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TORSION ASPECTS OF VARIETIES OF SIMPLICIAL GROUPS

GUILLERMO LÓPEZ CAFAGGI

Abstract. There is a lattice of torsion theories in simplicial groups such that the
torsion/torsion-free categories are given by simplicial groups with truncated Moore com-
plex below/above a certain degree. We study the restriction of these torsion theories
to certain subcategories of simplicial groups. In particular, we prove that the cate-
gories of D. Conduché’s 2-crossed modules and Ashley’s crossed complexes in groups
are semi-abelian and we give some descriptions of their torsion theories. These examples
of torsion theories also give rise to new examples of pretorsion theories in the sense of A.
Facchini and C. Finocchiaro, as well as examples of torsion torsion-free theories (TTF
theories).

1. Introduction

Semi-abelian categories [Janelidze, Marki, Tholen, 2002] generalise abelian categories in
a way that we can still extend the classical results of homological algebra to non-abelian
categories such as groups, Lie algebras, etc. Torsion theories, originally introduced for
abelian categories, have been studied in semi-abelian categories (and other more general
non-abelian settings) in [Bourn, Gran, 2006] and [Clementino, Dikranjan, Tholen, 2006].
However, we can notice that the modern applications of torsion theories in semi-abelian
categories are very different from the classical results in categories of modules over rings.
These new results are focused mainly on Categorical Galois Theory, factorization systems
and homology (see [Gran, Janelidze, 2009], [Everaert, Gran, 2013], [Everaert, Gran, 2015],
among others).

On the other side, one classical aspect of torsion theories in the abelian sense which
has yet to be considered in the semi-abelian case is that of the torsion theories of a fixed
category constitute a lattice. One reason that this lattice aspect has not been studied in
depth is that examples of torsion theories in semi-abelian categories are hard to find, and
even harder to find several torsion theories for the same category. Perhaps, it is useful to
recall a basic example. Vaguely, a torsion theory in a category X (abelian or semi-abelian)
is a pair of subcategories (T ,F) that are complementary in some way. For a category
X and torsion theories (S,G) and (T ,F) we say that (S,G) ≤ (T ,F) if S ≤ T . So,
for example, in the category Ab of abelian groups there are torsion theories (T,F) and
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(Tp,Fp) where T is the category of torsion abelian groups and Tp is the category of abelian
groups whose elements have order a power of a prime p. Thus, (Tp,Fp) ≤ (T,F) for each
prime p.

One of the main interests of semi-abelian categories is the development of non-abelian
homological algebra (for example in [Everaert, Gran, 2010], [Everaert, Gran, 2015], [Ev-
eraert, Gran, 2008], [Everaert, Van der Linden, 2004], among many others). Interesting
results have been found in the category of internal groupoids (in a semi-abelian category),
Whitehead’s crossed modules, n-fold internal groupoids, etc. One first objective of this
work is to prove that some categories that are mainly used as algebraic models of homotopy
types are themselves semi-abelian, and thus expanding the previous list of semi-abelian
examples. Namely, we will focus on the categories of D. Conduché’s 2-crossed modules
and N. Ashley’s crossed complexes in groups. In fact we prove that these are Birkhoff
subcategories/varieties of simplicial groups (epireflective subcategories closed under quo-
tients). Our second objective is to study the torsion aspects of these new semi-abelian
examples. In [López Cafaggi, 2022b], a large family of torsion theories is introduced for
simplicial groups. Since 2-crossed modules and crossed complexes are epireflective sub-
categories of simplicial groups, we can study the torsion theories therein. These restricted
torsion theories present new properties not found in the previous examples of simplicial
groups.

Outline of the text. Section 2 recalls the basic properties of torsion theories in semi-
abelian categories as well as recalling the lattice µ(Grp) of torsion theories in simplicial
groups which are defined in [López Cafaggi, 2022b] by truncation on the underlying Moore
complexes.

Section 3 studies the lattice of torsion theories in the categories Mn≥ of simplicial
groups with truncated Moore complex above degree n. It is well-known that M1≥ is
equivalent to the category Grpd(Grp) of internal groupoids in groups (see for example
[Loday, 1982]). The category Grpd(X) of internal groupoids in X, which is semi-abelian
when X is so, exhibits two examples of torsion theories given by the pairs:

(Ab(X), Eq(X)) and (ConnGrpd(X), Dis(X)) .

Where Ab(X), Eq(X), ConnGrpd(X) and Dis(X) are, respectively, the subcategories of
Grpd(X) of internal abelian groups, internal equivalence relations, connected groupoids
and discrete internal groupoids (these examples were already studied in [Bourn, Gran,
2006], [Everaert, Gran, 2010]). Here, it is proved that these known examples in inter-
nal groupoids are induced by the lattice µ(Grp) of simplicial groups restricted to the
subcategory M1≥.

Also it is a classical result (again from [Loday, 1982]) that the category of internal
groupoids in groups is equivalent to the category XMod of Whitehead’s crossed modules,
thus the torsion theories in Grpd(Grp) correspond to the torsion theories in XMod:

(abelian groups, inclusion of normal monomorphisms)
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and
(central extensions in groups, groups as discrete crossed modules).

Similarly, in [Conduché, 1984], D. Conduché introduces the category 2XMod of 2-crossed
modules and proves that it is equivalent to M2≥. Since the categories Mn≥ are semi-
abelian, the category 2XMod is semi-abelian. Torsion theories in M2≥ and Mn≥ are
studied in Theorems 3.9 and 3.10.

In Section 4, we study pretorsion theories associated to the torsion theories in µ(Grp).
A pretorsion theory, introduced in [Facchini, Finocchiaro, 2019], is a generalization of a
torsion theory. This generalization, applicable also to non-pointed categories, is obtained
by essentially replacing the role of a single zero object by a class Z of trivial objects.
Here, we proved that given torsion theories (S,G) ≤ (T ,F) we have a pretorsion theory
(T ,G) and Z = T ∩G (this was first noticed in [Mantovani, 2015]). Applied to simplicial
groups we can find examples of pretorsion theories where the categories of trivial objects
consist of either Eilenberg-Mac Lane simplicial groups or simplicial groups with trivial
homotopy groups.

In section 5 and 6, the category Crs(Grp) of Ashley’s reduced crossed complexes
(or crossed complexes in groups) is proved to be a semi-abelian category. An important
feature of torsion theories in reduced crossed modules is that they behave like a weak TTF
theory. Introduced in [Jans, 1965] for abelian categories, a torsion torsion-free theory (or
TTF theory for short) in an abelian category X is a triplet of full subcategories (C, T ,F)
of X such that (C, T ) and (T ,F) are torsion theories in X, so T is called a torsion torsion-
free category. The subcategory Crs(Grp)n≥ = Crs(Grp) ∩ Mn≥ of Crs(Grp) is not a
torsion torsion-free subcategory but it is a torsion-free coreflective subcategory, so we
introduce the notion of a CTF theory. For abelian categories, we have that TTF theories
and CTF theories are the same. On the other hand, Crs(Grp) present examples of pairs
of subcategories that satisfy the axioms of a torsion theory only relative to a particular
class of objects E which we will call E-torsion theories, see Theorem 6.13.

2. Torsion theories in simplicial groups with truncated Moore complex

A category X is called semi-abelian [Janelidze, Marki, Tholen, 2002] if it is pointed with
binary coproducts, Barr exact and Bourn protomodular. Recall that, a finitely complete
category X is called regular if it has all coequalizers of kernel pairs and these are pullback
stable, furthermore; a regular category is called (Barr)-exact if every internal equivalence
relation is the kernel pair of some arrow in X. On the other hand, a pointed category X
is Bourn protomodular ([Bourn, 1991]) if and only if the split short five lemma holds in
X:
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Given a morphism of split short exact sequences in X

0 K X Y 0

0 K ′ X ′ Y ′ 0

ker(f)

α
f

β γ

s

ker(f ′) f ′

s′

then if α and γ are isomorphism then so is β.

2.1. Definition. A torsion theory in a semi-abelian category X is a pair (T ,F) of full
and replete subcategories of X such that:

TT1 A morphism f : T → F with T in T and F in F is a zero morphism.

TT2 For any object X in X there is a short exact sequence:

0 TX X FX 0
ϵX ηX

(1)

with TX in T and FX in F .

In a torsion theory (T ,F), T is called the torsion category and its objects are called
torsion objects. In a similar way, F is the torsion-free category. Any subcategory is called
torsion, resp. torsion-free, if it is the torsion category, resp. torsion-free, of a torsion
theory. The torsion category T is a normal monocoreflective subcategory of X, i.e., the
inclusion J : T → X has a right adjoint T : X → T and each component of the counit
ϵX : JT (X) → X is a normal monomorphism (a kernel of some arrow in X). Similarly,
F is a normal epireflective subcategory of X, i.e., the inclusion I has a left adjoint F and
each component ηX : X → IF (X) is a normal epimorphism:

T X F .

J

⊥
F

T

⊥
I

(2)

Then, it is easy to observe that T is closed under colimits in X (those that exist in X)
and F is closed under limits in X. Both T and F are closed under extensions in X. This
means that given a short exact sequence in X:

0 A X B 0

with A and B in T (resp. in F) then X is in T (resp. in F). A torsion theory (T ,F)
is called hereditary if T is closed under subobjects in X, i.e., given a monomorphism
m : M → T with T in T then M is also torsion. Conversely, a torsion theory is called
cohereditary if F is closed under quotients in X, i.e., given a normal epimorphism q : F →
Q with F in F then Q is also in F . It is useful to recall the following result.
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2.2. Proposition. [López Cafaggi, 2022b] Let (T ,F) be a torsion theory of a semi-
abelian category X. If (T ,F) is hereditary then T is a semi-abelian category. Similarly,
if (T ,F) is cohereditary then F is a semi-abelian category.

Given two torsion theories (T ,F) and (S,G) in a semi-abelian category X, we have
that T ⊆ S if and only if G ⊆ F . This allows one to introduce a partial order in the
class of torsion theories in a category X by (T ,F) ≤ (S,G) if T ⊆ S. There is a bottom
element and a top element given by the trivial torsion theories 0 := (0,X) and X := (X, 0).

We recall the basic definitions of simplicial groups and the Moore normalization; we
refer to [May, 1967] for the details.

The simplicial category ∆ has, as objects, finite ordinals [n] = {0, 1, . . . n} and as
morphisms monotone functions. A simplicial group is a functor X : ∆op → Grp; we will
denote by Simp(Grp) the category of simplicial groups. A simplicial group X can be
equivalently defined by the following data: a family of objects {Xn}n∈N in X, the face
morphisms di : Xn → Xn−1 and the degeneracies morphisms si : Xn → Xn+1:

X = . . . Xn . . . X3 X2 X1 X0
...

d0

dn

...

d0

d4
sn−1

s0

d0

d1

d2

d3

s3

s0

d1

d2

d0

s1

s2

s0

d1

d0

s1

s0

s0

satisfying the simplicial identities :

didj = dj−1di if i < j

sisj = sj+1si if i ≤ j

disj =


sj−1di if i < j

1 if i = j or i = j + 1
sjdi−1 if i > j + 1 .

Since Simp(Grp) is a functor category with codomain a semi-abelian category, it is semi-
abelian.

2.3. Remark. An n-truncated simplicial group X is a simplicial group where the objects
Xi, the face morphisms di and degeneracies morphisms si are defined up to level n and
they satisfy the simplicial identities (those that make sense). Let Simpn(Grp) be the
category of n-truncated simplicial groups. Then there is a truncation functor:

trn : Simp(Grp) Simpn(Grp)

which simply forgets everything above degree n. For all n, the functor trn has a left adjoint
skn called the n-skeleton, and a right adjoint coskn named the n-coskeleton: skn ⊣ trn ⊣
coskn. We will write Skn = skntrn and Coskn = coskntrn.
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In addition, for n = 0, the functor sk0 has a left adjoint π0 where π0(X) = coeq(d0, d1)
is the coequalizer of the face morphisms d0, d1 : X1 → X0. Moreover, the adjunctions
π0 ⊣ sk0 ⊣ tr0 ⊣ coskn correspond to the functors π0 ⊣ Dis ⊣ ()0 ⊣ Ind. For a group G,
Dis(G) is the discrete simplicial group of G

Dis(G) = . . . G G G G
1

1

...

1

1

...

1

1

...

1

1
1

and Ind(G) is the indiscrete simplicial group of G

Ind(G) = . . . G4 G3 G2 G

p0

p4

...

p0

p3

...

p0

p2

...

p0

p1
s0

where Gn is the n-fold product, and the morphisms pi are induced by product projections.

A chain complexM is a family of morphisms {δn : Mn → Mn−1}n∈N such that δnδn+1 =
0 for all n. A chain complex M is proper if for each differential δn the monomorphism mn

of the normal epi/mono factorization (en,mn) of δn is a normal monomorphism:

. . . Mn+1 Mn Mn−1 . . . .

δn(Mn)

δn+1 δn

en

δn−1

mn

The category of chain complexes and the subcategory of proper chain complexes in groups
will be denoted as chn(Grp) and pch(Grp).

2.4. Definition. (see [May, 1967]) The Moore normalization functor N : Simp(Grp) →
chn(Grp) is defined as follows. Let X be a simplicial group then N(X) is the group chain
complex

. . . N(X)n N(X)n−1 . . . N(X)1 N(X)0
δn δ1

such that N(X)0 = X0 and

N(X)n =
n−1⋂
i=0

ker(di : Xn → Xx−1)

and differentials δn = dn ◦ ∩iker(di) : N(X)n → N(X)n−1 for n ≥ 1.
We will write Mn≥ for the subcategory of simplicial groups with trivial Moore complex

above degree n. Similarly, M≥n is the subcategory of simplicial groups with trivial Moore
complex below degree n.
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The Moore chain complex N(X) of a simplicial group is proper. It is known that the
functor N preserves finite limits and normal epimorphisms, and it is also conservative
(see, for example, [Everaert, Van der Linden, 2004]).

A left adjoint Cotn of the inclusion

i : Mn≥ → Simp(Grp)

was defined in [Porter, 1993]. Roughly, recall from [Conduché, 1984] that for a simplicial
group X, each Xm is an iterated semi-direct product of the Moore coefficients Mi with
i ≤ m. So, the cotruncation functor Cotn is defined by deleting the coefficients Mj with
j > n and replacing Mn for Mn/δn+1(Mn) in each of the semi-direct decomposition for
each Xm.

In [López Cafaggi, 2022b] it is proved that Mn≥ is a torsion-free subcategory of
Simp(Grp), and respectively, M≥n is a torsion subcategory for all n. Indeed, the corre-
sponding torsion theories form a linearly order lattice µ(Grp) in Simp(Grp). We recall
how this lattice is defined.

2.5. Theorem. [López Cafaggi, 2022b] There is a linear order lattice µ(Grp) of torsion
theories in Simp(Grp):

0 ≤ · · · ≤ µn+1≥ ≤ µ≥n+1 ≤ µn≥ ≤ µ≥n ≤ . . .

· · · ≤ µ≥2 ≤ µ1≥ ≤ µ≥1 ≤ µ0≥ ≤ Simp(Grp) .

Where:

1. the torsion theory µn≥ is given by the pair (Ker(Cotn),Mn≥), where the functor

Cotn : Simp(Grp) → Mn≥ ,

introduced in [Porter, 1993], is the left adjoint of the inclusion

i : Mn≥ → Simp(Grp)

and Ker(Cotn) is the full subcategory of simplicial groups X such that Cotn(X) = 0.

2. the torsion theory µ≥n is given by the pair (M≥n,Ftrn−1), where Ftrn−1 is the sub-
category of simplicial groups X with ηX monic where η is the unit of the adjunction
trn−1 ⊣ coskn−1.

3. let X be a simplicial group and M its Moore complex. For X the associated short
exact sequence of µn≥ under normalization is the short exact sequence in chain
complexes (written vertically):

. . . Mn+2 Mn+1 δn+1(Xn+1) 0 . . .

. . . Mn+2 Mn+1 Mn Mn−1 . . .

. . . 0 0 Cok(δn+1) Mn−1 . . .

δn+2

id

en+1

id mn+1

δn+2 δn+1 δn

cok(δn+1) id

(3)
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4. let X be a simplicial group and M its Moore complex. For X the associated short
exact sequence of µ≥n under normalization is the short exact sequence in chain
complexes (written vertically):

. . . Mn+1 Ker(δn) 0 0 . . .

. . . Mn+1 Mn Mn−1 Mn−2 . . .

. . . 0 δ(Mn) Mn−1 Mn−2 . . .

id ker(δn)

δn+1 δn

en

δn−1

id id

mn

(4)

As shown from diagrams (3) and (4) the coreflector of M≥n and respectively the
reflector of Mn≥ behave, at the level of Moore complexes, as the truncation functors
introduced by L. Illusie in [Illusie, 1971]. As a consequence, torsion/torsion-free objects
can be characterized by their Moore complex as follows.

2.6. Corollary. [López Cafaggi, 2022b] Let X be a simplicial group with Moore complex
M , then

1. X belongs to Ker(Cotn) if and only if M is of the form

M = . . . Mn+2 Mn+1 Mn 0 0 . . .
δn

with δn a normal epimorphism.

2. X belongs to Ftrn if and only if M is of the form

M = . . . 0 0 Mn+1 Mn Mn−1 . . .
δn+1

with δn+1 a normal monomorphism.

3. Torsion subcategories of Mn≥

The lattice µ(Grp),

0 ≤ · · · ≤ µ≥2 ≤ µ1≥ ≤ µ≥1 ≤ µ0≥ ≤ Simp(Grp) ,

extends the torsion theories in internal groupoids Grpd(Grp)

0 = (0, Grpd(Grp)) ≤ (Ab,Eq(Grp)) ≤ (ConnGrpd(Grp), Dis(Grp)) ≤ Grpd(Grp)

in the sense that the torsion-free categories of the first 3 largest non-trivial torsion theories,
µ1≥ ≤ µ≥1 ≤ µ0≥, in Simp(Grp) are the torsion-free categories (Grpd(Grp), Eq(Grp) and
Dis(Grp), respectively) of Grpd(Grp).
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On the other hand, the torsion categories of Simp(Grp) are not as easily described as
in the case of Grpd(Grp). However, some similarities arise when we restrict the lattice
µ(Grp) to subcategories of the form Mn≥ with the case Grpd(Grp) = M1≥. To this
end, we recall how simplicial groups are equivalent to chain complexes with operations
following the work of J. Loday in [Loday, 1982], D. Conduché in [Conduché, 1984] and,
P. Carrasco and A. M. Cegarra in [Carrasco, Cegarra, 1991].

The case of M1≥ and crossed modules. For completeness sake we quickly recall
how torsion theories in internal groupoids correspond to torsion theories in the equivalent
category of Whitehead’s crossed modules.

We will write group actions acting on the left b(a) and each group G is consider to act
on itself by conjugation as g(g′) = gg′g−1.

3.1. Definition. [Whitehead, 1941] A crossed module (of groups) is a morphism of
groups δ : A → B with a group action B → Aut(A) such that:

1. δ(b(a)) = bδ(a)b−1 (δ is equivariant).

2. δ(a)a′ = aa′a−1 (Peiffer identity).

If δ only satisfies axiom 1 then it is called a precrossed module. We will denote the category
of crossed modules and of precrossed modules as XMod and PXMod, respectively.

From [Loday, 1982], the following categories are equivalent:

1. The category M1≥ of simplicial groups with trivial Moore complex above degree 1.

2. The category Grpd(Grp) of internal groupoids in groups.

3. The category XMod of crossed modules in groups.

4. The category of Cat-1-groups.

Indeed, given a simplicial group X with Moore complex M = N(X), the differential
δ1 : M1 → M0 is a precrossed module with the action given by conjugation with s0.
Furthermore, δ1 is a crossed module if and only if Mi = 0 for i > 1.

We will write µ(M1≥) for the lattice given by the torsion theories of µ(Grp) restricted
to M1≥, i.e., we consider the torsion theory (T ∩M1≥,F ∩M1≥) for each element (T ,F)
of µ(Grp). We will write µ′

n≥ and µ′
≥n for the corresponding restrictions of µn≥ and µ≥n.

3.2. Proposition. The lattice µ(M1≥) is given by

0 ≤ µ′
≥1 ≤ µ′

0≥ ≤ M1≥ .
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Proof. Recall that µ(Grp) is given by

Simp(Grp) = Simp(Grp) Simp(Grp) 0

µ0≥ = Ker(Cot0) Simp(Grp) M0≥ ∼= Grp

µ≥1 = M≥1 Simp(Grp) Ftr0
∼= Eq(Grp)

µ1≥ = Ker(Cot1) Simp(Grp) M1≥ ∼= Grpd(Grp)

µ≥2 = M≥2 Simp(Grp) Ftr1

. . . . . . . . . . . .

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

(5)

Since M1≥ is itself a torsion-free subcategory comprised in the lattice µ(Grp), the restric-
tion of each torsion theory below µ1≥ is the trivial torsion theory (0,M1≥) in M1≥.

It is clear that the torsion-free categories Eq(Grp) and Dis(Grp) in Simp(Grp) are
also torsion-free categories of M1≥. We can conclude the following.

3.3. Proposition. The lattice µ(M1≥) corresponds to

0 ≤ (Ab(Grp), Eq(Grp)) ≤ (ConnGrpd(Grp), Dis(Grp)) ≤ M1≥.

Moreover, under the Moore normalization this lattice corresponds to the lattice of torsion
theories in XMod

0 ≤ (Ab,Norm) ≤ (CExt,Dis) ≤ XMod ,

where

1. Ab is the category of crossed modules of the form A → 0 for an abelian group A.

2. Norm is the category of crossed modules given by the inclusion of a normal subgroup
i : N → G.

3. CExt is the category of crossed modules given by central extensions that is, epimor-
phisms of the form p : G → Q with ker(p) ≤ Z(G) where Z(G) is the center of
G.

4. Dis is the category of crossed modules of the form 0 → G for a group G.
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Proof. In a torsion theory the torsion and the torsion-free category uniquely determine
each other, so if Eq(Grp) and Dis(Grp) are torsion-free categories of µ′

0≥ and µ′
≥1 the

torsion categories must correspond accordingly to Ab(Grp) and ConnGprd(Grp).
The second statement is well-known, for instance the equivalences are mentioned in

[Bourn, Gran, 2006], [Everaert, Gran, 2010] and [Mantovani, 2015].

The case of Mn≥. Following the previous case, we will write µ(Mn≥) for the restriction
of µ(Grp) to Mn≥ and µ′

i≥, µ
′
≥i for the restrictions of the torsion theories µi≥, µ≥i.

Similar to Proposition 3.2, also from diagram (5) we have the following result.

3.4. Proposition. The lattice µ(Mn≥) is given by

0 ≤ µ′
≥n ≤ µ′

n−1≥ ≤ µ′
≥n−1 ≤ · · · ≤ µ′

≥1 ≤ µ′
0≥ ≤ Mn≥.

Just as in M1≥ the subcategories Dis(Grp), Eq(Grp) and Grpd(Grp) are torsion-
free subcategories of Mn≥. In order to characterise the torsion categories we recall some
categories introduced by D. Conduché.

3.5. Definition. [Conduché, 1984] A group chain complex

L M N
δ2 δ1

is called a 2-crossed module if N acts on L and M and the differentials δ2, δ1 are equiv-
ariant (N acts over itself with conjugation), and there is a mapping

{ , } : M ×M L

satisfying:

2XM1 δ2{m0,m1} = m0m1m
−1
0

δ1(m0)(m−1
1 );

2XM2 {δ2(l0), δ2(l1)} = [l0, l1];

2XM3 {δ2(l),m}{m, δ2(l)} = l δ1(m)l−1;

2XM4 {m0,m1m2} = {m0,m1}{m0,m2}{δ2{m0,m2}−1, δ1(m0)m1};

2XM5 {m0m1,m2} = {m0,m1m2m
−1
1 } δ1(m0){m1,m2};

2XM6 n{m0,m1} = {nm0,
nm1}.

The map { , } is called the Peiffer lifting.
A morphism of 2-crossed modules is a morphism of chain complexes that preserves the

group actions and the Peiffer lifting. The category of 2-crossed complexes will be denoted
as 2XMod.

In a 2-crossed module the Peiffer lifting defines an action of M over L as m(l) =
l{δ2(l)−1,m}, so δ2 is indeed a crossed module. On the other hand, δ1 is only a precrossed
module. A crossed module is a 2-crossed module by setting L = 0. If a 2-crossed module
has N = 0 then the equations get simplified, thus we obtain a reduced 2-crossed module
as follows.
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3.6. Definition. [Conduché, 1984] A reduced 2-crossed module is a group morphism
δ : L → M with a map { , } : M ×M → L satisfying:

1. δ{m0,m1} = [m0,m1],

2. {δ(l0), δ(l1)} = [l0, l1],

3. {δ(l),m}{m, δ(l)} = 1,

4. {m0,m1m2} = {m0,m1}{m0,m2}{[m2,m0],m1},

5. {m0m1,m2} = {m0,m1m2m
−1
1 }{m1,m2}.

The category of reduced 2-crossed modules will be denoted as R2XMod.

3.7. Definition. [Conduché, 1984] A stable crossed module is a group morphism δ :
L → M with a map { , } : M ×M → L satisfying:

1. δ{m0,m1} = [m0,m1],

2. {δ(l0), δ(l1)} = [l0, l1],

3. {m1,m0} = {m0,m1}−1,

4. {m0m1,m2} = {m0m1m
−1
0 ,m0m2m

−1
0 }{m0,m2}.

We will denote the category of stable crossed modules by StXMod.

The underlying morphism δ : L → M of reduced 2-crossed module or of a stable
crossed module is in fact a crossed module. Similar to the case of crossed modules/internal
groupoids, these categories characterise simplicial groups via the normalization functor.

3.8. Theorem. [Conduché, 1984]

1. The category M2≥ of simplicial groups with trivial Moore complex above degree 2 is
equivalent to the category 2XMod of 2-crossed modules.

2. The category M1,2 of simplicial groups with trivial Moore complex except at degrees
1,2 is equivalent to the category R2XMod of reduced 2-crossed modules.

3. The category Mp,p+1 of simplicial groups with trivial Moore complex except at degrees
p, p+ 1 for p ≥ 2 is equivalent to the category St2XMod of stable crossed modules.

The bottom torsion categories of Mn≥ can be characterized in a similar way as the
torsion categories of internal groupoids.
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3.9. Theorem. For n = 2, consider the lattice of torsion theories µ(M2≥):

0 ≤ µ′
≥2 ≤ µ′

1≥ ≤ µ′
≥1 ≤ µ′

0≥ ≤ M2≥

For the bottom torsion categories we have the equivalences:

1. the torsion category M≥1 ∩ M2≥ = M1,2 of µ′
≥1 is equivalent to the category

R2XMod of reduced 2-crossed modules;

2. the torsion category Ker(Cot1)∩M2≥ of µ′
1≥ is equivalent to the category R2XMod∩

CExt of reduced 2-crossed modules δ : L → M with δ a central extension;

3. the torsion category M≥2 ∩ M2≥ of µ′
≥2 is equivalent to the category of 2-crossed

modules of the form A → 0 → 0 and hence, it is also equivalent to the category Ab
of abelian groups.

Proof. 1) It follows immediately from the fact thatM≥1∩M2≥ is equivalent by definition
to the category M1,2 of simplicial groups with trivial Moore complex except at degrees
1,2 and Theorem 3.8.

2) A simplicial group X belongs to Ker(Cot1)∩M2≥ if and only if its Moore complex
is trivial except δ2 : M2 → M1 which is, in addition, surjective (from Corollary 2.6). This
happens if and only if δ2 is a central extension, since a 2-reduced crossed module is in
particular a crossed module.

3) The category M≥2 ∩ M2≥ is equivalent to the category of simplicial groups with
trivial Moore complex except at degree 2, so it corresponds to a 2-crossed module of the
form L → 0 → 0. Since, in a 2-crossed module the morphism δ2 is a crossed module then
L must be an abelian group.

3.10. Theorem. For n > 2, in µ(Mn≥) consider the bottom torsion theories:

0 ≤ µ′
≥n ≤ µ′

n−1≥ ≤ µ′
≥n−1 . . .

Then for the torsion categories we have the equivalences:

1. the torsion category M≥n−1∩Mn≥ = Mn,n−1 of µ′
≥n−1 is equivalent to the category

StXMod of stable crossed modules;

2. the torsion category Ker(Cotn−1) ∩ Mn≥ of µ′
n−1≥ is equivalent to the category

StXMod ∩ CExt of stable crossed modules δ : L → M with δ a central extension;

3. the torsion category M≥n ∩Mn≥ of µ′
≥n is equivalent to the category Ab of abelian

groups.

Proof. It follows from 3) of Theorem 3.8, the proof is similar to Theorem 3.9.
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3.11. Corollary. A simplicial group X belongs to the torsion category Ker(Cotn−1) ∩
Mn≥ of Mn≥ if and only if its Moore complex M is a central extension of groups.

3.12. Corollary. The categories 2XMod of 2-crossed modules, R2XMod of reduced
2-crossed modules and StXMod of stable crossed modules are semi-abelian.

Proof. From Proposition 2.2, the categories Mn≥ are semi-abelian. In particular, for
n = 2 the category of 2-crossed modules is semi-abelian. Similarly, R2XMod and StXMod
are semi-abelian from Theorems 3.9, 3.10 and Proposition 2.2.

The case of M≥n. A dual behaviour can be noticed when we work with the torsion cat-
egories M≥n, which are also semi-abelian (again from Proposition 2.2). When considering
µ(M≥n), the restriction of µ(Grp) to M≥n, we first obtain that the torsion theories above
µn≥ are trivialized. And second, that the upper torsion-free categories are equivalent to
abelian groups and the different kinds of crossed modules.

3.13. Proposition. The lattice µ(M≥n) is given by:

0 ≤ . . . ≤ µ′
n+1≥ ≤ µ′

≥n+1 ≤ µ′
n≥ ≤ M≥n

where µ′
i≥, µ

′
≥i are the restriction of the torsion theories of µ(Grp).

3.14. Theorem. For the category M≥1 we have

1. the torsion-free category of µ′
1≥ given by M1≥ ∩M≥1 is equivalent to the category

of abelian groups;

2. the torsion-free category of µ′
2≥ given by M2≥ ∩M≥1 is equivalent to the category

R2XMod of reduced 2-crossed modules.

For the category M≥n and n ≤ 2 we have

1. the torsion-free category of µ′
n≥ given by Mn≥ ∩M≥n is equivalent to the category

of abelian groups;

2. the torsion-free category of µ′
n+1≥ given by Mn+1≥ ∩M≥n is equivalent to the cate-

gory StXMod of stable crossed modules.

Proof. The proof is similar to the case of torsion categories in Mn≥.
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4. Pretorsion theories in simplicial groups

Pretorsion theories introduced in [Facchini, Finocchiaro, 2019] present a generalization of
a torsion theory for non-pointed categories. In essence, we replace the zero object in the
definition of a torsion theory in X by a class Z of trivial objects. We recall only the basic
results and definitions useful for this work, we refer to [Facchini, Finocchiaro, Gran, 2021]
for the basic aspects of pretorsion theories in categories.

Let X be a category and Z a class of objects of X, which we will call trivial objects.
A morphism f : A → B in X is called Z-trivial if it factors through an object Z in Z.

Given a morphism f : A → B in X a morphism k : K → A is a Z-prekernel of f if:

1. the composite fk is Z-trivial.

2. for any morphism x : X → A such that fα is Z-trivial then there is a unique
λ : X → K such that kλ = x.

The notion of a Z-precokernel is dually defined. Any Z-prekernel is a monomorphism
and any Z-precokernel is an epimorphism. Given morphisms f : A → B and g : B → C
the sequence

A B C
f g

is called a short Z-preexact sequence if f is a Z-prekernel of g and g is a Z-precokernel
of f .

4.1. Definition. A pair (T,F) of full subcategories of a category X is a Z-pretorsion
theory in X, with Z = T ∩ F, if:

1. any morphism f : T → F with T in T and F in F is Z-trivial.

2. for any object X in X there is a short Z-preexact sequence:

TX X FX
ϵX ηX

with TX in T and FX in F.

Given a pretorsion theory (T,F) a pretorsion theory we have that T is a monocoreflec-
tive subcategory of X with counit ϵX of Definition 4.1, dually, F is epireflective subcategory
of X with unit ηX .

Now, we fix a semi-abelian category X. We can define a pretorsion theory in X
using torsion theories in X. The next result was first noticed in the unpublished work
[Mantovani, 2015] in the context of crossed modules.
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4.2. Theorem. Let X be a semi-abelian category and torsion theories in X, (T ,F) and
(S,G) such that (S,G) ≤ (T ,F). For an object X in X we have the associated short exact
sequences

0 T (X) X F (X) 0
tX fX

and, respectively,

0 S(X) X G(X) 0
sX gX

.

Then, the pair (T,F) = (T ,G) is a Z-pretorsion theory in X and for an object X we have
the associated short Z-preexact sequence:

T (X) X G(X) .
tX gX

Proof. To prove condition 1 of Definition 4.1 consider a morphism α : X → Y with X
in T and Y in G. Consider the normal-epi/mono factorization of α:

X Y .

α(X)

α

e m

Since T is closed under quotients and G is closed under subobjects in X since they are
a torsion and a torsion-free subcategory, respectively, of X, it is clear that α(X) is in
Z = T ∩ G.

To prove condition 2 consider the sequence

T (X) X G(X)
tX gX

.

We first notice that the composite factorizes through the object T (X)/S(X):

S(X) F (X) .

T (X) X G(X)

T (X)/S(X)

tX gX

q

The object T (X)/S(X) is in T since it is a quotient of T (X), on the other hand it
follows from Noether’s third isomorphism that T (X)/S(X) is the kernel of q : G(X) →
F (X), so it belongs to G. So, we have that the composite gXtX is Z-trivial.
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To prove that tX is a Z-prekernel of gX consider a morphism a : A → X such that
gXa is Z-trivial. So, we have a commutative diagram

F (X)

T (X) X G(X)

A Z

tX gX

fX q

b

a c

with Z in Z. Notice that the composite fXa = 0 since it factors through qc and Z is in
T . Since tX is the kernel of fX then we have a morphism λ such that a = tXλ and then
tX is a Z-kernel of gX .

Dually, gX is a Z-precokernel of tX . Thus, we have a short Z-preexact sequence.

4.3. Remark.Under the hypothesis of Theorem 4.2, we have seen that any morphism α :
X → Y with X in T and Y in G is Z-trivial, we have noticed that the image of α belongs
to Z. However, there are two other natural factorizations of α worth noticing. Indeed,
since torsion-free subcategories are epireflective, α factors through the quotient gX : X →
G(X), and G(X) belongs to Z. Similarly, α also factors through the monomorphism
tY : T (Y ) → Y . Moreover, these factorizations satisfy that for any morphism α : X → Y
with epi/mono factorization (e,m) there are unique morphisms β and γ such that the
following diagram commutes:

T (Y )

X I Y

G(X)

tY

e

α′′

gX

m

γ

α′β

.

4.4. Corollary. Under the hypothesis of Theorem 4.2, if the torsion theory (T ,F) is
hereditary and the torsion theory (S,G) is cohereditary, then the category of trivial objects
Z = T ∩ G is semi-abelian.

Proof. The pair (S,Z) is a torsion theory in T . It follows from Proposition 2.2 that T
is semi-abelian. Then so is Z, since a cohereditary torsion-free subcategory of T is also
semi-abelian (by 2.2).

Now we turn our attention back to the lattice µ(Grp). Since this is a linearly ordered
lattice, Theorem 4.2 produces a family of examples of pretorsion theories in Simp(Grp).
The trivial categories of these pretorsion theories show interesting properties.
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4.5. Theorem. Let µ(Grp) be the lattice of torsion theories in Simp(Grp) defined as in
Theorem 2.5:

0 ≤ · · · ≤ µn+1≥ ≤ µ≥n+1 ≤ µn≥ ≤ µ≥n ≤ . . .

· · · ≤ µ≥2 ≤ µ1≥ ≤ µ≥1 ≤ µ0≥ ≤ Simp(Grp) .

For the pretorsion theories defined by this lattice as in 4.2 we have:

1. The trivial category Z given by the pair of torsion theories µn≥ ≤ µ≥n is equivalent
to the category Ab of abelian groups.

2. The trivial category Z given by the pair of torsion theories µm≥ ≤ µ≥n is equivalent
to the category of simplicial groups with truncated Moore complex above m and under
n. Moreover, it is a semi-abelian category.

3. The trivial category Z given by the pair of torsion theories µ≥n+1 ≤ µn≥ is equivalent
to the category Grp of groups.

Proof.

1. We have that Z = Mn≥ ∩M≥n, so the trivial objects have Moore complex of the
form:

. . . 0 0 An 0 0 . . . (6)

with An an abelian group. From 3) of Theorem 3.10 this category is equivalent to
the category of abelian groups.

2. Clearly, Z = Mm≥ ∩ M≥n corresponds to the simplicial groups with truncated
Moore complex above m and under n. From Theorem 4.4, since the torsion theory
µm≥ is hereditary and µ≥n is cohereditary then Z is semi-abelian.

3. We have that Z = Ftrn∩Ker(Cotn), from Corollary 2.6 it is clear that it is equivalent
to the category of simplicial groups with Moore complex of the form:

. . . 0 0 Mn+1 Mn 0 0 . . .
∼= . (7)

We can identify three different cases, the case where the isomorphism occurs in
degrees 0,1; the case where it occurs in degrees 1,2; and the general case for n, n+1
for 2 < n. On the other hand, let G be a group and consider idG : G → G; it
is straighforward from Definition 3.1 that idG is a crossed module and that the
structure of a crossed module is unique for an identity morphism. The category of
these crossed modules is equivalent to the category Ind(Grp) of indiscrete simplicial
groups. Of course, we have Ind(Grp) ∼= Grp, this proves the case 0,1.

Moreover, given G, idG and setting { , } = [ , ] as the commutator, G satisfies
the equations of a reduced 2-crossed module and those of a stable crossed module
(Definitions 3.6 and 3.7). Also, this structure of reduced 2-crossed module/stable
crossed module is also necessarily unique. We can conclude that in any of the three
different cases, Z is equivalent to Grp.
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4.6. Corollary. Consider the pretorsion theories as in Theorem 4.5. Then, we have:

1. In the case of µn≥ ≤ µ≥n, any Z-trivial simplicial group X is isomorphic to the
Eilenberg-Mac Lane simplicial group K(πn(x), n).

2. In the case of µ≥n+1 ≤ µn≥, any Z-trivial simplicial group X satisfy πk(X) = 0 for
all k (they are aspherical simplicial groups).

Proof.

1. It is proved in [López Cafaggi, 2022b] (Lemma 7.4) that a simplicial group X with
a Moore complex as in Diagram 6 in Theorem 4.5 is unique up to isomorphism.
In particular, it is isomorphic to K(πn(X), n) (see also the generalized Dold-Kan
Theorem in [Carrasco, Cegarra, 1991]).

2. It is well-known that the homotopy groups of a simplicial group X can be calculated
with the homology of its Moore complex M , πn(X) ∼= Hn(M). On the other hand,
it is clear that a complex as in Diagram 7 in Theorem 4.5 has trivial homology.

4.7. Remark. Theorem 4.5 asserts that from the lattice µ(Grp), two consecutive torsion
theories yield a pretorsion theory with a semi-abelian trivial category Z. Not any pair
of torsion theories in µ(Grp) have this property. A remarkable example is when taking
µ1≥ ≤ µ0≥ we have a pretorsion theory (T,F):

• where T is the category Ker(Cot0) of connected simplicial groups (simplicial groups
X such that π0(X) = 0),

• where F is the category M1≥ of groupoids,

• where the trivial category Z is the category of trivial connected groupoids, which
is not semi-abelian, since it is not an exact category.

5. Torsion theories in reduced crossed complexes

Recall that, an element x ∈ Xn is degenerate is σ(y) = x for some y ∈ Xm and a
composition of degeneracies σ.

Introduced by M. K. Dakin [Dakin, 1977], a T-complex is a Kan simplicial object
that admits canonical fillers for horns, for example internal groupoids have this property.
To be more precise, a simplicial T-complex is a pair (K,T ) such that K is a simplicial set
and T = {Tn}n≥1 is a graded subset of K, Tn ⊆ Kn of thin elements, such that:

1. Every degenerate element is thin.
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2. Every horn in K has a unique thin filler.

3. If all faces but one of a thin element are thin, then so is the remaining face.

Following the work of N. Ashley in [Ashley, 1978] and the observations in [Carrasco,
Cegarra, 1991] a group T-complex (a T-complex in simplicial groups) can be defined as a
simplicial group X with Mn ∩Dn = 0 where M is the Moore complex of X and D is the
graded subgroup of X generated by the degenerated elements of X.

5.1. Definition. [Ashley, 1978] A reduced crossed complex M , or a crossed complex in
groups, is a proper chain complex

M = . . . Mn Mn−1 . . . M2 M1 M0
δn δ2 δ1

where

1. Mn is abelian for n ≥ 2;

2. M0 acts on Mn for n ≥ 1 and the restriction to δ1(M1) acts trivially on Mn for
n ≥ 2;

3. δn preserves the action of M0 and δ1 : M1 → M0 is a crossed module.

A morphism of reduced crossed complexes is a chain complex morphism that preserves all
actions. We will write Crs(Grp) for the category of reduced crossed complexes.

It is proved in [Ashley, 1978] that the category of group T-complexes is equivalent to
the category of reduced crossed complexes via the Moore normalization. And in [Ehlers,
Porter, 1997] it is shown that the category of reduced crossed complexes is an epireflective
subcategory of simplicial groups.

In [Carrasco, Cegarra, 1991], the notion of an hypercrossed module is introduced. A
hypercrossed module M is a chain complex in groups with group actions

Φj
i : Mi Aut(Mj)

and binary operations

Γk
i,j : Mi ×Mj Mn

where the indexes i, j, k are determined by the order introduced by Conduché [Conduché,
1984] in the set S(n) of surjective maps with domain [n] of the simplicial category ∆
and this data must satisfy certain equations. Crossed modules and 2-crossed modules are
hypercrossed modules, indeed, the Peiffer lifting is an example of one of these binary oper-
ations. Furthermore, Ashley’s reduced crossed modules are hypercrossed modules where
all binary operations are trivial, Γk

i,j = 0. Also, in [Carrasco, Cegarra, 1991] is estab-
lished an equivalence between simplicial groups and hypercrossed modules, a generalized
Dold-Kan Theorem. This generalizes the equivalences between crossed modules/internal
groupoids, 2-crossed modules/simplicial groups with trivial Moore complex above 2 and,
finally, reduced crossed complexes/T -group complexes.
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5.2. Corollary. The category of Dakin’s group T -complexes is semi-abelian. Hence,
the category Crs(Grp) of reduced crossed complexes is also semi-abelian.

Proof. From [Ehlers, Porter, 1997], we have that the category of group T -complexes is a
normal epireflective subcategory of Simp(Grp). In fact, it is a Birkhoff subcategory so it
is semi-abelian. Indeed, we just need to prove that it is closed under regular epimorphisms
in Simp(Grp). So, let X be a group T -complex and a regular epimorphism f : X → Y in
Simp(Grp). The equivalence between crossed complexes and T -complexes is given by the
Moore normalization, so ifMX andMY are the Moore complexes ofX and Y , it remains to
see that, sinceMX is a reduced crossed complex, then so isMY . The Moore normalization
preserves regular epimorphisms, so N(f) : MX → MY is a surjective map component-
wise. A morphism of hypercrossed modules (and, thus, of reduced crossed complexes) is
a chain complex morphism compatible with the actions Φj

i and the operations Γk
i,j. So,

we have a commutative diagram

MX
i ×MX

j MX
k

MY
i ×MY

j MY
k .

N(f)×N(f)

ΓX,k
i,j

N(f)

ΓY,k
i,j

Then, if ΓX,k
i,j = 0, since MX is a reduced crossed complex, then we have ΓY,k

i,j = 0.
Finally, MY is a reduced crossed complex and, equivalently, Y is T -group complex.

Our interest in reduced crossed complexes lies in their similar behaviour to chain
complexes, thus torsion theories of simplicial groups can be easily studied when restricted
to subcategory of Crs(Grp). To this end, we recall some properties of reduced crossed
complexes, we refer the reader to [Brown, Higgins, Sivera, 2010] for the details and proofs.

5.3. Remark. An n-reduced crossed complex is an n-truncated chain complex M :

M = Mn Mn−1 . . . M2 M1 M0
δn δ2 δ1

satisfying all the axioms of a reduced crossed complex (those that make sense), thus we
have a category Crs(Grp)n≥ of n-truncated crossed complexes. Clearly, a 1-truncated
reduced crossed complex is nothing but a crossed module, thus Crs(Grp)1≥ = XMod.

Moreover, we have the functors for all n ∈ N:

• the truncation functor trn : Crs(Grp) → Crs(Grp)n≥

trn(M) = Mn Mn−1 Mn−2 . . . ;

• the skeleton functor (or natural embedding) skn : Crs(Grp)n≥ → Crs(Grp)

skn(M) = . . . 0 0 Mn Mn−1 . . . ;
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• the coskeleton functor coskn : Crs(Grp)n≥ → Crs(Grp)

coskn(M) = . . . 0 ker(δn) Mn Mn−1 . . . ;

• the cotruncation cotn : Crs(Grp) → Crs(Grp)n≥

cotn(M) = Mn/δn+1(Mn+1) Mn−1 Mn−2 . . . .

We will write Skn = skntrn, Coskn = coskntrn and Cotn = skncotn. These functors
give a string of adjunctions

cotn ⊣ skn ⊣ trn ⊣ coskn :

Crs(Grp)

Crs(Grp)n≥

⊣⊣ ⊣ .

It is worth mentioning that the adjunctions of simplicial groups skn ⊣ trn ⊣ coskn
restricted to crossed complexes correspond (under Moore normalization) to skn ⊣ trn ⊣
coskn and Porter’s cotruncation Cotn corresponds toCotn. In addition, unlike the general
case of simplicial groups, the adjunction cotn ⊣ skn holds for reduced crossed complexes.

On the other hand, it will be useful to write Crs(Grp)≥n for the subcategory of reduced
crossed complexes with Mi = 0 for n > i. For all n ≥ 1, Crs(Grp)≥n is equivalent to the
category chn(Ab)≥n of chain complexes of abelian groups. Moreover, we can easily define
the dual functors:

• tr′n : Crs(Grp) → Crs(Grp)≥n;

• sk′
n : Crs(Grp)≥n → Crs(Grp);

• cot′n : Crs(Grp) → Crs(Grp)≥n.

However, only the adjunction sk′
n ⊣ cot′n holds.

5.4. Proposition. Let µ(Crs(Grp)) be the lattice given by the restriction of torsion
theories in µ(Grp) to Crs(Grp):

µ(Crs(Grp)) = . . . ≤ µ′
≥2 ≤ µ′

1≥ ≤ µ′
≥1 ≤ µ′

0≥ ≤ Crs(Grp) .

Then, the torsion theories µ′
n≥ and µ′

≥n can be expressed with the functors cotn ⊣ skn ⊣
trn ⊣ coskn:

µ′
n≥ = (Ker(cotn), Crs(Grp)n≥), µ′

≥n = (Crs(Grp)≥n,Ftrn) .

Proof. It follows from the fact that the equivalence between group T -complexes and
reduced crossed complexes is given by the Moore normalization, and also from the short
exact sequences in Theorem 2.5 and the previous observations in Remark 5.3.
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5.5. Theorem. For n > 1, let µ(Crs(Grp)n≥) be the lattice given by restriction of µ(Grp)
to Crs(Grp)n≥:

µ(Crs(Grp)n≥) = 0 ≤ µ′
≥n ≤ µ′

n−1≥ ≤ . . . ≤ µ′
≥1 ≤ µ′

0≥ ≤ Crs(Grp)n≥ .

Then for the torsion categories we have the equivalences:

1. Ker(cotn−1) ∩ Crs(Grp)n≥, the torsion category of µ′
n−1≥, is equivalent to the cat-

egory CExt(Ab) of central extensions in abelian groups, i.e., surjective morphisms.

2. Crs(Grp)≥n∩Crs(Grp)n≥, the torsion category of µ′
≥n, is equivalent to the category

Ab of abelian groups.

Proof. The proof is similar to Theorem 3.9.

6. Torsion torsion-free theories

6.1. Definition. A torsion torsion-free theory in X, or TTF theory, is a triplet (C, T ,F)
of full subcategories of X such that (C, T ) and (T ,F) are torsion theories in X. A sub-
category T of X is called a torsion torsion-free category (or a TTF category) if there are
subcategories C and F such that (C, T ,F) is a TTF theory.

TTF theories were introduced in [Jans, 1965] with applications mainly to categories of
modules over rings, in particular they are used to study when any object of a category is
a join of torsion subobjects for different torsion theories. TTF theories have been studied
in different non-abelian settings, for example in triangulated categories in [Beligiannis,
Reiten, 2007]. In our context of simplicial groups, we present examples of TTF theories
in a weak sense.

TTF theories in chain complexes. Let X be a semi-abelian category and chn(X)
and pch(X) the categories of chain complexes and proper chain complexes, respectively.
We will write chn(X)n≥ and chn(X)≥n for the category of chain complexes bounded
above/below n.

We have the adjunctions:

cotn ⊣ skn ⊣ trn ⊣ coskn :

chn(X)

chn(X)n≥

⊣⊣ ⊣ ;

as well as their duals:

cosk′
n ⊣ tr′n ⊣ sk′

n ⊣ cot′n :

chn(X)≥n

chn(X)

⊣⊣ ⊣ .



TORSION ASPECTS OF VARIETIES OF SIMPLICIAL GROUPS 1067

defined similarly as in Remark 5.3. These adjunctions can be restricted to adjunctions
between pch(X) and pch(X)n≥ (or pch(X)≥n respectively).

Similar to simplicial groups, torsion theories are given by the cotruncation functors
cot and cot′ as follows.

6.2. Theorem. [López Cafaggi, 2022b] Let X be a semi-abelian category, then:

1. in chn(X), there is a torsion theory (chn(X)≥n,Ftrn−1):

chn(X)≥n chn(X) Ftrn−1

sk′
n

⊥

cot′n

⊥ ;

2. the previous torsion theory is restricted to a torsion theory (pch(X)≥n,MN n) in
pch(X):

pch(X)≥n pch(X) MN n

sk′
n

⊥

cot′n

⊥ ;

3. the category chn(X)n≥ is a normal epireflective subcategory of chn(X), but it is not
a torsion-free subcategory ;

4. in pch(X), there is a torsion theory (EPn, pch(X)n−1≥):

EPn pch(X) pch(X)n−1≥⊥

cotn−1

⊥

skn−1

;

where

• Ftrn−1 is the subcategory of chain complexes such that their component of the unit
of the adjunction trn−1 ⊣ coskn−1 is a monomorphism.

• MN n is the subcategory of proper chain complexes such that Mi = 0 for i > n and
the differential δn is a monomorphism.

• EPn is the subcategory of proper chain complexes such that Mi = 0 for n − 1 > i
and the differential δn is an epimorphism.

For a chain complex M , the short exact sequences of the torsion theories in 2) and 3) are
given as in diagrams (3) and (4) in Theorem 2.5, respectively.

In addition to these torsion theories, we can add the following.
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6.3. Theorem. Let X be a semi-abelian category. For each n ∈ Z, the pair

(chn(X)n−1≥, chn(X)≥n)

is a hereditary cohereditary torsion theory in chn(X). Moreover, the reflector and core-
flector are given by skn−1 ⊣ trn−1 and tr′n ⊣ sk′

n:

chn(X)n−1≥ chn(X) chn(X)≥n

skn−1

⊥

trn−1

tr′n

⊥

sk′
n

.

Proof. For X in chn(X)n−1≥ and Y in chn(X)≥n it is clear that a morphism skn−1(X) →
sk′

n(Y ) must be trivial:

skn−1(X) = . . . 0 0 Xn−1 Xn−2

sk′
n(Y ) = . . . Yn+1 Yn 0 0 .

Since limits and colimits are computed component-wise in chn(X), the short exact se-
quence of the torsion theory for a chain complex X in chn(X) is given by:

. . . 0 0 Xn−1 Xn−2 . . .

. . . Xn+1 Xn Xn−1 Xn−2 . . .

. . . Xn+1 Xn 0 0 . . .

6.4. Corollary. Let X be a semi-abelian category. For each n ∈ Z the triplet of full
subcategories

(chn(X)n−1≥, chn(X)≥n,Ftrn−1)

is a TTF theory in chn(X). Moreover, by restriction this determines the TTF theory in
pch(X)

(pch(X)n−1≥, pch(X)≥n,MN n).

Similarly, the triplet of subcategories in chn(X)

(Ker(cotn−1≥), chn(X)n−1≥, chn(X)≥n)

determines the TTF theories in pch(X)

(EPn, pch(X)n−1≥, pch(X)≥n).
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Weak TTF theories in chain complexes with operations. Through this work
we have mentioned the similarities between torsion theories in simplicial groups and in
chain complexes. This happens since they are both defined with similar set of adjunctions
(skn ⊣ trn ⊣ coskn and cotn ⊣ skn ⊣ trn ⊣ coskn). However, the TTF theories in chain
complexes cannot be easily adapted to the simplicial case, not even in the initial example
of internal groupoids. For instance, in Grpd(Grp) the subcategory of discrete groupoids
Dis(Grp) ∼= M0≥ is a torsion-free subcategory (with reflector π0 ⊣ Dis) and also mono-
coreflective (with the adjunction Dis ⊣ tr0) but it is not normal monocoreflective, so it is
not a torsion subcategory. In general, the subcategories Mn≥ are only torsion-free.

Two different kinds of torsion theories are introduced.

6.5. Definition. For a class of objects E of X, a pair (T ,F) of full subcategories of X
will be called a E-torsion theory or a torsion theory relative to the class E if:

TT1 for all X ∈ T and Y ∈ F , every morphism f : X → Y is zero;

TT2’ for every object X ∈ E exists a short exact sequence

0 TX X FX 0
tX fX

with TX ∈ T and FX ∈ F .

As a first example of an E-torsion theory we have the pair (Ker(cotn), chn(X)n≥) in
chn(X) as in Theorem 6.2.

6.6. Lemma. In the category chn(X) of chain complexes the pair

(Ker(cotn), chn(X)n≥)

and the class E = pch(X) of proper chain complexes constitute an E-torsion theory in
chn(X).

Proof. The objects in Ker(cotn) are the chain complexes X such that Xi = 0 for n > i
and the differential δn+1 has a trivial cokernel. Thus, to verify TT1 it suffices to notice
that given a commutative diagram

Xn+1 Xn

0 Yn

δn+1

fn+1 fn

with δn+1 a morphism with trivial cokernel then the morphism f must be trivial. Awiom
TT2’ holds since it has been established that the restriction of the pair (Ker(cotn),
chn(X)n≥) to proper chain gives a torsion theory (EPn, pch(X)n≥) in pch(X). In addition,
for a proper chain complexM the short exact sequence is given by diagram (3) in Theorem
2.5.
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Any normal epireflective subcategory (a reflective subcategory in which all unit com-
ponents are normal epimorphisms) yields an E-torsion theory. Let F ⊣ I : X → A be
a normal epireflective subcategory of X with unit η. Following [Bourn, Gran, 2006], we
consider two subcategories of X :

TF = {T | T ∼= ker(ηX) for some X}

and
Ker(F ) = {X | F (X) = 0}.

Clearly, we have Ker(F ) ⊆ TF . The pair (TF ,A) satisfies axiom TT2 of a torsion theory
while the pair (Ker(F ),F) satisfies axiom TT1. Indeed, if Ker(F ) = TF we have a
torsion theory. Thus, in the relative case we have the following:

6.7. Lemma. Let F ⊣ I : X → A be a normal epireflective subcategory of X with unit η.
If E = {X | F (ker(ηX)) = 0} then the pair (Ker(F ),A) is an E-torsion theory.

6.8. Example. The category Ab of abelian groups is a normal epireflective subcategory
of Grp (in fact, it is a Birkhoff subcategory) where the reflector is the abelianization
functor ab(G) = G/G′ where G′ is the commutator subgroup. Hence, if Perf is the
category of perfect groups, groups G such that G′ = G, then the pair (Perf,Ab) is a
E-torsion theory with respect the class E of groups such that (G′)′ = G′ or, equivalently,
groups with a perfect commutator.

We introduce our main definition.

6.9. Definition. Let (T ,F) be a torsion theory in X, if F is a monocoreflective subcat-
egory of X we will call (T ,F) a CTF theory.

In other words, in a CTF theory the embedding I of F into X has both a right and
left adjoint, F ⊣ I ⊣ C:

T X F
J

⊥
F

T

⊥

C

⊥ I

.

Clearly, in a TTF theory (C, T ,F) the pair (C, T ) is a CTF-theory. In [Clementino,
Dikranjan, Tholen, 2006], it is proved that a normal monocoreflective subcategory closed
under extensions is in fact a torsion category, so a CTF theory with F a normal mono-
coreflective subcategory is a TTF theory.

The subcategory of discrete crossed modules Dis in XMod behaves almost as a torsion
torsion-free subcategory, it presents an example of a CTF theory as well as a relative E-
torsion theory. To this end, recall that a monomorphism in XMod is given by an injective
crossed module morphism f = (f1, f0):

A B

X Y .

f1 f0
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In addition, f is a normal subcrossed module if and only if A, B are normal subgroups
of X, Y , and the conditions y(a) ∈ A and b(x)x−1 ∈ X hold for all a ∈ A, b ∈ B, y ∈ Y
and x ∈ X.

6.10. Proposition. In XMod consider the triplet of subcategories

(CExt,Dis, Ab) .

Then:

1. the pair (CExt,Dis) is a CTF theory in XMod;

2. the pair (Dis,Ab) is an E-torsion theory where E is the class of crossed modules
δ : A → B where the action B → Aut(A) is trivial.

Proof. 1) The discrete functorD has right adjoint ( )0 where the component of the counit
for a crossed module δ : A → B is given by horizontal arrows in the diagram:

0 A

B B

0

δ

1

(8)

which is a monomorphism since the pair (0, 1) consists of injective morphisms.
2) It is clear that the pair (Dis,Ab) satisfies TT1 since in a commutative diagram

0 A

G 0

f1

f0

the morphism f = (f1, f0) is zero. For TT2’, recall that the counit in Diagram (8) is a
normal monomorphism in XMod if and only if b(a)a−1 = 0, i.e., the action of B over A
is trivial. From the Peiffer identity δ(a)(a′) = aa′a−1, a crossed module with trivial action
also has A as an abelian group then we have the short exact sequence in XMod:

0 0 A A 0

0 B B 0 0 .

δ
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6.11. Remark. The pair of subcategories Dis and Ab of XMod present another example
of an E-torsion theory in XMod. This time as (Ab,Dis) and E as the subcategory Mod
of modules of groups. For a module we mean a pair (A,G) such that G is a group and A
is an abelian group with a group action G → Aut(A). Then a module (A,G) is a crossed
module as δ = 0 : A → G. In fact, the subcategory Mod is a Birkhoff subcategory of
XMod. The associated short exact sequence of the E-torsion theory for a module (A,G)
is

0 A A 0 0

0 0 G G 0 .

δ=0

The category of reduced crossed complexes presents a similar example as Proposition
6.10.

6.12. Remark. In Crs(Grp), for each n ≥ 0 consider the full subcategory Crs(Grp)≥n

of reduced crossed complexes M which are trivial in degrees below n:

M = . . . Mn+1 Mn 0 0 . . . .

For all n > 0 the category Crs(Grp)≥n is equivalent to the category ch(Ab)≥n
∼= ch(Ab)

of chain complexes in abelian groups.
Thus, for n ≥ 2 we have a functor tr′n : Crs(Grp) → Crs(Grp)≥n defined for a

crossed complex M by

tr′n(M) = . . . Mn+1 Mn 0 . . . .

The natural chain complex morphism f : M → tr′n(M):

. . . Mn+1 Mn Mn−1 . . . M1 M0

. . . Mn+1 Mn 0 . . . 0 0

1 1 0 0 0

is a morphism in Crs(Grp) if and only if all the actions M0 → Aut(Mi) are trivial for
i ≥ n. Indeed, M should satisfy m0mn = fn(

m0mn) =
f0(m0) fn(mn) = mn for all m0 ∈ M0

and mn ∈ Mn. In particular, this condition holds if δ1 : M1 → M0 is a central extension,
since in a crossed complex the restrictions of the actions δ1(M1) → Aut(M0) are trivial.

6.13. Proposition. For n ≥ 2, in the category Crs(Grp) consider the triplet of subcat-
egories:

(Ker(cotn−1), Crs(Grp)n−1≥, Crs(Grp)≥n) .

Then:

1. the pair (Ker(cotn−1), Crs(Grp)n−1≥) is a CTF theory, this means that the subcat-
egory Crs(Grp)n−1≥ is monocoreflective;
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2. the pair (Crs(Grp)n−1≥, Crs(Grp)≥n) is an E-torsion theory where E is the class of
crossed complexes M with all actions M0 → Aut(Mi) trivial for i ≥ n;

3. if M is a crossed complex with δ1 : M1 → M0 a crossed module central extension
then M belongs to E.

In particular, for n = 2 this holds for the triplet:

(Ker(cot1),XMod, chn(Ab)≥2) .

Proof. 1) From Proposition 5.4, µ′
n−1≥ = (Ker(cotn−1), Crs(Grp)n−1≥) is a torsion

theory. It suffices to notice that the counit of skn−1 ⊣ trn−1 given by

. . . 0 0 Mn−1 Mn−2 . . .

. . . Mn+1 Mn Mn−1 Mn−2 . . .

is monic since each component is an injective morphism.
2) It is clear that the pair (Crs(Grp)n−1≥, Crs(Grp)≥n) satisfies TT1 of the definition

of an E-torsion theory. Now, let M be a crossed complex with trivial actions M0 →
Aut(Mi) and consider the morphisms trn−1(M) → M → tr′n(M) in Crs(Grp):

. . . 0 0 Mn−1 Mn−2 . . .

. . . Mn+1 Mn Mn−1 Mn−2 . . .

. . . Mn+1 Mn 0 0 . . .

recall that the morphism M → tr′n(M) is indeed a morphism in Crs(Grp) since the
actions are trivial. It is a short exact sequence in Crs(Grp) since it is a short exact
sequence as chain complexes and the forgetful functor is conservative.

3) It follows from the definition of crossed complex that if δ1 is surjective the actions
δ1(M1) = M0 → Aut(Mi) are trivial.

An example of a splitting CTF theory in a semi-abelian category. In an
abelian category a torsion theory (T ,F) is called splitting if the torsion subobject t(X)
of X is a direct summand. In a semi-abelian category we will call a torsion theory (T ,F)
splitting if for every object X the associated exact sequence splits:

0 t(X) X X/t(X) 0 .

In RMod the category of modules over the ring R, a central idempotent element of R
induces a splitting torsion theory (T ,F) (also called centrally splitting), and even yields



1074 GUILLERMO LÓPEZ CAFAGGI

a TTF theory (F , T ,F). Connections of splitting torsion theories and TTF theories are
studied in [Jans, 1965].

The torsion theories in simplicial groups and crossed complexes presented earlier are
not splitting. However, we give an example of a splitting torsion theory in a semi-abelian
category.

6.14. Example. LetKHopfcoc the category of cocommutative Hopf alegras over the field
K of characteristic 0. In [Gran, Kadjo, Vercruysse, 2016], it is proved that the category
KHopfcoc is a semi-abelian category and it has a torsion theory (KLie,Grp). Here, KLie
is the category of K-Lie algebras considered as the primitive Hopf K-algebras and the
category Grp of groups is equivalent to the category of group-Hopf K-algebras. Indeed,
for every K-algebra H the associated short exact sequence is given by the Cartier-Gabriel-
Milnor-Moore-Kostant theorem: there is a split short exact sequence

0 U(LH) H K[GH ] 0

where K[GH ] is the group algebra of the group-like elements GH of H and U(LH) is the
enveloping algebra of the primitive elements LH of H.

In [Gran, Kadjo, Vercruysse, 2018], it is proved that the funtor G : KHopfcoc → Grp
that takes the group-like elements and K[ ] : Grp → KHopfcoc yield the adjunctions
G ⊣ K[ ] and K[ ] ⊣ G. As a consequence, (KLie,Grp) is a splitting CTF theory.
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