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THE CATEGORY OF EXTENSIONS AND IDEMPOTENT
COMPLETION

R. BENNETT-TENNENHAUS, J. HAUGLAND, M. H. SANDØY AND A. SHAH

Abstract. Building on previous work, we study the splitting of idempotents in the
category of extensions E -Ext(C) associated to a pair (C,E) of an additive category
and a biadditive functor to the category of abelian groups. In particular, we show
that idempotents split in E -Ext(C) whenever they do so in C, allowing us to prove
that idempotent completions and extension categories are compatible constructions in
a 2-category-theoretic sense. Furthermore, we show that the exact category obtained
by first taking the idempotent completion of an n-exangulated category (C,E, s), in the
sense of Klapproth–Msapato–Shah, and then considering its category of extensions is
equivalent to the exact category obtained by first passing to the extension category and
then taking the idempotent completion. These two different approaches yield a pair
of 2-functors each taking small n-exangulated categories to small idempotent complete
exact categories. The collection of equivalences that we provide constitutes a 2-natural
transformation between these 2-functors. Similar results with no smallness assumptions
and regarding weak idempotent completions are also proved.

1. Introduction

An additive category is called idempotent complete given that every idempotent morphism
splits (see Definition 2.1), or equivalently if every idempotent admits a kernel (see e.g.
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[Shah, 2023, Prop. 3.10]). The study of idempotent complete categories dates back to
work by Karoubi [Karoubi, 1968], in which it was shown that an additive category C can
be naturally embedded into an idempotent complete category C

∼
, often called its Karoubi

envelope or its idempotent completion (see Definition 2.2 and Proposition 2.3).
The splitting of idempotents plays an important role in contemporary algebraic geo-

metry, homological algebra, representation theory and category theory. Indeed, it is intim-
ately connected to the Krull–Remak–Schmidt property and Krull–Schmidt categories (see
[Chen, Ye, Zhang, 2008, Cor. A.2], [Krause, 2015, Cor. 4.4]). Krull–Schmidt categories
constitute a particularly nice class of examples of idempotent complete categories. In such
a category, every object decomposes, essentially uniquely, into a finite direct sum of in-
decomposable objects with local endomorphism rings. Splitting of idempotents is often a
crucial standing assumption when approaching representation theory of finite-dimensional
algebras from a categorical or geometrical perspective (see e.g. [Atiyah, 1956, Auslander,
1974, Gabriel, Roiter, 1997, Haugland, 2021, Haugland, 2022, Jørgensen, 2022, Krause,
2015]). Furthermore, a generalisation of the Krull–Remak–Schmidt property was given
by Azumaya [Azumaya, 1948, Thm. 1], which has since been used in topological data
analysis in the study of persistence homology (see e.g. [Botnan, Crawley-Boevey, 2020]).

Abelian, or more generally exact, and triangulated categories appear in various areas
of mathematics, including functional analysis and mathematical physics, and are of fun-
damental interest in representation theory and related areas (see e.g. [Kapustin, Kreuzer,
Schlesinger, 2009, Krause, 2022, Prosmans, Schneiders, 2000]). Recently, Nakaoka–Palu
introduced extriangulated categories as a simultaneous generalisation of exact and trian-
gulated categories [Nakaoka, Palu, 2019], and showed that extension-closed subcategories
of triangulated categories, which may fail to be triangulated subcategories, carry an ex-
triangulated structure. Herschend–Liu–Nakaoka [Herschend, Liu, Nakaoka, 2021] then
introduced n-exangulated categories as a higher-dimensional analogue of extriangulated
categories in the context of higher homological algebra. An n-exangulated category for an
integer n ≥ 1 is a triplet (C,E, s) consisting of an additive category C, a biadditive functor
E : Cop × C → Ab (where Ab denotes the category of abelian groups), and a realisation s
of E. Note that a category is 1-exangulated if and only if it is extriangulated [Herschend,
Liu, Nakaoka, 2021, Prop. 4.3]. Important classes of examples of n-exangulated categor-
ies for higher n include n-exact categories [Jasso, 2016] and (n+ 2)-angulated categories
[Geiss, Keller, Oppermann, 2013].

Suppose that (C,E, s) is an n-exangulated category. For each pair of objects A,C ∈ C,
elements of E(C,A) are called E-extensions. The category of extensions associated to
(C,E, s), denoted by E -Ext(C), has all E-extensions as its objects, and the morphisms
are morphisms of E-extensions; see Subsection 4.1. In a previous article, the authors
showed that this category can be equipped with a natural exact structure XE, giving
rise to an exact category (E -Ext(C),XE); see [Bennett-Tennenhaus, Haugland, Sandøy,
Shah, 2023, Prop. 3.2]. Moreover, we demonstrated that E -Ext(C) encodes important
structural information. As an example, this perspective leads to a full characterisation
of n-exangulated functors between n-exangulated categories; see [Bennett-Tennenhaus,
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Haugland, Sandøy, Shah, 2023, Thm. A]. In the present paper, we improve the under-
standing of the relationship between an n-exangulated category and its associated category
of extensions by studying the splitting of idempotents. Note that our results in Section
4, and in particular Proposition 1.1 and Theorem 1.2 below, hold more generally for any
pair (C,E) consisting of an additive category C and a biadditive functor E : Cop × C → Ab.

Proposition 1.1 asserts that the splitting of idempotents in E -Ext(C) is inherited from
C. This is our first main result, and it plays an important role in the paper and is a key
step in the formulation of Theorem 1.3.

1.1. Proposition. [See Proposition 4.2] If C is idempotent complete, then E -Ext(C) is
also idempotent complete.

As a consequence of Proposition 1.1, we obtain that given certain finiteness assump-
tions on C, the Krull–Remak–Schmidt property for C implies the same property for
E -Ext(C); see Corollary 4.4, cf. [Dräxler, Reiten, Smalø, Solberg, 1999, p. 670], [Gab-
riel, Nazarova, Rŏıter, Sergĕıchuk, 1993, p. 335].

Idempotent completion is a procedure that has been seen to preserve homological struc-
tures. On the one hand, an important result of Balmer–Schlichting [Balmer, Schlichting,
2001] is that the idempotent completion of a triangulated category has a canonical trian-
gulated structure. On the other hand, Bühler [Bühler, 2010] showed that the idempotent
completion of an exact category is again exact. These results were unified to the realm
of extriangulated categories by Msapato [Msapato, 2022]. More generally, it is shown in
[Klapproth, Msapato, Shah, 2022] that if (C,E, s) is an n-exangulated category, then the
idempotent completion C

∼
of C admits an n-exangulated structure (C

∼
,E
∼
, s∼); see Section 3.

Our second main result, given as Theorem 1.2 below, demonstrates that idempotent
completions and extension categories are compatible constructions. More precisely, the
category obtained by first taking the idempotent completion and then considering its
category of extensions is equivalent to first passing to the extension category and then
taking the idempotent completion.

1.2. Theorem. [See Theorem 4.9] The category E
∼
-Ext(C

∼
) is equivalent to the idempotent

completion of the category E -Ext(C).
Proposition 1.1 and Theorem 1.2 are both used in order to obtain the 2-category-

theoretic result Theorem 1.3, which builds a bridge between the 2-categorical frame-
work established in [Bennett-Tennenhaus, Haugland, Sandøy, Shah, 2023] and the results
on the idempotent completion of an n-exangulated category from [Klapproth, Msapato,
Shah, 2022]. To discuss a 2-category of n-exangulated categories, we use notions of
morphisms between n-exangulated categories and of morphisms between such morphisms.
Structure-preserving functors between n-exangulated categories as introduced in [Bennett-
Tennenhaus, Shah, 2021] are known as n-exangulated functors. We viewed the theory of
n-exangulated categories from a 2-categorical perspective in [Bennett-Tennenhaus, Haug-
land, Sandøy, Shah, 2023] by defining n-exangulated natural transformations between
n-exangulated functors and establishing the 2-category n - exang of small n-exangulated
categories [Bennett-Tennenhaus, Haugland, Sandøy, Shah, 2023, Cor. 4.15]. Furthermore,
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we constructed a 2-functor C : n - exang → exact to the category of small exact categor-
ies [Bennett-Tennenhaus, Haugland, Sandøy, Shah, 2023, Thm. D], which sends a 0-cell
(C,E, s) in n - exang to the 0-cell (E -Ext(C),XE) in exact; see Definition 5.1. A consequence
of Proposition 1.1 is that C restricts to a 2-functor C∼ : IC-n - exang → IC-exact from the 2-
category of small idempotent complete n-exangulated categories to the 2-category of small
idempotent complete exact categories. The last observation needed in order to state The-
orem 1.3 is that taking idempotent completions yields 2-functors ♡ : exact → IC-exact and
♣ : n - exang → IC-n - exang; see Theorem 2.8 and Theorem 3.11, respectively.

1.3. Theorem. [See Corollary 5.4] Consider the diagram

n - exang exact

IC-n - exang IC-exact

C

♣ ♡
C
∼

of 2-categories and 2-functors. There is a 2-natural transformation C∼♣ ⇒ ♡C consisting
of exact equivalences.

Similar results as above hold also for weak idempotent completions; see Section 6. We
remark that even though Proposition 6.4 is an expected analogue of Proposition 1.1 in
this setup, the method of proof is different and relies on a previous result of the authors
from [Bennett-Tennenhaus, Haugland, Sandøy, Shah, 2023].

1.4. Remark. We note that Theorem 1.3 follows from a more general result, namely
Theorem 5.2, in which no smallness assumption is required. In this article the term
‘category’ does not require the collections of morphisms to form sets. In other words,
the categories we consider need not be locally small. Just as explained in [Bennett-
Tennenhaus, Haugland, Sandøy, Shah, 2023, Rem. 4.13], the reason for the restriction to
small categories in Theorem 1.3 (and indeed in this introduction entirely) is to be able
to use the terminology of 2-categories and 2-functors in a way that is consistent with the
existing literature.

Structure of the paper. In Section 2 we recall the construction of the idempotent
completion of an exact category and use this to establish the 2-functor ♡ from Theorem
1.3. Analogously, the 2-functor ♣ is defined in Section 3 using the idempotent completion
of an n-exangulated category in the sense of [Klapproth, Msapato, Shah, 2022]. In Section
4 we recall how to form the category of extensions, and prove Proposition 1.1 and Theorem
1.2. In Section 5 we present the definition of the 2-functor C from [Bennett-Tennenhaus,
Haugland, Sandøy, Shah, 2023] and show how the main results of the previous sections
culminate in Theorem 1.3. Section 6 concerns the weak idempotent completion.

Conventions and notation. Throughout this paper, let n ≥ 1 denote a positive
integer. Given objects X and Y in a category C, we write C(X, Y ) for the collection of
morphisms from X to Y in C. Functors are always assumed to be covariant. We let Ab
denote the category of abelian groups.
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2. Idempotent completion of exact categories yields a 2-functor

The aim for this section is to explicitly relate the construction of the idempotent comple-
tion of an exact category to a 2-categorical framework, establishing the 2-functor ♡ which
is part of Theorem 1.3 in Section 1. We start by following Bühler [Bühler, 2010, Sec. 6]
in recalling the idempotent completion (or Karoubi envelope). We also refer to Borceux
[Borceux, 1994].

Throughout the section, let C denote an additive category. An idempotent in C is a
morphism e : X → X for some object X ∈ C satisfying e2 = e. Splitting of idempotents,
as defined below, plays a central role in this article.

2.1. Definition. (See [Borceux, 1994, Defs. 6.5.1, 6.5.3].) An idempotent e : X → X in
C splits if there exist morphisms r : X → Y and s : Y → X such that sr = e and rs = idY .
The category C is idempotent complete, or has split idempotents, if each idempotent in
C splits.

Even though the additive category C need not have split idempotents, it can always
be embedded into an idempotent complete category. This is due to Karoubi [Karoubi,
1968, Sec. 1.2].

2.2. Definition. (See [Bühler, 2010, Rem. 6.3, Def. 6.4].) Define a category C
∼

as fol-
lows. The objects of C

∼
are pairs (X, e) for each object X ∈ C and each idempotent

e ∈ EndC(X). Given objects (X, eX) and (Y, eY ) in C
∼
, the collection C

∼
((X, eX), (Y, eY )) of

morphisms from (X, eX) to (Y, eY ) consists of triplets (eY , f, eX) such that f ∈ C(X, Y )
satisfies feX = f = eY f . The composition of

(eY , f, eX) ∈ C
∼
((X, eX), (Y, eY )) and (eZ , g, eY ) ∈ C

∼
((Y, eY ), (Z, eZ))

is given by
(eZ , g, eY ) ◦ (eY , f, eX) := (eZ , gf, eX).

It is clear that this composition is associative. The identity id(X,e) of (X, e) ∈ C
∼

is the
morphism (e, e, e). The category C

∼
is called the idempotent completion of C.

The category C
∼

is additive with biproduct given by

(X, eX)⊕ (Y, eY ) = (X ⊕ Y, eX ⊕ eY ).

It is also idempotent complete; see [Bühler, 2010, Rem. 6.3] for details. There is a
canonical additive inclusion functor IC : C → C

∼
defined by setting IC(X) := (X, idX) for

X ∈ C and IC(f) := (idY , f, idX) for f ∈ C(X, Y ). This functor is 2-universal among
additive functors from C to idempotent complete categories; see [Bühler, 2010, Prop. 6.10].

Let C→→ denote the category of composable morphisms in C, and note that a functor
C → D induces a functor C→→ → D→→. Now suppose (C,X ) is an exact category. In
particular, the exact structure X is a collection of objects in C→→. One can define an
exact structure X

∼
on C

∼
by declaring an object in C

∼→→ to be in X
∼

if it is a direct summand
of an object belonging to the image of X under the functor C→→ → C

∼→→ induced by
IC : C → C

∼
.
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2.3. Proposition. (See [Bühler, 2010, Rem. 6.3, Prop. 6.13].) The pair (C
∼
,X
∼
) forms

an exact category, and IC : (C,X ) → (C
∼
,X
∼
) is a fully faithful exact functor that reflects

exactness.
Let F : C → D be an additive functor. Following [Bühler, 2010, Rem. 6.6], there is an

induced additive functor F
∼

: C
∼
→ D

∼
given by

F
∼

(X, e) := (FX,F e) and F
∼

(eY , f, eX) := (F eY ,Ff,F eX). (1)

We refer to F
∼

as the completion of F . If F : (C,X ) → (D,Y) is an exact functor, then
F
∼

: (C
∼
,X
∼
) → (D

∼
,Y
∼
) is also exact; see the proof of [Bühler, 2010, Prop. 6.13].

In order to view the constructions above in a 2-categorical framework, we recall some
terminology. A 2-category is a collection of 0-cells, 1-cells and 2-cells satisfying certain
axioms; see e.g. [MacLane, 1998, p. 273] or [Johnson, Yau, 2021, Sec. 2.3]. One should
think of 0-cells, 1-cells and 2-cells as objects, morphisms between objects and morphisms
between morphisms, respectively. A 2-category has two notions of composition of 2-cells:
vertical and horizontal. Using the setup below, we recall these notions in the case of
natural transformations. We use the Hebrew letters ב (beth) and ד (daleth) for natural
transformations of additive functors.

2.4. Setup. For the rest of this section, we consider additive categories C,D, E , additive
functors F ,G ,H : C → D and L ,M : D → E , and natural transformations ב : F ⇒ G ,
′ב : G ⇒ H and ד : L ⇒ M as indicated in the diagram

C D E .
ב

ד

F

G

H
′ב

L

M

2.5. Definition. (See [MacLane, 1998, pp. 40, 42].) The vertical composition of ב and
′ב is the natural transformation ′ב ◦v ב : F ⇒ H given by ′ב) ◦v (ב := ′ב

XבX for each
X ∈ C. The horizontal composition of ב and ד is the natural transformation ד ◦h ב of
the form L F ⇒ MG defined by ד) ◦h X(ב := GXד ◦ (L (Xב for each X ∈ C.

As described in [Bühler, 2010, Rem. 6.7], the natural transformation ב : F ⇒ G

induces a natural transformation ∽ב : F
∼

⇒ G
∼

as follows. Given (X, e) ∈ C
∼
, there are the

morphisms (idX , e, e) : (X, e) → (X, idX) and (e, e, idX) : (X, idX) → (X, e). Put

(X,e)∽ב := G
∼
(e, e, idX) ◦ (idGX Xב, , idFX) ◦ F

∼
(idX , e, e) = (G e, (G e) Xב F e,F e)

as indicated in the diagram

F
∼

(X, e) G
∼
(X, e)

(FX, idFX) (GX, idGX).

(X,e)∽ב

F
∼

(idX , e, e)

(idGX Xב, , idFX)

G
∼
(e, e, idX)
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It is straightforward to check that ∽ב is natural. We refer to ∽ב as the completion of .ב

2.6. Notation. We write Exact for the collection of 0-cells, 1-cells and 2-cells consisting
of exact categories, exact functors and natural transformations, respectively.

For i ∈ {0, 1, 2}, we denote the collection of i-cells by Exacti. Given 0-cells (C,X ) and
(D,Y), there is a category Exact((C,X ), (D,Y)) with 1-cells of the form (C,X ) → (D,Y)
as objects, and where morphisms and composition are given by 2-cells and vertical com-
position. We note that for an object F in Exact((C,X ), (D,Y)), its identity morphism is
the identity natural transformation idF : F ⇒ F given by { (idF )X := idFX }X∈C. There
is a 2-category exact determined by the 0-cells in Exact which are small categories. We
furthermore write IC-Exact and IC-exact when restricting to idempotent complete 0-cells
in Exact and exact, respectively, and note that also IC-exact is a 2-category.

A 2-functor between two 2-categories is an assignment of i-cells in the domain cat-
egory to i-cells in the codomain category for i ∈ {1, 2, 3}, satisfying some compatibility
conditions; see e.g. [MacLane, 1998, p. 278] or [Johnson, Yau, 2021, Prop. 4.1.8]. We now
begin to construct the 2-functor ♡ used in Theorem 1.3 in Section 1.

2.7. Definition. Let ♡ = (♡0,♡1,♡2) : Exact → IC-Exact be defined by the assignments
♡i : Exacti → IC-Exacti, where:

♡0(C,X ) := (C
∼
,X
∼
), ♡1(F ) := F

∼
, (ב)2♡ := .∽ב

If one ignores the set-theoretic issue described in Remark 1.4, then the theorem below
should be interpreted as showing that ♡ : Exact → IC-Exact is a 2-functor.

2.8. Theorem. The following statements hold for the assignments ♡0, ♡1 and ♡2.

(i) The pair (♡0,♡1) defines a functor Exact → IC-Exact.

(ii) The pair (♡1,♡2) defines a functor Exact((C,X ), (D,Y)) → IC-Exact((C
∼
,X
∼
), (D

∼
,Y
∼
))

whenever (C,X ) and (D,Y) are exact categories.

(iii) The assignment ♡2 preserves horizontal composition.

In particular, restricting ♡ to small categories yields a 2-functor exact → IC-exact.

Proof. It follows from the discussions above that the assignments are well-defined.
Checking functoriality in (i) is straightforward. The assignment ♡2 is compatible with
vertical and horizontal composition by [Bühler, 2010, Rem. 6.8], and checking idF

∼
= id

F
∼

is straightforward, so (ii) and (iii) hold.
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3. Idempotent completion of n-exangulated categories yields a 2-functor

In this section we describe how taking the idempotent completion of an n-exangulated
category in the sense of [Klapproth, Msapato, Shah, 2022] relates to a 2-categorical frame-
work. This is done by constructing the 2-functor ♣ from Theorem 1.3 in Section 1. We
start by giving an overview of relevant notions and constructions.

Given an additive category C and a biadditive functor E : Cop × C → Ab, an element
α ∈ E(C,A) is called an E-extension. A morphism of E-extensions from α ∈ E(C,A) to
β ∈ E(D,B) is a pair (a, c) of morphisms a : A → B and c : C → D in C such that

E(C, a)(α) = E(c, A)(β).

Recall from [Herschend, Liu, Nakaoka, 2021, Sec. 2] that an n-exangulated category
(C,E, s) consists of

(i) an additive category C,

(ii) a biadditive functor E : Cop × C → Ab, and

(iii) an exact realisation s of E in the sense of [Herschend, Liu, Nakaoka, 2021, Def. 2.22],

such that axioms (EA1), (EA2) and (EA2op) stated in [Herschend, Liu, Nakaoka, 2021,
Def. 2.32] are satisfied.

The realisation s associates to each E-extension α ∈ E(C,A) a certain homotopy class

s(α) = [X•] = [ X0 X1 · · · Xn+1 ]

of an (n+2)-term complex X• in C with X0 = A and Xn+1 = C. The pair ⟨X•, α⟩ is then
called a (distinguished) n-exangle.

A morphism ⟨X•, α⟩ → ⟨Y•, β⟩ of n-exangles is given by a morphism

(f0, . . . , fn+1) : X• → Y•

of complexes such that (f0, fn+1) : α → β is a morphism of E-extensions. In this case, the
tuple (f0, . . . , fn+1) is said to be a lift of (f0, fn+1).

Suppose throughout this section that (C,E, s) and (D,F, t) are n-exangulated cat-
egories. An additive functor F : C → D induces a functor FC : CC → CD between the
associated categories of complexes. One can define a new biadditive functor

F(F op−,F−) : Cop × C → Ab,

which we will denote by F(F−,F−).
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3.1. Definition. (See [Bennett-Tennenhaus, Shah, 2021, Def. 2.32].) Let F : C → D
be an additive functor and suppose there is a natural transformation

Γ = {Γ(C,A)}(C,A)∈Cop×C : E(−,−) =⇒ F(F−,F−).

We call the pair (F ,Γ): (C,E, s) → (D,F, t) an n-exangulated functor if, for all A,C ∈ C
and each α ∈ E(C,A), we have that s(α) = [X•] implies t(Γ(C,A)(α)) = [FCX•].

It was demonstrated in [Bennett-Tennenhaus, Haugland, Sandøy, Shah, 2023, Def. 3.18,
Lem. 3.19] that one can compose n-exangulated functors as follows. Suppose

(F ,Γ): (C,E, s) → (D,F, t) and (L ,Φ): (D,F, t) → (E ,G, u)

are n-exangulated functors between n-exangulated categories. The composite is the n-
exangulated functor (L ,Φ) ◦ (F ,Γ) := (L F ,ΦF×F ◦v Γ), where ΦF×F is the natural
transformation

ΦF×F = {Φ(FC,FA)}(C,A)∈Cop×C : F(F−,F−) =⇒ G(L F−,L F−).

For Γ as above and for α ∈ E(C,A), we will usually write Γ(α) instead of Γ(C,A)(α).
Furthermore, we use the simplified notation aEα (resp. dEα) for the E-extension

E(C, a)(α) ∈ E(C,B) (resp. E(d,A)(α) ∈ E(D,A))

for morphisms a : A → B and d : D → C in C.
As proved in [Klapproth, Msapato, Shah, 2022], the idempotent completion C

∼
of an

n-exangulated category (C,E, s) admits a canonical n-exangulated structure. We use the
notation (C

∼
,E
∼
, s∼) for the n-exangulated category obtained from this construction, and

recall the definition of the biadditive functor E
∼
: C
∼op × C

∼
→ Ab and the realisation s∼ of E

∼

below. In the case n = 1, the construction was given by Msapato [Msapato, 2022].

3.2. Definition. (See [Klapproth, Msapato, Shah, 2022, Def. 4.4].) For objects (A, eA)
and (C, eC) from C

∼
, we let

E
∼
((C, eC), (A, eA)) :=

{
(eA, α, eC)

∣∣ α ∈ E(C,A) and (eA)Eα = α = (eC)
Eα

}
.

For morphisms (eB, a, eA) : (A, eA) → (B, eB) and (eC , d, eD) : (D, eD) → (C, eC) in C
∼

we
put

E
∼
((eC , d, eD), (eB, a, eA)) : E

∼
((C, eC), (A, eA)) −→ E

∼
((D, eD), (B, eB))

(eA, α, eC) 7−→ (eB,E(d, a)(α), eD).

The set E
∼
((C, eC), (A, eA)) has an abelian group structure given by

(eA, α, eC) + (eA, α
′, eC) := (eA, α+ α′, eC),
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and Definition 3.2 indeed gives a biadditive functor E
∼
: C
∼op × C

∼
→ Ab; see [Klapproth,

Msapato, Shah, 2022, Rem. 4.5].
Given a complex X• in C and an idempotent morphism e• : X• → X• of complexes,

we follow [Klapproth, Msapato, Shah, 2022, Def. 4.15] and the discussion immediately
thereafter in using the notation (X•, e•) to denote the complex

(X0, e0) (X1, e1) · · · (Xn, en) (Xn+1, en+1)
(e1, e1d0, e0) (e2, e2d1, e1) (en+1, en+1dn, en)

in C
∼
, where the maps di : Xi → Xi+1 are the differentials of the complex X•. The realisa-

tion s∼ of E
∼

is then defined as follows.

3.3. Definition. (See [Klapproth, Msapato, Shah, 2022, Def. 4.20].) Let (eA, α, eC) be
an arbitrary element of E

∼
((C, eC), (A, eA)). Since α ∈ E(C,A), one may choose X• so

that
s(α) = [X•] = [ A X1 · · · Xn C ].

One may also lift (eA, eC) : α → α to an idempotent endomorphism e• of the n-exangle
⟨X•, α⟩ by [Klapproth, Msapato, Shah, 2022, Cor. 4.13]. Using this, we define s∼ by setting
s∼(eA, α, eC) := [(X•, e•)].

To see that the assignment s∼ from Definition 3.3 does not rely on the choices involved,
see [Klapproth, Msapato, Shah, 2022, Rem. 4.21]. By [Klapproth, Msapato, Shah, 2022,
Thm. A], the triplet (C

∼
,E
∼
, s∼) is an n-exangulated category and the inclusion

(IC,ΓC) : (C,E, s) → (C
∼
,E
∼
, s∼)

is an n-exangulated functor, where the natural transformation

ΓC : E(−,−) ⇒ E
∼
(IC−,IC−)

is given by α 7→ (idA, α, idC) for α ∈ E(C,A).
Now suppose (F ,Γ): (C,E, s) → (D,F, t) is an n-exangulated functor. Recall that

there is an induced additive functor F
∼

: C
∼

→ D
∼

as defined in 1. Our next aim is to
show that one obtains an n-exangulated functor (F

∼
,Γ
∼
) : (C

∼
,E
∼
, s∼) → (D

∼
,F
∼
, t
∼
) between the

idempotent completions. We first need to define a natural transformation

Γ
∼
: E
∼
(−,−) ⇒ F

∼
(F
∼

−,F
∼

−).

3.4. Definition. Set Γ
∼
:=

{
Γ
∼

((C,eC),(A,eA))

}
((C,eC),(A,eA))∈C

∼op×C
∼ , where

Γ
∼
((C,eC),(A,eA)) : E

∼
((C, eC), (A, eA)) −→ F

∼
(F
∼

(C, eC),F
∼

(A, eA))

(eA, α, eC) 7−→ (F eA,Γ(α),F eC).

Note that (F eA,Γ(α),F eC) indeed lies in F
∼
(F
∼

(C, eC),F
∼

(A, eA)), because naturality
of Γ yields (F eA)FΓ(α) = Γ((eA)Eα) = Γ(α) and (F eC)

FΓ(α) = Γ((eC)
Eα) = Γ(α).
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3.5. Warning. Since Γ: E(−,−) ⇒ F(F ,−,F−) is a natural transformation, one might
wonder if the definition of Γ

∼
above agrees with the description of the completion of a nat-

ural transformation of additive functors from Section 2. However, the biadditive functors
E and F(F−,F−) are not necessarily additive functors Cop ×C → Ab, so we cannot form
the completions of them as in Section 2. Thus, when we use notation of the form Γ

∼
for

a natural transformation of biadditive functors, it always refers to the construction from
Definition 3.4.

3.6. Lemma. The pair (F
∼

,Γ
∼
) is an n-exangulated functor (C

∼
,E
∼
, s∼) → (D

∼
,F
∼
, t
∼
).

Proof. Given a pair of objects (A, eA), (C, eC) ∈ C
∼
, the map Γ

∼

((C,eC),(A,eA)) from Definition
3.4 is a homomorphism of abelian groups as Γ(C,A) is one. It follows from the naturality
of Γ that Γ

∼
is a natural transformation E

∼
(−,−) ⇒ F

∼
(F
∼

−,F
∼

−).
Consider now an E

∼
-extension (eA, α, eC) ∈ E

∼
((C, eC), (A, eA)). Following the definition

of s∼, we have s∼(eA, α, eC) = [(X•, e•)], where s(α) = [X•] and the idempotent e• : X• → X•
is a lift of (eA, eC) : α → α. Notice that t(Γ(α)) = [FCX•] as (F ,Γ) is n-exangulated.
Moreover FCe• : FCX• → FCX• is an idempotent lifting (F eA,F eC) : Γ(α) → Γ(α). We
hence see that t

∼
(Γ
∼
(eA, α, eC)) is given by the class

[ (FA,F eA) (FX1,F e1) · · · (FC,F eC)
F
∼

(e1, e1d0, eA) F
∼

(e2, e2d1, e1) F
∼

(eC , eCdn, en) ],

which is [F
∼

C(X•, e•)]. This finishes the proof.

To consider n-exangulated categories as 0-cells in a 2-category, we use the notion of a
morphism between n-exangulated functors. This is captured by the following definition.

3.7. Definition. (See [Bennett-Tennenhaus, Haugland, Sandøy, Shah, 2023, Def. 4.1].)
Suppose that (F ,Γ) and (G ,Λ) are n-exangulated functors of the form (C,E, s) → (D,F, t).
An n-exangulated natural transformation (F ,Γ) ⇒ (G ,Λ) is a natural transformation
ב : F ⇒ G of additive functors such that, for all A,C ∈ C and each α ∈ E(C,A), the
pair (Cב,Aב) satisfies

FΓ(α)(Aב) = (Cב)
FΛ(α). (2)

Notice that equation 2 means that (Cב,Aב) is a morphism Γ(α) → Λ(α) of F-extensions.
For a natural transformation ב : F ⇒ G of additive functors F ,G : C → D, recall that

the completion ∽ב : F
∼

⇒ G
∼

is given by (X,e)∽ב = (G e, (G e) Xב F e,F e) for (X, e) ∈ C
∼
. The

proposition below shows that the completion of an n-exangulated natural transformation
is again n-exangulated.

3.8. Lemma. Suppose ב : (F ,Γ) ⇒ (G ,Λ) is n-exangulated. Then ∽ב is an n-exangulated
natural transformation (F

∼
,Γ
∼
) ⇒ (G

∼
,Λ
∼
).
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Proof. Consider an E
∼

-extension (eA, α, eC) ∈ E
∼
((C, eC), (A, eA)). Using that (eA)Eα = α,

we get (F eA)FΓ(α) = Γ(α) by the naturality of Γ. Similarly Λ(α) = (G eC)
FΛ(α). Since

ב is n-exangulated, we have FΓ(α)(Aב) = (Cב)
FΛ(α), while naturality of ב yields the

equality (G eC)בC = CFב eC . Combining these observations gives

(G eA)F(בA)F(F eA)FΓ(α) = (G eA)F(בA)FΓ(α) = (G eA)F(בC)
FΛ(α) = (Cב)

F(G eA)FΛ(α)

= (Cב)
FΛ(α) = (Cב)

F(G eC)
FΛ(α) = CFב) eC)

FΛ(α) = CFב) eC)
F(G eC)

FΛ(α).

Hence, we have that

F∼Γ((A,eA)∽ב)
∼
(eA, α, eC) = (G eA, (G eA) Aב F eA,F eA)F∼(F eA,Γ(α),F eC) (definition)

= (G eA, (G eA)F(בA)F(F eA)FΓ(α),F eC) (Definition 3.2)
= (G eA, ((G eC) Cב F eC)

FΛ(α),F eC) (as above)

= ((C,eC)∽ב)
F
∼

Λ
∼
(eA, α, eC) (definition),

as required.
We now introduce n-exangulated analogues of the collections described in Notation 2.6.

3.9. Notation. See [Bennett-Tennenhaus, Haugland, Sandøy, Shah, 2023, Not. 4.14].
We write n -Exang for the collection of 0-cells, 1-cells and 2-cells consisting of n-exangulated
categories, n-exangulated functors and n-exangulated natural transformations between
these functors, respectively. Restricting 0-cells in n -Exang to small n-exangulated cat-
egories yields the 2-category n - exang; see [Bennett-Tennenhaus, Haugland, Sandøy, Shah,
2023, Cor. 4.15]. We furthermore write IC-n -Exang and IC-n - exang when only consider-
ing idempotent complete 0-cells in n -Exang and n - exang, respectively, and note that also
IC-n - exang is a 2-category. As before, we use a subscript i ∈ {0, 1, 2} to denote i-cells in
the collections described above.

We conclude this section by constructing the 2-functor ♣ used in Theorem 1.3 in
Section 1.

3.10. Definition. Let ♣ = (♣0,♣1,♣2) : n -Exang → IC-n -Exang be defined by the
assignments ♣i : n -Exangi → IC-n -Exangi, where:

♣0(C,E, s) := (C
∼
,E
∼
, s∼), ♣1(F ,Γ) := (F

∼
,Γ
∼
), (ב)2♣ := .∽ב

The result below is an n-exangulated analogue of Theorem 2.8.

3.11. Theorem. The following statements hold for the assignments ♣0, ♣1 and ♣2.

(i) The pair (♣0,♣1) defines a functor n -Exang → IC-n -Exang.

(ii) The pair (♣1,♣2) defines a functor

n -Exang((C,E, s), (D,F, t)) → IC-n -Exang((C
∼
,E
∼
, s∼), (D

∼
,F
∼
, t
∼
))

whenever (C,E, s) and (D,F, t) are n-exangulated categories.

(iii) The assignment ♣2 preserves horizontal composition.

In particular, restricting ♣ to small categories yields a 2-functor n - exang → IC-n - exang.
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Proof. It follows from the discussion and results above, in particular Lemmas 3.6 and
3.8, that the assignments are well-defined. The rest of this proof is similar to the proof
of Theorem 2.8. Functoriality in (i) is straightforward to check. For (iii), note that n-
exangulated natural transformations are closed under horizontal composition by [Bennett-
Tennenhaus, Haugland, Sandøy, Shah, 2023, Prop. 4.8], and then again apply [Bühler,
2010, Rem. 6.8]. Lastly, for (ii), notice first that n -Exang((C,E, s), (D,F, t)), and hence
also IC-n -Exang((C

∼
,E
∼
, s∼), (D

∼
,F
∼
, t
∼
)), is indeed a category by [Bennett-Tennenhaus, Haug-

land, Sandøy, Shah, 2023, Prop. 4.12]. Part (ii) then follows from [Bühler, 2010, Rem. 6.8]
and noting that, for an n-exangulated functor (F ,Γ), the identity id(F ,Γ) is just idF (see
[Bennett-Tennenhaus, Haugland, Sandøy, Shah, 2023, Def. 4.3]).

4. The category of extensions and idempotent completion

We assume throughout Section 4 that C is an additive category and that

E : Cop × C → Ab

is a biadditive functor. Note in particular that any n-exangulated category (C,E, s) gives
rise to such a pair (C,E) by ignoring the realisation s. In Subsection 4.1 we recall the
definition of the category E -Ext(C) of extensions associated to (C,E), before proving
Proposition 1.1 from Section 1. Building on this result, our ultimate goal is to show that,
for the biadditive functor E

∼
: C
∼op × C

∼
→ Ab from Definition 3.2, the category E

∼
-Ext(C

∼
)

of extensions of the idempotent completion is equivalent to the idempotent completion
E -Ext(C)
∼

of E -Ext(C). These two categories are described explicitly in Subsection 4.5
and Subsection 4.7, respectively, culminating in a proof of Theorem 1.2 from Section 1.
In Example 4.10 we provide an algebraic example exhibiting an application of Theorem
4.9.

4.1. The category of extensions. The category of extensions associated to (C,E)
is denoted by E -Ext(C). The objects of E -Ext(C) are E-extensions, and the morphisms
are morphisms of E-extensions. Recall from Section 3 that this means that an object is
an element α ∈ E(C,A) for some objects A,C ∈ C, while a morphism from α ∈ E(C,A)
to β ∈ E(D,B) is given by a pair (a, c) of morphisms a : A → B and c : C → D in C
satisfying aEα = cEβ.

As shown in [Bennett-Tennenhaus, Haugland, Sandøy, Shah, 2023, Prop. 3.2], one can
define an exact structure XE on E -Ext(C) as follows. Let α ∈ E(C,A), β ∈ E(D,B) and
γ ∈ E(G,E) be objects in E -Ext(C). A sequence

α β γ
(a, c) (b, d)

of composable morphisms in E -Ext(C) lies in the class XE if and only if the morphisms a
and c in C are both sections with b = coker a and d = coker c.

By definition, a category is idempotent complete provided any idempotent endomorph-
ism splits. Note also that a morphism of E-extensions (eA, eC) : α → α for α ∈ E(C,A) is
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an idempotent in E -Ext(C) if and only if both eA : A → A and eC : C → C are idempotents
in C. Hence, Proposition 1.1 follows from Proposition 4.2. The authors are grateful to
Dixy Msapato for pointing out [Msapato, 2022, Lem. 3.23], which motivated the proof of
the result below.

4.2. Proposition. Let α ∈ E(C,A) and suppose (eA, eC) ∈ EndE -Ext(C)(α) is an idem-
potent. Then eA and eC split in C if and only if (eA, eC) splits in E -Ext(C).

Proof. (⇒) Assume that eA and eC split in C. As eA splits, there exist morphisms
r : A → B and s : B → A such that sr = eA and rs = idB. Similarly, there exist
u : C → D and v : D → C with vu = eC and uv = idD, because eC splits. Consider the
E-extension rEv

Eα ∈ E(D,B). We see that (s, v) : rEvEα → α is a morphism in E -Ext(C),
as

sE(rEv
Eα) = vE(sr)Eα = vE(eA)Eα = vE(eC)

Eα = vE(vu)Eα = (vuv)Eα = vEα.

Analogously, one can show that (r, u) : α → rEv
Eα is a morphism of E-extensions. Notice

that (s, v)◦ (r, u) = (eA, eC) and (r, u)◦ (s, v) = (idB, idD), which is the identity on rEv
Eα.

This gives a splitting of (eA, eC), as required.
(⇐) If (eA, eC) splits, then there exist β ∈ E(D,B) and morphisms (r, u) : α → β and

(s, v) : β → α in E -Ext(C) such that (s, v)◦(r, u) = (eA, eC) and (r, u) ◦ (s, v) = (idB, idD).
These equations yield splittings of eA and eC in C.

We finish this subsection by deducing Corollary 4.4, showing that given certain as-
sumptions on C, the Krull–Remak–Schmidt property for C implies the same property for
E -Ext(C). In order to see this, we first recall some terminology.

For the rest of Subsection 4.1, let R be a commutative ring. The additive category C
is said to be R-linear if C(X, Y ) is an R-module for all X, Y ∈ C, and we have

(λg)f = λ(gf) = g(λf)

for all λ ∈ R and all composable morphisms f and g in C. When C is R-linear, the
bifunctor E is R-bilinear provided that each abelian group E(C,A) has the structure of
an R-module, and we have E(λc, a) = λE(c, a) = E(c, λa) for all λ ∈ R and any morphisms
a and c in C. Recall that an R-linear category C is called Hom-finite (over R) if each
R-module C(X, Y ) has finite length (see e.g. [Krause, 2015, Sec. 5]).

4.3. Proposition. If C is R-linear and E is R-bilinear, then E -Ext(C) is also R-linear.
If in addition C is Hom-finite, then so is E -Ext(C).

Proof. Fix objects α and β in E -Ext(C), say where α ∈ E(C,A) and β ∈ E(D,B).
Given a morphism (a, c) : α → β in E -Ext(C), we have

(λa)Eα = E(idC , λa)(α) = λE(idC , a)(α) = λE(c, idA)(β) = E(λc, idA)(β) = (λc)Eβ

as E is R-bilinear. This means that (λa, λc) : α → β is a morphism in E -Ext(C), and we
take this to be the action of λ on (a, c). Using that C is R-linear, it is straightforward to
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check that the Hom-sets of E -Ext(C) are R-modules under this multiplication. Consider
another morphism (b, d) : β → γ in E -Ext(C). Since C is R-linear, we have

(b, d)(λa, λc) = (b(λa), d(λc)) = (λ(ba), λ(dc)) = ((λb)a, (λd)c) = (λb, λd)(a, c),

which is the action of λ on (b, d) ◦ (a, c). This proves that E -Ext(C) is R-linear.
The arguments above show that the collection of morphisms α → β in E -Ext(C) defines

an R-submodule of the direct sum C(A,B) ⊕ C(C,D). The length of this submodule is
bounded above by the sum of the lengths of C(A,B) and C(C,D), proving the second
assertion.

Recall that C is said to be a Krull–Schmidt category if every object decomposes into
a finite direct sum of objects with local endomorphism rings.

4.4. Corollary. Suppose that C is R-linear, Hom-finite and Krull–Schmidt, and that E
is R-bilinear. Then E -Ext(C) is also R-linear, Hom-finite and Krull–Schmidt.

Proof. Note that an R-linear Hom-finite category is Krull–Schmidt if and only if it is
idempotent complete; see e.g. [Chen, Ye, Zhang, 2008, Cor. A.2] or [Shah, 2023, Thm. 6.1].
Using this, the result now follows by combining Proposition 1.1 and Proposition 4.3.

4.5. The category of extensions of the idempotent completion. As recalled
in Definition 3.2, there is a biadditive functor E

∼
: C
∼op × C

∼
→ Ab defined canonically from

E where C
∼

is the idempotent completion of C. As in Subsection 4.1 we can consider the
category E

∼
-Ext(C

∼
) of extensions associated to (C

∼
,E
∼
). We give an explicit description of

E
∼
-Ext(C

∼
) and the exact structure XE

∼ below.

Objects: The objects of E
∼
-Ext(C

∼
) are of the form (eA, α, eC) ∈ E

∼
((C, eC), (A, eA)) for

(C, eC) and (A, eA) in C
∼
. In particular, the morphisms eA : A → A and eC : C → C in C

are idempotents, and α ∈ E(C,A) is an E-extension satisfying (eA)Eα = α = (eC)
Eα.

Morphisms: A morphism (eA, α, eC) → (eB, β, eD) in E
∼
-Ext(C

∼
) is a pair

((eB, a, eA), (eD, c, eC)),

where (eB, a, eA) : (A, eA) → (B, eB) and (eD, c, eC) : (C, eC) → (D, eD) are morphisms in
C
∼

and (eB, a, eA)E∼(eA, α, eC) = (eD, c, eB)
E
∼

(eB, β, eD). This means that (a, c) : α → β is a
morphism of E-extensions, aeA = a = eBa and ceC = c = eDc.

Composition: Composition in E
∼
-Ext(C

∼
) is defined component-wise. Explicitly, the com-

position of ((eB, a, eA), (eD, c, eC)) and ((eE, b, eB), (eG, d, eD)) is ((eE, ba, eA), (eG, dc, eC)).

Identity morphisms: The identity on (eA, α, eC) in E
∼
-Ext(C

∼
) is ((eA, eA, eA), (eC , eC , eC)).

Preadditivity: The addition of morphisms is component-wise. Explicitly, the addition of
((eB, a, eA), (eD, c, eC)) and ((eB, a

′, eA), (eD, c
′, eC)) is ((eB, a+ a′, eA), (eD, c+ c′, eC)).

Exact structure: The collection XE
∼ consists of kernel-cokernel pairs

(eA, α, eC) (eB, β, eD) (eE, γ, eG)
((eB , a, eA), (eD, c, eC)) ((eE , b, eB), (eG, d, eD))
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in E
∼
-Ext(C

∼
) such that (eB, a, eA) and (eD, c, eC) are sections with

(eE, b, eB) = coker(eB, a, eA) and (eG, d, eD) = coker(eD, c, eC).

These conditions are equivalent to the following sequences

(A, eA) (B, eB) (E, eE),
(eB , a, eA) (eE , b, eB)

(C, eC) (D, eD) (G, eG)
(eD, c, eC) (eG, d, eD)

being split exact in C
∼
.

We have an immediate corollary of Proposition 1.1.

4.6. Corollary. The exact category (E
∼
-Ext(C

∼
),XE

∼) is idempotent complete.

4.7. The idempotent completion of the category of extensions. In contrast
to what is done in Subsection 4.5, we may first consider the category of extensions associ-
ated to (C,E), which forms part of an exact category (E -Ext(C),XE). Then we may take
the idempotent completion, resulting in an idempotent complete exact category that we
denote by (E -Ext(C)
∼

,XE
∼

); see Proposition 2.3. We proceed with an explicit description
of E -Ext(C)
∼

and the exact structure XE
∼

.

Objects: The objects of E -Ext(C)
∼

are of the form (α, (eA, eC)), where α ∈ E(C,A) and
(eA, eC) : α → α is an idempotent morphism of E-extensions. This means that eA : A → A
and eC : C → C are idempotents in C and that (eA)Eα = (eC)

Eα.

Morphisms: A morphism (α, (eA, eC)) → (β, (eB, eD)) in E -Ext(C)
∼

is given by a triple
((eB, eD), (a, c), (eA, eC)), where (a, c) : α → β is a morphism of E-extensions and we have
(a, c)(eA, eC) = (a, c) = (eB, eD)(a, c).

Composition: The composition of two composable morphisms ((eB, eD), (a, c), (eA, eC))

and ((eE, eG), (b, d), (eB, eD)) in E -Ext(C)
∼

is ((eE, eG), (ba, dc), (eA, eC)).

Identity morphisms: The identity on (α, (eA, eC)) in E -Ext(C)
∼

is

((eA, eC), (eA, eC), (eA, eC)).

Preadditivity: Let ((eB, eD), (a, c), (eA, eC)) and ((eB, eD), (a
′, c′), (eA, eC)) be morphisms

from (α, (eA, eC)) to (β, (eB, eD)) in E -Ext(C)
∼

. The addition of these two morphisms is
given by ((eB, eD), (a+ a′, c+ c′), (eA, eC)).

Exact structure: The elements in XE
∼

are direct summands of images of elements in XE

under the functor IE -Ext(C) : E -Ext(C) → E -Ext(C)
∼

; see the discussion before Proposition
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2.3. In other words, they are direct summands of kernel-cokernel pairs in E -Ext(C)
∼

of the
form

(α, (idA, idC)) (β, (idB, idD)) (γ, (idE, idG)),
p q

where

p := ((idB, idD), (a, c), (idA, idC)), q := ((idE, idG), (b, d), (idB, idD))

and α β γ
(a, c) (b, d)

is an element of XE.

4.8. Warning. Even if (α, (eA, eC)) lies in E -Ext(C)
∼

, the E-extension α ∈ E(C,A) does
not necessarily satisfy (eA)Eα = α or (eC)Eα = α. For example, if α ̸= 0, then (α, (0, 0)) is
an object in E -Ext(C)
∼

, but 0Eα = 0Eα = 0 ̸= α. In particular, this means that the objects
of E -Ext(C)
∼

are not canonically in one-to-one correspondence with those of E
∼
-Ext(C

∼
).

Warning 4.8 tells us that we cannot expect the categories E
∼
-Ext(C

∼
) and E -Ext(C)
∼

to
be isomorphic in general. Despite this, we prove that they are always equivalent. In the
following, we use the Hebrew letters מ (mem), ש (shin) and צ (tsadi). Note that the
functor (C,E)ש that we define in the proof of Theorem 4.9 below will be used to construct
a natural transformation in Section 5, which is the reason for our choice of notation.

4.9. Theorem. The exact categories (E
∼
-Ext(C

∼
),XE

∼) and (E -Ext(C)
∼

,XE
∼

) are equivalent.

Proof. We establish an exact functor (C,E)ש : (E
∼
-Ext(C

∼
),XE

∼) → (E -Ext(C)
∼

,XE
∼

) and an
exact quasi-inverse (C,E)צ : (E -Ext(C)

∼
,XE
∼

) → (E
∼
-Ext(C

∼
),XE

∼).
Define (C,E)ש by

,eA)(C,E)ש α, eC) := (α, (eA, eC))

on objects and

,eB))(C,E)ש a, eA), (eD, c, eC)) := ((eB, eD), (a, c), (eA, eC))

on morphisms. By our explicit description of E
∼
-Ext(C

∼
) and E -Ext(C)
∼

in Subsection 4.5
and Subsection 4.7, respectively, we see that (C,E)ש is a well-defined additive functor.

Define (C,E)צ by
,α)(C,E)צ (eA, eC)) := (eA, (eA)Eα, eC)

on objects and

,eB))(C,E)צ eD), (a, c), (eA, eC)) := ((eB, a, eA), (eD, c, eC))

on morphisms. Note that (C,E)צ is well-defined on objects, since

(eC)
E(eA)Eα = (eA)E(eC)

Eα = (eA)E(eA)Eα = (eA)Eα.
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It is straightforward to check that (C,E)צ is well-defined on morphisms, and that it is an
additive functor.

The composite (C,E)ש◦(C,E)צ is the identity functor idE
∼
-Ext(C

∼
) of E

∼
-Ext(C

∼
), as (eA)Eα = α

whenever (eA, α, eC) ∈ E
∼
-Ext(C

∼
). For each object (α, (eA, eC)) in E -Ext(C)

∼
, set

(α,(eA,eC))מ := ((eA, eC), (eA, eC), (eA, eC)) : (α, (eA, eC)) → ((eA)Eα, (eA, eC)).

This is an isomorphism in E -Ext(C)
∼

. Checking that

מ :=
{

(α,(eA,eC))מ

}
(α,(eA,eC))∈E -Ext(C)

∼
: idE -Ext(C)
∼ =⇒ (C,E)ש ◦ (C,E)צ

is natural is straightforward.
It remains to show that (C,E)ש and (C,E)צ are exact functors. Recall that the direct sum

of two objects (X, eX) and (Y, eY ) in C
∼

is given by

(X, eX)⊕ (Y, eY ) = (X ⊕ Y, eX ⊕ eY ) =
(
X ⊕ Y,

(
eX 0
0 eY

))
.

We first check that (C,E)ש is exact. Let

(eA, α, eC) (eB, β, eD) (eE, γ, eG)
((eB , a, eA), (eD, c, eC)) ((eE , b, eB), (eG, d, eD))

(3)

be an arbitrary element of XE
∼. The underlying sequences of 3 are split exact in C

∼
, so

we may without loss of generality assume that B = A⊕ E, eB = eA ⊕ eE, D = C ⊕G,
eD = eC ⊕ eG, (a, c) = ((

eA
0 ), (

eC
0 )) and (b, d) = (( 0 eE ), ( 0 eG )). Applying (C,E)ש to 3 then

yields the sequence

(α, (eA, eC)) (β, (eA ⊕ eE, eC ⊕ eG)) (γ, (eE, eG)),
r s (4)

where

r := ((
(

eA 0
0 eE

)
,
(

eC 0
0 eG

)
), ((

eA
0 ), (

eC
0 )), (eA, eC)),

s := ((eE, eG), (( 0 eE ), ( 0 eG )), (
(

eA 0
0 eE

)
,
(

eC 0
0 eG

)
)).

We claim that 4 is a direct summand of the sequence

(α, (idA, idC)) (β, (idA⊕E, idC⊕G)) (γ, (idE, idG)),
t u (5)

where

t := ((idA⊕E, idC⊕G), (
(
idA
0

)
,
(
idC
0

)
), (idA, idC)),

u := ((idE, idG), (( 0 idE ), ( 0 idG )), (idA⊕E, idC⊕G)).
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Notice first that (
(
idA
0

)
,
(
idC
0

)
) is a morphism α → β of E-extensions, since(

idA
0

)
E
α =

(
idA
0

)
E
(eA)Eα = (

eA
0 )Eα = (

eC
0 )

E
β =

(
idC
0

)E( eC 0
0 eG

)E
β =

(
idC
0

)
E
β.

Similarly, the pair (( 0 idE ), ( 0 idG )) is a morphism β → γ in E -Ext(C). In particular,
this yields that 5 is indeed a sequence in E -Ext(C)

∼
. To verify that 4 is a direct summand

of 5, notice that there is a section induced by the morphisms ((idA, idC), (eA, eC), (eA, eC)),
((idA⊕E, idC⊕G), (eA ⊕ eE, eC ⊕ eG), (eA ⊕ eE, eC ⊕ eG)) and ((idE, idG), (eE, eG), (eE, eG)).

Thus, to finish the proof that (C,E)ש is exact, it suffices to show that 5 lies in XE
∼

. For
this, it is in turn enough to verify that

α β γ
(
(
idA
0

)
,
(
idC
0

)
) (( 0 idE ), ( 0 idG ))

(6)

lies in XE. By the arguments above, we already know that 6 is a sequence of morphisms
in E -Ext(C). As its underlying sequences are split exact in C, we have that 6 lies in XE.

We now show that (C,E)צ is exact. Let

(α, (eA, eC)) (β, (eB, eD)) (γ, (eE, eG)) (7)

be a conflation in XE
∼

. Consequently, we have that 7 is a direct summand of a sequence

(α′, (idA′ , idC′)) (β′, (idB′ , idD′)) (γ′, (idE′ , idG′)), (8)

which is the image under IE -Ext(C) of a kernel-cokernel pair

α′ β′ γ′(a′, c′) (b′, d′)
(9)

in XE. Apply (C,E)צ to 8 to obtain

(idA′ , α′, idC′) (idB′ , β′, idD′) (idE′ , γ′, idG′). (10)

We claim that 10 lies in XE
∼. Since 9 belongs to XE, its underlying sequences are split

exact in C. As IC : C → C
∼

is an additive functor, the sequences

(A′, idA′) (B′, idB′) (E ′, idE′),
(idB′ , a′, idA′) (idE′ , b′, idB′)

(C ′, idC′) (D′, idD′) (G′, idG′)
(idD′ , c′, idC′) (idG′ , d′, idD′)

are thus split exact in C
∼
, and so 10 lies in XE

∼.
Since 7 is a direct summand of 8, we know that 7(C,E)צ is a direct summand of

8(C,E)צ = 10 ∈ XE
∼. Thus, by [Bühler, 2010, Cor. 2.18], we deduce that 7(C,E)צ belongs

to XE
∼, and hence (C,E)צ is an exact functor.
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We finish this section by demonstrating the use of Theorem 4.9 in a concrete example.

4.10. Example. Let R be a unital ring. For integers m,n ≥ 0, let Matm,n(R) denote
the set of m× n matrices which, when m,n > 0, have entries in R. Note that Matm,0(R)
consists of a single empty column vector of length m, and Mat0,n(R) consists of an empty
length n row vector. By declaring the image of Matl,0(R)×Mat0,n(R) → Matl,n(R) to
be the zero matrix, there is a function Matl,m(R)×Matm,n(R) → Matl,n(R) defined for
any integers l,m, n ≥ 0 that extends matrix multiplication. When l = 0, the codomain
of this function contains a unique element as noted above. Therefore, in this case, this
function has the effect of changing the length of the empty length m row vector to length
n. Similarly, if n = 0, then the corresponding function changes the length m column
vector to length l.

Let M be the category of rectangular matrices over R, defined as follows. Objects
of M are rectangular matrices X ∈ Matm,n(R) for m,n ≥ 0, and a morphism from
X ∈ Matm,n(R) to Y ∈ Matp,q(R) is defined by a pair of matrices (A,B) ∈ Matq,n(R) ×
Matp,m(R) such that BX = Y A. Composition is defined by component-wise matrix
multiplication. The identity of an object X ∈ Matm,n(R) is the pair (In, Im) of identity
matrices.

The category M is preadditive, where the addition of morphisms is given component-
wise. Furthermore, M is in fact additive, where the direct sum X ⊕Y of X ∈ Matm,n(R)
and Y ∈ Matp,q(R) is given by the block matrix in Matm+p,n+q(R) formed by taking X
and Y in the diagonal blocks and 0 elsewhere. That is,

X ⊕ Y =

(
X 0
0 Y

)
.

If m = 0, then X is an empty row and X ⊕ Y is found by inserting n columns, all with
entries equal to 0, to the left of Y . Likewise: if n = 0, one inserts 0-rows above Y ; if
p = 0, one inserts 0-columns to the right of X; and if q = 0, one inserts 0-rows below X.
The zero object of M is the unique element of Mat0,0(R).

For integers n,m ≥ 0, recall that Rm ∼= Rn as left (or, in fact, right) R-modules if and
only if AB = Im and BA = In for some

(A,B) ∈ Matm,n(R)×Matn,m(R).

In this case, let us write m ∼ n. The ring R is said to have the invariant basis number
(IBN) property provided that m ∼ n implies m = n; see [Rotman, 2009, p. 60]. Any
one-sided noetherian ring has the IBN property [Rotman, 2009, Thm. 3.24], as does any
commutative ring [Rotman, 2009, Prop. 2.37]. The endomorphism ring of a vector space
of countably infinite dimension does not have the IBN property [Rotman, 2009, Exa. 2.36].

For what remains of Example 4.10, we assume that R has the IBN property. We now
use Theorem 4.9 to compute the idempotent completion M

∼
. Consider first the category

C of finitely generated free R-modules, and let E : Cop ×C → Ab be the biadditive functor
given by the Hom-bifunctor C(−,−). Using that any finitely generated free R-module is
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isomorphic to Rn for some n ≥ 0, it is straightforward to check that M is equivalent to
the category E -Ext(C) of extensions, because R has the IBN property.

Applying Theorem 4.9 now gives M
∼

≃ E
∼
-Ext(C

∼
). Observing that E

∼
= C

∼
(−,−), it fol-

lows from [Bennett-Tennenhaus, Haugland, Sandøy, Shah, 2023, Exa. 3.3] that E
∼
-Ext(C

∼
)

is equivalent to the arrow category C
∼→ of C

∼
, i.e. the category whose objects and morph-

isms are given by morphisms and commutative squares in C
∼
, respectively. For simplicity,

assume from here that R is commutative. It is well-known that the idempotent comple-
tion of C is the category P of finitely generated projective R-modules; see e.g. [Borceux,
Dejean, 1986, Exa. 2]. We can thus conclude that M

∼
is equivalent to the arrow category

P→.

5. 2-categorical compatibility

The aim of this section is to prove Theorem 1.3 in Section 1, which asserts that the con-
structions and results we have exhibited so far are compatible in a 2-categorical frame-
work. We start by recalling the definition of the 2-functor C from [Bennett-Tennenhaus,
Haugland, Sandøy, Shah, 2023].

Given an n-exangulated functor (F ,Γ): (C,E, s) → (D,F, t), it follows from [Bennett-
Tennenhaus, Haugland, Sandøy, Shah, 2023, Prop. 3.11, Thm. 3.17] that there is a cor-
responding exact functor

E(F ,Γ) : (E -Ext(C),XE) → (F -Ext(D),XF).

This functor is defined by E(F ,Γ)(α) = Γ(α) on objects and by E(F ,Γ)(a, c) = (Fa,F c) on
morphisms. In addition, given an n-exangulated natural transformation

ב : (F ,Γ) ⇒ (G ,Λ) of n-exangulated functors (F ,Γ), (G ,Λ): (C,E, s) → (D,F, t),

one can define a natural transformation

⟨ב⟩ : E(F ,Γ) ⇒ E(G ,Λ) given by α⟨ב⟩ = (Cב,Aב) for α ∈ E(C,A).

See [Bennett-Tennenhaus, Haugland, Sandøy, Shah, 2023, Thm. 4.19].

5.1. Definition. (See [Bennett-Tennenhaus, Haugland, Sandøy, Shah, 2023, Def. 4.20].)
Let C = (C0,C1,C2) : n -Exang → Exact be defined by Ci : n -Exangi → Exacti, where:

C0(C,E, s) := (E -Ext(C),XE), C1(F ,Γ) := E(F ,Γ), C2(ב) := .⟨ב⟩

It was shown in [Bennett-Tennenhaus, Haugland, Sandøy, Shah, 2023, Thm. 4.22] that
C defines a functor n -Exang → Exact that satisfies the properties of a 2-functor, and thus
restricts to a genuine 2-functor n - exang → exact. Proposition 1.1 allow us to restrict C
to idempotent complete categories. By abuse of notation, we write C∼ for this restriction,
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where it should be noted that C∼ is not the completion of the functor C in the sense of
Section 2 (see 1). We have

C
∼
= (C

∼

0,C
∼

1,C
∼

2) : IC-n -Exang → IC-Exact,

where the assignment C∼i is defined as the restriction of Ci for i ∈ {0, 1, 2} and satisfies
the same properties. Again, we obtain a 2-functor C∼ : IC-n - exang → IC-exact when
restricting 0-cells to small categories.

We frequently use that any n-exangulated category (C,E, s) gives rise to the pair (C,E)
of an additive category equipped with a biadditive functor by forgetting the realisation s.
In particular, for each (C,E, s) ∈ n -Exang0, there is an exact equivalence

(C,E)ש : (E
∼
-Ext(C

∼
),XE

∼) → (E -Ext(C)
∼

,XE
∼

),

which was defined in the proof of Theorem 4.9. Furthermore, recall that the functors ♡
and ♣ were defined in Definitions 2.7 and 3.10, respectively.

5.2. Theorem. The collection ש of exact equivalences (C,E)ש for (C,E, s) ∈ n -Exang0
defines a natural transformation C∼♣ ⇒ ♡C as indicated in the diagram

n -Exang Exact

IC-n -Exang IC-Exact .

♣

C

♡

C
∼

ש

Proof. In order to demonstrate the naturality of ,ש we must show that

(E
∼
-Ext(C

∼
),XE

∼) (E -Ext(C)
∼

,XE
∼

)

(F
∼
-Ext(D

∼
),XF

∼) (F -Ext(D)
∼

,XF
∼

)

(C,E)ש

E
(F
∼

,Γ
∼
)

E(F ,Γ)

∼

(D,F)ש

commutes in IC-Exact for any n-exangulated functor (F ,Γ): (C,E, s) → (D,F, t). That
is, we need to show that E(F ,Γ)

(C,E)ש∽ and E(F(D,F)ש
∼

,Γ
∼
)
are equal as functors

E
∼
-Ext(C

∼
) → F -Ext(D)
∼

.

To this end, let (eA, α, eC) be an object in E
∼
-Ext(C

∼
). On the one hand, we have that

E(F ,Γ)

(C,E)ש∽ (eA, α, eC) = E(F ,Γ)

∼
(α, (eA, eC)) = (Γ(α), (F eA,F eC)),

while on the other hand

E(F(D,F)ש
∼

,Γ
∼
)
(eA, α, eC) = F)(D,F)ש eA,Γ(α),F eC) = (Γ(α), (F eA,F eC)).
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Hence, the functors E(F ,Γ)

(C,E)ש∽ and E(F(D,F)ש
∼

,Γ
∼
)
agree on objects. Consider next a morph-

ism ((eB, a, eA), (eD, c, eC)) : (eA, α, eC) → (eB, β, eD) in E
∼
-Ext(C

∼
). We have

E(F ,Γ)

(C,E)ש∽ ((eB, a, eA), (eD, c, eC)) = E(F ,Γ)

∼
((eB, eD), (a, c), (eA, eC))

= ((F eB,F eD), (Fa,F c), (F eA,F eC))

= F))(D,F)ש eB,Fa,F eA), (F eD,F c,F eC))

= E(F(D,F)ש
∼

,Γ
∼
)
((eB, a, eA), (eD, c, eC)).

The next result says that ש satisfies the defining property of a 2-natural transformation
between 2-functors; see [Johnson, Yau, 2021, Prop. 4.2.11].

5.3. Proposition. Let ב : (F ,Γ) ⇒ (G ,Λ) be an n-exangulated natural transformation
between n-exangulated functors (F ,Γ), (G ,Λ): (C,E, s) → (D,F, t). Then the square

(♡C)(F ,Γ) ◦ (C,E)ש (D,F)ש ◦ (C
∼♣)(F ,Γ)

(♡C)(G ,Λ) ◦ (C,E)ש (D,F)ש ◦ (C
∼♣)(G ,Λ)

(♡C)(ב) ◦h idש(C,E)
idש(D,F)

◦h (C
(ב)(♣∽

commutes in IC-Exact(E
∼
-Ext(C

∼
),F -Ext(D)
∼

).

Proof. Note first that we have the horizontal equalities by Theorem 5.2. Consider an
arbitrary object (eA, α, eC) ∈ E

∼
((C, eC), (A, eA)) in E

∼
-Ext(C

∼
) = (C

∼♣)(C,E, s). On the one
hand, ((♡C)(ב) ◦h idש(C,E)

)(eA,α,eC) is equal to

(♡C)(ב)ש(C,E)(eA,α,eC)
◦ (♡C)(F ,Γ)(idש(C,E)

)(eA,α,eC)

= (♡C)(ב)(α,(eA,eC)) ◦ E(F ,Γ)

∼
(id(α,(eA,eC)))

= (♡C)(ב)(α,(eA,eC))

= (♡C(ב))(α,(eA,eC))

= (α,(eA,eC))∽⟨ב⟩

= (E(G ,Λ)(eA, eC),E(G ,Λ)(eA, eC)⟨ב⟩αE(F ,Γ)(eA, eC),E(F ,Γ)(eA, eC))

= ((G eA,G eC), ((G eA) Aב F eA, (G eC) Cב F eC), (F eA,F eC)).

On the other hand, (idש(D,F)
◦h (C

(eA,α,eC)((ב)(♣∽ is equal to

(idש(D,F)
)(C∼♣)(G ,Λ)(eA,α,eC) ◦ C))(D,F)ש

(eA,α,eC)((ב)(♣∽

= ב⟩(D,F)ש
∼
⟩(eA,α,eC)

= G))(D,F)ש eA, (G eA) Aב F eA,F eA), (G eC , (G eC) Cב F eC ,F eC))

= ((G eA,G eC), ((G eA) Aב F eA, (G eC) Cב F eC), (F eA,F eC)),
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which finishes the proof.

Restricting to small categories, Theorem 5.2 and Proposition 5.3 yield the following
corollary, demonstrating that idempotent completions and extension categories are com-
patible constructions in a 2-category-theoretic sense.

5.4. Corollary. There is a 2-natural transformation ש : C
∼♣ ⇒ ♡C of 2-functors from

n - exang to IC-exact consisting of exact equivalences.

6. The weak idempotent completion

The aim of this section is to relate our main results to the construction of weak idem-
potent completions. Note that the definitions and results in Section 6 rely on concepts
and notation which should be recalled from previous sections. Many of the proofs in
the weakly idempotent complete case are straightforward modifications of those for the
idempotent completion. However, we remark that our proof of the key result Proposi-
tion 6.4 differs significantly from the proof of Proposition 1.1 and relies on a result from
[Bennett-Tennenhaus, Haugland, Sandøy, Shah, 2023].

Recall that an additive category C is said to be weakly idempotent complete if every
retraction has a kernel or, equivalently, if every section has a cokernel; see [Bühler, 2010,
Lem. 7.1, Def. 7.2]. Every idempotent complete category is weakly idempotent complete;
see e.g. [Borceux, 1994, Prop. 6.5.4] and [Thomason, Trobaugh, 1990, Lem. A.6.2]. For
more detail on weak idempotent completions, see e.g. [Klapproth, Msapato, Shah, 2022,
Sec. 2.2].

6.1. Definition. (See [Klapproth, Msapato, Shah, 2022, Def. 2.10].) The weak idem-
potent completion Ĉ of C is the full subcategory of C

∼
that consists of all objects (X, e) for

which idX − e splits in C.

Note that Ĉ is an additive subcategory of C
∼

and that there is a canonical additive inclu-
sion functor KC : C → Ĉ defined by KC(X) := (X, idX) for X ∈ C and KC(f) := (idY , f, idX)
for f ∈ C(X, Y ). This functor is 2-universal among additive functors from C to weakly
idempotent complete categories; see [Klapproth, Msapato, Shah, 2022, Prop. 2.13]. The
functor IC : C → C

∼
factors through KC via the canonical inclusion functor LC : Ĉ → C

∼
,

which is the identity on objects and morphisms. In other words, there is a commutative
diagram

C C
∼

Ĉ

IC

KC LC

(11)

of additive categories and functors.
Suppose that (C,X ) is an exact category. One defines an exact structure “X on Ĉ as

follows. An object of Ĉ→→ is in “X if it is a direct summand of an object in the image of X
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under the functor C→→ → Ĉ→→ induced by KC : C → Ĉ. In particular, a kernel-cokernel
pair lies in “X if and only if it is a kernel-cokernel pair in X

∼
in which all three terms lie in

Ĉ.
Proposition 6.2 below shows that (Ĉ, “X ) is a fully exact subcategory of (C

∼
,X
∼
). This

means that Ĉ is extension-closed in (C
∼
,X
∼
) and that “X coincides with the inherited exact

structure; see [Bühler, 2010, Lem. 10.20, Def. 10.21].

6.2. Proposition. The pair (Ĉ, “X ) is a fully exact subcategory of (C
∼
,X
∼
). The inclusion

KC : (C,X ) → (Ĉ, “X ) is a fully faithful exact functor that reflects exactness.

Proof. Suppose that (A, eA) (B, eB) (C, eC)
(eB , a, eA) (eC , b, eB) is a conflation in

(C
∼
,X
∼
) with (A, eA), (C, eC) ∈ Ĉ. By [Klapproth, Msapato, Shah, 2022, Prop. 5.1], there

is an object (D, eD) ∈ Ĉ and an isomorphism

(A, eA) (B, eB) (C, eC)

(A, eA) (D, eD) (C, eC)

(eB , a, eA) (eC , b, eB)

(eD, r, eB)

(eD, c, eA) (eC , d, eD)

(12)

in the category K3
(C
∼
;(A,eA),(C,eC))

defined in [Herschend, Liu, Nakaoka, 2021, Def. 2.17]. By
[Herschend, Liu, Nakaoka, 2021, Lem. 4.1], the morphism (eD, r, eB) is an isomorphism in
C
∼
, so Ĉ is extension-closed. Since a sequence lies in “X if and only if it lies in X

∼
and has all

terms in Ĉ, the inherited exact structure (see [Bühler, 2010, Lem. 10.20]) coincides with“X . This shows that (Ĉ, “X ) is a fully exact subcategory of (C
∼
,X
∼
).

As a consequence, we observe that LC : (Ĉ, “X ) → (C
∼
,X
∼
) from 11 is an exact functor.

One sees directly that KC : (C,X ) → (Ĉ, “X ) is fully faithful and exact. That it reflects
exactness follows from IC : (C,X ) → (C

∼
,X
∼
) reflecting exactness (see Proposition 2.3) and

the commutative diagram 11.

Suppose that (D,Y) is also an exact category. Let F ,G : (C,X ) → (D,Y) be exact
functors and consider a natural transformation ב : F ⇒ G . The completions F

∼
and G

∼

restrict to give exact functors F̂ , “G : (Ĉ, “X ) → (“D, Ŷ). Moreover, ∽ב restricts to a natural
transformation

ב̂ :=
{

(X,e)∽ב

}
(X,e)∈Ĉ

: F̂ ⇒ “G .

We write WIC-Exact and WIC-exact for the restrictions to weakly idempotent complete
0-cells in Exact and exact, respectively, and note that WIC-exact is a 2-category.

6.3. Definition. Let ♢ = (♢0,♢1,♢2) : Exact → WIC-Exact be defined by the assign-
ments ♢i : Exacti → WIC-Exacti, where:

♢0(C,X ) := (Ĉ, “X ), ♢1(F ) := F̂ , (ב)2♢ := .ב̂
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These assignments are well-defined by the discussion above. As a consequence of
Theorem 2.8, we see that ♢ satisfies the properties of a 2-functor, because F̂ and ב̂ are
just restrictions of F

∼
and ,∽ב respectively. Thus, one deduces an analogue of Theorem

2.8.
Throughout the rest of this section, suppose that (C,E, s) is an n-exangulated category.

The next result is an analogue of Proposition 1.1, but interestingly the proof is very
different.

6.4. Proposition. If C is weakly idempotent complete, then E -Ext(C) is also weakly
idempotent complete.

Proof. Let (a, c) : α → β be a morphism in E -Ext(C) for α ∈ E(C,A) and β ∈ E(D,B).
Suppose that this morphism is a section. Thus, there is a retraction (r, s) : β → α in
E -Ext(C) satisfying (ra, sc) = (r, s) ◦ (a, c) = idα = (idA, idC). In particular, this implies
that a and c are sections in C.

Since C is weakly idempotent complete, these morphisms each admit a cokernel,
which we denote by b = coker a and d = coker c. We have that (b, d) is a cokernel of
(a, c) in E -Ext(C) by [Bennett-Tennenhaus, Haugland, Sandøy, Shah, 2023, Lem. 3.1], so
E -Ext(C) is weakly idempotent complete.

It was shown in [Klapproth, Msapato, Shah, 2022, Sec. 5] that the weak idempotent
completion Ĉ of C admits an n-exangulated structure because it is an extension-closed
subcategory of (C

∼
,E
∼
, s∼) in the sense of [Herschend, Liu, Nakaoka, 2022, Def. 4.1]. We

denote the corresponding n-exangulated category by (Ĉ, Ê, ŝ ). We now recall how Ê and
ŝ are defined.

6.5. Definition. (See [Klapproth, Msapato, Shah, 2022, Def. 5.3].) The biadditive func-
tor Ê : Ĉop × Ĉ → Ab is the restriction of E

∼
to Ĉop × Ĉ. The exact realisation ŝ of Ê is

defined as follows. Suppose that (eA, α, eC) ∈ Ê((C, eC), (A, eA)) is an Ê-extension. Then
s∼(eA, α, eC) = [“X•] for some (n+ 2)-term complex “X• in Ĉ by [Klapproth, Msapato, Shah,
2022, Prop. 5.1]. Thus, it is declared that ŝ(eA, α, eC) = [“X•].

Proposition 6.4 has the following immediate corollary.

6.6. Corollary. (Ê -Ext(Ĉ),X
Ê
) is a weakly idempotent complete exact category.

Recall from the proof of Theorem 4.9 that we have an exact equivalence

(C,E)ש : (E
∼
-Ext(C

∼
),XE

∼) → (E -Ext(C)
∼

,XE
∼

)

with quasi-inverse (C,E)צ for each n-exangulated category (C,E, s) by forgetting the real-
isation s. It follows from Proposition 4.2 that (C,E)ש restricts to a functor

ש ′
(C,E) : (Ê -Ext(Ĉ),XÊ) → (Ÿ�E -Ext(C), “XE).



THE CATEGORY OF EXTENSIONS AND IDEMPOTENT COMPLETION 1103

To see this, let (eA, α, eC) ∈ Ê((C, eC), (A, eA)). Consider ,eA)(C,E)ש α, eC) = (α, (eA, eC)).
Note that idα − (eA, eC) : α → α is a morphism of E-extensions since (eA, eC) is an ele-
ment of EndE -Ext(C)(α). We must show that idα − (eA, eC) = (idA − eA, idC − eC) splits in
E -Ext(C). This follows from Proposition 4.2, as (A, eA), (C, eC) ∈ Ĉ means that idA − eA
and idC − eC split in C.

A similar argument as above shows that (C,E)צ restricts to a functor

צ ′
(C,E) : (

Ÿ�E -Ext(C), “XE) → (Ê -Ext(Ĉ),XÊ).

Note that ש ′
(C,E) and צ ′

(C,E) are mutually quasi-inverse as they are restrictions of (C,E)ש and
(C,E)צ respectively. Since it is straightforward to check that ש ′

(C,E) and צ ′
(C,E) preserve the

exact structures, we have the following.

6.7. Theorem. There is an exact equivalence ש ′
(C,E) : (Ê -Ext(Ĉ),X

Ê
) → (Ÿ�E -Ext(C), “XE)

given by the restriction of .(C,E)ש

Suppose that (F ,Γ): (C,E, s) → (D,F, t) is an n-exangulated functor. One can define
a natural transformation Γ̂ : Ê(−,−) ⇒ F̂(F̂−, F̂−) by setting

Γ̂((C,eC),(A,eA))(eA, α, eC) := (F eA,Γ(α),F eC).

Notice that Γ̂ is just a restriction of Γ
∼
. We claim that the pair (F̂ , Γ̂) is an n-exangulated

functor (Ĉ, Ê, ŝ ) → (“D, F̂, t̂ ). To verify this, assume that ŝ(eA, α, eC) = [“X•], which implies
s∼(eA, α, eC) = [“X•]. This yields t

∼
(Γ
∼
(eA, α, eC)) = [F

∼
C(
“X•)], as (F

∼
,Γ
∼
) is n-exangulated by

Lemma 3.6. Since F
∼

C(
“X•) is a complex in “D, we obtain

t̂(Γ̂(eA, α, eC)) = [F
∼

C(“X•)] = [F̂C(“X•)]

as required.
Let ב : (F ,Γ) ⇒ (G ,Λ) be an n-exangulated natural transformation between n-

exangulated functors (F ,Γ), (G ,Λ): (C,E, s) → (D,F, t). Using that the completion

∽ב : (F
∼

,Γ
∼
) ⇒ (G

∼
,Λ
∼
)

is an n-exangulated natural transformation by Lemma 3.8, the same holds for the restric-
tion ב̂ : (F̂ , Γ̂) ⇒ ( “G , Λ̂).

We write WIC-n -Exang for the collections obtained by only considering weakly idem-
potent complete 0-cells in n -Exang. Based on the discussion above, we may thus define

♠ = (♠0,♠1,♠2) : n -Exang → WIC-n -Exang

using assignments ♠i : n -Exangi → WIC-n -Exangi, where:

♠0(C,E, s) := (Ĉ, Ê, ŝ ), ♠1(F ,Γ) := (F̂ , Γ̂), (ב)2♠ := .ב̂
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It is straightforward to check that the analogue of Theorem 3.11 holds for ♠.
As an application of Proposition 6.4, we can restrict C to weakly idempotent complete

categories. This restriction is denoted by

Ĉ = (Ĉ0, Ĉ1, Ĉ2) : WIC-n -Exang → WIC-Exact,

where Ĉi is the restriction of Ci for i ∈ {0, 1, 2} and satisfies the same properties. The
proof of Theorem 5.2 yields the next theorem. Similarly, analogues of Proposition 5.3 and
Corollary 5.4 follow.

6.8. Theorem. The collection ′ש of exact equivalences ש ′
(C,E) for (C,E, s) ∈ n -Exang0

defines a natural transformation Ĉ♠ ⇒ ♢C.

By [Klapproth, Msapato, Shah, 2022, Prop. 4.36], there is an n-exangulated functor
(IC,ΓC) : (C,E, s) → (C

∼
,E
∼
, s∼), where ΓC(α) = (idA, α, idC) for α ∈ E(C,A). Similarly, it is

shown in [Klapproth, Msapato, Shah, 2022, Thm. 5.5] that (KC,∆C) : (C,E, s) → (Ĉ, Ê, ŝ )
is n-exangulated, where ∆C(α) = (idA, α, idC). Diagram 11 can be augmented to a com-
mutative diagram

(C,E, s) (C
∼
,E
∼
, s∼)

(Ĉ, Ê, ŝ )

(IC ,ΓC)

(KC ,∆C) (LC ,ΘC)
(13)

in n -Exang, where ΘC(eB, β, eD) := (eB, β, eD) for (eB, β, eD) ∈ Ê((D, eD), (B, eB)). Us-
ing the functor C : n -Exang → Exact, the diagram 13 induces the commutative diagram

(E -Ext(C),XE) (E
∼
-Ext(C

∼
),XE

∼)

(Ê -Ext(Ĉ),X
Ê
)

E(IC,ΓC)

E(KC,∆C)
E(LC,ΘC)

in Exact.
Building on the work in Section 6, it is straightforward to check that we obtain The-

orem 6.9 below. We note that there is a similar commutative diagram involving the exact
equivalence (C,E)צ and its restriction צ ′

(C,E).

6.9. Theorem. The diagram

(E -Ext(C),XE) (Ê -Ext(Ĉ),XE) (E
∼
-Ext(C

∼
),XE)

(E -Ext(C),XE) (Ÿ�E -Ext(C),XE) (E -Ext(C)
∼

,XE)

E(KC,∆C)
E(LC,ΘC)

ש ′
(C,E)≃ ⋍(C,E)ש

KE -Ext(C) LE -Ext(C)

in Exact is commutative.
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