum [CRS1,
CRS3] in C is a tuple A = (A, T, α, α, ψ, ϕ), where A ∈ C is a symmetric Frobenius algebra,
T is an A-(A⊗A)-bimodule, α, α : T ⊗T → T ⊗T are morphisms, ψ : 1 → A is a section
for A, meaning that one has the identity

= , (2)

and ϕ ∈ k× is a constant, such that altogether A satisfies the eight algebraic identities
listed in equations (O1)–(O8) below. In the context of this paper, the notion of an
orbifold datum is treated as a purely algebraic construction. Its definition is however
best motivated by the study of defect TQFTs [DKR, CR, Ca, CRS1, CM], which we will
briefly recall at the end of the introduction but will not rely upon in the rest of the paper.

1.1. Remark. We call the pair (A,ψ), consisting of a symmetric Frobenius algebra A
and a morphism ψ : 1 → A such that the condition (2) is fulfilled, a symmetric separable
Frobenius algebra. In this paper we rely on the works [CRS2, CRS3, MR1, CMRSS2],
which use a stronger notion of a symmetric ∆-separable Frobenius algebra. The relevant
results of these works were adapted to the setting of separable Frobenius algebras in my
PhD thesis [Mul]. It is worth noting that the condition (2) generalises the use of the
‘window element’ in the state-sum construction of 2-dimensional TQFTs as described
in [LP].
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In the work [MR1] it was shown how an orbifold datum A in a MFC C can be used
to construct a new ribbon category CA. The objects of CA are tuples (M, τ1, τ2, τ1, τ2),
where M is an A-A-bimodule and τi, τi, i ∈ {1, 2}, are A-A ⊗ A-bimodule morphisms,
which satisfy a set of algebraic identities listed in the equations (T1)–(T7) below. Of
central importance to this paper is the following result (see [MR1, Thm. 3.17], restated
as Theorem 5.6 below): CA is a multifusion category, which is a MFC in case it is fusion
(i.e. in case the monoidal unit 1CA is a simple object).

Condensation inversion. It is possible for the MFC CA, constructed from an orbifold
datum A, to have higher rank than C, which makes this construction a potentially useful
tool for classifying MFCs. In particular, in [CRS3, Sec. 4.2], [MR1, Sec. 4.2] an exam-
ple of an orbifold datum in the trivial MFC Vectk of finite dimensional vector spaces
was constructed from an arbitrary spherical fusion category S with non-vanishing global
dimension, whose associated MFC is the Drinfeld centre Z(S). Furthermore, in [MR2]
examples of orbifold data in rank 3 MFCs of Ising type were found, which produce rank 11
MFCs. Both of these examples are instances of inverting the condensation construction:
given a condensable algebra B ∈ C (by which we mean a commutative haploid (or con-
nected) symmetric separable Frobenius algebra), its condensation is the category C◦

B of
local modules of C, which is known to be a MFC [KO] and typically has a lower rank than
C. Concerning the aforementioned examples, Drinfeld centres Z(S) posses a so-called
Lagrangian algebra, whose condensation is equivalent to Vectk (see [DMNO, Sec. 4.2]),
whereas one of the Ising type MFCs arises as the condensation of the E6 algebra in the
category C(sl(2), 10) of integrable highest weight representations of the affine Lie algebra

ŝl(2) at level 10 (having rank 11). One of the main results of this paper is proving this
result in general (see Theorem 6.16):

1.2. Theorem. Let B be a condensable algebra in a MFC C. Then there is an orbifold
datum A in the condensation C◦

B such that (C◦
B)A ≃ C.

What is more, we give an explicit construction of the orbifold datum A = (A, T, α, α, ψ, ϕ)
as in Theorem 1.2. For example, its entry A ∈ C◦

B is the Frobenius algebra I◦(C∗ ⊗ C),
where C =

⊕
i∈IrrC i ∈ C is the “Kirby colour” object and I◦ = I◦B : C → C◦

B is the local
induction functor, i.e. mapping X ∈ C to the maximal local submodule of the induced
module X ⊗ B, see Section 6.1. The expressions for the other entries of A are obtained
similarly and listed in the equations (156)–(158) below. Originally, this ansatz was again
inspired by defect TQFTs, but in the end it also lead to a rather general new technique
to build orbifold data, which we describe next.

Ribbon Frobenius functors. A good approach to proving Theorem 1.2 is to tackle
the following general question: having two MFCs C and D and an orbifold datum A in C,
what kind of functors F : C → D preserve A (i.e. when can one define a natural orbifold
datum F (A) in D) and how are the categories CA and DF (A) related? One answer is
given by ribbon functors C → D, but they are rather restrictive (in fact such functors
are always full embeddings, see [DMNO, Cor. 3.26]). A candidate for a more interesting
answer is given by what we call ribbon Frobenius functors F : C → D, which have weak
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monoidal and weak comonoidal structures, compatible with each other by a Frobenius-
like relation and preserving braidings and twists in an appropriate sense. They are slight
generalisations of similar functors studied in [Sz1, Sz2, DP, MS] (mostly for the case of
C and D being monoidal only). Despite of not being strong monoidal, they were shown
to automatically preserve Frobenius algebras and, in case a certain separability condition
applies, more generally map a morphism depicted by a connected string diagram in C,
to a morphism in D depicted by a string diagram of the same shape [MS, Thm. 3.1].
The morphisms appearing on both sides of (O1)–(O8), which define an orbifold datum,
happen to be given by connected string diagrams. Furthermore, the objects involved
are always A-A-bimodule morphisms, so that the aforementioned separability condition
can be exchanged for a weaker condition which we call compatibility with the orbifold
datum A. The promising result for finding new instances of orbifold data is then (see
Proposition 5.15):

1.3. Theorem. Let C, D be MFCs, A an orbifold datum and F : C → D a ribbon Frobe-
nius functor compatible with A. Then F (A) is an orbifold datum in D and one has a
braided functor FA : CA → DF (A).

We use Theorem 1.3 to prove Theorem 1.2 in the following way: given a condensable
algebra B in a MFC C, the local induction functor I◦ : C → C◦

B is an example of a
ribbon Frobenius functor. In general I◦ is compatible with a Morita transport AC of
an arbitrary orbifold datum A in C, obtained by exchanging the algebra A for a Morita
equivalent algebra C∗ ⊗ A ⊗ C (in Sections 3.12, 5.9 we discuss the details regarding
Morita transports of orbifold data and quickly show that they preserve the associated
MFCs, see Proposition 5.10). This yields a functor I◦A : CA ≃ CAC

→ (C◦
B)I◦(AC), which can

be checked to be an equivalence by hand (this is done in Appendix A). Specifying this to
the trivial orbifold datum in C (i.e. in which all entries are identity objects/morphisms)
then yields Theorem 1.2.

Witt equivalence. Our final result expresses the notion of Witt equivalence of MFCs
(see [DMNO]) in terms of orbifold data in them. Recall that two MFCs C, D are called
Witt equivalent if there exists a spherical fusion category S and a ribbon equivalence
C ⊠ D̃ ≃ Z(S), where D̃ denotes the category with reversed braiding. There is also
an alternative formulation of Witt equivalence (see [DMNO, Prop. 5.15]): there exists
another MFC E and two condensable algebras B,B′ ∈ E such that C ≃ E◦

B, D ≃ E◦
B′ . We

prove (see Theorem 7.4):

1.4. Theorem. Two MFCs C and D are Witt equivalent if and only if D ≃ CA for some
orbifold datum A in C.

One direction in the above theorem is immediate from the proof of Theorem 1.2: the
orbifold datum I◦B(B′

C) in C ≃ E◦
B has the associated MFC (E◦

B)I◦B(B′
C) equivalent to E◦

B′ ≃ D
(here B′ is the orbifold datum in E for the B′-condensation and B′

C is the above mentioned
Morita transport of it). The other direction uses further results in [MR1], which, besides
the ribbon category CA for an orbifold datum A in a MFC C, also construct two pivotal
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(multi-)fusion categories C1
A, C2

A. The objects of C1
A consist of triples (N, τ1, τ1), defined

analogously as those of CA, but lacking the other structure morphisms τ2, τ2, the category
C2
A is defined similarly. Together with the intuition gained from defect TQFTs reviewed

below, this helps one to guess functors (see Proposition 7.5, Remark 7.6)

CA ⊠ C̃ → Z(C1
A) , C ⊠ C̃A → Z(C2

A) , (3)

which can then be checked to be equivalences by hand. There are extra complications
due to C1

A, C2
A being in general multifusion, instead of spherical fusion, which can be fixed

by replacing them with component categories (see Lemma 7.7).

Corollaries. Firstly, the above results can be used to better understand the plethora
of examples of orbifold data. In particular, the above mentioned examples within the
categories of Ising type constructed in [MR2] were inspired by but not strictly proved to
be related to the E6 algebra condensation of C(sl(2), 10). In this paper we use the explicit
construction of the orbifold datum in Theorem 1.2 to prove this (see Theorem 6.19 below).

Secondly, we explore very briefly the notion of unital orbifold data in MFCs. This is
inspired by the point of view, seeing an orbifold datum A in a MFC C as a certain higher
algebra object (more concretely, an oriented version of a condensation monad, see [GJ]).
The current definition of an orbifold datum via the conditions (O1)–(O8) however does
not include the analogue of a unit. The proof of Theorem 1.4 on the other hand shows
that at least up to the equivalence of associated MFCs, the orbifold data in C can always
taken to be unital. This is because the orbifold data of the form I◦B(B′

C), described below
the statement of Theorem 1.4, happen to be unital (see Theorem 7.11).

Finally, we note that the equivalence (3) relates orbifold data in MFCs to other con-
structions on fusion categories. In particular, a monoidal category enriched over a braided
category B was shown in [MP] to be equivalently given by a pair (A, F ), where A is a fu-
sion category and F : B → Z(A) a braided functor. Associated to (A, F ) there is another
braided category, the underlying category of the enriched Drinfeld centre [KZ3], which
is equivalent to the centraliser F (A)′ (see (199)) of the image F (A) in Z(A) (see [KZ3,
Thm. 5.3]). A restriction e.g. of the second functor in (3) to C → Z(C2

A) proves that an
orbifold datum yields a category enriched in C, and its associated braided category is
exactly C̃A. Theorem 1.4 also shows that this relation is two sided: given an enriched
over a MFC C category (S, F ) (where it is more natural to take S to be spherical fusion
and F : C → Z(S) a ribbon functor), the associated braided category with the reversed

braiding F̃ (C)′ is a MFC Witt equivalent to C (see [Mü2, Cor. 7.8], [DGNO, Prop. 2.11,
Thm. 3.14] restated as Theorem 7.8 below) and therefore comes from an orbifold datum
in C. In the end this also opens a way to relate orbifold data to other similar notions, e.g.
module tensor categories [MPP] and anchored planar algebras [HPT].

Defect TQFTs and generalised orbifolds. Let us now briefly explain the origins
of orbifold data and the related notions, as well as our results in the context of topological
field theories. The exposition here is mostly aimed at developing intuition and will not
be relied upon in the rest of the paper.
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⇝ ⇝

Figure 1: Punching holes in a surface defect and taking the retract yields the internal
2-dimensional state-sum construction.

A defect TQFT (see e.g. [DKR, CR, Ca, CRS1, CM] for more details) is a symmetric
monoidal functor Z : Borddef

n (D) → Vectk, where the source category is that of stratified
n-dimensional bordisms, whose k-dimensional strata carry labels from sets Dk; these sets
(together with some admissibility data) form the so-called defect datum D. In [CRS2]
the Reshetikhin–Turaev TQFT (1) was extended to an example of a defect TQFT in
dimension 3, which produced the symmetric monoidal functor

Zdef
C : B̂orddef

3 (DC) → Vectk , (4)

The penultimate step in defining this defect TQFT is to implement surface defects, which
can be done by a 2-dimensional state-sum construction internal to the Reshetikhin–Turaev
TQFT [KSa]. It has the following intuitive description due to [FSV]: If a surface defect
is such that punching a contractible hole in it does not change the invariant, one can
replace the defect with a ribbon graph, obtained by punching enough holes and taking
the deformation retract, at which point the resulting bordism with an embedded ribbon
graph can be readily evaluated with ZRT

C . The construction is choice independent if the
lines and the points in the resulting graph are labelled by a symmetric Frobenius algebra
object A in C and its (co)multiplication morphisms. This procedure is illustrated in
Figure 1. In it, the ψ-labelled points contain information about the boundary condition1

on the rim of the hole encoded by a morphism ψ : 1 → A in C (with ψl, ψr defined as
in (43) below), such that the Frobenius algebra A satisfies the separability condition (2).
One can also include line defects, labelled by modules of symmetric separable Frobenius
algebras, and point defects, labelled by module morphisms. These data then constitute
the defect datum DC in (4).

Figure 1 sketches how line and point defects can be used to implement surface defects
via a 2-dimensional internal state-sum construction. The idea behind generalised orbifolds
is to similarly perform a n-dimensional state-sum construction internal to a given n-
dimensional defect TQFT. For n = 3 in particular, this means combining surface, line

1[FSV] explains how boundary conditions in this configuration correspond to A-modules. If A is a
simple algebra, different choices for boundary yield the same defect up to a scalar factor, so one can
rather canonically choose the module to be A itself. The same applies if A is a direct sum of simple
algebras, but in this case the scalar factors due to boundary change are collected into the morphism ψ.
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⇝ ⇝

Figure 2: Punching holes in a bulk defect and taking the retract yields the internal 3-
dimensional state-sum construction, i.e. a generalised orbifold.

and point defects to yield new 3-dimensional bulk theories. Assuming for concreteness
Zdef

C to be the underlying defect TQFT the construction of generalised orbifold roughly
looks as illustrated in Figure 2: start with an unstratified 3-bordism and then stratify
it by adding 3-dimensional solid balls, whose interior is labelled with the bulk theory of
ZRT

C of the defect TQFT Zdef
C (this should be compared to punching 3-dimensional holds

in the bulk). Taking the retract of the remaining bulk results in a network of defects,
which looks like a 3-dimensional ‘sponge’ or ‘foam’ and can be evaluated with Zdef

C . To
make this construction independent of the stratification constituting the foam, one labels
its components with the entries of an orbifold datum – for the defect TQFT (4) this is
the same notion of an orbifold datum A = (A, T, α, α, ψ, ϕ) in the MFC C used in the
formulation of Theorems 1.2, 1.3, 1.4. In particular, (A,ψ) is a symmetric separable
Frobenius algebra that labels surfaces in the foam, T is an A-(A ⊗ A)-bimodule which
labels the lines, α, α : T ⊗T → T ⊗T are certain morphisms labelling the two points (two
labels for two possible orientations) and ϕ is a normalisation constant:

, , , . (5)

The independence of the choice of foam is implied by the invariance under the so-called
bubble, lune and triangle moves (see [CMRSS1, Sec. 2.2.2]):

⇄ , ⇄ , ⇄ . (6)

Various choices of orientations of the strata in these moves yield precisely the condi-
tions (O1)–(O8) on A.
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In dimension 3, the generalised orbifold TQFT was further developed to include framed
line and point defects, or equivalently, embedded ribbon graphs [CMRSS1]. The intuition
for the construction is as before: punch holes in the bulk (i.e. away from the ribbon
graph) and take the retract so that upon evaluation the graph becomes trapped (or
embedded) within the foam. A strand of such a ribbon graphs carries as a label a tuple
(M, τ1, τ1, τ2, τ2), where M is a label for a line, that can be embedded into the 2-strata
of the foam, and τi, τi, i ∈ {1, 2} are labels for points, at which a strand intersects the
1-strata of the foam:

, , , , . (7)

The labels for strands and points must be such that upon evaluation the choice of em-
bedding of the ribbon graph into the foam does not matter, which boils down to the
invariance under the moves of the following type (see [CMRSS1, Sec. 2.4]):

⇄ , ⇄ . (8)

The strand and point labels are then collected into a ribbon category, which for the case
of defect TQFT Zdef

C is precisely the category CA, associated to an orbifold datum A – the
conditions (T1)–(T7) on an object (M, τ1, τ2, τ1, τ2) ∈ CA correspond to the conditions (8)
for independence on the embedding of a line into the foam. Altogether this yields a
TQFT [CMRSS2]

ZorbA
C : B̂ordrib

3 (CA) → Vectk . (9)

When the monoidal unit of CA is simple (and therefore by [MR1, Thm. 3.17] CA is MFC),
one has the isomorphism of TQFTs ([CMRSS2, Thm. 4.1]):

ZorbA
C

∼= ZRT
CA . (10)

With this background, let us explain the ansatz of the orbifold datum A in Theo-
rem 1.2, i.e. the one inverting the condensation C◦

B. According to [CRS3, Sec. 3.4], [MR1,
Sec. 4.1], a condensable algebra B ∈ C yields an orbifold datum B in C, with the associated
MFC CB ≃ C◦

B. Together with the isomorphism of TQFTs (10) this helps to think of A as
labelling a ‘foam within the B-foam’2. Our ansatz for A is then comprised of gap defects,
at which a B-foam first terminates and then starts again. For example the 2-strata in

2This can be defined rigorously since for the case of orbifold data B obtained from condensable algebras,
the TQFT ZorbB

C was generalised to include both line and surface defects [KMRS].
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(a) (b) (c)

Figure 3: (a) A gap between two regions filled with B-foam is a surface defect in ZorbB
C

∼=
ZRT

C◦
B
. (b) Adding a tunnel, surrounded with a line labelled by Kirby colour is the

analogue of punching a hole in the gap defect (cf. Figure 1). (c) As an object in C◦
B,

the Frobenius algebra corresponding to the gap defect can be interpreted as labelling
hollow tubes in the B-foam with two C-lines inside.

the A-foam will be labelled by the surface gap defects as in Figure 3a, etc. Applying the
internal state sum construction using A then has the effect of breaking the B-foam into
contractible pieces, at which point it is clear that the resulting bulk theory is precisely
ZRT

C and so the condensation has been inverted.
There is an extra nuisance when trying to express the constituents of A as labels for

defects in the defect TQFT Zdef
C◦
B
, for example the surface defect in Figure 3a should be

labelled by a symmetric separable Frobenius algebra in C◦
B. This can be achieved by the

‘punching holes’ algorithm as explained above: in this case it looks like connecting the two
pieces of foam by a tunnel. Doing so is not however an invertible procedure: intuitively this
undermines the idea of breaking the B-foam into contractible pieces. The idea can be saved
if one decorates the tunnel by surrounding it with a line defect labelled with the Kirby
colour, i.e. the object C =

⊕
i∈IrrC i ∈ C with a point insertion d =

⊕
i∈IrrC(dimC i) · idi,

see Figure 3b. This is because the tunnel filled with B-foam can be retracted to a single
B-labelled line and the extra line defect has the effect of cutting it due to what we call
the ‘scissors identity’ (see equations (29) and (149) below). In the end, the symmetric
separable Frobenius A labelling the 2-strata in A is obtained precisely by the induced
local module I◦(C∗ ⊗ C), which has the interpretation of labelling tubes within the B-
foam having two C-labelled inner lines with opposite orientations, see Figure 3c. We note
that the necessity to add the dimension factors d when using the Kirby colour is what
motives using the separability condition (2). One can similarly find the expressions for
the other entries in A.

Finally, let us similarly explain the guess for the equivalences (3) proving the Witt
equivalence of the categories C and CA. In a nutshell, it is inspired by a very intuitive
interpretation of Witt equivalence in terms of TQFTs due to [FSV]. It argues that having

a Witt trivialisation C ⊠ D̃ ≃ Z(S) is the same as providing one with a domain wall S
separating bulk theories ZRT

C and ZRT
D . Indeed, the objects of S label line defects within
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(a) (b)

Figure 4: (a) A domain wall S between TQFTs ZRT
C , ZRT

D comes with a category S of

lines L within S and a functor C⊠D̃ → Z(S) which describes moving bulk lines X ∈ C,
Y ∈ D next to S. (b) There is a natural domain wall between ZorbA

C
∼= ZRT

CA and ZRT
C

at which A-foam terminates.

S, whereas the two functors C,D → S are seen as describing the process of moving line
defects from the two bulks to S. Such bulk lines merely hover next to the domain wall and
can cross to the other side of any other line L ∈ S (see Figure 4a), so that as objects in S
they have natural half-braidings. The two functors are therefore central and combine into
a candidate Witt trivialisation C ⊠ D̃ → Z(S). To argue that it is an equivalence one in
principle needs to impose assumptions on S, which we will ignore as we are only interested
in a special case. In particular, we note that the two bulk theories ZRT

CA
∼= ZorbA

C and ZRT
C

have a natural domain wall, at which the A-foam terminates, see Figure 4b. One labels
the line defects within this domain wall with the objects of the previously mentioned
category C1

A - the lack of structure morphisms τ2, τ2 in an object N ∈ C1
A has the effect of

confining an N -labelled line to the domain wall; the similarly defined category C2
A labels

the lines in a domain wall at which the A-foam terminates from the other side. The
functors (3) are then chosen to be exactly those, describing the processes of moving the
bulk defect lines to the domain wall, where A-foam terminates.

Organisation of the paper. Section 2 reviews the various notions related to monoidal
and (multi)fusion categories. We do assume familiarity with most of these notions, in
particular we will heavily rely on graphical calculus. Section 3 reviews the use of Frobenius
algebras in (multi)fusion categories. Although the material in it is also not new, we still
present it somewhat thoroughly in order to emphasise some technical nuances that are
less abundant in the literature (these arise mostly due to our use of the separability
condition (2) and the requirement for all categories/functors we encounter to be pivotal
and the Frobenius algebras symmetric). Section 4 gives an introduction to Frobenius
functors which are needed to state one of the main results of this work (see Theorem 1.3
above). Also here we find it necessary to be sufficiently thorough as some notions are either
new or slightly differ from those found in the literature. Section 5 is dedicated to reviewing
the notion of an orbifold data in MFCs as well as stating and proving Theorem 1.3.
Section 6 reviews condensable algebras and constructs the condensation inversion orbifold
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datum in Theorem 1.2 (more technical proofs in this section are moved to Appendix A).
The example of inverting the E6 algebra condensation is also presented here. Finally,
Section 7 includes the proof of Theorem 1.4 on Witt equivalence as well as its implication
on the existence of unital orbifold data.

Acknowledgements. I would like to thank Nils Carqueville, Lukas Müller and Ingo
Runkel for helpful suggestions and many comments on the draft. I am also thankful to
Vincent Koppen and Christoph Schweigert for numerous productive discussions which
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carried out at the Max Planck Institute for Mathematics in Bonn, the support of both
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2. Preliminaries

In this section we list some notions and results related to monoidal categories that will
be used throughout the paper. We assume familiarity with these notions, the exposition
here is mostly to introduce our preferred terminology, conventions and notation. They are
mostly in accord with the books [EGNO, TV], which can be consulted for more details.

2.1. Monoidal categories. Let us start with the most basic notions:

• A monoidal category C = (C,⊗,1, a, l, r) is a category equipped with a monoidal
(or tensor) product functor ⊗ : C × C → C (we omit the symbol ⊗ sometimes) and
the associator and unitor natural isomorphisms a : (− ⊗ −) ⊗ − ⇒ − ⊗ (− ⊗ −),
l : 1 ⊗ − ⇒ IdC, r : − ⊗1 ⇒ IdC, satisfying the standard pentagon and triangle
identities, i.e. for all X, Y, Z,W ∈ C one has

(idX ⊗aY,Z,W ) ◦ aX,Y Z,W ◦ (aX,Y,Z ⊗ idW ) = aX,Y,ZW ◦ aXY,Z,W
(idX ⊗lY ) ◦ aX,1,Y = rX ⊗ idY . (11)

• A (left) module category over a monoidal category C is a category M equipped with
an action functor ▷ : C×M → M and natural isomorphisms (−⊗−)▷− ⇒ −▷(−▷−)
and 1▷− ⇒ IdM, which satisfy the associativity and unitality conditions, analogous
to (11).

• Given two monoidal categories C = (C,⊗,1, a, l, r) and D = (D,⊗′,1′, a′, l′, r′),
a monoidal functor F : C → D is a functor equipped with a monoidal structure
(F2, F0), consisting of a natural transformation F2 : F (−)⊗′ F (−) ⇒ F (−⊗−) and
a morphism F0 : 1

′ → F (1) such that for all X, Y, Z the coherence relations

F2(X, Y Z) ◦ (idF (X) ⊗′ F2(Y, Z) ◦ a′F (X),F (Y ),F (Z))

= F (aX,Y,Z) ◦ F2(XY,Z) ◦ (F2(X, Y )⊗′ idF (Z)) ,
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l′F (X) = F (lX) ◦ F2(1, X) ◦ (F0 ⊗′ idF (X)) ,

r′F (X) = F (rX) ◦ F2(X,1) ◦ (idF (X) ⊗′F0) , (12)

hold. (F, F2, F0) is said to be a strong monoidal functor if for all X, Y ∈ C the mor-
phisms F2(X, Y ) and F0 are isomorphisms and a weak monoidal functor otherwise.
Given two monoidal functors F,G : C → D, a natural transformation φ : F ⇒ G is
said to be monoidal if φX⊗Y ◦F2(X, Y ) = G2(X, Y ) ◦ (φX ⊗′ φY ) and φ1 ◦F0 = G0.

Similarly one defines functors between module categories and their natural trans-
formations.

• A comonoidal functor between monoidal categories C and D comes equipped with
a comonoidal structure F2 : F (− ⊗ −) ⇒ F (−) ⊗′ F (−), F0 : F (1) → 1

′ such that
for all X, Y, Z ∈ C one has

a′F (X),F (Y ),F (Z) ◦ (F2(X, Y )⊗′ idF (Z)) ◦ F2(XY,Z)

= (idF (X) ⊗′F2(Y, Z)) ◦ F2(X, Y Z) ◦ F (aX,Y,Z) ,
F (lX) = l′F (X) ◦ (F0 ⊗′ idF (X)) ◦ F2(1, X) ,

F (rX) = r′F (X) ◦ (idF (X) ⊗′F0) ◦ F2(X,1) . (13)

As with monoidal functors, a comonoidal structure is called strong/weak if (F2, F0)
are/are not isomorphisms. Note that if F is strong monoidal, (F2 = F−1

2 , F0 = F−1
0 )

is a strong comonoidal structure.

From now on, when talking about monoidal functors, unless specified otherwise we will
always mean strong monoidal. Weak (co)monoidal functors are somewhat less abundant
in the literature, but we will indeed use them in Section 4.

Morphisms in a monoidal category can be depicted with the help of graphical calculus
(see e.g. [TV, Ch. 2]), which we will heavily rely upon in this paper. According to our
convention the diagrams are to be read from bottom to top. A morphism will either be
depicted by a labelled point or a coupon.

Let us now look at various notions of dualities in monoidal categories:

• A monoidal category C is said to be rigid if each object X ∈ C has a left dual
(X∗ , evX : X∗ ⊗ X → 1 , coevX : 1 → X ⊗ X∗ ) and a right dual ( ∗X , ẽvX :
∗X⊗X → 1, c̃oevX : 1 → X⊗ ∗X) where the (co)evaluation morphisms satisfy the
zig-zag identities, see e.g. [EGNO, Sec. 2.10]. Two choices of left/right duals for an
object X are canonically isomorphic. A fixed choice of duals equips C with functors
(−)∗, ∗(−) : C → Cop. A monoidal functor F : C → D automatically preserves duals,
the canonical isomorphisms provide one with natural isomorphisms Fl : F ((−)∗) ⇒
F (−)∗, Fr : F (

∗(−)) ⇒ ∗F (−).
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• A pivotal category is a rigid category C equipped with a monoidal natural isomor-
phism δ : IdC ⇒ (−)∗∗ called the pivotal structure. In a pivotal category each left
dual is canonically a right dual and in terms of graphical calculus3 the corresponding
(co)evaluation morphisms of an object X ∈ C are denoted/defined by

evX = := , coevX = := ,

ẽvX = := , c̃oevX = := . (14)

An equivalent way to equip C with a pivotal structure is to provide each object
X with a tuple (X∗, evX , coevX , ẽvX , c̃oevX) such that for all X, Y ∈ C and f ∈
C(X, Y ) one has

= , = . (15)

As indicated above, the strands in the graphical calculus of a pivotal category are
oriented with a downwards orientation indicating the dual object. The axioms of
a pivotal category allow one to deform a diagram up to a plane isotopy without
changing the morphism it corresponds to.

• Given an object X in a pivotal category C and a morphism f ∈ EndC(X), one
defines the left/right trace of f to be the following morphisms in EndC(1):

trlC f := , trrC f := . (16)

Similarly, a left/right categorical dimension of X ∈ C is defined by dim
l/r
C X :=

tr
l/r
C idX . C is called spherical if one has trlC f = trrC f(=: trC f) (and consequently

diml
C X = dimr

C X =: dimC(X)).

• Let (C, δ), (D, δ′) be pivotal categories. A monoidal functor F : C → D is called
pivotal if the following diagram commutes:

F (X) F (X∗∗)

F (X)∗∗ F (X∗)∗

F (δX)

F1(X∗)δ′
F (X)

F ∗
1 (X)

, (17)

3Graphical calculus is a tool used extensively throughout this paper. It depicts morphisms in a
monoidal category, see e.g. [TV, Ch. 3] for more details on how it is used. Our convention is to read the
diagrams from bottom to top.
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where one uses the notation F1 : ((−)∗) ⇒ F (−)∗ for the natural transformation Fl
(this is so that altogether a pivotal functor F comes with natural transformations
denoted by F0, F1, F2, the other natural transformation due to dualities Fr will not
be used in the context of pivotal categories).

Finally, we will need some definitions on braided categories:

• A braided category is a monoidal category C equipped with a braiding, i.e. a natural
isomorphism {cX,Y : XY → Y X}X,Y ∈C which satisfies the usual hexagon identities.
They will be denoted by

cX,Y = , c−1
X,Y = . (18)

If C is braided, C̃ will denote the braided category with the reversed braiding
{c−1
Y,X : XY → Y X}X,Y ∈C.

• A monoidal functor F : C → D between braided categories (C, c), (D, c′) is called
braided if it preserves braidings, i.e. for all X, Y ∈ C one has

F (cX,Y ) ◦ F2(X, Y ) = F2(Y,X) ◦ c′F (X),F (Y ) . (19)

• If C is both braided and pivotal, for an object X ∈ C one defines the left/right twists
to be the natural isomorphisms θl, θr : IdC → IdC (in general not monoidal) defined
by

θlX = , θrX = , (θlX)
−1 = , (θrX)

−1 = . (20)

C is called ribbon if one has θlX = θrX(=: θX). In a ribbon category, the graphical
calculus allows one to deform the diagrams as if they were ribbon tangles embedded
in R3.

• A ribbon functor F : C → D between two ribbon categories C, D is a braided functor
which preserves twists, i.e. for all X ∈ C one has F (θX) = θF (X). A braided functor
between ribbon categories is ribbon if and only if it is pivotal.

• Given a monoidal category C, its Drinfeld centre is a braided category Z(C) whose
objects are pairs (X, γ), where X ∈ C and γ : X ⊗ − ⇒ − ⊗ X is a half-braiding,
i.e. a natural isomorphism satisfying the hexagon identity for all U, V ∈ C:

aU,V,X ◦ γUV ◦ aX,U,V = (idU ⊗γV ) ◦ aU,X,V ◦ (γU ⊗ idV ) . (21)

A morphism f : (X, γ) → (Y, γ′) between two objects in Z(C) is a morphism f : X →
Y which commutes with the half-braidings, i.e. for all U ∈ C one has γ′U ◦(f⊗ idU) =
(idU ⊗f)◦γU . The braiding in Z(C) is defined to be: c(X,γ),(Y,γ′) = γY . If C is pivotal,
so is Z(C).
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2.2. Multifusion categories. Throughout the entire paper, let k be an algebraically
closed field which, except for Section 7, is not assumed to be of characteristic 0. We assume
familiarity with k-linear, abelian, semisimple, multitensor and multifusion categories, for
more details see e.g. [EGNO, Ch. 1&4], [TV, Ch. 4].

• In a linear category A, a direct sum of objects X1, . . . , Xn ∈ C is an object X =
X1 ⊕ · · · ⊕Xn together with projection/inclusion morphisms πi : X ⇄ Xi : ıi such
that

∑
i ıi ◦ πi = idX and πj ◦ ıi = δij · idXi

.

• An object X in a k-linear category A is called simple if dimEndA(X) = 1, in which
case one identifies EndA(X) ∼= k by idX 7→ 1. A is called semisimple if every object
is isomorphic to a finite direct sum of simples. We will denote by IrrA a fixed set of
representatives of isomorphism classes of all simple objects of A. If IrrA is finite, A
is called finitely semisimple.

• For any two k-linear categories A, B, their direct sum A⊕ B is the linear category
of formal direct sums of objects in A and B. If A, B are semisimple, their Deligne
product A ⊠ B is the semisimple category of formal direct sums of objects of type
X ⊠ Y with X ∈ A, Y ∈ B (for general definition see [EGNO, Sec. 1.11]).

• Functors between k-linear categories will always be assumed to be linear (i.e. k-
linear on spaces of morphisms). Such functors then automatically preserve direct
sums. For A, B semisimple, a functor F : A → B is called surjective if every object
Y ∈ B is a direct summand of F (X) for some X ∈ A.

Proving some of the results of this paper will involve showing that two semisimple cate-
gories are equivalent. For that we always use

2.3. Proposition. For A, B semisimple, a functor F : A → B is an equivalence if and
only if it is fully faithful (i.e. an isomorphism on the spaces of morphisms) and surjective.

Proof. F is an equivalence if it has an inverse or equivalently is both fully faithful and
essentially surjective. If F has an inverse it is obviously surjective. Conversely, it is
enough to show that every simple of B is in the essential image of F . This follows from
F mapping simple objects of A to those of B – if i ∈ IrrB is a direct summand of F (X),
X ∈ A, decomposing X ∼=

⊕
k ik, ik ∈ IrrA, one gets i ∼= F (ik) for some index k.

Next we look at k-linear categories with monoidal structure:

• A multifusion category is a k-linear, finitely semisimple, rigid monoidal category A
whose monoidal product is bilinear on morphism spaces. If the monoidal unit 1 ∈ A
is simple, A is called fusion. In this case we always assume 1 ∈ IrrA.

• If A, B are multifusion, so are A ⊕ B and A ⊠ B. In particular, we call A inde-
composable if it is not equivalent (as a multifusion category) to a direct sum of non
trivial (i.e. not equivalent to {0}) multifusion categories.
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• Let 1 =
⊕

i 1i be the decomposition of the tensor unit of a multifusion category A
into simples. Then all 1i are mutually non-isomorphic and 1i ⊗ 1j

∼= 0 for i ̸= 0.
Moreover one has the decomposition A ≃

⊕
ij Aij, where Aij := 1i ⊗ A ⊗ 1j are

the so-called component categories of A. Note that each Aii is a fusion category.

The counterpart of a (multi)fusion category which does not require semisimplicity is called
a (multi)tensor category (see e.g. [EGNO, Ch. 4]). The categories that we are going to
encounter later on will however always be either fusion or multifusion.

It follows from the last item in the above list that if B is a braided multifusion category,
then B ≃

⊕
Bii, i.e. its non-diagonal component categories vanish. In particular, the

Drinfeld centre Z(A) of a multifusion category A is a direct sum of tensor categories
(Z(A) need not always be semisimple, see Proposition 2.8 for a criterion). In fact one has
(see [KZ1, Thm. 2.5.1]):

2.4. Proposition. Let A ≃
⊕

Aij be an indecomposable multifusion category. Then for
every Aii one has an equivalence of braided tensor categories Z(A) ≃ Z(Aii).

The explicit equivalence Z(A)
∼−→ Z(Aii) is given by

(X, γ) 7→
(
1iX1i, {1iX1iU

∼−→ 1iXU1i
id1i ⊗γU⊗id1i−−−−−−−−→ 1iUX1i

∼−→ U1iX1i}U∈Aii

)
, (22)

where one uses the unitors of Aii to define the half-braiding.

We will mostly work with pivotal multifusion categories. For such a category C, the
left/right traces of morphisms and categorical dimensions of objects, both being endomor-
phisms of 1 ∼=

⊕
i 1i, are tuples of scalars. The left/right dimensions of a simple object

i ∈ IrrC are never 0 since one has for example C(ii∗,1) ∼= C(1, ii∗) ∼= C(i, i) ∼= k and the
(co)evaluation morphisms are non-zero. This implies:

2.5. Proposition. Let C,D be pivotal multifusion and F : C → D a pivotal functor. If
F is surjective on the spaces of morphisms it is automatically fully faithful.

Proof. Because it is surjective, F can map a simple of C either to a simple of D or to 0.
Since F is pivotal and hence preserves the left/right dimensions, which for simple objects
are non-zero, the 0 case is excluded.

If C is in addition fusion, the traces/dimensions are scalars obtained upon the standard

identification C(1,1) ∼= k. When writing (dim
l/r
C X)1/2 we will always mean a fixed choice

of the square root of the left/right categorical dimension of an object X ∈ C.
If S is a spherical fusion category, one defines its global dimension to be the scalar

DimS :=
∑
i∈IrrC

(dimC i)
2 . (23)

2.6. Modular fusion categories (MFCs). The following notion is of central im-
portance of this paper. As before we assume familiarity with the material in this section
which can be acquired e.g. in [Tu2, Sec. II.1], [BakK, Ch. 3], [EGNO, Ch. 8].
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2.7. Definition. A modular fusion category (MFC) is a ribbon fusion category C satis-
fying one of the following equivalent conditions:

i) The braiding of C is non-degenerate, i.e. if T ∈ C is such that for all X ∈ C one has

cT,X ◦ cX,T = idX⊗T , (24)

then T ∼= 1
⊕n for some n ≥ 0.

ii) The s-matrix
sij = trC(cj,i ◦ ci,j) , i, j ∈ IrrC (25)

is non-degenerate.

iii) The functor C ⊠ C̃ → Z(C), X ⊠ Y 7→ (X ⊗ Y, γdol), where

γdolU := , U ∈ C (26)

is a so-called ‘dolphin’ half-braiding, is a ribbon equivalence.

The trivial example of a MFC is the category Vectk of finite dimensional vector spaces.
A further family of examples of MFCs is given by the following (see [Mü2, Thm. 3.16],
[ENO1, Thm. 2.3, Rem. 2.4]):

2.8. Proposition. The Drinfeld centre Z(S) of a spherical fusion category S is a MFC
if and only if DimS ≠ 0. For chark = 0 the condition DimS ≠ 0 holds automatically.

For a MFC C we define the following object/endomorphisms:

C :=
⊕
i∈IrrC

i , d1/2 :=
⊕
i∈IrrC

(dimC i)
1/2 · idi ∈ EndC C , d := d1/2 ◦ d1/2 . (27)

In graphical calculus, a strand labelled by C and having a single d-labelled insertion is
said to carry the Kirby colour (e.g. the loop in (29) carries Kirby colour). The global
dimension of a MFC C

Dim C = trC d (28)

is automatically non-zero. In what follows we will often find the ‘scissors’ identity useful
(see [BakK, Cor. 3.1.11]):

= Dim C ·
∑
i

, (29)

where bi run through a basis of C(1, X) and bi is the dual basis of C(X,1) with respect
to the composition pairing, i.e. bj ◦ bi = δij id1 ∈ EndC 1 ∼= k.
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3. Symmetric separable Frobenius algebras

In this section we review some notions and results related to Frobenius algebras in
(multi)fusion categories. Most of them can be found e.g. in [FRS1]. Somewhat new
is the separability condition for Frobenius algebras in Section 3.2. It generalises the sim-
ilar ∆-separability condition required in the works [CRS2, CRS3, MR1, MR2, CMRSS2]
in a way that allows one to better control the dependence of the constructions therein on
the Morita class of a Frobenius algebra, see Section 3.12.

3.1. Algebras and modules. Let C be a monoidal category. We list some definitions
and conventions on algebras in C and their modules. For more details one can consult e.g.
[FRS1, FFRS].

• An algebra in C is a tuple A = (A, µ, η), where A ∈ C, and µ : A ⊗ A → A is an

associative multiplication with the unit η : 1 → A, i.e. morphisms depicted by

and such that the following identities in C hold:

= , = = . (30)

• A coalgebra in C is a tuple A = (A,∆, ε), where A ∈ C and ∆: A → A ⊗ A is a

coassociative comultiplication with the counit ε : A→ 1, to be depicted by and

, i.e. such that

= , = = . (31)

• A Frobenius algebra in C is simultaneously an algebra and a coalgebra A ∈ C such
that

= = . (32)

If C is in addition pivotal, one calls a Frobenius algebra A ∈ C symmetric if

= . (33)
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• If C is braided, an algebra (resp. coalgebra) A ∈ C is called commutative (resp.
cocommutative) if one has

= = , (resp. = = ) . (34)

• If C is braided and A,B ∈ C are algebras (resp. coalgebras) so is their product A⊗B
with the multiplication/unit (resp. comultiplication/counit)

, , (resp. , ) . (35)

In particular, if A, B are Frobenius algebras, so is A⊗B. One can easily generalise
this to more tensor factors by iterating.

• A left module of an algebra A ∈ C is a tuple L = (L, λ) where λ : A⊗ L → L is an

associative unital action to be depicted by , i.e. so that one has

= , = . (36)

A module morphism f : (L, λ) → (L′, λ′) is a morphism f : L→ L′ which commutes
with the A-actions, i.e. f ◦λ = λ′ ◦ (idA⊗f). Similarly one defines the right modules
and their morphisms, and, for another algebra B ∈ C, A-B-bimodules and their
morphisms. We denote by AC and CA the categories of left and right A-modules and
by ACB the one of A-B-bimodules. Note that for a Frobenius algebra A ∈ C, the
condition (32) implies that the comultiplication ∆: A→ A⊗A is an A-A-bimodule
morphism.

• If C is braided and A,B ∈ C are algebras, a left module L ∈ A⊗BC is the same as
a simultaneous left A- and B-module whose actions commute in the sense that the
following identity holds:

= . (37)

It is easy to adapt this to right A⊗ B-modules or bimodules of tensor products of
several algebras in C.



1222 VINCENTAS MULEVIČIUS

• If C is pivotal and A ∈ C an algebra, the objects of AC and CA are in bijection, where
L ∈ AC is sent to the dual L∗ with the right action

. (38)

Similarly, for two algebras A,B ∈ C one has the bijection ACB → BCA, M 7→M∗.

• By analogy to modules of algebras, for coalgebras A,B ∈ C one defines left and
right A-comodules and A-B-bicomodules. If C is pivotal and A, B are symmetric
Frobenius algebras, modules are canonically comodules where the coaction e.g. for
a left module L ∈ AC is defined to be

:= . (39)

In what follows we will mostly work with algebras in multifusion categories, especially
in MFCs. For algebras A, B in a multifusion category C, the categories of modules AC, CA
and ACB are automatically abelian and k-linear, with the direct sum inherited from C and
module morphisms automatically forming vector subspaces of the respective morphism
spaces in C. It is easy to see that A ⊕ B in this case is an algebra as well, with e.g. the
left modules having the form L⊕ L′, L ∈ AC, L′ ∈ BC so that one has A⊕BC ≃ AC ⊕ BC.
If an algebra A ∈ C cannot be written as a direct sum of two non-zero algebras in C, it is
called indecomposable.

3.2. Separability. Let C be a monoidal category. For the constructions in the upcoming
sections we will find it necessary to consider separable algebras in C Recall that an algebra
A ∈ C is called separable if the multiplication µ : A⊗ A → A has a section in ACA, i.e. a
bimodule morphism s : A→ A⊗ A such that µ ◦ s = idA.

3.3. Proposition. A Frobenius algebra A ∈ C is separable if and only if there is a
morphism ζ : 1 → A such that

= . (40)

Proof. If such ζ exists, one has the section s := (idA⊗µ) ◦ (idA⊗ζ) ◦∆, where ∆: A→
A⊗ A denotes the comultiplication. On the other hand, if A is separable with a section
s, define ζ := (ε⊗ idA) ◦ s ◦ η, where η : 1 → A, ε : A→ 1 denote the unit and the counit
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respectively. Then one has

= = = = = = , (41)

where one uses that s is an A-A-bimodule morphism and therefore commutes with the
(co)multiplication morphisms of A.

Our constructions involving a separable Frobenius algebra A ∈ C will in principle
be independent of the choice of a morphism ζ satisfying the condition (40). For later
convenience we will furthermore assume that ζ is given as a multiplicative square of
another morphism ψ : 1 → A, i.e. ζ = ψ2 := µ ◦ (ψ ⊗ ψ) so that one has

= = = . (42)

If C is a (multi)fusion category over an algebraically closed field k, this assumption can
be made without loss of generality (for the case of C being spherical fusion, this follows
from the proof of Proposition 3.5 below). Abusing the terminology, we will refer to such
a morphism ψ : 1 → A as a section of A (since it provides one with a section of the
multiplication map µ : A⊗ A→ A).

Let C be pivotal and A ∈ C a symmetric separable Frobenius algebra with a section
ψ. For an arbitrary left A-module L, a right A-module K and an A-A-bimodule M , we
introduce the following endomorphisms:

ψLl = := , ψKr = := , ωM= := = . (43)

They are compatible with the (co)action morphisms of A in the sense that the identities

= , = , = , = . (44)

hold, the first two of which follow from the associativity of the actions, while for the last
two one needs the symmetry property, for example

= = = = = . (45)
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For the rest of the section, unless specified otherwise, C will denote a spherical fusion
category and A ∈ C a symmetric separable Frobenius algebra with a section ψ : 1 → A.
As it is the case with separable algebras in multifusion categories in general, the categories
of left and right modules AC and CA (and, for another separable algebra B ∈ C, also the
one of bimodules ACB) are semisimple4, see [DMNO, Prop. 2.7], [KZ2, Sec. 4].

3.4. Lemma. For all simple objects λ ∈ AC, κ ∈ CA, µ ∈ ACA, the scalars trC(ψ
λ
l )

2,
trC(ψ

κ
r )

2, trC ω
2
µ are non-zero and independent of the choice of ψ.

Proof. We show the above claim for a simple left A-module λ, the proofs of other cases
are similar.

For a simple object i ∈ IrrC, let {bp} be a basis of the space C(i, λ) and {bp} be the
dual basis of C(λ, i) with respect to the composition pairing, i.e. bq ◦ bp = δpq · idi. One
then has scalars X i,λ

pq , such that

= X i,λ
pq , (46)

since λ is simple and the morphism on the left-hand side is a left module morphism.
Precomposing both sides with (ψλl )

2 and taking the trace in C one gets:

X i,λ
pq · trC(ψλl )2 = = = = di · δpq , (47)

where in the second equality one uses the canonical action (38) of A on λ∗, the coaction
of the form (39) and the symmetry property (33). Since for p = q and i such that
C(i, λ) ̸= {0} the right-hand side is non-zero, one gets trC(ψ

λ
l )

2 ̸= 0.
To show the independence of ψ, note that since A is symmetric one has

= = = = . (48)

4We use Greek letters (λ, κ, . . . ) to denote the simple objects of AC, CA, ACB to distinguish them from
those of C.
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Using this, for any other section ψ′ : 1 → A one computes:

= = = = , (49)

where in the second equality one uses the symmetry property of A, the associativity of
the action and a combination of the identities (44).

We will find that working with a symmetric separable Frobenius algebra A ∈ C is
easier if the section ψ has a certain invertibility property, which one can impose without
loss of generality as stated in the following

3.5. Proposition. Let A be a symmetric separable Frobenius algebra in a spherical fusion
category C. The section ψ : 1 → A can be chosen so that it has a multiplicative inverse,
i.e. a morphism ψ−1 : 1 → A such that

µ ◦ (ψ ⊗ ψ−1) = µ ◦ (ψ−1 ⊗ ψ) = η , (50)

where µ : A⊗ A→ A, η : 1 → A are the multiplication and the unit morphisms of A.

Proof. One has an explicit isomorphism of the vector spaces C(1, A) and CA(A,A) send-
ing [φ : 1 → A] to a morphism [φAl : A → A] defined similarly as in (43). The multi-
plicative inverse of φ then corresponds to the inverse of φAl with respect to composition.
We can therefore construct an invertible right A-module morphism ψAl : A→ A satisfying
µ ◦ (idA⊗(ψAl )

2) ◦∆ = idA instead of ψ : 1 → A satisfying (42).
Let A ∼=

⊕
p µp be the decomposition of A into simple A-A-bimodules provided by the

sets of morphisms {bp : µp → A}, {bp : A→ µp}, i.e.∑
p

bp ◦ bp = idA , bp′ ◦ bp = δpp′ · idµp . (51)

Similarly, for each index p, let µq ∼=
⊕

q κ
p
q be the decomposition into simple right A-

modules provided by the sets of morphisms {bpq : κpq → µp}, {bpq : µp → κpq}, i.e.∑
q

bpq ◦ b
p
q = idµp , bpq′ ◦ b

p
q = δqq′ · idκpq . (52)

Let ψ′ : 1 → A be any section (which exists by Proposition 3.3). A similar computation
as in (47) yields the identity

=
trC(ψ

′κpq
r )2

trC(ω′
µa)

2
, (53)



1226 VINCENTAS MULEVIČIUS

where the factor on the right-hand side is well defined because of Lemma 3.4. We can
now define

ψAl :=
∑
p,q

(
trC(ψ

′κpq
r )2

trC(ω′
µa)

2

)−1/2

·
(
Λpq
)1/2

bp ◦ bpq ◦ b
p
q ◦ bp , (54)

where Λpq ∈ k are arbitrary non-zero scalars such that
∑

q Λ
p
q = 1 for each index p (one

can for example take Λpq = (dimEndCA(µp))
−1 if this dimension is non-zero in k). The

relations (51) and (52) then imply that ψAl is invertible with

(ψAl )
−1 :=

∑
p,q

(
trC(ψ

′κpq
r )2

trC(ω′
µa)

2

)1/2

·
(
Λpq
)−1/2

bp ◦ bpq ◦ b
p
q ◦ bp . (55)

Moreover one has

=
∑
p,q

(
trC(ψ

′κpq
r )2

trC(ω′
µa)

2

)−1

· Λpq =
∑
p,q

Λpq =
∑
p

= , (56)

so the condition (42) is satisfied as needed.

3.6. Convention. Slightly abusing the terminology, we will sometimes call a pair (A,ψ)
a symmetric separable Frobenius algebra in a pivotal category C, in which case ψ : 1 → A
is understood to be a fixed choice of a section with a multiplicative inverse in the sense
of Proposition 3.5 (for C a spherical fusion category this can be assumed without loss of
generality). If ψ is given by the unit η : 1 → A, we say that A is ∆-separable. In this case
the section of the product µ : A⊗A→ A in ACA is given by the coproduct ∆ : A→ A⊗A.

Most of the properties of symmetric ∆-separable Frobenius algebras, as developed
and exploited e.g. in [FRS1], apply also to the separable ones. For example, for two left
modules L,L′ ∈ AC the map

C(L,L′) ∋ f 7→ ∈ AC(L,L′) (57)

acts as a projector onto the subspace AC(L,L′) ⊆ C(L,L′) of left module morphisms.
Similarly, one defines the projectors onto the subspaces of right modules and bimodules.

3.7. Example. Let A ∈ C be a symmetric Frobenius algebra with the structure mor-
phisms (µ, η,∆, ε) which is in addition haploid, i.e. dim C(1, A) = 1. Then it is separable
if and only if one has µ ◦∆ ̸= 0, in which case the section has to be of the form ξ · η for
some ξ ∈ k×.
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3.8. Example. Let (A,ψ) be a symmetric separable Frobenius algebra in C and X ∈ C
an arbitrary non-zero object. Then AX := X∗ ⊗A⊗X is a symmetric Frobenius algebra
in C with

multiplication: , comultiplication: ,

unit: , counit: . (58)

It is also separable as evident from picking an endomorphism φ ∈ EndC(X) such that
trC φ

2 = trC(φ ◦ φ) ̸= 0 and setting the section to be

ψX = (trC(φ ◦ φ))−1/2 · . (59)

It is also an invertible section if φ is invertible. Later we will encounter this algebra in the
case of C being a MFC and X = C =

⊕
i being the Kirby colour object. In this case there

is a canonical choice of an invertible section φ = d1/2 since one has trC d = Dim C ̸= 0.
Note that in case A = 1 and C = Vectk, X

∗ ⊗X is a matrix algebra.

3.9. Example. Let A ∈ C be a symmetric ∆-separable Frobenius algebra with the struc-
ture morphisms (µ, η,∆, ε) and ψ̃ : A → A an A-A-bimodule isomorphism. This yields
a symmetric separable Frobenius algebra (A,ψ) having the same underlying object, the

structure morphisms (ψ̃−1 ◦ µ, ψ̃ ◦ η, ψ̃−1 ◦∆, ψ̃ ◦ ε) and the section ψ := ψ̃ ◦ η.
The setting of symmetric ∆-separable Frobenius algebras was used in the works [CRS3,

MR1] whose results we seek to expand in this paper. In [CRS3] in particular, a pair like

(A, ψ̃) was used in the construction of surface defects in the Reshetikhin–Turaev TQFT,

where the entry ψ̃ was used in the procedure called Euler completion (see [CRS1, Sec. 2.5]).
We noted in the introduction that symmetric separable Frobenius algebras can be used
for construction of surface defects as well. In fact, one can check that using the algebra
(A,ψ) in the present setting is equivalent to using the pair (A, ψ̃) in the constructions
of [CRS3, MR1]. Our approach is however more general, as e.g. the section (59) is not
obtained from a bimodule morphism.

3.10. Relative tensor products. For an algebra A in a (multi)tensor category C,
the relative tensor product of a right module K ∈ CA and a left module L ∈ AC is given
by the difference cokernel [EGNO, Def. 7.8.21]

K ⊗A L := coker[K ⊗ A⊗ L
ρ⊗idK − idL ⊗λ−−−−−−−−−→ K ⊗ L] , (60)

where ρ : K ⊗ A→ K, λ : A⊗ L→ L are the action morphisms.
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In case C is a pivotal multifusion category and (A,ψ) is a symmetric separable Frobe-
nius algebra in C, the relative tensor product can be computed as follows: Recall that
for an object X ∈ C the image of an idempotent p ∈ EndC X, p ◦ p = p, is an object
im p ∈ C together with projection and inclusion morphisms π : X ⇄ im p : ı such that
ı ◦ π = p and π ◦ ı = idim p (π and ı are then said to split the idempotent p). One then
has K ⊗A L ∼= imPK,L where the idempotent PK,L is defined by

PK,L := = = = . (61)

The horizontal line after the third equality can be read as a composition of A-coaction (39)
and A-action). The respective inclusion/projection morphisms will be denoted by

π = , ı = . (62)

To show that one indeed has imPK,L ∼= K ⊗A L one uses the splitting property to check
that the pair (imPK,L, q : K ⊗ L→ imPK,L) where q := π ◦ ((ψKr )−1 ⊗ idL) constitutes a
choice of cokernel for the morphism ρ⊗ idK − idL⊗λ.

Note that equality of the morphisms (61) might fail if A is not symmetric as is shown
by a computation similar to (45). Still, each of them gives an idempotent which can be
used to define the relative tensor product, in this case C also need not be pivotal.

For arbitrary objects X, Y ∈ C, when writing down an explicit morphism f : K⊗AL→
X or g : Y → K ⊗A L we will often find it more convenient to give the morphisms

f̂ := , ĝ := (63)

instead, which are uniquely defined so that the balancing property holds, i.e.

= , = . (64)

Note that the compositions of balanced maps does not necessarily correspond to the
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composition of maps into/out of the relative tensor product:

= . (65)

The composition is however preserved properly if A is ∆-separable, since in this case ψr
is given by the action of the unit of A.

3.11. Convention. In what follows we will often encounter objects defined as images of
idempotents similar to the one in (61). The corresponding projection/inclusion morphisms
will also be denoted by horizontal lines. The overhats as in (63) will be omitted. If
necessary, we will refer to the equation (65) to explain the extra ψ-insertions due to this
computational nuisance.

For any algebra A ∈ C, the relative tensor product (60) equips the category ACA of
bimodules with a monoidal structure with the tensor unit 1

ACA := A. If C is pivotal
multifusion and (A,ψ) a symmetric separable Frobenius algebra, the monoidal structure
is easy to describe in terms of the idempotents as in (61). In particular, for M,N ∈ ACA,
M ⊗A N has the left/right actions

, (66)

while forM,N,K ∈ ACA, the associator, as well as the left/right unitors and their inverses
are obtained from the balanced maps

aM,N,K = , lM = , rM = , l−1
M = , r−1

M = . (67)

We emphasise one more time, that the actual morphisms are obtained out of the balanced
maps by using the relation (63), e.g. the associator is given by

aM,N,K = = . (68)
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Note that these morphisms are not in general equal to identities, so ACA is not on the
nose strict even if C is. Of course, like all monoidal categories, it is equivalent to a strict
one.

If C is pivotal multifusion and (A,ψ) is symmetric separable, ACA is pivotal multifusion
as well, with the dual of an object M ∈ ACA being the dual M∗ of the underlying object
in C with the actions as in (38) and the (co)evaluation morphisms given by the balanced
maps

evM = , coevM = , ẽvM = , c̃oevM = , (69)

(note that A indeed needs to be symmetric for the coevaluation maps to be balanced).
As was shown in (65), the balanced maps do not compose exactly as the maps in ACA,
so the expressions for the left/right traces of f ∈ End

ACA(M) in ACA have additional
ψ2-insertions, for example

trl f = , trr f = . (70)

We note that in general ACA need not be spherical even if C is. If however C is spherical
fusion and A is haploid, ACA is spherical as well (the argument for this is analogous to
that of Lemma 7.7 below).

3.12. Morita equivalence. Let A, B be two algebras in a monoidal category C. Then
the categories of right modules CA, CB are left C-module categories, where the action is
X▷(K, ρ) := (X⊗K, idX ⊗ρ) for all X ∈ C and K = (K, ρ) ∈ CA (or ∈ CB). The algebras
A, B are called Morita equivalent if CA, CB are equivalent as left C-module categories. If
C is a pivotal tensor category, this is equivalent to the existence of a Morita module, i.e.
an A-B-bimodule R ∈ C, such that R∗⊗AR ∼= B as B-B-bimodules and R⊗B R

∗ ∼= A as
A-A-bimodules. The equivalence CA ≃ CB of module categories is then provided by the
functor −⊗A R : CA → CB with the inverse −⊗B R

∗ : CB → CA.

Let us now investigate the case when (A,ψ), (B,ψ′) are symmetric separable Frobenius
algebras in a pivotal fusion category C. The C-module categories CA, CB are then equipped
with the following additional structure, see [Schm]:

3.13. Definition. Let C be a pivotal fusion category.

• A module trace on a (left) C-module category M is a collection of linear maps
{ΘM : EndM(M) → k}M∈M, such that for all X ∈ C, M,N ∈ M, f ∈ M(M,N),
g ∈ M(N,M) and h ∈ EndM(X ▷M) one has
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i) ΘM(g ◦ f) = ΘN(f ◦ g),
ii) the pairing (f, g) 7→ Θ(g ◦ f) is non-degenerate,
iii) ΘX▷M(h) = ΘM(h), where h is the partial trace

h := [M
c̃oevX▷idM−−−−−−→ X∗ ▷ X ▷M

idX∗ ▷h−−−−→ X∗ ▷ X ▷M
evX ▷ idM−−−−−→M ] . (71)

• A module functor F : M → N between two C-module categories with module traces
M = (M,Θ) and N = (N ,Θ′) is called isometric if one has Θ′

F (M)(F (f)) = ΘM(f)

for all M ∈ M, f ∈ EndM(M). M and N are called (isometrically) equivalent if
there is an isometric module equivalence between them.

3.14. Proposition. For (A,ψ) a symmetric separable Frobenius algebra in a spherical
fusion category C, the collection of maps

{Θψ
K : EndCA(K) → k}K∈CA , Θψ

K(f) := (72)

is a module trace on CA as C-module category.

Proof. The condition i) in Definition 3.13 is implied by the cyclicity of the trace in C,
while the condition iii) is holds since C is spherical. To check ii) it is enough to check
that for a simple object κ ∈ CA its dimension Θκ(idκ) does not vanish, which holds by
Lemma 3.4.

3.15. Remark.

i) It was shown in [Schm, Prop. 4.4] that for an indecomposable C-module categoryM,
any two module traces Θ, Θ′ are proportional, i.e. there is a ζ ∈ k× such that Θ′ = ζ ·Θ.
Similarly, for an indecomposable symmetric separable Frobenius algebra A ∈ C one can
rescale the module trace (72) by rescaling the Frobenius structure of A. In particular, if
(µ, η,∆, ε) are the structure morphisms of A, define the Frobenius algebra Aζ with the
structure morphisms (µ, η, ζ−1 ·∆, ζ · ε). Then if ψ : 1 → A is a section of A, ζ1/2 · ψ is

a section of Aζ and the module category with module trace (CAζ
,Θζ1/2·ψ) is equivalent to

(CA, ζ · Θψ). Note that by Lemma 3.4, choosing another section for Aζ does not change
the module trace.

ii) For decomposable module categories/algebras, one can similarly relate the module
traces/Frobenius structures by performing a rescaling on each direct summand: if A =⊕

iAi, let ζ =
⊕

i ζi · idAi
for ζi ∈ k× and define the rescaling Aζ to have the structure

morphisms (µ, η, (id⊗ζ−1)◦∆, ε◦ ζ) and the section ψ ◦ ζ1/2. This can also be generalised
to rescalings of A with an arbitrary invertible A-A-bimodule morphism ζ : A → A (see
Example 3.9), but taking a diagonal ζ as before is enough for the purpose of changing the
module trace of CA into any other one.

3.16. Definition. We call two symmetric separable Frobenius algebras (A,ψ), (B,ψ′)
in a spherical fusion category C Morita equivalent if (CA,Θψ), (CB,Θψ′

) are isometri-
cally equivalent and a Morita module ARB isometric if the functor − ⊗A R : CA → CB is
isometric.
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3.17. Remark. Note that it is possible for (A,ψ) and (B,ψ′) to be Morita equivalent as
algebras, but not as symmetric separable Frobenius algebras - take e.g. A and its rescaling
Aζ as above. However, as the resulting module traces can be rescaled to each other, in
this case it is possible to find ζ ∈ End

BCB(B) such that (A,ψ) and (Bζ , ψ
′ ◦ ζ1/2) are

Morita equivalent. Similarly, if ARB is an arbitrary Morita module, ARBζ
is an isometric

Morita module if the rescaling ζ is chosen suitably.

3.18. Example. For a symmetric separable Frobenius algebra (A,ψ) in a spherical fusion
category C, an object X ∈ C, and an invertible morphism φ ∈ EndC(X) such that
trC(φ

2) ̸= 0, let (AX , ψX) be the algebra in Example 3.8. Then the object RX := A⊗X can
be equipped with an A-AX-bimodule structure and A-A- bimodule maps RX⊗AX

R∗
X ⇄ A

defined by

, , , (73)

where due to A being symmetric one has R∗
X
∼= X∗ ⊗A∗ ∼= X∗ ⊗A. The bimodule RX is

evidently a Morita module as one has

RX ⊗AX
R∗
X
∼= im ∼= A , R∗

X ⊗A RX
∼= X∗ ⊗ (A⊗A A)⊗X ∼= AX , (74)

where the first isomorphism is given explicitly by the maps in (73). RX is also isometric
since for an arbitrary simple module κ ∈ CA one has κ⊗A RX

∼= κ⊗X and

ΘψX

κ⊗ARX
(idκ⊗ARX

) =
1

trC(φ2)
· trC(ψκr )2 · trC(φ2) = trC(ψ

κ
r )

2 = Θψ
κ (idκ) . (75)

In what follows we will find the following identity useful for computations:

3.19. Lemma. Let (A,ψ), (B,ψ′) be symmetric separable Frobenius algebras in a spherical
fusion category C. Then a Morita module ARB is isometric if and only if one has

= , = . (76)

Proof. We focus on the first identity only. Let κ ∈ CA be an arbitrary simple right
A-module. Then one has a scalar Xκ, such that

= Xκ · ⇔ = = Xκ · , (77)
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where the first equality holds because the morphism on the left-hand side is a morphism
of right A-modules and the implied identity was obtained by pre- and postcomposing both
sides with ψκr , taking the trace in C and noting that the action/coaction pair together
with the ψκr insertions compose into the idempotent Pκ,R as in (61) projecting onto the
relative tensor product κ⊗A R.

If (76) holds, one has Xκ = 1 so that the last equality implies that −⊗A R preserves
the module trace (72) and ARB is therefore isometric.

Conversely, if ARB is isometric, the last equality of (77) again implies Xκ = 1. To
show (76), one decomposes A into simple right A-modules and precomposes both sides of
the first equality in (77) with the unit η : 1 → A for each direct summand.

In the remainder of the section we look at how the Morita equivalence of two symmetric
separable Frobenius algebras (A,ψ), (B,ψ′) in a spherical fusion category C translates to
the equivalence of the categories of bimodules ACA and BCB. To this end, let ARB be a (not
necessarily isometric) Morita module and fix a B-B-bimodule isomorphism ζ : B → B,
such that ARBζ

is isometric. We define an isomorphism of B-B-bimodules B
∼−→ R∗ ⊗A R

and its inverse by the balanced maps

R0 = , R−1
0 = . (78)

That they are indeed inverses follows from the computation

= = = = , (79)

where in the third equality we have used the second identity in (76) for A and Bζ . Since
R∗ ⊗A R and B are isomorphic objects in BCB and BCB is finitely semisimple, this is
enough for R−1

0 to be the two-sided inverse. Similarly, one defines a natural isomorphism
R⊗ : (−⊗AR)⊗B (R

∗⊗A−) ⇒ −⊗A− by setting for all K ∈ CA and L ∈ AC the balanced
maps

R⊗(K,L) = , R−1
⊗ (K,L) = . (80)

Recall from Section 3.10 that ACA and BCB are pivotal (multi)fusion categories. By
the functor R : ACA → BCB we will mean the functor R∗ ⊗A −⊗A R. One has:
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3.20. Proposition. R = (R,R2, R0), where R2(−,−) := R⊗(R
∗ ⊗A −,− ⊗A R), is a

monoidal equivalence ACA
∼−→ BCB. If the Morita module ARB is in addition isometric

(i.e. ζ = idB), R is a pivotal equivalence.

Proof. Checking the coherence identities for (R,R2, R0) is a straightforward exercise,
whose only difficulty is the occurrence of the non trivial associator/unitor morphisms in

ACA and BCB, which are by definition obtained from the balanced maps (67).
Let us check the pivotality of R, a priori without assuming ARB to be isometric.

For M ∈ ACA, we denote by πM : R(M) ⇄ R∗ ⊗M ⊗ R : ıM the idempotent splitting
morphisms in BCB. The four morphisms R(δM), R1(M

∗), δR(M), R
∗
1(M)∗ in the diagram 17

(where we set X =M and F = R) are given by pre- and postcomposing

, , , (81)

respectively with ıM and πM∗∗ , ıM∗∗ and ı∗M∗ , ıM and π∗∗
M , ı∗∗M and ı∗M∗ . By symmetry (33)

and the action (38) on dual objects, the compositions ıM∗∗ ◦πM∗∗ and ı∗∗M ◦π∗∗
M in particular

yield the idempotents projecting onto the relative tensor products R∗ ⊗AM
∗∗ ⊗A R and

R∗∗∗ ⊗A M
∗∗ ⊗A R

∗∗. Since the action of A commutes with the pivotal structure, upon
composing R1(M

∗)◦R(δM) and R∗
1(M)◦δR(M) one can absorb these idempotents into ıM ,

so that they correspond to stacking the first-second and third-fourth diagrams in (81) and
pre- and postcomposing with ıM and ı∗M∗ . We see that if ARB is isometric, i.e. ζ = idB,
the two compositions are equal since one has δ∗R = δ−1

R∗ .
That R is an equivalence follows from it being a Morita module, the inverse is given

by R−1 := R⊗B −⊗B R
∗.

3.21. Remark. Note that in Proposition 3.20 we do not state the converse: it is possible
for the functor R to be pivotal even if ARB is not isometric. As an example, suppose ζ is
given by a global scaling, i.e. is proportional to idA. Then the ζ±1/2 factors in (81) cancel
and so R is pivotal by the same argument. This can also be seen from the expression (70)
for the categorical traces: they remain invariant upon changing A with its rescaling Aζ ,
since the additional ζ factor due to changing the ψ2-insertion is compensated by the
factor due to changing the coproduct (and therefore the coaction (39)). In particular, for
indecomposable and Morita equivalent symmetric separable Frobenius algebras A,B ∈ C,
the pivotal categories ACA and BCB do not depend on the module trace.

In general however R is not a pivotal functor. Take for example an algebra of the
form A =

⊕
iAi where each Ai = (Ai, ψi) is an indecomposable symmetric separable

Frobenius algebra in C. An arbitrary object M ∈ ACA has the decomposition
⊕

ij iMj

where iMj ∈ Ai
CAj

. In particular, a simple object is of the form µ = iµj and its right
categorical dimension in ACA is a morphism dimµ = ıi ◦ trr idµ ◦πi ∈ End

ACA(A) where
πi : A⇄ Ai : ıi are the projection/inclusion morphisms with respect to the decomposition
of A and trr idµ ∈ End

Ai
CAi

(Ai) is as in (70), but with the ψ2
j -insertion inside the µ-loop
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instead. Scaling A with ζ =
⊕

ζi · idAi
, ζi ∈ k×, then changes dimµ into ζ−1

i ζj dimµ.
Since in general this delivers a different set of categorical dimensions of simple objects,
the categories ACA and Aζ

CAζ
are not pivotal-equivalent.

4. Monoidal Frobenius functors

The proofs of the main results of this paper will be based on mapping a Frobenius algebra
A ∈ C to another Frobenius algebra F (A) ∈ D across a functor F : C → D between
monoidal categories. It turns out that for this purpose one does not need F to be monoidal,
a weaker structure of a monoidal Frobenius functor on F is enough and in fact provides
more interesting examples of such mappings. We list the definitions related to and general
properties of monoidal Frobenius functors in Section 4.1, describe how they preserve
Frobenius algebras in Section 4.8 and list some examples in Section 4.16.

The notion of a monoidal Frobenius functor was introduced and explored in [Sz1, Sz2,
DP, MS], here we adapt it also to pivotal5 and ribbon categories.

4.1. Generalities. Let (C,⊗,1), (D,⊗′,1′) be monoidal categories. One can make an
analogy between a (not necessarily strong) monoidal structure on a functor F : C → D
and an algebra in a monoidal category, according to which the natural transforma-
tion F2 : F (−) ⊗ F (−) ⇒ F (− ⊗ −) corresponds to the multiplication, the morphism
F0 : 1

′ → F (1) to the unit and the coherence identities (12) to associativity and left/right
unitality. Similarly, one has an analogy between (weak) comonoidal structures and coal-
gebras. Extending this analogy even further, the following structure on F is designed to
correspond to a Frobenius algebra.

4.2. Definition. A monoidal Frobenius functor from C to D is a functor F : C → D
equipped with a weak monoidal structure

F2 : F (−)⊗′ F (−) ⇒ F (−⊗−) , F0 : 1
′ → F (1) (82)

and a weak comonoidal structure

F2 : F (−⊗−) ⇒ F (−)⊗′ F (−) , F0 : F (1) → 1
′ (83)

such that the following diagrams commute for all X, Y, Z ∈ C

F (X ⊗ Y )⊗′ F (Z) F ((X ⊗ Y )⊗ Z)

(F (X)⊗′ F (Y ))⊗′ F (Z) F (X ⊗ (Y ⊗ Z))

F (X)⊗′ (F (Y )⊗′ F (Z)) F (X)⊗′ F (Y ⊗ Z)

F2(X⊗Y,Z)

F (aX,Y,Z)

a′
F (X),F (Y ),F (Z) F2(X,Y⊗Z)

F2(X,Y )⊗′idF (Z)

idF (X) ⊗′F2(Y,Z)

, (84)

5The work [FSY] develops the theory of Frobenius functors between pivotal bicategories and applies
it to string-net construction.
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F (X)⊗′ F (Y ⊗ Z) F (X ⊗ (Y ⊗ Z))

F (X)⊗′ (F (Y )⊗′ F (Z)) F ((X ⊗ Y )⊗ Z)

(F (X)⊗′ F (Y ))⊗′ F (Z) F (X ⊗ Y )⊗′ F (Z)

F2(X,Y⊗Z)

F (a−1
X,Y,Z)

F2(X⊗Y,Z)

idF (X) ⊗′F2(Y,Z)

a′−1
F (X),F (Y ),F (Z)

F2(X,Y )⊗′idF (Z)

. (85)

To make the properties of a monoidal Frobenius functor F : C → D more obvious,
for a morphism [f : X → Y ] ∈ C we will display the morphism F (f) ∈ D in the string
diagrams of D by a shaded cylindrical tube containing the string diagram in C corre-
sponding to f , see Figure 5. The functoriality of F allows one to perform the graphical
calculus of C inside such tubes6. The weak (co)monoidal structure morphisms F0, F0

will be depicted by cups/caps, which open/close an empty tube, while for X, Y ∈ C the
morphisms F2(X, Y ), F2(X, Y ) will be depicted by merging/splitting of two tubes. The
(co)monoidality of F then translates to the identities (F1), (F2) in Figure 5 while the
commutative diagrams (84) and (85) to the ones in (F3).

As expected, the conditions (F1) and (F2) resemble the associativity/unitality (30) and
coassociativity/counitality (31) identities of an algebra in a monoidal category, while (F3)
the Frobenius property (32). Further developing the analogy with Frobenius algebras,
the following property of monoidal Frobenius functors is formulated to correspond to
separability

4.3. Definition. A monoidal Frobenius functor F : C → D is called separable if there
exists a morphism ψF : 1

′ → F (1) such that for all X, Y ∈ C one has

= , (86)

where ψ2
F = F2(1,1) ◦ (ψF ⊗ ψF ). We call such morphism ψF a section of F .

We note that the use of the squared section ψ2
F in (86) is just a convention aimed at

resembling our preferred condition (42) for separable Frobenius algebras. In principle the
separability of F can also be defined in terms of a morphism ζF : 1

′ → F (1) by analogy
with (40); the requirement that ζF = ψ2

F for some section ψF can be relaxed. We also
note that the separability condition (86) is more general than the one usually found in
the literature (see e.g. [MS]), which corresponds to having ψF = F0 (i.e. analogous to the
condition for a Frobenius algebra to be ∆-separable).

6Admittedly, since the graphical calculus for monoidal categories is ‘planar’, it would be more appro-
priate to use flat shaded regions instead of tubes in such notation. Our goal is however to eventually use
Frobenius functors for ribbon categories, for which the tube notation will be more appropriate.
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F (f)= , F2(X, Y )= , F0= , F2(X, Y )= , F0= ,

= , = = (F1)

= , = = (F2)

= , = (F3)

= (F4) = (F4’)

= (F5)

Figure 5: Graphical calculus for a monoidal Frobenius functor F : C → D. The iden-
tities (F1)–(F3) correspond to the coherence of the (co)monoidal structure and the
commutative diagrams (84), (85). If C and D are braided, (F4) (resp. (F4’)) is the
identity (90) (resp. (91)) which holds if F is in addition braided (resp. cobraided). If
C and D are ribbon, (F5) is the identity (92) in case F is in addition ribbon. For a
ribbon Frobenius functor (F4) and (F4’) imply each other.
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4.4. Convention. When referring to a pair (F, ψF ) as a separable Frobenius functor,
the entry ψF : 1

′ → F (1) will mean a fixed choice of an invertible section for F . If F
is pivotal (see Definition 4.5 below) with D spherical and fusion, the invertibility can be
assumed without loss of generality (see Proposition 3.5 and Remark 4.10 below).

It was noted in [DP] that a monoidal Frobenius functor F : C → D preserves dualities.
Indeed, if an object X ∈ C has a left dual X∗ with evaluation/coevaluation morphisms
evX : X∗ ⊗ X → 1, coevX : 1 → X ⊗ X∗, one has the following pairing/copairing mor-
phisms between F (X) and F (X∗):

, , (87)

which are inverses of each other (by which we mean the zig-zag identities hold, see [TV,
Sec. 1.5.1]) as shown by the following computation

= = = (88)

(similarly one shows the other zig-zag identity). In particular, if C, D are left rigid, there
exists a unique family of isomorphisms {F1(X) : F (X∗)

∼−→ F (X)∗}X∈C such that

= , = . (89)

4.5. Definition. Let C, D be monoidal categories and F : C → D a monoidal Frobenius
functor.

• If C = (C, δ), D = (D, δ′) are pivotal, then F is said to be pivotal if it preserves the
pivotal structure, i.e. if for all X ∈ C diagram (17) commutes.

• If C = (C, c), D = (D, c′) are braided, then F is called braided if F2 preserves the
braidings, i.e. for all X, Y ∈ C one has

F2(Y,X) ◦ c′F (X),F (Y ) = F (cX,Y ) ◦ F2(X, Y ) . (90)

Similarly, F is called cobraided if F2 preserves the braidings, i.e. one has

c′F (X),F (Y ) ◦ F2(X, Y ) = F2(Y,X) ◦ F (cX,Y ) . (91)
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• If C, D are ribbon with the twist morphisms {θX}X∈C, {θ′X′}X′∈D, then F is called
ribbon if it is braided and preserves the twists, i.e. for all X ∈ C one has

θ′F (X) = F (θX) . (92)

Like in the case of strong monoidal functors, one shows that if F is pivotal then the
same family of morphisms {F1(X)}X∈C preserves the right duals:

= , = . (93)

Graphically the identities (90), (91) and (92) are depicted respectively by the equa-
tions (F4’), (F4’) and (F5) in Figure 5. For a ribbon Frobenius functor F : C → D, (F4)
and (F5) hold by definition, while (F4’) holds as a consequence of the following

4.6. Proposition. A braided Frobenius functor F : C → D between ribbon categories C,
D is ribbon if and only if it is pivotal and cobraided.

Proof. Given that F is ribbon, one shows that it is pivotal by adapting a similar argu-
ment for strong monoidal ribbon functors. For an arbitrary X ∈ C, one has by definition

θ′F (X) = ⇒ δ′F (X) = . (94)

Using the canonical isomorphism F1(X) : F (X∗) → F (X)∗ as in (89) (which along with
its inverse is not always labelled explicitly in this proof) as well as (F4), (F5) one gets:

δ′F (X) = = =

= = =
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= (F ∗
1 (X))−1 ◦ F1(X

∗) ◦ F (δX) , (95)

which is exactly the condition for F being pivotal.
Having shown that F is pivotal, we can use the identities (93) to show that F is also

cobraided. The argument follows from (F1)–(F5) and resembles the one that a symmetric
commutative Frobenius algebra is automatically cocommutative:

= = =

= = = . (96)

The other implication is shown by similar computations.

4.7. Remark. If F : C → D is a ribbon Frobenius functor, the identities (F1)–(F5), as
well as the pivotality of F , allow one to deform the tubes in the graphical calculus of D
up to an isotopy preserving the string diagrams in C inside the tubes. This makes the
notation very intuitive to use.

4.8. Preservation of Frobenius algebras. Let F : C → D be a monoidal Frobenius
functor and let A = (A, µ, η,∆, ε) a Frobenius algebra in C. Using the relations (F1)–
(F3) it is easy to show that F (A) is a Frobenius algebra in D (see [DP, Cor. 5]) with
multiplication F (µ) ◦ F2(A,A), unit F (η) ◦ F0, comultiplication F2(A,A) ◦ F (∆) and
counit F0 ◦ F (ε), or graphically:

, , , . (97)

Similarly, for a left module L = (L, λ) ∈ AC and a right module K = (K, ρ) ∈ CA, the
images F (L) and F (K) are left and right F (A)-modules respectively with the actions
F (λ) ◦ F2(A,L) and F (ρ) ◦ F2(K,A), or

, . (98)
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The property (F3) guarantees that the F (A)-comodule structures on F (L) and F (K),
obtained by similarly transporting the coactions on L and K, coincide with the ones
induced by F (A) as in (39).

In this section we look at variations of this observation when F is in addition separable,
pivotal, (co)braided or ribbon.

We start by noting that in general F (A) need not be separable even if A is. Unsur-
prisingly one has instead:

4.9. Proposition. If F : C → D is a separable monoidal Frobenius functor and A ∈ C a
separable Frobenius algebra, then F (A) ∈ D is a separable Frobenius algebra as well.

Proof. If ψF : 1
′ → F (1) is a section of F in the sense of Definition 4.3 and ψ : 1 → A

is a section of A in the sense that (42) holds, then 1
′ ψF−→ F (1)

F (ψ)−−−→ F (A) is a section of
F (A).

4.10. Remark. By the above proposition, for a separable monoidal Frobenius functor
F : C → D, F (1) ∈ D is always a separable Frobenius algebra. If D is pivotal and F (1)
symmetric, a similar computation as in (49) shows that ψF : 1

′ → F (1) is a section of the
functor F if and only if it is a section of the algebra F (1). We note that the assumption
for F to be separable is necessary in this case: in general F need not be separable even if
F (1) is a separable Frobenius algebra and so a section of F (1) need not be a section of
F .

As expected, the definitions of pivotal and (co)braided Frobenius functors are designed
to preserve the corresponding properties of Frobenius algebras:

4.11. Proposition. Let F : C → D be a monoidal Frobenius functor and A ∈ C a
Frobenius algebra.

i) If C, D, F are pivotal and A is symmetric, then F (A) is symmetric as well.

ii) If C, D are braided, F is (co)braided and A is (co)commutative, then F (A) is
(co)commutative as well.

Proof. For i) one uses (F1)–(F3) and (89),(93) to compute

= = = = · · · = . (99)

For ii), in case of F being braided and A commutative, (F4) yields:
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= = . (100)

Similarly, in case of F being cobraided and A cocommutative one uses (F4’).

For the rest of the section, let C and D be pivotal multifusion categories, F : C → D a
pivotal Frobenius functor and A = (A,ψ) ∈ C a symmetric separable Frobenius algebra.
We will compare the categories of bimodules ACA and F (A)DF (A) under various separability
assumptions.

4.12. Definition. We call F weakly separable with respect to A (or simply the pair
(F,A) weakly separable) if the symmetric Frobenius algebra F (A) ∈ D is separable.

Let (F,A) be weakly separable and ψF : 1
′ → F (A) an invertible section of F (A). We

define natural transformations FA
⊗ : F (−)⊗F (A)F (−) ⇒ F (−⊗A−) and F

A

⊗ : F (−⊗A−) ⇒
F (−)⊗F (A) F (−) by setting the following balanced maps for all K ∈ CA, L ∈ AC:

FA
⊗ (K,L) := , F

A

⊗(K,L) := . (101)

For an arbitrary bimodule M ∈ ACA, the object F (M) is an F (A)-F (A)-bimodule with
the actions (98) (for K = L =M). This induces from F a functor FA : ACA → F (A)DF (A).

4.13. Proposition. If (F,A) is weakly separable, FA = (FA, FA
2 , F

A
0 , F

A

2 , F
A

0 ) where

FA
2 (−,−) := FA

⊗ (−,−), F
A

2 (−,−) := F
A

⊗(−,−) and FA
0 = F

A

0 = idF (A) is a pivotal
Frobenius functor.

Proof. Checking the identities (F1)–(F3) is straightforward if one keeps track of the
non-trivial associators and unitors of the categories ACA and F (A)CF (A) which are given
by the balanced maps analogous to the ones in (67). We sketch the first identity of (F3)
only, i.e. that the diagram (84) commutes.

Starting with the down-down-right path in (84) one computes:

= = , (102)
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where the (ψF )
2
r-insertions on the left-hand side arise from composing the balanced maps

as in (65), in the first step we used that F is a monoidal Frobenius functor and in
the second step we used the idempotent splitting property. On the right-hand side one
recognises the associator of ACA (67) and so it yields the right-down-down path in (84).

That FA is pivotal follows from F being pivotal and the morphisms F1(M) as in (89),
(93) for X =M ∈ ACA being F (A)-F (A)-bimodule morphisms.

Note that for (F,A) weakly separable and K ∈ CA, L ∈ AC, the idempotent splitting

property of F (A) implies that F
A

⊗(K,L) ◦ FA
⊗ (K,L) = idF (K)⊗F (A)F (L). One can check

that the other composition FA
⊗ (K,L) ◦ F

A

⊗(K,L) yields an idempotent on F (K ⊗A L),
which in general is not identity. Trying to circumvent this leads to a stronger separability
condition on the pair (F,A), which is easy to formulate noting that the forgetful functor
U : ACA → C has a natural structure of a pivotal Frobenius functor (see Example 4.18
below) and the composition of monoidal Frobenius functors is again a monoidal Frobenius
functor.

4.14. Definition. Let F : C → D be a pivotal Frobenius functor between pivotal multi-
fusion categories and A ∈ C a symmetric separable Frobenius algebra. We call F

• strongly separable with respect to A (or simply the pair (F,A) strongly separable)
if the pivotal Frobenius functor F ◦ U : ACA → D is separable.

• full with respect to A (or simply the pair (F,A) full) if the functor FA : ACA →
F (A)DF (A) is surjective on the spaces of morphisms.

The condition for (F,A) to be strongly separable is equivalent to the existence of a
section ψF : 1

′ → F (A) such that for all M,N ∈ CA one has

= , or equivalently = (103)

(we will sometimes denote ψF -insertions as in the second equality in (103); for the con-
vention of the horizontal A-labelled lines recall (61)). The map ψF is then also a section
for the symmetric Frobenius algebra F (A), so naturally (F,A) is also weakly separa-
ble. Since the morphisms (101) for K = M and L = N are (as balanced morphisms
F (M) ⊗F (A) F (N) ⇄ F (M ⊗A N)) inverses of each other in this case, from Proposi-
tions 2.5 and 4.13 one obtains

4.15. Proposition. If (F,A) is strongly separable, FA = (FA, FA
2 , F

A
0 ) where F

A
2 (−,−)

:= FA
⊗ (−,−), FA

0 := idF (A) is a (strong monoidal) pivotal functor ACA → F (A)DF (A). If
in addition (F,A) is full, FA is a full embedding of pivotal categories.
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4.16. Examples. The following examples serve to illustrate the use of monoidal Frobe-
nius functors. We will rely on some of them in the later sections.

4.17. Example. For a (multi)tensor category C, a linear monoidal Frobenius functor
F : Vectk → C is determined by the Frobenius algebra F (k), which is separable exactly
when F is separable. Moreover, if C is pivotal/braided, then by Proposition 4.11 F is
pivotal/(co)braided precisely when F (k) is symmetric/(co)commutative.

In the following examples we let C be a pivotal multifusion category and (A,ψ) a
symmetric separable Frobenius algebra in C. The qualifiers ‘pivotal’ and ‘symmetric’ can
in principle be dropped, but this is the setting which will be the most relevant for us in
later sections.

4.18. Example. The forgetful functor U : ACA → C is a separable pivotal Frobenius
functor with the section ψ : 1 → A = U(1

ACA) and the structure morphisms

U2(M,N) := , U0 := η , U2(M,N) := , U0 := ε , (104)

whereM,N ∈ ACA and η : 1 → A and ε : A→ ε are the unit and the counit of A. Indeed,
similar computations as the one in the proof of Proposition 4.13 for the case F = Id
show that the diagrams (84), (85) commute. Note that the definitions for the structure
maps U2, U2 in (104) are not to be read as given by balanced maps: the domain (resp.
codomain) of U2(M,N) (resp. U2(M,N)) is indeed M ⊗N .

Note that as U is separable, it is strongly separable with respect to any symmetric

separable Frobenius algebra (A′, ψ′) in ACA. By Proposition 4.11 (U(A′),1
η−→ A

ψ′
−→ A′)

is a symmetric separable Frobenius algebra in C, whose (co)multiplication morphisms are
exactly the balanced maps in C that would define the (co)multiplication morphisms of
A′ in ACA (in particular, U(1

ACA) gives back the algebra (A,ψ) in C). As the A-actions
on U(A′) can be used to equip each U(A′)-U(A′)-bimodule with a structure of an A-A-
bimodule, U is also full with respect to A′.

4.19. Example. The induced bimodule functor [Ind: C → ACA] := A⊗−⊗A is a pivotal
Frobenius functor with structure morphisms

Ind2(X, Y ) := , Ind2(X, Y ) := ,

Ind0 := ∆ , Ind0 := µ , (105)

where X, Y ∈ C and µ : A ⊗ A → A and ∆: A → A ⊗ A are the multiplication and
comultiplication of A. Again, if C is pivotal and A symmetric, Ind is also pivotal.
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Note that if C is multifusion and 1 =
⊕

1i is the decomposition of the monoidal unit
into simple objects, each 1i is trivially a ∆-separable Frobenius algebra in C. The category
of bimodules 1i

C1i
is then equivalent to the component category Cii = 1i⊗C ⊗1i and the

projection functor 1i ⊗ − ⊗ 1i is exactly the bimodule induction functor. In particular,
if C is pivotal then 1i is also symmetric, and if C is in addition indecomposable, the
equivalence Z(C) ≃ Z(Cii) as in Proposition (2.4) is pivotal.

4.20. Example. Let C, (A,ψ) be as in the previous example with C in addition ribbon.
The (left) local induction functor El

A : C → C (see [FFRS, Sec. 3]) is defined on an arbitrary
object X ∈ C and a morphism f : X → Y by

El
A(X) := imP l

A(X) = im , El
A(f) := , (106)

where one can check that the morphism P l
A(X) ∈ EndC(X ⊗ A) is an idempotent (when

A is ∆-separable this is done in [FRS1, Lem. 5.2]). El
A is a ribbon Frobenius functor with

the structure morphisms

(El
A)2(X, Y ) := , (El

A)2(X, Y ) := ,

(El
A)0 := πlA(1) ◦ ψAr ◦ η , (El

A)0 := ε ◦ ψAr ◦ ılA(1) , (107)

where for arbitrary X ∈ C, πlA(X) : X ⊗A⇄ El
A(X) : ılA(X) are the projection/inclusion

morphisms, splitting the idempotent P l
A(X) (as usual depicted in the graphical calculus

by horizontal lines). The relations (F1)–(F5) are straightforward to check using the
idempotent splitting property, for example (F4) and (F5) follow from the computations

= = = (108)
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and

=
(∗∗)
= = , (109)

where in the steps (∗) and (∗∗) one uses the identity ılA(X) = ılA(X) ◦ P l
A(X) and the

properties of the algebra A (cf. [FFRS, Lem. 3.5, Lem. 3.11)]).
Flipping the undercrossings and overcrossings in the definition of P l

A(X) in (106) yields
a different idempotent P r

A(X). They can be used to define the analogous right local in-

duction functor Er
A : C → C, which is also a ribbon Frobenius functor. The functors E

l/r
A

are in general not separable (for example they are not if A is a symmetric ∆-separabale
commutative haploid Frobenius algebra which is non-isomorphic to 1, see discussion be-
low (146)).

The Frobenius algebras E
l/r
A (1) are symmetric and commutative by Proposition 4.11

and are known as the left/right centres of A, see [FRS1, Def. 5.8], [FFRS, Lem. 3.13]. We
are not aware of whether the left/right centres of A are in general separable. For example,
if A is commutative then the left/right centres coincide with A, which is by assumption
separable. As another example one can take C = Vectk, in this case the left/right centres
again coincide and yield the usual centre C(A) of the algebra A, which for a separable
algebra A is isomorphic to k⊕n and hence separable as well.

4.21. Remark. Example 4.20 is best understood in terms of 3-dimensional TQFTs ob-
tained from a modular fusion category (MFC) C via the Reshetikhin–Turaev construction.
In it, the objects of C are used to label the framed line defects, whereas a symmetric sep-
arable Frobenius algebra (A,ψ) in a MFC C constitutes a datum for a surface defect,
constructed using the internal state-sum procedure (this was briefly explained in Sec-
tion 1, see [KSa, FSV, CRS2] for more details). For a line defect X ∈ C, the images

E
l/r
A (X) have an interpretation of a line defect obtained by wrapping X with a cylin-

drical surface defect with the label (A,ψ) (the two functors E
l/r
A correspond to the two

possible orientations of this defect). The structure morphisms (107) correspond to merg-
ing/splitting two cylindrical defects and opening/closing an empty cylindrical defect. The
conditions (F1)–(F5) follow automatically, since the surface defect is topological, i.e. can
be deformed.

An interesting observation is that by Example 4.17 an arbitrary ribbon Frobenius
functor F : Vectk → Vectk is the same as a 2-dimensional TQFT (i.e. a commutative
Frobenius algebra in Vectk, see [Koc]), and so can be equivalently interpreted as a surface
defect in the trivial 3-dimensional TQFT. In this simple case such surface defects go
beyond the aforementioned internal state-sum procedure as F (k) need not be separable
and the state-sum constructions always yield separable algebras. We leave it for the future
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work to determine under what conditions a ribbon Frobenius functor F : C → D between
the MFCs C, D can be used to define a surface defect and whether it is possible to obtain
non-semisimple surface defects in case C or D is not equivalent to Vectk.

5. Generalised orbifolds

The notion of an orbifold datum is of central importance to the results of this paper. The
motivation to introduce it stems from the generalised orbifold construction of TQFTs,
which given a defect TQFT Zdef and an orbifold datum A produces a new (ordinary)
TQFT ZorbA, see [CRS1]. As briefly reviewed in the introductory Section 1, when spe-
cialised to the 3-dimensional defect TQFTs of Reshetikhin–Turaev (RT) type [CRS2], the
generalised orbifolds can be shown to be of RT type as well [CRS3, CMRSS2] and so an
orbifold datum A can be seen as an algebraic input in a MFC C which produces another
MFC CA [MR1].

In this section we review the notion of an orbifold datum A in a MFC C, the con-
struction of the MFC CA associated to it, as well as two ways to map A to other orbifold
data.

5.1. Orbifold data and the associated MFCs. Throughout this section, let C be
a MFC. Recall that if A = (A,ψ) is a symmetric separable Frobenius algebra in C, so
is A⊗n where the structure morphisms are as in (35). In the following definition we will
need some flexibility when working with an A-A⊗A-bimodule T : by adapting (37) such
bimodule can be seen as an object T ∈ C having one left A-action and two right A-actions
satisfying

= , = , i ∈ {1, 2} , (110)

where the indices 1, 2 are used to distinguish the two right actions and similarly the left
action is indicated by 0 whenever we find it necessary to avoid ambiguity. For a left
module L ∈ AC and a right module K ∈ CA, the relative tensor products K ⊗0 T and
T ⊗i L, i ∈ {1, 2} are defined as images of idempotents like the one in (61) using the
corresponding action of T . In particular, T ⊗i T , i ∈ {1, 2} are A-A⊗3-bimodules. We
also adapt the notations (43) as follows:

= , = , i ∈ {1, 2} . (111)

5.2. Definition. An orbifold datum in C is a tuple A = (A, T, α, α, ψ, ϕ) where

• (A,ψ) is a symmetric separable Frobenius algebra in C;
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• T is an A-A⊗2-bimodule in C;

• α : T ⊗2 T → T ⊗1 T is an A-A⊗3-bimodule isomorphism with the inverse α;

• ϕ ∈ k×;

which satisfies the conditions (O1)–(O8) in Figure 6.

5.3. Remark. The Definition 5.2 of an orbifold datum A = (A, T, α, α, ψ, ϕ) is slightly
different in our main source references [CRS3, MR1, MR2, CMRSS2]. There the algebra
A was required to be ∆-separable and the ψ entry was instead taken to be an A-A-
bimodule isomorphism A → A. The reason for this difference is our use of the more
general separability condition (42). All examples in the references can be rewritten in
our setting by using the rescaled algebras as in Example 3.9. This also explains minor
differences in the identities (O1)–(O8) in between the two settings as rescaling also changes
the action/coaction on modules.

That α, α are A-A⊗3-bimodule morphisms means that the corresponding balanced
maps commute with the various A-(co)actions as follows7:

= , = . (112)

The main results of this paper explore three further categories which one can construct
given an orbifold datum in a MFC C as described in [MR1, Sec. 3].

5.4. Definition. Let A be an orbifold datum in C. Define the category CA to have

• objects: tuples M = (M, τ1, τ2, τ1, τ2), where

– M ∈ ACA is an A-A-bimodule;

– τ1 : M ⊗0 T → T ⊗1M , τ2 : M ⊗0 T → T ⊗2M are A-A⊗3-bimodule isomorphisms
with inverses τ1, τ2, denoted by

τ1 = , τ2 = , τ1 = , τ2 = , (113)

such that the identities in (T1)–(T7) in Figure 7 are satisfied; they will be referred
to as the T -crossings of M ;

7These identities are best understood using the surface diagrams of the maps α, α, see (5). The surface
diagrams can also be interpreted as giving 3-morphisms in a tricategory [BMS], in fact an orbifold datum
can be seen as an algebraic structure within a tricategory (see [CMS, CRS1, CMRSS1]).
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• morphisms: for M,N ∈ CA, a morphism f : M → N is a morphism of the underlying
A-A-bimodules such that

= , i = 1, 2 . (114)

Similarly one defines two categories CiA, i = 1, 2, whose objects are triples (M, τi, τi), with
M ∈ ACA and τi, τi a T -crossing and its inverse, i.e. satisfying (T1) and (T4)–(T7) for
i = 1 and (T3)–(T7) for i = 2, and a morphism f ∈ CiA(M,N) being a bimodule morphism
satisfying (114) for the given value of i.

For an orbifold datum A, the categories CA, C1
A, C2

A are multifusion and pivotal (see
[MR1, Prop.3.13]), with the tensor product and dualities inherited from ACA. In partic-
ular, for two objects M , N in either of these categories, the T -crossings of M ⊗A N , the
monoidal unit A and a dual M∗ are defined by

, , , , , , (115)

with i having values in {1, 2}, {1} and {2} correspondingly for CA, C1
A and C2

A. The iden-
tities (T6), (T7) imply that the evaluation/coevaluation morphisms of ACA satisfy (114).
We use the symbols ⊗A, ⊗1

A, ⊗2
A to denote the monoidal product in the categories CA, C1

A,
C2
A respectively.

5.5. Definition. We call an orbifold datum A simple if CA is fusion (i.e. if 1CA := A is
a simple object of CA) and haploid if both C1

A and C2
A are fusion.

Additionally, CA is ribbon with the braiding and twist morphisms for arbitraryM,N ∈
CA given by

cAM,N = ϕ2 · , θAM = ϕ2 · . (116)

One has (originally shown in [MR1, Thm. 3.17] and adapted in [Mul] for symmetric
separable Frobenius algebras, see Remark 1.1):

5.6. Theorem. For a simple orbifold datum A, the category CA is a MFC whose global
dimension is

Dim CA =
Dim C

ϕ8 · (trC ω2
A)

2
, (117)

with trC ω
2
A ̸= 0 holding automatically.



1250 VINCENTAS MULEVIČIUS

= (O1)

= (O2) = (O3)

= (O4) = (O5)

= (O6) = (O7)

= = = ·ϕ−2
(O8)

Figure 6: Conditions on an orbifold datum A = (A, T, α, α, ψ, ϕ). The origin of these
identities stems from the moves (6) on defects in 3-dimensional TQFTs, see [CRS1,
CMRSS1] for more details.
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= (T1) = (T2)

= (T3)

= (T4) = (T5) i ∈ {1, 2}

= (T6) = (T7) i ∈ {1, 2}

Figure 7: Conditions on an object (M, τ1, τ1, τ2, τ2 ∈ CA. The origin of these identities
stems from the moves (8) on defects in 3-dimensional TQFTs, see [CMRSS1] for more
details.
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For an arbitrary orbifold datum A = (A, T, α, α, ψ, ϕ) in a MFC C, let us look at some
constructions of objects/morphisms in the associated categories CA, C1

A, C2
A. Firstly, for

any left module L ∈ AC the A-A-bimodules T ⊗1 L and T ⊗2 L are naturally objects of
C1
A and C2

A respectively with the T -crossings given by

, , , . (118)

Indeed, in both cases the identities (T4), (T5) are implied by (O2), (O3) and the identi-
ties (T6), (T7) by (O6), (O7). Then for the first pair (T1) is obtained from (O1), while
for the second pair (T3) is obtained from an analogous identity as (O1) but involving
α, which is obtained by combining (O1), (O2) and (O3). Of particular importance later
will be such kind of objects obtained by setting L = A. In this case one has canonical
A-A-bimodule isomorphisms T ⊗1A ∼= T2, T ⊗2A ∼= T1 where T2 = T seen as a bimodule
by forgetting the first right A-action and similarly T1 = T by forgetting the second right
A-action. Simplifying the T -crossings (118) accordingly, one gets:

(T2, α, α) ∈ C1
A , (T1, α, α) ∈ C2

A . (119)

Another family of objects is given by the so called ‘pipe functor’ PA : ACA → CA,
see [MR1, Sec. 3.3]. It assigns to a bimodule M ∈ ACA an object of CA whose underlying
bimodule is

PA(M) := im , (120)

and the T -crossings τ1 and τ2 are

τ1 := , τ2 := , (121)

with the inverses τ1, τ2 defined similarly. We will sometimes refer to the image PA(M) ∈ CA
as a pipe object. The functor PA is both left and right adjoint to the forgetful functor
U : CA → ACA ([MR1, Prop. 3.11, Rem. 3.12]) and so can be treated as the ‘free construc-
tion’ of an object in CA. Moreover one has:
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5.7. Proposition. Any object M ∈ CA is a subobject of a pipe object PA(M
′) for some

M ′ ∈ ACA, i.e. pipe objects generate CA.

Proof. The pair (U, PA) forms what in [MR1, App.A.2] was called a separable biadjunc-
tion: for the unit η̃ : IdCA ⇒ PA ◦U of U ⊣ PA and the counit ε : PA ◦U ⇒ IdCA of PA ⊣ U
one has ε ◦ η̃ = id. Hence M is a subobject of PA(U(M)).

5.8. Remark. Abusing the notation, we will also use the symbol PA to denote the func-
tor PA ◦ IndA = PA(A ⊗ − ⊗ A) : C → CA, i.e. the pipe functor applied to an induced
A-A-bimodule. Since induced bimodules generate ACA, by Proposition 5.7 the objects
{PA(X)}X∈C generate CA.

Finally, let us look at a way to obtain morphisms in CA. In particular we provide an
analogue of the map (57) projecting onto the A-module morphisms. LetM , N be arbitrary
objects of CA and f ∈ C(M,N) an arbitrary morphism of the underlying objects. Then
using the identities (O1)–(O8) and (T1)–(T7) one can show that the ‘averaged’ morphism

avg f := ϕ4 · (122)

commutes with the A-actions and satisfies (114) and therefore is a morphism in CA(M,N).
Moreover, the map f 7→ avg f is indeed the idempotent projecting onto the subspace
CA(M,N) ⊆ C(M,N). To show this note that if f is already in CA(M,N), one can
use (114), (T4) and (O8) to remove the two T -lines in (122).

5.9. Morita transports. Let C be a MFC and A = (A, T, α, α, ψ, ϕ) an orbifold datum
in it. In the following two sections we discuss two ways to obtain another orbifold datum
out of A. The first one was introduced in [CRS3] and involves changing (in the present
setting isometrically, see Definitions 3.13 and 3.16) the symmetric separable Frobenius
algebra (A,ψ) for a Morita equivalent one (B,ψ′).

Suppose (B,ψ′) is a symmetric separable Frobenius algebra in C and ARB an isometric
Morita module. We use the terminology as in [CRS3], where R was said to ‘transport A
along the Morita equivalence’. One then has (cf. [CRS3, Def. 3.7, Prop. 3.8]):

5.10. Definition and Proposition. Let A = (A, T, α, α, ψ, ϕ) be an orbifold datum
in a MFC C, (B,ψ′) a symmetric separable Frobenius algebra in C and ARB an isometric
Morita module.
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i) The Morita transport of A along R is the tuple R(A) := (B, TR, αR, αR, ψ′, ϕ) where

TR := im , αR := , αF := . (123)

ii) The Morita transport of an object M ∈ CA is defined to be the tuple R(M) :=
(MR, τR1 , τ

R
2 , τ1

R, τ2
R) where MR = R(M) = R∗ ⊗AM ⊗A R and

MR := im , τR1 := , τR2 := ,

τ1
R := , τ2

R := . (124)

Similarly one defines the transport R(N) of an object N ∈ CiA, i ∈ {1, 2}.

iii) R(A) is an orbifold datum in C and R(M), R(N) for M ∈ CA, N ∈ CiA, i ∈ {1, 2}
are objects of CR(A) and CiR(A) respectively.

iv) The functor R : ACA → BCB induces a ribbon equivalence R : CA → CR(A) and pivotal
equivalences R : CiA → CiR(A), i = 1, 2.

Proof. iii) Since TR ∼= R∗⊗A T ⊗A⊗2 R⊗2, the B-action on R induces a B-B⊗2-bimodule
structure on TR. The braidings in the definition (123) of αR, αR are such that the
identities (112) hold, i.e. so that αR : TR ⊗2 T

R ⇄ TR ⊗1 T
R : αR are B-B⊗3-bimodule

morphisms as needed.
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The identities (O1)–(O8) for R(A) can be checked by straightforward computations
using the same identities for A, the splitting of the idempotent defining TR and the
identities (76). For example, let us check (O1). In this case both sides are B-B⊗4-
bimodule morphisms. Let us simplify them by taking the relative tensor product idR⊗B−
⊗B⊗4 id(R∗)⊗4 and applying the A-A-bimodule isomorphism R⊗B R

∗ ∼= A. The left-hand
side of (O1) for R(A) can then be rewritten as the balanced map

=

(O1) for A
=

(76)
= . (125)

One recognises the right-hand side of (125) as the right-hand side of (O1) for R(A) (or
rather the morphism obtained after the relative tensor product idR⊗B −⊗B⊗4 id(R∗)⊗4 as
before). Note that the two ψ1-insertions together with the A-line between them constitute
the projector onto T ⊗1 R.

The identities (T1)–(T7) for R(M), R(N) are shown in the same way as the identi-
ties (O1)–(O8) for the orbifold datum R(A).

iv) The pivotal structures in CA, C1
A, C2

A are inherited from ACA and therefore preserved
by the functor R : ACA → BCB (see Proposition 3.20) since by definition one has MR =
R(M) as A-A-bimodules. Since the functor R on bimodules is fully faithful, so is the
induced functor on CA, C1

A, C2
A. It is also an equivalence, since it has the inverse R ⊗B

−⊗B R
∗. That R : CA → CA preserves braidings can be shown by a similar computation

as in iii) using the expressions (116).

5.11. Remark. A more natural way to prove the above proposition is the following:
Let AlgC be the monoidal bicategory of algebras in C, their bimodules and bimodule
morphisms (with the monoidal product being given by the tensor product of algebras in
C) and let AlgC(A) be the subcategory generated by the objects A and Aop (the opposite
algebra). Then the identities (O1)–(O8), (T1)–(T7) can be perceived as identities of 2-
morphisms in AlgC(A). The bicategory AlgC(A) is pivotal in the sense of [Ca, Sec. 2.2], i.e.
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the 1-morphisms have coinciding left/right adjoints which satisfy the analogous identities
as those for duals in a pivotal category. The isometric Morita module ARB provides
one with an equivalence R : AlgC(A)

∼−→ AlgC(B) preserving these structures, which is
defined analogously as the pivotal equivalence R : ACA → BCB in Proposition 3.20. The
1-morphisms TR, MR and the 2-morphisms αR, αR, τRi , τi

R, i ∈ {1, 2} in (123), (124)
are obtained by mapping T , M , α, α, τi, τi along the functor R and therefore they
preserve (O1)–(O8), (T1)–(T7).

5.12. Transports along ribbon Frobenius functors. The second way to trans-
port an orbifold datum A in a MFC C that we will consider is along a ribbon Frobenius
functor (see Definitions 4.2 and 4.5) F : C → D to another MFC D. Although F need not
always preserve orbifold data, we will see that it does so under a compatibility assumption
which we now explain.

Let F : C → D be a ribbon Frobenius functor and A = (A, T, α, α, ψ, ϕ) an orbifold
datum in C. Then F (A) ∈ D is a symmetric Frobenius algebra and F (T ) together with
the induced F (A)-actions is automatically an F (A)-F (A)⊗

′2-bimodule since one has

= = . (126)

Recall that if (F,A) is strongly separable (see Definition 4.14), one can fix a section
ψF : 1

′ → F (A) which serves as a section to the Frobenius algebra F (A) and without loss
of generality can be assumed to be invertible.

5.13. Definition. We call a ribbon Frobenius functor F : C → D between two MFCs C,
D compatible with an orbifold datum A = (A, T, α, α, ψ, ϕ) (or simply (F,A) compatible)
if

i) (F,A) is strongly separable with an invertible section ψF : 1
′ → F (A);

ii) there is a scalar ϕF ∈ k× such that the identity (O8) holds for (F (A), F (T ), ψF , ϕF ),
i.e. one has

= = = ϕ−2
F · idF (A) . (127)

Furthermore, we call (F,A) full if (F,A) is full.
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5.14. Remark. In case the section ψF : 1
′ → F (A) has the form ξ · [1′ F0−→ F (1)

F (ψ)−−−→
F (A)], ξ ∈ k×, the condition ii) in Definition 5.13 holds automatically with ϕF = ϕ/ξ.
This happens e.g. in our main example of condensation inversion below (see (156)–(158)).

The transport of orbifold data along a ribbon Frobenius functor is then defined in an
obvious way:

5.15. Definition and Proposition. Let F : C → D be a ribbon Frobenius functor
between two MFCs C and D, A = (A, T, α, α, ψ, ϕ) an orbifold datum in C and suppose
(F,A) is compatible with an invertible section ψF : 1

′ → F (A) of F and the scalar ϕF ∈ k×

as in (127).

i) The transport of A along F is the tuple F (A) := (F (A), F (T ), αF , αF , ψF , ϕF ),
where

αF := , αF := . (128)

ii) The transport of an object M = (M, τ1, τ2, τ1, τ2) ∈ CA is the tuple FA(M) :=
(F (M), τF1 , τ

F
2 , τ1

F , τ2
F ) where

τFi := , τi
F := , i ∈ {1, 2} . (129)

Similarly one defines the transport FA,i(N) of an object N ∈ CiA, i ∈ {1, 2}.

iii) F (A) is an orbifold datum in D and F (M), F (N) for M ∈ CA, N ∈ CiA, i ∈ {1, 2}
are objects of DF (A) and Di

F (A) respectively.

iv) The pivotal functor FA : ACA → F (A)DF (A) induces a ribbon functor FA : CA → DF (A)
and pivotal functors FA,i : CiA → Di

F (A), i ∈ {1, 2}. If in addition (F,A) is full, the

functors FA are full embeddings.

The proof below essentially argues that for an orbifold datum A = (A, T, α, α, ψ, ϕ)
in a MFC C and a ribbon Frobenius functor F : C → D to another MFC D which is
separable with respect to A, the identities (O1)–(O7) for F (A) hold automatically, and
(O8) is imposed by the compatibility condition (127). The need to treat (O8) separately
can be explained as follows: F does not preserve tensor products of algebras, i.e. in
general one has F (A⊗2) ≇ F (A)⊗

′2 and the identity (O8) is the only one in which the
tensor product relative to A⊗2 arises.
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Proof. We have already seen that (F (A), ψF ) is a symmetric separable Frobenius al-
gebra in D and F (T ) is a F (A)-F (A)⊗

′2-bimodule. It remains to show that the mor-
phisms in (128), (129) are (balanced maps defining) F (A)-F (A)⊗

′3 and F (A)-F (A)⊗
′2-

bimodule morphisms αF : F (T )⊗2F (T )⇄ F (T )⊗1F (T ) : α
F and τFi : F (M)⊗′

0F (T )⇄
F (T ) ⊗′

i F (M), i ∈ {1, 2}, and that the tuples F (A) and FA(M) satisfy the identi-
ties (O1)–(O8) and (T1)–(T7) respectively. Apart from (O8), which holds by definition
since (F,A) is compatible, all of this can be checked by straightforward computations
using the same identities for A and M ∈ CA, the identities (F1)–(F5) and the condition
for strong separability (103). For example (O1) is shown as follows:

=
(F4)
=

=
(F4)
= =

(O1)
=

(103)
= = . (130)

We note that in order to show (O4)–(O7) and (T6), (T7) for F (A) one needs F to be
pivotal, hence ribbon.

iv) Since the monoidal and pivotal structures in CA, DF (A) and CiA, Di
F (A), i ∈ {1, 2}

are inherited from ACA, F (A)DF (A), the induced functors are pivotal as well. To show that
FA : CA → DF (A) is ribbon, i.e. preserves the braiding, we perform the following auxiliary
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computation for arbitrary M,N ∈ CA:

(F4’)
=

(103)
=

(∗)
= , (131)

where in the step (∗) we have used the identity in [MR1, Lem. 3.4]. Precomposing both
sides of (131) with ϕ2

F · (idF (N) ⊗′ idF (M) ⊗′((ψF )
2
1 ◦ (ψF )

2
2)) and taking the partial right

trace with respect to F (T ), the left-hand side yields the expression (116) for the braiding
of F (M), F (N) ∈ DF (A), while the right-hand side yields (the balanced map corresponding
to) FA(cAM,N), since by the virtue of (F,A) being compatible, the identity (127) holds.

Finally, the proof that the functors FA,(i) : C(i)
A → D(i)

F (A), i ∈ {1, 2} are full embeddings
is the same as that of Proposition 4.15.

5.16. Remark. Our main example in Section 6.8 deals with a ribbon Frobenius functor
F : C → D which is compatible but not full with respect to an orbifold datum A in C.
In this case the functors FA,i, i ∈ {1, 2} do not need to be surjective on the spaces of
morphisms. However the functor FA still tends to be surjective, in fact if both A and F (A)
are simple orbifold data, FA : CA → DF (A) is automatically fully faithful (see [DMNO,
Cor. 3.26]). We also note that F (A) might fail to be simple even if A is (take for example
the diagonal functor C → C ⊕ C).

6. Condensation inversion

Given a commutative haploid symmetric ∆-separable Frobenius algebra B (to be called
a condensable algebra) in a modular fusion category (MFC) C the category C◦

B of its local
(or dyslectic) modules is again a MFC [KO] (to be called the B-condensation of C). It
was shown in [MR1, Sec. 4.1] that condensations of C are examples of MFCs associated to
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orbifold data in C (see Remark 6.7 below). In this section we explore the other direction
of this construction, i.e. we find an orbifold datum A in C◦

B whose associated MFC (C◦
B)A

gives back C.

6.1. Condensable algebras in MFCs. Let B be a commutative algebra in a braided
category C (see (34)). One can equip a right B-module M with two left actions

ρ+M := , ρ−M := . (132)

This gives two full embeddings CB → BCB whose images we denote by C+
B and C−

B respec-
tively. For an arbitrary bimodule N ∈ BCB the morphisms

p+N := , p−N := . (133)

are idempotents which (if they are split) project onto subobjects N± ∈ C+
B , N

− ∈ C±
B .

Indeed, one has for example:

= = = = = . (134)

i.e. the left action on N+ is exactly ρ+N+ .

6.2. Definition. A (right) B-module M ∈ CB is called local (or dyslectic) if one has
ρ+M = ρ−M . We denote the full subcategory of local modules in CB by C◦

B and identify it
with its image in BCB.

For a local module M ∈ C◦
B one has by definition

= = , = = . (135)

Furthermore, for an arbitrary N ∈ BCB the morphism

p◦N := p−N ◦ p+N = p+N ◦ p−N (136)

is an idempotent projecting onto a subobject N◦ of N in BCB, which is a local module
and will be called the localisation of N .
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6.3. Definition. A condensable algebra in a MFC C is a commutative haploid (i.e.
dim C(1, B) = 1) symmetric ∆-separable Frobenius algebra B ∈ C. We refer to the
category of local modules C◦

B as the B-condensation of C.

6.4. Remark. The term ‘condensable algebra’ is borrowed from applications of fusion
categories to condensed matter physics, see e.g. [Bur], [Kon, Def. 2.6], [CZW, Ex. 3.2.4].
Sometimes it is also used to refer to an étale algebra in a non-degenerate braided fusion
category, which is a haploid (or connected) commutative separable algebra, i.e. without
an assigned Frobenius structure (see e.g. [DMNO, Def. 3.1 & Ex. 3.3ii)]). Although it is
related to, it should not be considered as a synonym to the more general higher categorical
notion of a ‘condensation algebra’ [GJ].

The B-condensation C◦
B is a finitely semisimple ribbon category, with monoidal and

pivotal structures inherited from BCB, the braiding morphisms c◦M,N for all objectsM,N ∈
C◦
B are defined by

c◦M,N := , (c◦M,N)
−1 := , (137)

and the twist θ◦M of an arbitrary objectM ∈ C◦
B being equal to the twist of the underlying

object in C, i.e. θ◦M := θM (note that one automatically has θB = idB since B is the tensor
unit in C◦

B). It was proven in [KO] and [DMNO, Cor. 3.30] that the B-condensation C◦
B is

in fact a MFC. Its global dimension is given by

Dim C◦
B =

Dim C
(dimC B)2

, (138)

where the categorical dimension dimC B of the condensable algebra B ∈ C is automatically
non-zero, see e.g. [KMRS, Lem. 2.7].

6.5. Remark.

i) The B-labelled strands in the graphical calculus of C will be regarded as unframed
and undirected as B has a trivial twist and a canonical isomorphism B ∼= B∗.

ii) Note that altering Definition 6.3 to require a condensable algebra B ∈ C to be
separable instead of ∆-separable does not yield different categories C◦

B, C+
B , C−

B .
Indeed, since B is haploid, any other Frobenius structure on B results in a rescaling
Bζ , ζ ∈ k× so that BCB and Bζ

CBζ
(along with the corresponding subcategories) are

pivotal-equivalent, see Proposition 3.20 and Remark 3.21.

Using the results of Section 5.12 one can quickly relate the orbifold data in the con-
densation C◦

B and those in the original MFC C.
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6.6. Proposition. Let A be a candidate orbifold datum in C◦
B (i.e. a tuple (A, T, α, α,

ψ, ϕ) as in Definition 5.2 which does not a priori satisfy (O1)–(O8)). Then

i) The forgetful functor U : C◦
B → C is a ribbon Frobenius functor.

ii) A is an orbifold datum in C◦
B if and only if U(A) is an orbifold datum in C.

iii) The induced functor UA : (C◦
B)A → CU(A) is an equivalence.

Proof. i) We know from Example 4.18 that the forgetful functor U : BCB → C is a pivotal
Frobenius functor. That its restriction to C◦

B is also ribbon follows from the definition (137)
of the braidings in C◦

B as shown by the following calculation:

= = = . (139)

ii) Let A be an orbifold datum. From the argument in Example 4.18 follows that U
is strongly separable and full with respect to the symmetric separable Frobenius algebra

(A,ψ) and has the section ψU = [1
η=U0−−−→ B

ψ−→ A]. By Remark 5.14 (U,A) is compatible,
so that U(A) is an orbifold datum.

Conversely, if U(A) is an orbifold datum, the identities (O1)–(O8) for U(A) correspond
to the same identities for A written in terms of B-balanced maps.

iii) By Proposition 2.3, we need to show that UA is surjective, i.e. that every object of
CU(A) is a subobject of UA(M) for someM ∈ (C◦

B)A. By Remark 5.7, any object of CU(A) is
a subobject of PU(A)(N) where N is a U(A)-U(A)-bimodule and PU(A) : U(A)CU(A) → CU(A)
is the pipe functor. A U(A)-U(A)-bimodule N ∈ C with the induced B-actions in general
need not be a local B-module, however in case it is, the definition (120) for PU(A)(N) can
be read as the B-balanced map in C defining PA(N) where PA : A(C◦

B)A → (C◦
B)A is the

pipe functor for the orbifold datum A, i.e. one has UA ◦ PA(N) ∼= PU(A)(U(N)).
We claim that for arbitrary N ∈ U(A)CU(A) one has PU(A)(N) ∼= PU(A)(U(N

◦)), where
N◦ denotes localisation of N with respect to the induced B-actions. Indeed one has:

= = = = ,

(140)
where we have used that the actions of U(A) on U(T ) are B-balanced and U(A), U(T )
are already local B-modules. On the right-hand side one recognises the idempotent p◦N
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projecting onto N◦. Pre- and postcomposing the both sides with the ψU -insertions results
in the idempotent defining PU(A) as needed.

We have shown that the pipe object PU(A)(N) for an arbitrary N ∈ U(A)CU(A) is
isomorphic to UA ◦ PA(N

◦), i.e. in the essential image of UA, so that UA is surjective as
needed.

6.7. Remark. It was shown in [CRS3, Prop. 3.15] that a condensable algebra B ∈ C
yields an orbifold datum

B = (B, BBBB, α = α = , ψ = η, ϕ = 1) , (141)

where the commutativity of B implies the relations (110), (112) and hence that B can
be treated as a B-B⊗2-bimodule and α, α as B-B⊗3-bimodule morphisms. Furthermore
in [MR1, Thm. 4.1] it was shown that the associated MFC CB is equivalent to the conden-
sation C◦

B. Both of these results follow from Proposition 6.6: If 1 is the trivial orbifold
datum in C◦

B, one checks that B = U(1) and consequently (C◦
B)1 ≃ C◦

B ≃ CB. We note
that a similar equivalence as in 6.6iii) does not in general apply for the embeddings
UA,i : (C◦

B)
i
A → CiU(A), i ∈ {1, 2}: It can be inferred from the proof of [MR1, Thm. 4.1] that

C1
B ≃ C+

B , C2
B ≃ C−

B as pivotal categories, however one obviously has (C◦
B)

1
1
≃ (C◦

B)
2
1
≃ C◦

B.

6.8. Inversion orbifold datum. One of the main results of this paper is

6.9. Theorem. Let C be a MFC, A an orbifold datum in C and B ∈ C a condensable
algebra. Then there is an orbifold datum in the condensation C◦

B whose associated braided
category is equivalent as ribbon multifusion category to CA.

Specialising this statement to A = 1 (the trivial orbifold datum in C) one immediately
gets

6.10. Corollary. There is a simple orbifold datum in the condensation C◦
B whose as-

sociated MFC is equivalent to C.
In the remainder of this section we prove Theorem 6.9 by constructing the orbifold

datum in its statement and then write it out explicitly for the case in Corollary 6.10. This
is done in several steps where we

(1) introduce a certain ribbon Frobenius functor I◦ : C → C◦
B;

(2) show that for an arbitrary orbifold datum A in C, I◦ is compatible with respect to a
certain Morita transport AC = RC(A); this automatically yields an orbifold datum
I◦(AC) in C◦

B;

(3) show that the functor CAC
→ (C◦

B)I◦(AC) as in Proposition 5.15iv) is an equivalence
so that one has CA ≃ CAC

≃ (C◦
B)I◦(AC);

(4) unpack the definitions in for the case of trivial orbifold datum A = 1.
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Step (1). The functor I◦ = I◦B : C → C◦
B is defined on an object X ∈ C and a morphism

[f : X → Y ] ∈ C by

I◦(X) = im , I◦(f) = . (142)

Using the commutativity of B and the isomorphisms B ⊗B B ∼= B one can check that
I◦(X) ∼= im p◦B⊗X⊗B, i.e. I

◦(X) is obtained by localising the induced bimodule B⊗X⊗B ∈
BCB (cf. Example 4.20 and [FFRS, Sec. 4]).

6.11. Lemma. I◦ : C → C◦
B is a ribbon Frobenius functor with the structure morphisms

given by I◦0 := idB, I◦0 := idB and the B-balanced maps

I◦2 (X, Y ) := , I◦2 (X, Y ) := . (143)

Proof. Since C◦
B inherits the braidings and the twists from C, this is shown analogously

as for the ribbon Frobenius functor El
A : C → C (see Example 4.20). In fact, one has

El
B = U ◦ I◦, where U : C◦

B → C is the forgetful functor.

Specific to the functor I◦ are the two natural transformations ρ : I◦(−⊗B) ⇔ I◦(−) :
γ, which for X ∈ C are defined/denoted by

ρX = := , γX = := . (144)

It follows immediately that one has the identities

= , = idI◦(X) , = , (145)

(similar identities also hold for γX , comultiplication and counit of B). Using the structure
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morphisms (143), for all X, Y ∈ C one also gets:

= , = . (146)

Using the definitions (144) it is easy to see that the right-hand side of the second identity
in (146) is an idempotent, projecting onto I◦(X)⊗B I

◦(Y ). In particular, I◦ need not be
separable, since I◦(X)⊗B I

◦(Y ) is in general a proper subobject of I◦(X ⊗ Y ) in C◦
B and

so the morphism I◦2 (X, Y ) cannot have a left inverse. I◦2 (X, Y ) is however a right inverse
of I◦2 (X, Y ), i.e. one has

= . (147)

This follows from I◦(1) = B being the tensor unit in C◦
B and acting on the objects in

the image of I◦ by the unitor morphisms (recall that outside the cylinders depicting I◦

in (147) the graphical calculus is of the category C◦
B and so the tensor unit and the unitor

morphisms need not be displayed).
Finally, from definitions (142) and (144) follows that for an arbitrary bimoduleM ∈ C◦

B

one has

im ∼= M , im ∼= I◦(X) . (148)

In particular, M is a subobject of I◦(U(M)) in C◦
B, where U : C◦

B → C is the forgetful
functor.

Step (2). It is easy to find a family of symmetric separable Frobenius algebras with
respect to which the functor I◦ is strongly separable. For that we note that since
dim C(1, B) = 1 and ε ◦ η = dimC B, the scissors identity (29) implies

=
Dim C
dimC B

· . (149)
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Let (A,ψ) be an arbitrary symmetric separable Frobenius algebra in a MFC C and let
(AC , ψC) be the algebra

AC := C∗ ⊗ A⊗ C , ψC :=
1

(Dim C)1/2
· . (150)

whose structure morphisms are as in (58). Recall that according to Example 3.18 the
bimodule RC := A(A⊗ C)AC

is an isometric Morita module.

6.12. Lemma. For an arbitrary module LC ∈ AC
C the following identity holds:

=
1

dimC B
· . (151)

Proof. As RC is a Morita module, one can without loss of generality take LC = C∗ ⊗ L
for some L ∈ AC. One then has:

1

Dim C
· (149)

=
1

dimC B
· =

1

dimC B
· (152)

as needed.

6.13. Corollary. The ribbon Frobenius functor I◦ is strongly separable with respect to
(AC , ψC). Moreover, the algebra I◦(AC) has a section of the form

ψI◦ := (dimC B)1/2 · I◦(ψC) . (153)

Proof. For all modules KC ∈ CAC
and LC ∈ AC

C one computes

= dB
(146)
= dB

(151)
= , (154)

where we have denoted dB = dimC B for brevity. The condition (103) therefore holds for
(I◦0 , AC) as needed.
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Now let A = (A, T, α, α, ψ, ϕ) be an arbitrary orbifold datum in C. By Proposition 5.10,
the isometric Morita module RC := A(A⊗C)AC

yields the Morita transport orbifold datum
AC := RC(A) in C. The section ψI◦ in (153) is of the form as in Remark 5.14, so that one
has

6.14. Corollary. (I◦,AC) is compatible and therefore by Proposition 5.15 produces the
orbifold datum I◦(AC) in C◦

B, whose last entry is

ϕI◦ :=
ϕ

(dimC B)1/2
. (155)

Step (3). Let us abbreviate I◦A = (I◦)AC . We need to prove the following

6.15. Lemma. The induced ribbon functor I◦A : CAC
→ (C◦

B)I◦(AC) is an equivalence.

For that one must show that it is fully faithful and essentially surjective. Both these
steps are achieved by straightforward calculations which are given in Appendix A. In
particular, there we show that

(a) For allM,N ∈ CAC
and an arbitrary I◦(AC)-I

◦(AC)-bimodule morphism f : I◦(M) →
I◦(N), its average morphism avg f in (C◦

B)I◦(AC) (see (122)) is in the image of I◦A.
Since avg is a projector onto the morphism spaces of (C◦

B)I◦(AC), this implies that I◦A
is surjective on the morphism spaces and hence, since I◦A is pivotal, automatically
fully faithful (see Proposition 2.5).

(b) For all M ∈ C◦
B, the pipe object PI◦(AC)(M) (see Remark 5.8) is in the essential

image of I◦A. Since the pipe objects generate (C◦
B)I◦(AC), this implies that I◦A is

essentially surjective (see Proposition 2.3).

Step (4). Specialising the orbifold datum A in Lemma 6.15 to the trivial orbifold datum
1 in C, we obtain the orbifold datum I◦(1C) in C◦

B and braided equivalences C ≃ C1C
≃

(C◦
B)I◦(1C). We now unpack the statements of Propositions 5.10 and 5.15 for this case to

obtain both I◦(1C) and the equivalences explicitly.

As the symbols for the orbifold datum A and its constituents are no longer in use, we
will abbreviate I◦(1C) =: A = (A, T, α, α, ψ, ϕ) for the rest of the section. We have:

• A = I◦(C∗ ⊗ C) with

multiplication: , comultiplication: ,

unit: , counit: ; (156)
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• T = I◦(C∗ ⊗ C ⊗ C) with A-actions

, , ; (157)

• α, α are given by

α = , α = ; (158)

• ψ =

(
dimC B

Dim C

)1/2

· , • ϕ =
1

(dimC B)1/2
.

The equivalence I◦C := [I◦
1C

: C ∼−→ (C◦
B)A] is defined

on objects: X 7→ (I◦(C∗ ⊗X ⊗ C), τ1, τ2, τ1, τ2) ,

on morphisms: [f : X → Y ] 7→ I◦(idC∗ ⊗f ⊗ idC) , (159)

where the left/right A-actions on I◦(C∗ ⊗X ⊗ C) are

, (160)

and the T -crossings are

τ1 = , τ2 = , (161)
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with τ1, τ2 defined similarly.
Finally, the monoidal structure morphisms (I◦C)2(X, Y ) : I◦C(X)⊗AI

◦
C(Y )

∼−→ I◦C(X⊗Y )
and their inverses are given by the balanced maps

, (162)

and one has [(I◦C)0 : A
∼−→ I◦C(1)

∼= I◦(C∗ ⊗ C) ∼= A] = idA.

6.16. Theorem.The tuple A = (A, T, α, α, ψ, ϕ) listed in (156)–(158) is a simple orbifold
datum in C◦

B and the functor I◦C : C → (C◦
B)A defined in (159) together with the monoidal

structure ((I◦C)2, (I
◦
C)0) is a ribbon equivalence.

6.17. Remark. We should emphasise that having a MFC D ≃ C◦
B, finding an orbifold

datum in D inverting the condensation is still a hard task since one needs to know C, B
and the equivalence ≃ to make use of A. For example, finding all such orbifold data in
Vectk would amount to finding all Drinfeld centres Z(S) for spherical fusion categories S
with DimS ≠ 0, see Section 7 below. Nevertheless, the results of this section will allow us
to make some general statements about the MFCs obtained from orbifold data. Moreover,
the explicit expressions for the constituents of A can be used to explore various properties
of a general orbifold datum undoing a condensation, for example in Section 6.18 we briefly
look at what can be said about the Morita class of the algebra A = I◦(C∗ ⊗ C) in C◦

B.

As a final exercise in this section, let us check the formula (117) for the categorical
dimension of (C◦

B)A. One has:

trC◦
B
ω2
A = =

(
dimC B

Dim C

)2

· (149)
=

dimC B

Dim C
·

= dimC B · idB , (163)

where we have used the pivotal structure of C◦
B to write the trace. As usual, one identifies

C◦
B(B,B) ∼= k by mapping idB 7→ 1, so that (163) reads trC◦

B
ω2
A = dimC B. This yields:

Dim(C◦
B)A =

Dim C◦
B

ϕ8 · trC◦
B
ω2
A

=
Dim C/(dimC B)2

(dimC B)−4 · (dimC B)2
= Dim C (164)

as expected.
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6.18. Example: Morita theory of E6 inversion. In this section we recall the
examples of orbifold data found in [MR2] and show that they are in fact examples of
condensation inversion. We keep the argument general enough to be possibly applicable
to other similar examples, in particular we show how in general the Morita class of the
algebra A = I◦(C∗ ⊗C) ∈ C◦

B as in Theorem 6.16 is related to that of the algebra B ⊗B
in C.

So far three explicit examples of condensation inversion were considered: in [CRS3]
the following orbifold data were constructed

i) In the trivial MFC Vect of finite dimensional k-vector spaces, a spherical fusion
category S with DimS ≠ 0 can be used to construct an orbifold datum AS . In [MR1]
it was shown that the associated MFC VectAS is equivalent to the Drinfeld centre
Z(S), so that AS undoes the condensation by the so-called Lagrangian algebra in
Z(S) (see [DMNO, Sec. 4.2]).

ii) Let G be a finite group. Then a faithful G-crossed extension C×
G =

⊕
g∈G Cg of a

MFC C = C1 yields an orbifold datum AG in C. The associated MFC CAG is ex-
pected (but as of yet not shown) to be equivalent to the equivariantisation (C×

G)
G.

The equivariantisation is a MFC containing a condensable algebra B ∈ (C×
G)

G whose
category of local modules is equivalent to C (see [DGNO, Sec. 4]). Thus the orb-
ifold datum AG in C is expected to invert the condensation by B (i.e. undo the
deequivariantisation procedure).

Of main interest to us in this section is the following ad-hoc example considered in [MR2]:

iii) The rank 11 MFC C(sl(2), 10) of integrable highest weight modules of the affine

Lie algebra ŝl(2)10 has a condensable algebra E6 whose condensation is an Ising-
type MFC Iζ,ϵ where the parameters ϵ ∈ {±1}, ζ ∈ { 8

√
−1} describe one of several

possible ribbon structures (for E6-condensation one has ϵ = −1 and ζ = exp(3/8πi)).
The initial ideas of how condensation inversion can be done has lead to finding
instances of orbifold data Ah,ϵ, h

3 = ζ in Iζ,ϵ. These orbifold data were used to
demonstrate how one can obtain some information about the associated MFCs (e.g.
rank and categorical dimensions of some objects) without knowing them exactly.
It was however never proved that one of the associated MFCs (Iζ,ϵ)Ah,ϵ

is actually
C(sl(2), 10), even though they were shown to all have 11 simples which for h =
exp(19/24πi), ϵ = −1 have the same categorical dimensions as those of C(sl(2), 10).

Recall that the Ising categories Iζ,ϵ all have 3 simples {1, ε, σ} and the fusion rules

ε⊗2 ∼= 1, ε ⊗ σ ∼= σ, σ⊗2 ∼= 1 ⊕ ε. By construction, the orbifold data Ah,ϵ = (Ã, T̃ , . . . )
in the example iii) above are exactly8 the ones which satisfy the following ansatz for the

8The setting for using orbifold data in [MR2] was that of ∆-separable Frobenius algebras and Euler

completion, see Remark 5.3, so technically here we should take a rescaling of Ã. In this section however
we are only interested in the Morita transports of A and T entries, for which the scalings play no role
and so we do not need to require the Morita transport to be isometric.
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algebra Ã and the Ã-Ã⊗2-bimodule T̃ :

Ã = 1ı ⊕ 1φ , T̃ =
⊕

a,b,c∈{ı,φ}
atbc , where


ıtıı = φtφı = φtıφ = 1

ıtφφ = 1 , φtφφ = σ

ıtıφ = · · · = 0

. (165)

Here the indices ı and φ are used only to distinguish between the two copies of 1 in Ã and
their actions on T̃ . The splitting of T̃ is into submodules atbc on which only 1a-1b ⊗ 1c

acts non-trivially by unitors. By the end of this section we will show the following

6.19. Theorem. The orbifold datum in Theorem 6.16 undoing the E6-condensation of
C(sl(2), 10) can be Morita-transported to a one of the form (165).

We do this by first considering the Morita class of the algebra A = I◦(C∗ ⊗ C) in
general and then imposing a series of assumptions both on the Morita class and on the
Morita modules relating its elements, all of which apply to the E6 case.

Let (F, ψ) be a symmetric separable Frobenius algebra in C and B⊗BRF a Morita
module. The F -F -bimodule isomorphism R∗ ⊗B⊗2 R ∼= F provides F with a structure of
a B-B-bimodule with the left and right actions given by

= and = . (166)

By definition the B-actions on F commute with the multiplication of F in the sense that
the following identities hold:

= = , = = .

6.20. Remark. Such kind of compatibility between F and B yields what was called
in [KMRS, Def. 2.10] an algebra F ∈ C over a pair of condensable algebras (B,B′) in C
(in this case one has B = B′). There they were used for an internal state-sum construction
of domain walls between two bulk TQFTs of Reshetikhin–Turaev type ZRT

C◦
B

and ZRT
C◦
B′

(see

Section 1 for a brief review). The occurrance of such algebras here is not coincidental: we
are investigating the algebra B ⊗B which labels the gap domain wall (see Figure 3a).

We proceed to construct out of F and R a symmetric separable Frobenius algebra G
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in C◦
B and a Morita context AQG as follows:

G := im , Q := im . (167)

The structure maps of G are inherited from those of the algebra I◦(C∗FC) since the
identities (145), (146) imply that the idempotent defining G is an algebra homomorphism.
Similarly, the idempotent defining Q is a I◦(C∗FC)-A-bimodule morphism so that Q has
left A and right G actions as needed. That AQG is indeed a Morita module follows from
the two computations sketched below:

Q⊗G Q
∗ ∼=

im
dimC B

Dim C
· ∼= im ∼= im ∼= ∼= A , (168)

and

Q∗ ⊗A Q ∼= im
dimC B

Dim C
· ∼= im ∼= im ∼= G . (169)

The algebra F can in general be split into a direct sum of algebras
⊕n

a=1 Fa, which also
splits R into a direct sum

⊕
aRa of B⊗2-Fa-bimodules. From (167) one also obtains the

splittings of algebras G ∼=
⊕

aGa and of A-G-bimodules Q ∼=
⊕

aQa. Suppose that for
some index a ∈ {1, . . . , n} in this decomposition one has Fa = B. Then Ra is a B⊗2-
B-bimodule, whose two left B-actions we will index by 1,2 and the right action by 0
(similarly as in (110)). For the corresponding algebra Ga ∈ C◦

B one has:

Ga = im ∼= im ∼= I◦(C)∗ ⊗B I
◦(C) , (170)
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i.e. Ga is Morita equivalent to the trivial algebra 1C◦
B
= B in C◦

B via the Morita module
I◦(C)∗. This also allows one to change the entry Qa into

Q̃a := Qa ⊗Ga I
◦(C∗) ∼=

im
dimC B

Dim C
· ∼= im ∼= im , (171)

where the right action of B on Q̃a is by the unitor C◦
B.

Until now the discussion about the Morita class of the algebra A = I◦(C∗C) ∈ C◦
B was

completely general. We now make the following

assumption: the algebra B⊗2 ∈ C is Morita equivalent to
n⊕
a=1

B . (172)

This means that A, as an algebra in C◦
B is Morita equivalent to

⊕n
a=1B, i.e. the direct

sum of n copies of the tensor unit. The Morita module is Q̃ =
⊕

a Q̃a whose entries are
as in (171).

We now turn to the Morita transport AQ̃ of the condensation inversion orbifold datum
A in C◦

B, specifically its entry

T̃ := T Q̃ = Q̃∗ ⊗A T ⊗A⊗2 (Q̃⊗2) =
n⊕

a,b,c=1

atbc , where atbc = Q̃∗
a ⊗A T ⊗A⊗2 (Q̃b ⊗B Q̃c) .

(173)
Explicit calculation of each of the objects atbc yields the following simplification:

im

(
dB
D

)3

· ∼= im

(
dB
D

)2

·
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∼= im
dB
D

· ∼= im ∼= im , (174)

where we have abbreviated dB = dimC B, D = Dim C and composed all the B-actions on
the modules Ra occurring in the right-hand side of (171) into one (before decomposing
back in the last step of (174)). Let us now make one more

assumption: the B⊗2-B-bimodules Ra have the form Xa ⊗B for some Xa ∈ C

and the actions = . (175)

Under this assumption, the right hand side of (174) can be further simplified by removing
all B lines as in (148) coming from the expressions Ra = Xa ⊗B, which yields:

atbc ∼= I◦(X∗
aXbXc) . (176)

The assumption (175) is not trivial in that it is not immediately implied by the assump-
tion (172). We are not sure how severely imposing it limits the examples of condensation
inversion orbifold data, but it does hold for the E6 example as shown below. A way to
test it is the following

6.21. Proposition. The assumption (175) holds if and only if there are objects Xa ∈ C,
a = 1, . . . , n such that:

i)
⊕

aXaBX
∗
a
∼= B⊗2 as objects in C;

ii) I◦(X∗
aXb) ∼= δabB as B-B-bimodules.

Proof. Clearly (175) implies i) and ii) by Morita equivalence

B⊗2 ∼= R⊗B⊕n R∗ ∼=
⊕
a

Ra ⊗B R
∗
a
∼=
⊕
a

XaB ⊗B BX
∗
a
∼=
⊕
a

XaBX
∗
a ,

δabB ∼= Ba ⊗B⊕n B⊕n ⊗B⊕n Bb
∼= Ba ⊗B⊕n R∗ ⊗B⊗2 R⊗B⊕n Bb

∼= R∗
a ⊗B⊗2 Rb

∼= I◦(X∗
aXb) . (177)

The other implication comes from defining Ra, a = 1, . . . , n as in (175) and constructing
the explicit bimodule isomorphisms

f : R∗ ⊗B⊗2 R ∼=
⊕
a

I◦(X∗
aXa) → B⊕n , g : R⊗B⊕n R∗ ∼=

⊕
a

XaBX
∗
a → B⊗2 (178)
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as follows:

f =
⊕
a,b

fab =
⊕
a,b

δab , f−1 =
⊕
a,b

f
(−1)
ab =

⊕
a,b

δab ,

g =
⊕
a

ga =
⊕
a

, g−1 =
⊕
a

g(−1)
a =

⊕
a

, (179)

where w
1/2
a ∈ EndC Xa are arbitrary invertible morphisms such that for wa = w

1/2
a ◦ w1/2

a

one has trC(wa) = 1. By construction, f and g are B⊕n- and B⊗2-bimodule morphisms,
so one only needs to show that f , f−1 and g, g−1 are indeed two-sided inverses.

For f one has

f ◦ f−1 =
⊕
a

faa ◦ f (−1)
aa =

⊕
a

(trC wa · idB) = idB⊕n , (180)

and since ii) implies dim BCB(I◦(X∗
aXa), B) = 1 and so that faa and f

(−1)
aa are two-sided

inverses, an analogous computation yields f−1 ◦ f = id as well.
For g one has

g−1 ◦ g =
⊕
a,b

g−1
b ◦ ga

=
⊕
a,b

=
⊕
a,b

(∗)
=
⊕
a,b

δab = id , (181)

where in step (∗) one recognises the projector onto I◦(X∗
aXb) ∼= δabI

◦(X∗
aXa) and uses

the morphisms faa, f
(−1)
aa from above to split the identity. Since by i) the domain and the

codomain are isomorphic, g−1 must be the two-sided inverse.

Example: E6 inversion9. Recall that the category C = C(sl(2), k) of integrable highest
weight modules of ŝl(2) at level k has k + 1 simple objects 0, 1, . . . , k with fusion rules

m⊗ n =

min(m+n, 2k−m−n)⊕
l=|m−n|

l , (182)

9I would like to thank Ingo Runkel for the help with this calculation.
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where the sum is by steps of 2: |m− n| ⊕ |m− n|+ 2⊕ . . . . Note that all objects are self
dual: m∗ = m. In the case k = 10, C contains a condensable algebra whose underlying
object is B = 0⊕ 6 (the E6 algebra). The category CB of right B-modules has six simple
objects:

M0 = B = 0⊕ 6 , M1 = 1⊗B = 1⊕ 5⊕ 7 ,

M2 = 2⊗B = 2⊕ 4⊕ 6⊕ 8 , M3 = 9⊗B = 3⊕ 5⊕ 9 ,

M4 = 10⊗B = 4⊕ 10 , M5 = 3⊕ 7 , (183)

all of which except forM5 happen to be the induced modules and the local modules being
M0, M4 and M5 (see [KO, Sec. 6]). The equivalence C◦

B
∼−→ I, where I = Iζ,ϵ is the

Ising-type MFC with ϵ = −1, ζ = exp(3/8πi), is given by

M0 7→ 1 , M4 7→ ε , M5 7→ σ . (184)

Knowing the simples M0, . . . ,M5 one can quickly find the decompositions for the rest of
the induced modules:

3⊗B =M3 ⊕M5 , 4⊗B =M2 ⊕M4 , 5⊗B =M1 ⊕M3 ,

6⊗B =M0 ⊕M2 , 7⊗B =M1 ⊕M5 , 8⊗B =M2 . (185)

Since I◦(m) is the localisation of the induced module m⊗B, one gets:

I◦(m) =


M0 , m = 0, 6

M4 , m = 4, 10

M5 , m = 3, 7

0 , otherwise

. (186)

It is known that for the case of E6 algebra, B⊗2 is Morita equivalent to B⊕2 so that
the assumption (172) holds. As in (165), let us index the two copies of B by symbols ı,
φ. We claim that the corresponding summands Rı, Rφ of the Morita module are as in
the assumption (175) with Xı = 0 and Xφ = 1. For this we need to check the conditions
in Proposition 6.21: for i) one has:

XıBX
∗
ı ⊕XφBX

∗
φ
∼= B ⊕ (1⊗B ⊗ 1) = 0⊕2 ⊕ 2⊕ 4⊕ 6⊕3 ⊕ 8 = B⊗2 (187)

as objects in C, whereas for ii) one has

I◦(X∗
ıXı) = I◦(0) = B , I◦(X∗

ıXφ) = I◦(1) = 0 ,

I◦(X∗
φXı) = I◦(1) = 0 I◦(X∗

φXφ) = I◦(0⊕ 2) = B , (188)

as needed.
Finally, we can compute the summands of T̃ =

⊕
a,b,c∈{ı,φ} atbc by using (176) and (186),

which under the identification (184) yields exactly (165).
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7. Witt equivalence

The construction of modular fusion categories (MFCs) from orbifold data suggests the
following

7.1. Definition. We say that two MFCs C and D are orbifold equivalent if there is an
orbifold datum A in C such that CA ≃ D as ribbon fusion categories.

At this point the word ‘equivalence’ in the above definition is dubious, but it will be
justified by the main result of this section: the orbifold relation on MFCs is in fact the
same as Witt equivalence, a well known equivalence relation which we recall in Section 7.2
below. As a straightforward implication of this we look at the notion of a unital orbifold
datum in Section 7.9 and show that up to an equivalence of the associated MFCs, all
simple orbifold data can be taken to be unital.

In this section only we will assume chark = 010.

7.2. Witt vs orbifold relations on MFCs. The Witt equivalence relation on MFCs
was introduced in [DMNO] and can be formulated in several ways, two of which are given
by

7.3. Proposition. [DMNO, Prop. 5.15] Let C and D be MFCs. Then the following are
equivalent:

i) there exists a spherical fusion category S and a ribbon equivalence C ⊠ D̃ ≃ Z(S)
(recall that D̃ denotes the category D with the reversed braiding);

ii) there exists a MFC E and two condensable algebras B,B′ ∈ E such that E◦
B ≃ C and

E◦
B′ ≃ D as ribbon fusion categories.

C and D are then called Witt equivalent if any one of these conditions apply. The ribbon
equivalence as in i) is called a Witt trivialisation.

One of the main results of this paper is:

7.4. Theorem. Two MFCs C and D are Witt equivalent if and only if they are orbifold
equivalent.

The remainder of this section will be dedicated to proving the above statement.

One of the implications in the statement of Theorem 7.4 directly follows from the
results in Section 6.8: If C and D are Witt equivalent, let E , B, B′ be as in Proposi-
tion 7.3ii). By Remark 6.7, there is an orbifold datum B′ in E such that EB′ ≃ E◦

B′ ≃ D
as ribbon fusion categories. Then by Theorem 6.9 there is an orbifold datum I◦B(B′

C) in
E◦
B ≃ C (whose form is inferred from Corollary 6.14) such that CI◦(B′

C) ≃ EB′
C
≃ EB′ ≃ D

(see Lemma 6.15), so that C and D are orbifold equivalent.

10This is only to use the results of [DGNO, DMNO] which assume chark to be zero. Although gener-
alisations to fields of arbitrary characteristic seem possible, one might expect some nuances to arise.
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Showing the other implication in the statement of Theorem 7.4 (orbifold equivalence
implies Witt equivalence) will require a different approach: Having a simple orbifold
datum A = (A, T, α, α, ψ, ϕ) in C we will construct a Witt trivialisation for the pair of
MFCs C and CA, so that the condition in Proposition 7.3i) holds.

Recall from Section 5.1 that for i ∈ {1, 2} the category CiA is defined to have objects
(M ∈ ACA, τi, τi), where τi, τi are the respective T -crossing and its inverse. We start by
defining two functors

Fl : CA → Z(C1
A) , Fr : C̃ → Z(C1

A) . (189)

For Fl one sets for all M = (M, τ1, τ1, τ2, τ2) ∈ CA

Fl(M, τ1, τ1, τ2, τ2) := ((M, τ1, τ1), c
A
M,−) , (190)

where the braiding cAM,− of CA can be used as a half-braiding for M by the same defini-
tion (116), but taking N ∈ C1

A (the hexagon identity is proved in the same way as the
braiding property, see [MR1, Prop. 3.5]).

For Fr one defines for all X ∈ C̃

Fr(X) := ((X ⊗ A, τX1 , τ1
X), γX) , (191)

where the left and right actions on X ⊗A, the T -crossings τX1 , τ1
X and the half-braiding

γX are defined by

, τX1 := , τ1
X := , γXN := . (192)

On morphisms Fl acts as identity and Fr sends [f : X → Y ] to f ⊗ idA.

The penultimate step in constructing a Witt trivialisation of CA ⊠ C̃ is

7.5. Proposition. Let A be a simple orbifold datum. Then

F : CA ⊠ C̃ → Z(C1
A) , M ⊠X 7→ Fl(M)⊗Z(C1

A)
Fr(X) (193)

is a ribbon equivalence. In particular, C1
A is an indecomposable multifusion category.

7.6. Remark. One could have similarly constructed an equivalence C ⊠ C̃A → Z(C2
A)

instead, so that C2
A too is an indecomposable multifusion category.

Before starting with the proof one should note that there is a slight complication due to
A not a priori being haploid, i.e. C1

A not necessarily being a spherical fusion category as
required in Proposition 7.3ii), but rather a pivotal multifusion category. This is not hard
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to remedy by exchanging C1
A for its component category, see Proposition 2.4. This will

also later play a role in proving Proposition 7.5.

It is straightforward to find a monoidal structure and show that F is indeed a ribbon
functor (note that in case A is a trivial orbifold datum, F is exactly the equivalence

C ⊠ C̃ ∼−→ Z(C) in Definition 2.7). We focus on checking that F is fully faithful and
essential surjective.

Proof Proof of Proposition 7.5: F is fully faithful. It is enough to show that
for simples ∆ ∈ CA and i ∈ C̃, the object F (∆ ⊠ i) ∈ Z(C1

A) is also simple. Let X ∈ C̃
be an arbitrary object and Γ the half-braiding of F (∆ ⊠ i), ı.e. the product of the half-
braidings as in (190) and (192). Since morphisms in Z(C1

A) by definition commute with
half-braidings, any morphism f ∈ EndZ(C1

A)
F (∆⊠ i) satisfies in particular

ΓFr(X) ◦ (f ⊗ idFr(X)) = (f ⊗ idFr(X)) ◦ ΓFr(X) (194)

for all X ∈ C̃. This can be rewritten as follows:

= , (195)

where we have used the identification of the underlying A-A-bimodules ∆ ⊗A Fr(X) ∼=
∆ ⊗ X (the latter one with the A-actions analogous to those in (192)) so that one has
cA∆,Fr(X) = c∆,X in (190), and similarly ∆⊗A Fr(i)⊗A Fr(X) ∼= ∆⊗X ⊗ i for the domains
of the morphisms on both sides.

Since (195) also holds as an identity of morphisms in C, the modularity of C implies
that f = g ⊗ idi for some g ∈ EndC(∆). We claim that g must also be a morphism in
EndCA ∆, i.e. satisfy (114). To show this, note that since f is a morphism in Z(C1

A), so is
its partial trace with respect to i

= dimC i · g , (196)

i.e. g is readily a morphism in Z(C1
A) and hence also a morphism in C1

A so that (114) holds
for i = 1. To show that it holds for i = 2 as well, note that being a morphism in Z(C1

A) it
commutes with the half-braidings of the objects in this Drinfeld centre, in particular the
half-braiding of ∆ with the object (T2, α) ∈ C1

A which by (190) is exactly cA∆,T2 = τ∆2 .
Since ∆ is a simple object of CA and g ∈ EndCA ∆, one has g = ξ · id∆ for some

ξ ∈ k and therefore also f = ξ · idF (∆⊠i). Hence we have started with an arbitrary
endomorphism f ∈ EndZ(C1

A)
F (∆⊠ i) and showed that it is proportional to the identity,

i.e. F (∆⊠ i) ∈ Z(C1
A) is simple as needed.
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Let us now briefly address the complication due C1
A being a multifusion and not nec-

essarily a spherical fusion category. Note that, by Proposition 2.4 and the comment
preceding, having showed that F is fully faithful also implies that C1

A (and similarly C2
A)

are indecomposable.

7.7. Lemma. Let A be a simple orbifold datum in a MFC C. Then CiA, i ∈ {1, 2} has
a component category F which is a spherical fusion category and the canonical braided
equivalence Z(CiA)

∼−→ Z(F) is ribbon. In particular, if A is haploid, CiA is a spherical
fusion category.

Proof. Let A ∼=
⊕

j Aj be a decomposition of the monoidal unit in CiA. Recall that one
has by definition F = Aj ⊗i

A CiA ⊗i
A Aj for some index j. As was argued in Example 4.19,

each Aj is trivially a symmetric ∆-separable Frobenius algebra in CiA, F is the category
of Aj-Aj-bimodules in CiA and the projector functor N 7→ Aj ⊗i

A N ⊗i
A Aj is identical

to the bimodule induction functor, which is pivotal. The equivalence Z(CiA)
∼−→ Z(F) is

obtained from the same projection (see (22)) and is therefore both braided and pivotal,
hence ribbon.

As in Example 4.18, by applying the forgetful functor CiA → ACA → C each Aj becomes

a symmetric separable Frobenius algebra in C with the section ψj = [1
ψ−→ A → Aj]. It

is enough to compare the left/right dimensions of a simple ∆ ∈ F , which can be done in
the category of Aj-Aj-bimodules in C. Using (70) one has:

= (diml)Ci
A
∆ · . (197)

Precomposing both sides with (ωj)
2
A and taking trace in C yields

trC(ωj)
2
∆ = (diml)Ci

A
∆ · trC(ωj)2Aj

. (198)

Since A is simple and so trC ω
2
A =

∑
j trC(ωj)

2
Aj

̸= 0, one can choose the index j so that

both sides of (198) are non-zero, which yields a formula for the left dimension of ∆ in CiA.
The same formula is obtained by similarly computing the right dimension of ∆ (in this
step one has to use the fact that C is spherical).

In light of Lemma 7.7 we see that a proper candidate for Witt trivialisation needed for
Theorem 7.4 is obtained by picking a spherical component category F of C1

A and composing

CA ⊠ C̃ F−→ Z(C1
A)

∼−→ Z(F). It remains to show that F is essentially surjective. For
this we use the factorisation property of MFCs (see [Mü2, Cor. 7.8], [DGNO, Prop. 2.11,
Thm. 3.14])
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7.8. Theorem. Let C be a MFC and D a full subcategory of C which is also a MFC.
Then D ⊠ D′ ≃ C as ribbon fusion categories, where D′ is the full subcategory of C with
the objects

D′ = {X ∈ C , cY,X ◦ cX,Y = idX⊗Y for all Y ∈ D} . (199)

We are now ready to continue showing that the functor (193) is an equivalence.

Proof Proof of Proposition 7.5: F is essentially surjective. It is enough to
show that the rank of the source and the target categories of F coincide. For this we show
that

Fr(C̃)′ ≃ Fl(CA) . (200)

Then by Theorem 7.8 there exists some equivalence Fl(CA)⊠Fr(C̃) ≃ CA⊠ C̃ ≃ Z(C1
A), so

that the ranks indeed coincide.
Let ((N, τ1, τ1), γ) ∈ Fr(C̃)′ ⊆ Z(C1

A) be an arbitrary object where γ : N⊗1
A− ⇒ −⊗1

AN
is the half-braiding. We define morphisms τ2 : N ⊗A T2 ⇄ T2 ⊗A N : τ2 to be the half-
braiding γT2 of N with the object (T2, α) ∈ C1

A (see (119)) and its inverse, both seen as
morphisms in ACA. We claim that the tuple (N, τ1, τ2, τ1, τ2) satisfies the identities (T1)–
(T7) and so is a good candidate to be an object of CA:

• (T1): already holds by definition.

• (T2): holds since γT2 is a morphism in C1
A and therefore satisfies (114) for i = 1:

= = = (201)

• (T3): let T ∈ C̃ be the underlying object of the corresponding A-A⊗2-bimodule.
One has T2⊗1

A Fr(T )
∼= T ⊗T . Set α′ : T2⊗1

A T2 → T2⊗1
A Fr(T ) to be the morphism

in C1
A as defined by the balanced map

α′ := . (202)

That it is indeed a morphism in C1
A follows directly from the identity (O1). The

half-braiding of N then must commute with it:

= = , (203)
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where in the second step we have used thatN ∈ Fr(C̃)′ and therefore by the condition
in (199), the braiding of N and Fr(T ) in Z(C1

A) (which is by definition γFr(T )) is equal
to the inverse braiding of Fr(T ) and N (which is equal to (γTN)

−1 and is obtained as
the inverse of the half-braiding as in (192)). Unpacking the definitions this yields:

= = . (204)

Post-composing the A-line on both sides with the counit ε : A → 1 then yields
exactly the identity (T3).

• (T4), (T5): hold since γT2 , γ
−1
T2

are inverses of each other.

• (T6), (T7): hold since C1
A, and therefore also Z(C1

A), is pivotal and the half-braiding
γ̃ : N∗ ⊗1

A − ⇒ −⊗1
AN

∗ of a dual object N∗ ∈ Z(C1
A) is by definition such that γ̃T2 ,

γ̃−1
T2

are exactly as in (115) upon identifying τ2 = γT2 (see [TV, Sec. 5.2.2]).

It remains to check that the half-braiding γT2 is an A-A⊗2-bimodule morphism. This
is done in a similar way as checking the identity (T3): Let us define a morphism ρ : T2⊗1

A
Fr(A) → T2 in C1

A by

:= . (205)

That it satisfies (114) for i = 1 follows from identities (110) and (112) as well as how the
T -crossing of Fr(A) was defined in (192). Then one has:

= = . (206)

Unpacking the definitions one gets:

= = . (207)

Pre-composing the rightmost A line with the unit η : 1 → A then gives exactly the missing
condition for γT2 to be an A-A⊗2-bimodule morphism.
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The assignment

Fr(C̃)′ ∋ ((N, τ1, τ1), γ) 7→ Fl(N, τ1, τ2, γT2 , γ
−1
T2

) ∈ Fl(CA) (208)

then provides one with the inverse to the inclusion Fl(CA) → Fr(C̃)′ and so the equiva-
lence (200) holds as needed.

7.9. Corollary on unital orbifold data. Although we have not pursued this point
of view, an orbifold datum A = (A, T, α, α, ψ, ϕ) in a MFC C can be seen as a certain
algebra object in the monoidal bicategory AlgC of algebras in C, their bimodules and
bimodule morphisms (with the monoidal product being given by the tensor product of
algebras in C). Indeed, the A-A⊗2-bimodule T is a 1-morphism in AlgC(A ⊗ A,A) that
can be interpreted as the multiplication and the A-A⊗3-bimodule morphisms α, α can be
seen as the associator 2-morphisms. The current definition however does not include the
unit into the construction (cf. the notion of an E1-algebra, see e.g. [CM, Sec. 3]), which
suggests the following

7.10. Definition. A unital orbifold datum in a MFC C is a tuple (A, U, λ, ρ), where
A = (A, T, α, α, ψ, ϕ) is an orbifold datum in C, U is a left A-module and λ : T ⊗2U

∼−→ A,
ρ : T ⊗1 U

∼−→ A are isomorphisms of A-A-bimodules, such that one has[
T ⊗2 (T ⊗1 U)

α⊗idU−−−→ T ⊗1 (T ⊗2 U)
idT ⊗λ−−−−→ T

]
=
[
T ⊗2 (T ⊗1 U)

idT ⊗ρ−−−→ T
]
. (209)

All examples of orbifold data considered in the references [CRS3, MR2] were unital.
The main claim of this section is

7.11. Theorem. Let A be a simple orbifold datum in a MFC C. Then there is a simple
unital orbifold datum A′ such that CA ≃ CA′ are equivalent as ribbon fusion categories.

This follows almost directly from the proof of Theorem 7.4: just below its statement it
was argued that an orbifold datum, producing the MFC D ≃ E◦

B′ out of a Witt equivalent
MFC C ≃ E◦

B (where C,D, E , B,B′ are as in Proposition 7.3) can be taken to be I◦B(B′
C).

The converse implication in Theorem 7.4 then implies that all MFCs associated to orbifold
data can be obtained this way. It is then enough to show that I◦B(B′

C) is naturally a unital
orbifold datum, for which we have a more general statement:

7.12. Proposition. Let C be a MFC and A = (A, U, λ, ρ) a unital orbifold datum in C.
Then both Morita transports of A and transports of A along compatible ribbon Frobenius
functors are naturally unital orbifold data.

Proof. For an isometric Morita module ARB one defines the unital structure to be given
by the left B-module R(U) = R∗ ⊗A U and the B-B-bimodule isomorphisms

TR ⊗2 R(U)
R⊗(R∗⊗0T⊗1R,U)−−−−−−−−−−−→ R(T ⊗2 U)

R(λ)−−→ R(A) ,

TR ⊗1 R(U)
R⊗(R∗⊗0T⊗2R,U)−−−−−−−−−−−→ R(T ⊗1 U)

R(ρ)−−→ R(A) , (210)
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where the morphisms R⊗(R
∗ ⊗0 T ⊗i R,U), i ∈ {1, 2} are defined as in (80), with ζ = id

as R is isometric and treating R∗ ⊗0 T ⊗i R as a left A-module. It is straightforward to
directly check that they satisfy (209).

For another MFC D and a ribbon Frobenius functor F : C → D which is compatible
with A, the unital structure of F (A) is the left F (A)-module F (U) together with the
following F (A)-F (A)-bimodule isomorphisms

F (T )⊗′
2 F (U)

FA
⊗ (T,U)

−−−−−→ F (T ⊗2 U)
F (λ)−−→ F (A) ,

F (T )⊗′
2 F (U)

FA
⊗ (T,U)

−−−−−→ F (T ⊗2 U)
F (ρ)−−→ F (A) , (211)

where FA
⊗ (Ti, U) are defined as in (101). Again, a direct computation shows that sat-

isfy (209).

This immediately implies:

7.13. Corollary. Let C be a MFC, A a unital orbifold datum in C and B ∈ C a
condensable algebra. Then the orbifold datum I◦(AC) as in Corollary 6.14 is also unital.

Proof. AC , being a Morita transport of A, is unital and since (I◦,AC) are compatible,
I◦(AC) is unital.

Going back to the previous example, let C, D, E , B, B′ be as in Proposition 7.3.
For the orbifold datum B′ in E as in Remark 6.7, the triple (U, λ, ρ) with U = B′ and
λ, ρ : B′ ⊗B′ B′ ∼−→ B′ being given by the unitors in B′CB′ , is an obvious unital structure,
so that by Corollary 7.13 I◦B(B′) is unital as needed.

A. Proof of Lemma 6.15

In this appendix section we lay out the details for the steps (a) and (b) in proving
Lemma 6.15 as formulated below its statement. For the rest of the section, let B be
a condensable algebra in a MFC C, I◦ : C → C◦

B the local induction functor, A an orbifold
datum in C and AC its Morita transport along the Morita module RC = A⊗C. By Corol-
lary 6.14, (I◦,AC) is compatible so that I◦(AC) is an orbifold datum in C◦

B and one has
a braided functor (I◦)AC : CAC

→ (C◦
B)I◦(AC). We will use the abbreviations dB = dimC B

for the categorical dimension of B, AC = (AC , TC , αC , αC , ψC , ϕC) for the entries in the
orbifold datum AC and I◦A = (I◦)AC .

Step (a). We need to show that for two objects M,N ∈ CAC
and an arbitrary mor-

phism f ∈ C(M,N) between the underlying objects of C, the average morphism avg f ∈
CAC

(M,N) (as defined in (122)) is in the image of (I◦)AC . We first note that using the def-
inition (142) and the auxiliary morphisms (144), it is straightforward to find a morphism
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f̃ : M → N ⊗B in C such that

= , (212)

which furthermore can be taken to be a left AC-module morphism since the map avg
factors through the projection on the space of such morphisms. Specialising the expres-
sion (122) for the orbifold datum I◦(AC) and the expressions (153) and (155) for its entries
ψI◦ and ϕI◦ yields:

(ϕ · dB)−4 · avg f

=
(146)
=

(∗)
=

(∗∗)
=

1

(dB)3
(151)
=

1

(dB)5

= (ϕ · dB)−4 · I◦
(
d−1
B · avg((idN ⊗ε) ◦ f̃)

)
. (213)

Here in equalities (∗) and (∗∗) we have used the separability property of the algebra AC ,
the commutation relations between AC-actions and the T -crossings of M and N , as well
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as the identity (151), for example one of the steps is obtained as follows:

= = =

= =
1

dB
. (214)

As the morphism avg((idN ⊗ε)◦ f̃), on which I◦ is applied on the right-hand side of (213),
is in CAC

, this computation shows that avg f , and therefore any morphism in (C◦
B)AC

, is
in the image of I◦A as needed.

Step (b). We need to show that for all M ∈ C◦
B, the pipe object PI◦(AC)(M) is in the

essential image of I◦A. Let U : C◦
B → C be the forgetful functor. For an arbitrary object

M ∈ C◦
B we claim that one has

PI◦(AC)(M) ∼= I◦A(PAC
(U(M))) in (C◦

B)I◦(AC) , (215)

which we will show by constructing an invertible morphism.
Recall from (120) and Remark 5.8 the definition of the pipe functor PA : C → CA

for an arbitrary orbifold datum A = (A, T, α, α, ψ, ϕ) in a MFC C. Using the canonical
isomorphisms T ⊗2 A ∼= T , A⊗2 T

∗ ∼= T ∗, for all X ∈ C one can rewrite

PA(X) ∼= im ∼= im

∼= im ∼= im , (216)
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where on the right-hand side we have merged the left three T -labelled lines into a single
A-A⊗2-bimodule T̃ := T ⊗1 (T1⊗A T

∗
1 ) with T1 denoting the A-A-bimodule obtained from

T by forgetting the second right A-action. We adapt the notations (110) and (111) to T̃ .
Let us use the expression on the right-hand side of (216) for the orbifold datum I◦(AC).

Since (I◦, AC) is strongly separable, I◦ preserves relative tensor products with respect to
AC to those with respect to I◦(AC) (see Definition 4.14 and Proposition 4.15) so one has

Ĩ◦(TC) ∼= I◦(T̃C). The isomorphism (215) can then be explicitly given by the balanced
maps

e = , e−1 = , (217)

where the morphisms M ⇄ I◦(M) are the ones splitting the first idempotent in (148).
To show that they indeed satisfy all the requirements, one needs to check that they are
indeed morphisms in (C◦

B)I◦(AC) (i.e. satisfy (114)) and are inverses of each other. All this
is done by straightforward calculations, we only show the inverse property.

The identity e ◦ e−1 = id follows from the computation in Figure 8a, where on the
left-hand side one indeed recognises the morphism d−2

B · e◦ e−1 with the (ψC)
2
1- and (ψC)

2
2-

insertions and the factor d−2
B coming from composing the maps, balanced with respect to

two actions of the algebra (I◦(AC), ψI◦) as explained in (65), and the right-hand side is
equal to d−2

B · id by property (151).
The other identity e−1 ◦e = id is implied by the calculation in Figure 8b, where on the

left-hand side one recognises the balanced map corresponding to the identity morphism of
PI◦(AC)(M) and the right-hand side is exactly the balanced map corresponding to e−1 ◦ e:
the B-line can be absorbed to the projection I◦(U(M)) →M and the two AC-lines result

from splitting of the idempotent (216) on T̃C ⊗ U(M)⊗ T defining PAC
(U(M)).
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(146)
= = =

(a)

(147)
=

(F4), (F4’)
=

(146)
= = =

(b)

Figure 8: Showing that the morphisms e, e−1 in (217) are inverses of each other. (a)
computation implying e ◦ e−1 = id; (b) computation implying e−1 ◦ e = id.
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[CMRSS2] N. Carqueville, V. Mulevičius, I. Runkel, D. Scherl, G. Schaumann,
Reshetikhin–Turaev TQFTs close under generalised orbifolds, Commun.
Math. Phys. 405 (2024) 242, arXiv:2109.04754 [math.QA].

[Cr] D. Creamer, A Computational Approach to Classifying Low Rank Modular
Categories, arXiv:1912.02269 [math.QA].

[CR] N. Carqueville, I. Runkel, Orbifold completion of defect bicategories, Quan-
tum Topology 7:2 (2016), 203–279, arXiv:1210.6363 [math.QA].

[CRS1] N. Carqueville, I. Runkel, G. Schaumann, Orbifolds of n-dimensional defect
TQFTs, Geom. Topol. 23 (2019) 781–864, arXiv:1705.06085 [math.QA].

[CRS2] N. Carqueville, I. Runkel, G. Schaumann, Line and surface defects
in Reshetikhin–Turaev TQFT, Quantum Topology 10 (2019) 399–439,
arXiv:1710.10214 [math.QA].

[CRS3] N. Carqueville, I. Runkel, G. Schaumann, Orbifolds of Reshetikhin–
Turaev TQFTs, Theory and Appl. of Categories 35 (2020) 513–561,
arXiv:1809.01483 [math.QA].

http://doi.org/10.1090/ulect/021
http://doi.org/10.1016/j.aim.2024.109740
http://arXiv.org/abs/1211.0529
http://doi.org/10.1090/jams/842
http://arXiv.org/abs/1310.7050
http://doi.org/10.1093/imrn/rnw020
http://arXiv.org/abs/1507.05139
http://doi.org/10.1146/annurev-conmatphys-033117-054154
http://doi.org/10.1146/annurev-conmatphys-033117-054154
http://arXiv.org/abs/1706.04940
http://doi.org/10.4064/bc114-2
http://doi.org/10.4064/bc114-2
http://arXiv.org/abs/1607.05747
http://arXiv.org/abs/2307.06485
http://arXiv.org/abs/1603.01171
http://doi.org/10.1016/j.aim.2020.107024
http://doi.org/10.1016/j.aim.2020.107024
http://arXiv.org/abs/2101.02482
http://doi.org/10.1007/s00220-024-05068-6
http://doi.org/10.1007/s00220-024-05068-6
http://arXiv.org/abs/2109.04754
http://arXiv.org/abs/1912.02269
http://doi.org/10.4171/QT/76
http://doi.org/10.4171/QT/76
http://arXiv.org/abs/1210.6363
http://doi.org/10.2140/gt.2019.23.781
http://arXiv.org/abs/1705.06085
http://doi.org/10.4171/QT/121
http://arXiv.org/abs/1710.10214
http://www.tac.mta.ca/tac/volumes/35/15/35-15abs.html
http://arXiv.org/abs/1809.01483


1290 VINCENTAS MULEVIČIUS
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[Sz1] K. Szlachányi, Finite quantum groupoids and inclusions of finite type, Fields
Inst. Commun. 30 (2001) 393–407, arXiv:math/0011036 [math.QA].
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Joachim Kock, Universitat Autònoma de Barcelona: Joachim.Kock (at) uab.cat

Stephen Lack, Macquarie University: steve.lack@mq.edu.au
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
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