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ON DOMAIN-LIKE OBJECTS
IN THE CATEGORY OF UNITARY RINGS

W.D. BURGESS, R. RAPHAEL

Abstract. In the category C of unitary rings, Barr, Kennison and Raphael (2015)
studied the limit closures of various classes of commutative integral domains; in par-
ticular the class of all domains and of integrally closed domains to form the reflective
subcategories Kdom and Kic. This article looks at Kdom(R) and Kic(R) – the same sym-
bols are used for the subcategories and the reflection functors – for some rings R. The
objects in Kdom can be called “domain-like”. Of particular interest is the ring C 1(R), the
ring of real functions with continuous first derivative. The ring L is that of continuous
functions that are C 1 on a dense open set of R. Then Kdom(C

1(R)) ⊂ Kic(C
1(R)) ⊂ L,

with proper inclusions. Moreover, for f ∈ Kdom(C
1(R)), f has one-sided derivatives and

those are one-sided continuous.

For commutative rings R ⊂ S in R there is a subring of the integral closure of R in S
introduced here, called the split integral closure, that is explored and turns out to be
very useful.

1. Introduction. The category C of all unitary rings will be the context. Before outlining
this paper, it will be necessary to present some historical background. The subject will
revolve around the question of what is a domain-like object in C.

The question of what is a field-like object in C was resolved much earlier by M. Hochster
([H]) in 1969. The subcategory F , of fields in C is not algebraic because the defining axiom
is for non-zero elements and, indeed, F is not closed under limits, in the categorical sense.
The answer, in this case, is the subcategory of commutative (von Neumann) regular rings,
VN , in R defined by, in addition to the usual axioms for commutative rings, there is also:
∀x,∃y (x2y = x). The functor making VN a reflective subcategory was defined in [H]
using a new topology on SpecR, called the patch or constructible topology. In fact, for
each R ∈ VN , SpecR already has the patch topology and R is the ring of sections of a
sheaf of fields over SpecR. Further properties of this functor were studied by R. Wiegand
([Wi]).

The history of domain-like objects is quite different. Once again the obstacle is that
the defining axiom of domains is for non-zero elements. The topic was first examined
by J. Kennison in [K] and J. Kennison and C.S. Ledbetter in [KL] in the 1970s. The
starting point here is the paper [BKR] by M. Barr, J. Kennison and R. Raphael from
2015. Some of these results will be reviewed here. The first three sections of [BKR] build
the tools required for the study of the domain-like objects but are much more general and

Received by the editors 2023-07-25 and, in final form, 2024-08-04.
Transmitted by Rick Blute. Published on 2024-08-09.
2020 Mathematics Subject Classification: 13G05, 13B22, 18A35, 26A15.
Key words and phrases: commutative semiprime rings, domain objects, limit closures, C 1 functions.
© W.D. Burgess, R. Raphael, 2024. Permission to copy for private use granted.

927



928 W.D. BURGESS, R. RAPHAEL

are used to examine limit closures of other subcategories of domains in C. Only two of
these will come up in the sequel.

The limit closure of the subcategory, D, of domains will contain the full rings of sections
of sheaves whose stalks are domains. The question: “what are the domain-like objects
in C?” has an amazing multiple answer. Call the subcategory of, as yet to be defined,
domain-like objects Kdom. It is (1) the limit closure of D, (2) an essentially algebraic
subcategory of C, (3) a reflective subcategory of C with a reflection functor defined by a
transfinite inductive procedure, and (4) each ring in D is isomorphic to the full rings of
sections of sheaves whose stalks are domains. (References will follow later in this section.)
The objects in Kdom will be called DL-closed, for domain-like.

One other line of reasoning from [BKR] will come up. The same question is asked
about the subcategory Dic of integrally closed domains (integrally closed in their fields of
fractions). The answer, Kic, has a development that often runs in parallel to that of Kdom

and that will be reflected in the rest of the summary. Many details that can be found in
[BKR] will be, of course, omitted in what follows.

The objects in the limit closure in C of a subcategory of domains are always com-
mutative and without non-zero nilpotent elements. The development can thus be done
in the category of commutative rings without non-zero nilpotent elements (commutative
semiprime ring) that is denoted R. This was the context used in [BKR].

For the objects in Kic, the term (2,3)-closed is used in [BKR]. The more usual termi-
nology for these rings is seminormal (see [Sw] and [V]) and the (2,3)-closure was called
the seminormalization in [Sw], where R. Swan first elaborated the theory. However, be-
cause of their descriptive value, the terms (2,3)-closed and (2,3)-closure will be retained
in this paper.

1.1. Definition. [BKR, Definition 4.1.1]
1. If R ∈ R, R is called (2,3)-closed if whenever a3 = b2 ∈ R there is c ∈ R with

c2 = a and c3 = b.
2. If R ∈ R, R is called DL-closed if whenever a3 = b2 ∈ R and if, moreover, a is a

square modulo each prime ideal of R, then there is c ∈ R with c2 = a and c3 = b.

In the situation of Definition 1.1(1) and (2), the element c is unique ([BKR, Proposi-
tion 4.1.6]).

The condition in the definition of DL-closed rings about the squares is more manage-
able than at first glance by [BKR, Proposition 4.1.5]: a ∈ R is a square modulo each
prime of R if and only if there are r1, . . . , rk ∈ R, for some k ∈ N, with

∏k
i=1(a− r2i ) = 0.

This fact based on the compactness of the topology used in the study, will come up often.

1.2. Definition. [BKR, Definition 2.2.20] For R ∈ R the domain topology is defined on
SpecR and has as a subbase of open sets {V (r)}r∈R, where V (r) = {p ∈ SpecR | r ∈ p}.

The domain topology is coarser than the patch topology, that is known to be com-
pact([H, Theorem 1]). Hence, the domain topology is compact. For R ∈ R, the sheaf,
called ER, most relevant here for Kdom is that over SpecR with the domain topology
and stalks of the form R/p, p ∈ SpecR. The construction of the sheaf in [BKR, §3] is
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much more general than is needed here. The fact that the maps from R to the stalks
are surjections simplifies the structure. The basic open sets in the space étalé are partial
sections using elements of R and domain open sets in SpecR, i.e., for r ∈ R and a domain
open set U , {r + p | p ∈ U} is a basic open set in

⋃
q∈SpecRR/q.

The next theorem is the major one of Section 4 of [BKR] (see also [K, Theorem A]).

1.3. Theorem. [BKR, Theorem 4.1.3] For R ∈ R, the following are equivalent.
(1) R is DL-closed,
(2) R is isomorphic to the ring of global sections of the sheaf ER,
(3) R is isomorphic to the ring of global sections of some sheaf whose stalks are do-

mains,
(4) R is in the limit closure of the subcategory of domains.

The subcategories Kdom and Kic are reflective subcategories of R. A few words need
to be said about the reflection functors from R to Kdom and from R to Kic. (The same
symbol is used for the subcategory and the functor.) These both follow from an inductive
procedure for constructing the (2,3)-closure and the DL-closure of R ∈ R. Note that if
Kdom is applied to a general object R of C, R is first made commutative by dividing out
by the ideal generated by {xy − yx}x,y∈R to get R, and then by the ideal of nilpotent
elements (rad(R)).

Note. The symbol ⊂ will mean proper inclusion throughout.

1.4. Definition. [BKR, 4.2.1] 1. If R ⊂ S are in R, S is a simple (2,3)-extension of R
if there is s ∈ S such that S = R[s] and s2, s3 ∈ R. More generally, S is a (2,3)-extension
of R if there is an ordinal-indexed sequence S0 ⊂ S1 ⊂ S2 ⊂ · · ·Sω ⊂ · · · ⊂ Sα such that
(a) R = S0, (b) for all β < α, Sβ+1 is a simple (2,3)-extension of Sβ, (c) if β < α is a
limit ordinal then Sβ =

⋃
γ<β Sγ, and (d) S = Sα.

2. If R ⊂ S are in R, S is a simple DL-extension of R if there is s ∈ S such that
S = R[s] and s2, s3 ∈ R and, moreover, s2 is a square modulo each prime ideal of R. In
addition, S is a DL-extension of R if there is a sequence as in part 1 where each simple
extension is a simple DL-extension.

Note that a misprint in [BKR, Definition 4.2.1(1)] has been corrected here. That is,
s2 is a square modulo each prime ideal of R, not s.

Any field is (2,3)-closed, as is a product of fields. (In fact any R ∈ VN is (2,3)-closed,
by Theorem 1.3 (3).) Hence, any R ∈ R embeds in a (2,3)-closed and a DL-closed ring. It
follows that when the process in Definition 1.4 stops, it is at a (2,3)-closed ring in part 1,
and at a DL-closed ring in part 2. These rings are unique up to an isomorphism over R.

With this introduction to the framework of the paper, it is now possible to give an
outline of the results.

Section 2 deals with some information about DL and (2,3)-extensions and closures. It
also introduces the split integral closure of a ring R in a ring S. It is smaller than the
integral closure but is more useful in this context. It is then shown (Proposition 2.15) that
a ring R is DL-closed, respectively (2,3)-closed, if and only if the stalks of the Pierce sheaf
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are DL-closed, respectively (2,3)-closed. Section 3 takes a look at some simple examples
of DL and (2,3)-closures.

Section 4, the core of the paper, looks at a specific example of a ring that is not DL-
closed. It is the ring R of continuous real valued functions on R that have a continuous
first derivative (the ring of C 1 functions). The DL and (2,3)-closures of the ring R turns
out to be very rich in structure. Both K = Kdom(R) and S = Kic(R) are seen to lie
in the ring, L, of continuous functions that are C 1 on a dense open set D. The split
integral closure of R in L is denoted T . The ring L is (2,3)-closed and it follows that
R ⊂ K ⊂ S ⊂ L, and all the inclusions are strict. Moreover, T ⊂ L and K = T ∩ S.

Complete descriptions of the elements of K and S have not been found but a great
deal can be said about them. However, a characterization is given of f ∈ L such that
R[f ] is a simple DL-extension (Proposition 4.32).

Much of Section 4 is devoted to establishing properties of elements of T . It is shown
that if f ∈ T , then d+

dx
f(x) and d−

dx
f(x) exist for all x ∈ R and, moreover, d+

dx
f is right

continuous and d−

dx
f is left continuous (Corollaries 4.36 and 4.37) (and a third property

predicted in [K] in Proposition 4.38). A partial converse is established: If f ∈ L is C 1

on a dense open set D and Dc is of finite Cantor-Bendixson index, then the existence of
the two one-sided derivatives implies f ∈ T (Theorem 4.40). However, Proposition 4.41
shows that there are elements f ∈ K where Dc is not of finite Cantor-Bendixson index.

Section 5 continues the discussion of Section 4 with examples to show how the (2,3)-
closure S and DL-closure K for R differ. In particular, there are elements of S that
have vertical tangent lines and they cannot be in K (Corollary 5.43). Moreover, L is
not integral over R, making L different from S (Proposition 5.48). For any dense open
set D ⊂ R there is f ∈ S \ K that has a derivative everywhere but the derivative is
not continuous at any point of Dc (Proposition 5.50). The final example (Example 5.51)
shows that there can be an element of C(R) that satisfies all the properties of elements of
T but is not in L. Hence, those properties are not exhaustive. It resolves in the negative
a conjecture by Kennison ([K, Example 7.5]) about the nature of the elements of K.

Section 6 is an addendum. It shows details of splines, called M-splines, used in Sec-
tions 4 and 5, and may not be familiar to the reader.

2. General remarks about the DL and (2,3)-closures.
The purpose of this section is to consider the DL and (2,3)-extensions and closures of

general objects in R. Later sections will deal with specific examples.
Notation. For R ∈ R the following notation will be used throughout. Any copy of

the DL-closure of R will be written Kdom(R); any copy of the (2,3)-closure of R will be
written Kic(R). All such copies, in both cases, are isomorphic over R.

In a limit closed category, pullbacks exist. In particular, if K1 and K2 are DL-closed
subrings of a ring T , then K1 ∩ K2 is also DL-closed. Similarly, for (2,3)-closed rings.
This means that if R is a subring of a DL-closed ring T then the DL-closure of R in T is
the unique smallest DL-closed subring of T containing R. Similarly for (2,3)-closed.

The following results add information about the DL-closure and will come up in later
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parts of the paper.

2.5. Proposition. Let R ∈ R and R′ a DL-extension of R. For a ∈ R′, there are
u1, . . . , uk ∈ R, for some k ∈ N, such that

∏k
i=1(a− ui) = 0.

Proof. According to [BKR, Proposition 4.2.2], the spaces SpecR′ and SpecR are home-
omorphic in the domain topology and for each q ∈ SpecR′ lying over p ∈ SpecR,
R′/q ∼= R/p via the inclusion of R into R′. For each q ∈ SpecR′, there is v(q) ∈ R
such that a ≡ v(q) (mod q). Then, there is a neighbourhood V , namely V (a − v(q)), in
the domain topology, such that a ≡ v(q) (mod r), for all r ∈ V . By the compactness of
SpecR′ in the domain topology, there is a finite subset u1, . . . , uk of {v(q)}q∈SpecR′ such

that
∏k

i=1(a− ui) = 0, using [BKR, Proposition 4.1.4].

Notice that, in Proposition 2.5, the equation
∏k

i=1(a − ui) = 0 implies also that∏k
i=1(a

2 − u2i ) = 0. Moreover, if, in the proposition, a is a square modulo each prime
in SpecS, then the ui may be taken to be squares of elements of R (see [BKR, Proposi-
tion 4.1.5]).

To continue with general statements, the following is also true. Since the (2,3)-closure
of R ∈ R is DL-closed, the DL-closure of R, Kdom(R), may be taken to lie in Kic(R).

2.6. Proposition. Let R ∈ R, S = Kic(R) and K = Kdom(R) ⊆ S. Let a be in S.
Then, a ∈ K if and only if there exist u1, . . . , uk ∈ R with

∏k
i=1(a− ui) = 0.

Proof. One direction follows from Proposition 2.5; that is, if a ∈ K then there exist
u1, . . . , uk ∈ R with

∏k
i=1(a− ui) = 0.

Conversely, assume
∏k

i=1(a− ui) = 0, for some u1, . . . , uk ∈ R. It must be shown that
a ∈ K. [BKR, Proposition 4.2.2] is used. Since S is also DL-closed, it is isomorphic to the
ring of sections of the sheaf based on SpecS with the domain topology. The base spaces
SpecS, SpecR and SpecK are all homeomorphic in the domain topologies via the natural
maps. The stalks of the sheaf for S may be larger than those for the two other sheaves.
Now look at the section of the sheaf for S defined by a. For each p ∈ SpecS, there is
some i, 1 ≤ i ≤ k, with a− ui ∈ p. Hence, a and ui coincide modulo all the primes in the
(domain) open set V (a− ui). These open sets cover SpecS and, since a is a section, the
projections into the stalks are into R/q for some prime q ∈ SpecS = SpecR. However,
this is exactly how the elements of K are defined (see [BKR, Theorem 4.1.3(DL-2)]);
they are the sections of the canonical sheaf, called ER in [BKR, §3.2], (using the domain
topology) for R.

Notice that the condition in Proposition 2.6 is saying that for a ∈ S, a ∈ K if and only
if it satisfies a monic polynomial over R which factors into monic linear factors. Elements
of S are integral over R ([BKR, Proposition 4.2.2]) but this condition is stronger.

These special integral elements will play a role in later sections. The next result will
show that they can be used to define a subring of the integral closure.
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2.7. Proposition. Let R ⊆ S be in R. Then

T =

{
s ∈ S | there exists for some k ∈ N, u1, . . . , uk ∈ R such that

k∏
i=1

(s− ui) = 0

}

forms a subring of S.

Proof. Suppose a, b ∈ T with u1, . . . , uk, v1, . . . , vm ∈ R with
∏k

i=1(a − ui) = 0 and∏m
j=1(b − vj) = 0. By the reasoning of [BKR, Proposition 4.1.5], for each p ∈ SpecS,

there is i with a ≡ ui mod p and some j with b ≡ vj mod p. The i and j need not
be unique. It follows that

∏
i,j((a + b) − (ui + vj)) = 0, since for any prime p, one of

the factors is in p. The product ab is done in a similar manner. This shows that T is a
subring.

The expressions in the proof of Proposition 2.7 for a + b and, implicitly, ab may
be redundant but will always contain factors whose product is zero. The ring T in
Proposition 2.7 will be useful and deserves a name.

2.8. Definition. (1) If R ⊆ S are rings and every s ∈ S satisfies an equation
∏k

i=1(s−
ui) = 0, where each ui ∈ R, is said to be a split integral extension of R.

(2) Let R, S ∈ R, the subring {s ∈ S | there exist, for some k ∈ N, u1, . . . , uk ∈
Rwith

∏k
i=1(s − ui) = 0} is called the split integral closure of R in S and denoted

SI(R, S).

2.9. Proposition. If R ⊆ S ⊆ T are rings and both R ⊆ S and S ⊆ T are split integral
extensions, then R ⊆ T is also a split integral extension.

Proof. If t ∈ T satisfies
∏k

i=1(t−si) = 0 with si ∈ S and each si satisfies
∏k(i)

j=1(si−ui,j) =
0 with each ui,j ∈ R then

∏k
i=1

∏k(i)
j=1(t− ui,j) = 0.

2.10. Proposition. If R ⊆ S are rings and S is DL-closed, then T = SI(R, S) is
DL-closed.

Proof. If a ∈ S is such that a2 is a square modulo the primes of R, then there are
t1, . . . , tk ∈ SI(R, S) with

∏k
i+1(a

2 − t2i ) = 0 =
∏k

i=1(a− ti)(a+ ti). By the argument of
Proposition 2.9, a ∈ SI(R, S).

2.11. Corollary. If, in Proposition 2.10, S = Kic(R), then T = Kdom(R).

Proof. This follows immediately from the Proposition 2.7 and Proposition 2.10.

2.12. Corollary. Let R be a ring and S = Kic(R). If L is a DL-closed ring containing
S then SI(R,L) ∩ S = Kdom(R).

Proof. This is immediate from Proposition 2.10.
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Any ring R ∈ R can be embedded in a DL-closed ring W , for example

W =
∏

p∈SpecR

R/p.

2.13. Proposition. Let R ∈ R embedded in a DL-closed ring W , T = SI(R,W ), and
ϕ : SpecT → SpecR given by intersection. If ϕ(p) = q, then R/q ∼= T/p, via the natural
monomorphism.

Proof. For any f ∈ T , there are u1, . . . , uk ∈ R with
∏k

i=1(f − ui) = 0. This means
that for any p ∈ SpecT , there is i such that f ≡ ui (mod p). This shows that the
monomorphism R/q → T/p is a surjection.

However, it can happen, in the situation of the proposition, that ϕ is not one-to-one.
Example 3.23 shows this. However, in the above situation, the ring T is always DL-closed
by Proposition 2.7. In addition, although ϕ : SpecT → SpecR need not be one-to-one,
all the stalks in ϕ−1(p) are isomorphic, for each p ∈ SpecR.

If R[s] is a simple (2,3)-extension of R then the inclusion f : R → R[s] is an epimor-
phism (in the categorical meaning of “epimorphism”) in the category R (a special case
of [BKR, Theorem 2.3.1(12)]). However, it is not an epimorphism in the category of all
commutative (unitary) rings.

2.14. Proposition. Let R ∈ R and R[s] a simple (2,3)-extension of R. Then, the
inclusion of R in R[s] is not an epimorphism in the category of all commutative rings.

Proof. Define I = {a ∈ R | as ∈ R}. This is a non-zero ideal since s2 ∈ I. Let
J = I[s], an ideal of R[s]. Consider T = R[s]/J and α : R[s] → T given by as + b

α7→ b̄

and β : R[s] → T by as+ b
β7→ as+ b. Notice that if as+ b ∈ R then a ∈ I. Hence, α and

β coincide on R. However, α(s) ̸= β(s).

The next observation is to show that the property of being (2,3)-closed and the prop-
erty of being DL-closed are Pierce properties. Recall from [P] (see also [BS]) the definition
of the Pierce sheaf, here restricted to commutative rings. For a ring R, let B(R) be the
boolean ring of idempotents of R and X = SpecB(R). For each x ∈ X consider the ideal
xR and the quotient Rx = R/xR. The rings Rx are the stalks of the Pierce sheaf for R
over the boolean space X . The stalks will have the discrete topology. The key property
of this sheaf is that the ring of global sections is canonically isomorphic to the ring R
([P, Theorem 4.4]); sections and elements of R will be given the same symbol. Another
property that will be used is that if two sections section r, s ∈ R coincide in a stalk Rx,
i.e., rx = sx, then there is e ∈ B(R) \ x such that e(r − s) = 0 (see [P, Lemma 4.3]).
Finally, a property P of rings is called a Pierce property if R has property P if and only
if each Pierce stalk has property P . Note that being semiprime is a Pierce property. (If
P also stands for the class of rings with property P , then, in the terminology of [BS], P
is a Pierce property if and only if {P ,P} is a Pierce pair.)

2.15. Proposition. The property of being (2,3)-closed and the property of being DL-
closed are Pierce properties.



934 W.D. BURGESS, R. RAPHAEL

Proof. Suppose first that R is (2,3)-closed or DL-closed. With the notation above,
consider a Pierce stalk Rx. This ring will be presented as a direct limit of direct ring
summands of R, and, hence, of (2,3) and DL-closed rings. Consider the diagram of all
Re, where e ∈ B(R) \ x with maps ϕe,e′ : Re → Re′ when e, e′ /∈ x and ee′ = e′ and
ϕe,e′(re) = re′. Let the direct limit be A with maps ϕ2 : Re→ A.

There are also well-defined maps ψe : Re → Rx defined by ψe(re) = r + x. If re = 0
then r = r(1 − e) and 1 − e ∈ x. These are compatible with the ϕe,e′ . Hence, there is a
unique ζ : A → Rx, making the whole diagram commute. It is easy to check that ζ is an
isomorphism.

(Note that this part of the proof works for any limit closed subcategory L of R, i.e.,
if R ∈ L then each Pierce stalk is in L.)

In the other direction the proof will be given for DL-closed; the proof for (2,3)-closed is
similar and easier. Now suppose that R is such that, for each x ∈ X , that Rx is DL-closed.
Suppose that R[a] is a simple DL-extension of R. Then, a3 = r ∈ R and a2 = s ∈ R, and
there are u1, . . . , uk ∈ R with

∏k
i=1(a

2 − (ui)
2) = 0. Note that r2 = s3.

Fix x ∈ X . The equations (rx)
2 = (sx)

3 and
∏k

i=1(sx − (u2i )x) = 0 hold in Rx.
According to [BKR, Definition 4.1.1(2)], there exists a unique cx, for some c ∈ R, such
that (cx)

3 = rx and (cx)
2 = sx. Then there is e ∈ B(R) \ x such that (r2 − s3)e = 0,∏k

i=1(s−u2i )e = 0, (c3− r)e = 0 and (c2−s)e = 0. This can be done for each x ∈ X . The
compactness of X and the uniqueness of the cx mean that c is, in fact, a global section
of the Pierce sheaf. By [BKR, Proposition 4.1.6], it follows that, in the semiprime ring
R[a], a = c ∈ R, contradicting the assumption that R[a] was a simple DL-extension.

An example of a DL-closed ring R would be one where every Pierce stalk is a domain.
These rings were characterized in [NR] and mentioned in [BKR, Example 4.4.2]; these
include all commutative von Neumann regular rings, i.e., those where the Pierce stalks
are fields. In this context it might be mentioned that there are (2,3)-closed domains that
are not integrally closed (see [BKR, Example 5.1.7]).

3. Some simple examples of DL-closures. In this short section examples are pre-
sented of rings that are not DL-closed along with their DL-closures. The starting point
was an example pointed out to us by John Kennison, this is the ring R2,2 in what follows
(see [K, Example 7.6]).

Notation. For a prime integer p and k ∈ N, Rp,k = {(a, b) | a, b ∈ Z, a ≡ b (mod pk)}.

3.16. Lemma. For k < l and any prime p, the extension Rp,l ⊂ Rp,k is a DL-extension
if and only if it is a (2,3)-extension.

Proof.Only one direction needs to be proved. Suppose the extension is a (2,3)-extension.
Then for any (x, y) ∈ Rp,k, ((x, y)

2 − (x, x)2)((x, y)2 − (y, y)2) = (0, 0). This shows that
(x, y) is in the DL-closure of Rp,l by Proposition 2.6 .

The following lemma will be used without mention in what follows.
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3.17. Lemma. For a prime integer p and k ≥ 1, given (x, y) ∈ Rp,k \ Rp,k+1, then, for
m ≥ 1, Rp,k+m[(x, y)] = Rp,k.

Proof. Put Rp,k+m[(x, y)] = S. Write x = y+pkz, where p ∤ z. Then, (x, y) = (y+pkz, y)
and subtracting (y, y) yields (pkz, 0) ∈ S. Write 1 = apm + bz, for some a, b ∈ Z.
From this, pk = pk+ma + pkbz. Then, (pk+ma, 0) ∈ Rp,k+m and (pkbz, 0) ∈ S giving
(pk+ma, 0) + (pkbz, 0) = (pk, 0) ∈ S. For any (u, v) ∈ Rp,k, u = v + pkt, for some t ∈ Z.
Then (t, t)(pk, 0) = (pkt, 0) ∈ S and (pkt, 0) + (v, v) = (u, v) ∈ S.

3.18. Proposition. Let p be a prime integer and k ∈ N. Then,
(1) Rp,1 is (2,3)-closed and, hence, also DL-closed;
(2) for k > 1, Rp,k is not DL-closed and there is u ∈ Rp,k−1 so that Rp,k[u] is a simple

DL-extension and, moreover, Rp,k[u] = Rp,k−1.

Proof. (1) Consider r = (a, b) and s = (c, d) with r, s ∈ Rp,1 and r3 = s2. An element
(x, y) must be found with x2 = a, x3 = c, y2 = b and y3 = d. Since Z× Z is (2,3)-closed,
such integers can be found. It remains to show that (x, y) ∈ Rp,1. Since p | x2 − y2,
p | x − y or p | x + y. In the former case, (x, y) ∈ Rp,1 as required. If p ∤ x − y then
p | x+ y and since p | x3 − y3, p | (x2 + xy + y2). But x2 + xy + y2 = x(x+ y) + y2 shows
that p | y2 and then p | y. From this, p | y and p | x + y yield p | x and then p | x− y, a
contradiction.

(2) For any prime p and k > 1, consider u = (pk−1, 0). Then u2, u3 ∈ Rp,k. By
Lemma 3.16, this is a DL-extension. However, u /∈ Rp,k showing that Rp,k[u] is a simple
DL-extension. Moreover, Rp,k[u] = Rp,k−1, since if (a, b) ∈ Rp,k−1 then a− b = mpk−1, for
some m ∈ Z. Then, (a, b) = (a−mpk−1, b) +mu = (b, b) +mu, making (a, b) ∈ Rp,k[u].

Notice that Rp,1 is also the (2,3)-closure of Rp,k.
The number of steps to get from Rp,k to Rp,1 by the method in Proposition 3.18 is not

minimal for any prime, as will be seen.

3.19. Proposition. Let p be an odd prime and k ∈ N. (1) For 1 ≤ l ≤ k, Rp,2k+l ⊂ Rp,k

is a simple DL-extension. (2) Rp,3k+1 ⊂ Rp,k is not a simple DL-extension.

Proof. (1) Consider u = (x, y) = (pk(pl − 1)3, pk(pl − 1)2). Then u ∈ Rp,k \ Rp,k+1,
showing that x = y + pkz, for some z with p ∤ z (and Lemma 3.17 applies). To show
that u2 ∈ Rp,2k+l, note that p2k(pl − 1)6 − p2k(pl − 1)4 = p2k(pl − 1)4((pl − 1)2 − 1) =
p2k(pl−1)4(p2l−2pl), which is divisible by p2k+l. Moreover, it is required that u3 ∈ Rp,2k+l.
The difference between the two components of u3 is p3k(pl − 1)6((pl − 1)3 − 1). But the
last factor is prime to p. Hence, this is divisible by p2k+l precisely when 1 ≤ l ≤ k.

(2) Assume, on the contrary, that Rp,3k+1 ⊂ Rp,k is a simple DL-extension using
(x, y) ∈ Rp,k\Rp,k+1. It follows that p

k | (x−y) but pk+1 ∤ (x−y). Write x = y+pkz, where
p ∤ z. By assumption, (x2, y2) ∈ Rp,3k+1. Hence, p

2k+1 | (x+ y). Write x = −y + p2k+1t.
From the two equations for x, 0 = 2y+pkz−p2k+1t and 2x = −pkz+p2k+1t. It follows

that pk | y but pk+1 ∤ y, because p ∤ z. Similarly, pk | x but pk+1 ∤ x.
Since, (x3, y3) ∈ Rp,3k+1, p

3k+1 | (x3 − y3). From this, p2k+1 | (x2 + xy + y2). Write
x2 + xy + y2 = x(x + y) + y2. The first term is divisible by pkp2k+1 = p3k+1, while the



936 W.D. BURGESS, R. RAPHAEL

second is divisible by p2k but no higher power of p. Their sum is divisible by p2k+1, a
contradiction.

The following will be used in Example 3.22.

3.20. Corollary. Let p be an odd prime and k ∈ N, then the number κ(k) of simple
DL-extensions needed to go from Rp,k to Rp,1 grows without limit as k → ∞.

Proof. Suppose that Rp,k ⊂ Rp,k1 ⊂ · · · ⊂ Rp,1 is a chain of simple DL-extensions. Put
k0 = k. Then, for any i ≥ 1, according to 3.19, ki ≥ ki−1/3. That is, the index can go
down by a third, but no more.

The case p = 2 behaves somewhat differently.

3.21. Proposition. (1) For any k ≥ 1, R2,k is a simple DL-extension of R2,2k. (2) For
any k > 1, R2,k is not a simple DL-extension of R2,3k−1.

Proof. (1) Consider R2,2k[(2
k, 0)]. Clearly (2k, 0) ∈ R2,k \ R2,k+1 and (22k, 0), (23k, 0) ∈

R2,2k. Then, as in the proof of Lemma 3.17, R2,2k[(2
k, 0)] = R2,k.

(2) Suppose R2,3k−1[(x, y)] = R2,k is a simple DL-extension. Then, 2k | x − y but
2k+1 ∤ x − y. Write x = y + 2kz, z odd. From 23k−1 | x2 − y2 and 23k−1 | x3 − y3,
22k−1 | x + y and 22k−1 | x2 + xy + y2. As before, this implies that 22k−1 | y2, showing
that y is even. Write y = 2lu, where u is odd. From this, 2l > 2k − 1 and 2l ≥ 2k.
Then, x = y + 2kz = 2lu+ 2kz = 2k(2l−ku+ z). From this, x+ y = 2k(2l−ku+ z) + 2lu =
2l+1u + 2kz = 2k(2l−k+1u + z); this expression is divisible by 2k but not by any higher
power of 2 since 2l−k+1u+ z is odd, a contradiction.

Proposition 3.21(1) can be improved when k ≥ 3. In that case, R2,2k+1[(x, y)] = R2,k

is a simple DL-extension when (x, y) = (2k−1 + 2k, 2k−1).
Although the bounds given for p = 2 are different from those given for odd primes

in 3.19, there is sufficient information to say that if R2,m[(x, y)] = R2,k is a simple DL-
extension with m > k, then 2k ≤ m < 3k − 1. This shows that Corollary 3.20 applies to
p = 2, as well.

3.22. Example. There is a ring R such that a countably infinite number of simple DL-
extension steps are required to go from R to its DL-closure.

Proof. Consider the ring T of sequences from Z that are eventually constant. Fix a
prime p and consider the ring R, a subring T , with (am)m∈N ∈ R if for any n ∈ N,
pn | a2n−1 − a2n. Note that Lemma 3.16 applies to the ring R. Moreover, the ring S ⊂ T
where (bm) ∈ S if for each n ∈ N, p | b2n−1 − b2n, is DL-closed. Then, R ⊂ S ⊂ T . For
each n ∈ N, let Rn = {(am) ∈ R | pn | a2n−1 − a2n and am = 0, m ̸= 2n− 1, 2n}; Rn is an
ideal of R; and, as a ring, is isomorphic to Rp,n. Similar notation, Sn, is used for S.

For z ∈ Z, put z to be the sequence that is constantly z. Clearly R =
⊕

n∈NRn + {z |
z ∈ Z} and S =

⊕
n∈N Sn + {z | z ∈ Z}. It must be shown that S is the DL-closure

of R. This will be done by showing that S is the split integral closure of R in S (see
Proposition 2.7). Pick s ∈ S. It has the form s1 + · · · + sm + z, for si ∈ Si and z ∈ Z.



ON DOMAIN-LIKE OBJECTS 937

In Rp,i there are ui,1, . . . , ui,ki ∈ Rp,i with
∏ki

j=1(si − ui,j) = 0. Put k = max{k1, . . . , km}.
If ki < k, put ui,j = 0, for ki < j ≤ k. Then, define ūj to coincide with ui,j on the
2i − 1 and 2i components, i = 1, . . . ,m, and zero elsewhere. Clearly the ūj ∈ R. Then,∏k

j=1(s− ūj)(s− z) = 0, as required.
Suppose now that S can be achieved from R by a sequence of m simple DL-extensions

and take n such that κ(n) > m (the notation is that of Corollary 3.20). Now look at
Rn ⊂ Sn. The sequence of m simple DL-extensions, when restricted to the components
2n− 1 and 2n, gives a sequence of m simple DL-extensions going from Rp,n to Rp,1. This
is impossible since κ(n) > m.

The split integral closure of a ring R in a DL-closed ring W need not be the same as
the DL-closure, as the following example shows.

3.23. Example. For k > 1,the split integral closure of Rp,k in Z×Z is not the DL-closure
of Rp,2.

Proof. The DL-closure of Rp,k is, as already shown, Rp,1. However, Z × Z is the split
integral over Rp,2 since for any (a, b) ∈ Z× Z, ((a, b)− (a, a))((a, b)− (b, b)) = 0.

For these rings, SpecRp,k consists of three sorts of primes: (1) for a prime q ̸= p,
there is a pair of primes pq,1 = (qZ × Z) ∩ Rp,k and pq,2 = (Z × qZ) ∩ Rp,k, (2) pp =
(pZ×Z)∩Rp,k = (Z×pZ)∩Rp,k, and (3) p1 = (Z×{0})∩Rp,k and p2 = ({0}×Z)∩Rp,k.
In Example 3.23 there is only one pair in Spec (Z × Z) that restricts to one prime in
SpecRp,k, namely, pZ× Z and Z× pZ.

4. The ring of continuously differentiable real functions.
For any topological space X, which may be assumed to be completely regular ([GJ,

Chapter 3]), the ring of continuous real valued functions on X, C(X), is (2,3)-closed
([BKR, Example 5.3.9.]) and, hence, DL-closed. However, unlike C(R), as already noted,
the ring C 1(R) (the ring of functions with a continuous first derivative) is not DL-closed
by [BKR, Example 4.4.5]. The purpose of this section is to examine the DL and (2,3)-
closures of C 1(R). Before going farther to look at these rings, the cited example gives a
template for some related rings (Remark 4.24).

Some notation and terminology. The ring of all continuous functions R → R is, as
usual, denoted C(R). If r ∈ R, the function with constant value r is written r. For general
sets, the complement of A ⊆ X will be denoted Ac, when it is clear what X is. The rest
of the notation will follows the classic text [GJ]. For f ∈ C(R), {x ∈ R | f(x) ̸= 0}
is denoted coz f , the cozero set (an open set). Its complement is z(f), the zero set. In
addition, for f ∈ C(R), f+(x) is f(x) if f(x) > 0 and zero otherwise; f−(x) is f(x) if
f(x) < 0 and zero otherwise. An open set U in R can be expressed as a countable disjoint
union of open intervals. If (a, b) is one of those intervals it is said to belong to U . There
are instances below when one-sided limits are used. When f ∈ C(R) and x0 ∈ R when
the limit of f is computed with x < x0 the notation is limx→x−

0
f(x), and analogously

limx→x+
0
f(x). Similarly the notation d−

dx
f(x0) and

d+

dx
f(x0) is used, where defined.
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IfX is a subset of a topological space Y , its closure is written clX, and if x ∈ Y \X and
x ∈ clX, then x is called a cluster point of X (another term often used is accumulation
point).

In analogy with [BKR, Example 4.4.5] (see also [K, Example 7.4]), there is the follow-
ing.

4.24. Remark. For n ∈ N, C n(R), the ring of real functions with n continuous deriva-
tives, is not DL-closed.

Proof. For n ∈ N put

gn(x) =

{
xn x ≥ 0

0 x < 0
.

Note that gn ∈ Cn−1(R), but because its nth derivative is n! when x > 0 and 0 when
x < 0, it is not in C n(R). However, g2n, g3n ∈ C n(R) and (g2n − x2n)(g2n − 0) = 0, making
C n(R)[gn] a simple DL-extension.

However, [BKR, Example 4.4.6], C∞(R) =
⋂

n∈N C
n(R) is DL-closed.

Notation. From now on the focus will be on C 1(R). The ring C 1(R) will be called R
in this section from now on. The following two symbols will also be used, K = Kdom(R)
and S = Kic(R), for the isomorphic copies of these closures lying in C(R). There are two
other subrings of C(R) that will play a role in what is to follow, called L and T .

4.25. Definition. An element f ∈ C(R) is said to be in L if there is a dense open subset
D ⊆ R such that f is C 1 on D.

Notice that if f ∈ C(R) is C 1 on open subsets {Uα}, then it is C 1 on
⋃

α Uα. Hence,
for f ∈ L, it can be assumed that D is the unique maximal open set on which f is C 1.
The notation used is (f,D) ∈ L (or if the function needs to be specified, (f,Df ) ∈ L)
and it is assumed that D is the above-mentioned maximal dense open subset of R on
which f is C 1. (For (f,D) ∈ L, it is possible that d

dx
f(x) exists for x ∈ Dc, but it cannot

be continuous in a neighbourhood of x: see Propositions 4.41 and 5.50 for illustrations.)
The other ring to be studied is T = SI(R,L). From Corollary 2.11, K = S ∩ T .

With this notation, it is possible to state the goals of the section. Analytic charac-
terizations of K and S have not been found but many properties of the elements of K,S
and T can be stated. In particular that all are in L. However, L is not integral over R,
(see Proposition 5.48), and so S, which is integral over R ([BKR, Proposition 4.2.2(1)])
is a proper subring of L. Moreover, properties of elements of K show that it is a proper
subring of S. Hence, S is not a subring of T (several classes of examples showing this
are found in Section 5). It is unresolved whether or not T = K. Certainly Example 3.23
shows that T ̸= K is possible. However, it will be shown that if (f,D) ∈ T , then for
all x ∈ R, d+

dx
f(x) and d−

dx
f(x) exist; moreover, the function d+

dx
f(x) is right continuous

and d−

dx
f(x) is left continuous (Corollaries 4.36 and 4.37). Partial converses, depending

on the nature of D, are found (Theorem 4.40); more exactly, if (f,D) ∈ L, Dc is of finite
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Cantor-Bendixon index, and for x ∈ R, d−

dx
f(x) and d+

dx
f(x) exist, then f ∈ T .

Notation: When f ∈ T , there are, by definition, u1, . . . , uk ∈ R with
∏k

i=1(f − ui) = 0.
In this case it is said that f ∈ T using u1, . . . , uk. The functions u1, . . . , uk ∈ R are not
uniquely determined by f .

It first will be seen that L is, in fact, a ring, a lattice and is (2,3)-closed. It is clear
that sums and products of elements of L are also in L, so that L is a subring of C(R).
Some properties of L are listed in the next proposition.

4.26. Proposition. Consider the ring L.
(1) If s ∈ C(R) and s3 ∈ L then s ∈ L.
(2) L is (2,3)-closed.
(3) L is a lattice.
(4) The module LR is essential over RR.

Proof. (1) Suppose s3 ∈ L for s ∈ C(R) and s3 is C 1 on the dense open set D. Then, s
is C 1 on the dense open set (coz(s3) ∪ Int z(s3)) ∩D.

(2) This is immediate from (1) and the fact that C(R) is (2,3)-closed ([BKR, Exam-
ple 5.3.9]).

(3) It suffices to show that for f ∈ L, |f | ∈ L, by [GJ, §1.3]. This follows since if f
is C 1 on the dense open set D ⊆ R, then |f | is C 1 on (coz a+ ∪ coz a− ∪ Int z(a)) ∩D, a
dense open set.

(4) If (f,D) ∈ L is non-zero then, U = coz f ∩ D ̸= ∅. Let (r, s) be a non-empty
interval in U and choose a C 1 function a whose cozero set is (r, s). Then, 0 ̸= af ∈ R.

Notice that Proposition 4.26(4) also says that L is a ring of quotients of R in the
generalized meaning of rings of quotients, i.e., any ring properly containing R and in
Q(R). This says, in particular, that the complete rings of quotients of R and L coincide,
i.e., Q(L) = Q(R). See [Ste, Chapter XII, §2] (the complete ring of quotients is called
the maximal ring of quotients in [Ste]), or [L, Chapter 2]. Because Q(R) is a self-injective
regular ring that is an essential L-module extension of L and, thus, must be its complete
ring of quotients.

In addition, since L is (2,3)-closed, S ⊆ L; in fact, the inclusion is proper, as will be
seen later.

In this context, it will be seen that T is also a lattice.

4.27. Proposition. The ring T is a lattice.

Proof. Let f ∈ T using u1, . . . , uk. It must be shown that |f | ∈ T . The function |f | ∈ L
by Proposition 4.26(4). However, (|f | − f)(|f | + f) = 0 showing that |f | ∈ SI(R,L),
using the ±u1, . . . ,±uk; more precisely,

∏k
i=1(|f | − ui)(|f |+ ui) = 0.



940 W.D. BURGESS, R. RAPHAEL

It can be shown that SI(R,C(R)) = SI(R,L), but this fact is not used below and
the details are omitted.

The next steps are to look for elements of K and to examine properties of elements
of T . Since derivatives will play an important role, the difference quotient in calculating
the derivative of f at x0 will appear often and the following notation will be used.
Notation: f(x)−f(x0)

x−x0
= ∆f,x0(x), for x ̸= x0.

4.28. Lemma. Let (f,D) ∈ T using u1, . . . , uk ∈ R. For any y ∈ R where d
dx
f(y) exists,

there is i, 1 ≤ i ≤ k, so that f(y) = ui(y) and d
dx
f(y) = d

dx
ui(y). This applies, in

particular, to all y ∈ D.

Proof. Note that i given in the statement need not be unique. Pick a sequence {xn} in
R converging to y. For each n, there is some i(n) such that f(xn) = ui(n)(xn). Since there
are only k choices for i(n), there is some i such that for all n ∈ B ⊆ N, B infinite, where
i(n) = i, for all n ∈ B. It follows that f(y) = ui(y). For each n ∈ B, ∆f,y(xn) = ∆ui,y(xn).
The first expression converges to d

dx
f(y), while the second to d

dx
ui(y).

Before going on to find elements of K, the following finiteness condition will be crucial
to much of what follows.

4.29. Proposition. Let (f,D) ∈ T , using u1, . . . , uk ∈ R, and x0 ∈ Dc. The sets
{ d
dx
f(x) | x ∈ (x0,∞) ∩ D} and { d

dx
f(x) | x ∈ (−∞, x0) ∩ D} have cluster points at x0

and at most finitely many such cluster points.

Proof.Consider a sequence {xn}n∈N inD converging to x0 from the right. By Lemma 4.28,
there is there is i and an infinite subsequence {xn}n∈Bi

such that for all n ∈ Bi,
d
dx
f(xn) =

d
dx
ui(xn). By the continuity of d

dx
ui, the subsequence converges to

d
dx
ui(x0). This is a clus-

ter point. On the other hand the infinite subsequences Bi make up all but finitely many
points of the original sequence, since k is finite. Thus, each cluster point of { d

dx
f(xn)}n∈N

is from the set { d
dx
u1(x0), . . . ,

d
dx
uk(x0)}. Similarly to the left of x0.

Notation: In Proposition 4.29 the two kinds cluster points are called right cluster points
of f at x0 and left cluster points of f at x0, respectively. Much more will be said about
these cluster points for elements of T . They will turn out to be unique and also one-
sided derivatives. Notice an essential point here. The left and right cluster points are
determined by the behaviour of d

dx
f on D. Yet they are computed using the functions

ui ∈ R which express the fact that f ∈ T . The ui are not uniquely determined, yet the
cluster points computed from them are unique.

There are many consequences of Proposition 4.29. The next one will come up in
Theorem 4.31 and in Proposition 5.50.

4.30. Proposition. Let (f,D) ∈ T using u1, . . . , uk ∈ R. Suppose that there is an open
interval I on which d

dx
f exists. Then d

dx
f is continuous on I.
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Proof. Pick x0 ∈ I and suppose that d
dx
f is not continuous at x0. Set d

dx
f(x0) =

s. A derivative does not have a removable singularity and so it may be assumed that
limx→x0

d
dx
f(x) does not exist. In particular the limit is not s. Given ε > 0, for all δ > 0

there is y, which may be taken in I, such that |y − x0| < δ and | d
dx
f(y) − s| > ε. Take

δ = 1/n, for n ∈ N and a corresponding yn. Look at P1 = {n ∈ N | d
dx
f(yn) > s+ ε} and

P2 = {n ∈ N | d
dx
f(yn) < s− ε}. One of these sets is infinite. Suppose P1 is infinite. Pick

any t with s < t < s+ ε. By Darboux’s Theorem, for n ∈ P1, there is zn, between x0 and
yn with d

dx
f(zn) = t. There is some j, 1 ≤ j ≤ k, with d

dx
f(zn) =

d
dx
uj(zn), for infinitely

many n ∈ P1 (using Lemma 4.28). Let Q be this set of n. Then, limn∈Q
d
dx
f(zn) =

limn∈Q
d
dx
uj(zn) = d

dx
uj(x0) = t. However, there are infinitely many such t and only

finitely many d
dx
ui(x0). This is a contradiction, showing that d

dx
f is continuous at x0.

This applies to all x0 ∈ I.

The next result will yield many elements of K.

4.31. Theorem. Suppose (f,D) ∈ T using u1, . . . , uk ∈ R .
(1) Assume that there is r ∈ R such that f |Dc

= r|Dc
. Then, f ∈ K.

(2) If R \D is discrete, then f ∈ K (with no conditions on f |Dc
).

Proof. (1) Since f ∈ T , so is f − r. Hence, it suffices to show that f − r ∈ K. Thus,
it can be assumed that f |Dc

= 0. Since f ∈ T , it is sufficient for f ∈ K that f ∈ S

(Proposition 2.6). It will be seen that f 2 and f 3 are in R, showing f ∈ K.
The proof for f 3 will follow similar lines as that for f 2.
For x0 ∈ Dc, f 2(x0) = 0 and so:

(∗) ∆f2,x0
(x) =

f 2(x)

x− x0
.

For any sequence σ = {hn}n∈N converging to x0, put Bi = {n ∈ N | f(hn) = ui(hn)}.
Let Bi1 , . . . , Bil be those that are infinite. By continuity of f and of uij , f(x0) = uij(x0) =
0, for j = 1, . . . , l. Moreover, since uij ∈ R, the quotient (∗) at hn, n ∈ Bij converges
to d

dx
u2ij(x0) = 2uij(x0)

d
dx
uij(x0) = 0. Given ε > 0 there is m ∈ N such that for all

n > m and each j = 1, . . . , l,
∣∣∣f2(hn)
hn−x0

∣∣∣ = ∣∣∣∣u2
ij
(hn)

hn−x0

∣∣∣∣ < ε. From this (∗) goes to zero along any

sequence converging to x0. Hence,
d
dx
f 2(x0) exists and is 0.

Since d
dx
f 2(x) exists for x ∈ D and it has just been shown that d

dx
f 2(x) also exists

for x ∈ Dc, then, since f 2 ∈ T , Proposition 4.30 says that f 2 ∈ R. Similarly, f 3 ∈ R,
showing f ∈ K.

(2) It was just shown that if f |Dc
= 0 then f ∈ K. The reverse implication is to be

shown. Because the countable closed set Dc is discrete, the elements can be ordered with
index set B ⊆ Z. If there are elements of Dc that are ≥ 0, label the first one y1 and
continue in this manner. The negative elements of Dc are done in the same way. It will
suffice to find an element p ∈ R such that f − p is zero on Dc.
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For each n ∈ B, let f(yn) = zn. The function p needs to have values p(yn) = zn, for
n ∈ B. For all n ∈ B, artificially assign the slope 0 to the point (yn, zn). If n + 1 ∈ B
(the case where this is not true will be dealt with later), construct a cubic spline with
the two data points and the two slopes (both 0). This will be p restricted to the interval
[yn, yn+1]. If n + 1 /∈ B then pick any yn+1 ∈ (yn,∞) and let p(yn+1) = 1 with slope 0.
The function given by the cubic spline on [yn, yn+1] can be extended with slope 0. The
case where n ∈ B is minimal is similarly dealt with. The process can be continued by
upward induction, and an entirely similar process can be done to the left. When all these
parts of p are assembled, there is a C1 function with all the correct values.

From this, f − p ∈ K by part (1). Hence, f ∈ K.

Theorem 4.31 gives all that is necessary to characterize those elements of T that give
rise to a simple DL-extension of R.
Notation: Put S = {s ∈ T \R | R[s] is a simple DL-extension of R}.

4.32. Proposition. Let (f,D) ∈ L. Then, f ∈ S if and only if f ∈ T and f |Dc
= 0.

Proof. (1) Assume f ∈ S. Then, f 2, f 3 ∈ R and there are ui, . . . , uk ∈ R such that∏k
i=1(f

2 − u2i ) = 0. This shows f ∈ T . Put f 3 = r ∈ R. Then, f = r1/3 which is C 1 on
coz f ∪ Int z(f). Hence, if x /∈ D, x ∈ z(f), as was to be proved.

(2) Assume f |Dc
= 0 and f ∈ T using u1, . . . , uk ∈ R. Then

∏k
i=1(f

2 − u2i ) = 0. The

proof of Proposition 4.31(1) shows that f 2, f 3 ∈ R. Hence, f ∈ S.

If R[f ] is a simple (2,3)-extension of R, then r = f 3 ∈ R. This makes f = r1/3, and as
above, f |Dc

= 0. However, it will be seen later that this latter condition is not sufficient

for R[f ] to be a simple (2,3)-extension (Corollary 5.49).
It is now possible to present some elements of S.

For any r ∈ R, write coz r =
•⋃
n∈A⊆N (an, bn), a disjoint union of intervals (one or two

could be unbounded). Take a subset B ⊆ A and define rB by

rB(x) =

{
r(x) if x ∈ [an, bn], n ∈ B

0 otherwise .

4.33. Examples. Let r ∈ R with coz r written coz r =
•⋃
n∈A (an, bn). For any B ⊆ A,

rB ∈ S, unless rB ∈ R. In particular, f1 = r+, f2 = r− and f3 = |r| are elements of S,
unless they are in R.

Proof.Note that rB is continuous and is C 1 on coz rB∪Int z(rB) which is dense open, and
(rB−r)rB = 0, showing that rB ∈ T . The only points where rB may not have a continuous

derivative are on the boundary of
•⋃
n∈B (an, bn), which is in z(rB). Proposition 4.32 then

gives the result.

If B is chosen so that
•⋃
n∈B (an, bn) = coz r+, then rB = f1 ∈ S (or is in R). Similarly

for f2. Finally, f3 = f1 − f2 and f1f2 = 0 showing that f 2
3 , f

3
3 ∈ R and f3 satisfies the

conditions of Proposition 4.32.
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Not all the elements of (f,D) ∈ K satisfy the conditions of Theorem 4.31(1), and,
hence, not all elements of K are in simple DL-extensions of R. See Example 5.45, below.

The next lemma will be the start of an examination of the cluster points of (f,D) ∈ T .
It will also be used in Section 5. The first result is about elements of Dc that are endpoint
of intervals belonging toD. It will turn out that the result holds for other types of elements
of Dc, but more work will be required for that.

4.34. Lemma. Let (f,D) ∈ T using u1, . . . , uk ∈ R. (1) Then, for any interval (a, b) be-
longing to D, limx→a+

d
dx
f(x) and limx→b−

d
dx
f(x) exist, whenever a or b is finite. (2) The

one-sided derivatives of f , d+

dx
f(a) and d−

dx
f(b) exist, if a or b is finite; they coincide with

the one-sided limits in (1).

Proof. (1) The proof will be at a right endpoint, b. According to, Proposition 4.29
{ d
dx
f(x)}x<b,x∈D has finitely many left cluster points at b, and at least one. Suppose that

there are more than one, say r > s, with no cluster points between them. Then there is a
sequence {xn}n∈N inD converging to b from the left such that for all n ∈ N, f(xn) = ui(xn)
and d

dx
f(xn) =

d
dx
ui(xn), for some i and, a sequence {yn}n∈N in D converging to b from

the left with f(yn) = uj(yn) and d
dx
f(yn) = d

dx
uj(yn), for some j ̸= i, and, finally,

d
dx
ui(b) = r and d

dx
uj(b) = s. Put t = r − s. There is n0 ∈ N such that for all n ≥ n0,

| d
dx
f(xn) − r| < (1/4)t and | d

dx
f(yn) − s| < (1/4)t. This means that there is zn ∈ D, zn

between xn and yn, such that d
dx
f(zn) = s+(1/2)t (by Darboux’s Theorem). This means

that s+(1/2)t is a right cluster point, a contradiction. Hence, there can only be one right
cluster point. This means that limx→b−

d
dx
f(x) exists.

(2) Consider a sequence {xn}n∈N in the interval converging to b from the left. It must
be shown that ∆f,b(xn) converges. As usual, the sequence divides into a finite part and
some infinite subsequences. Consider one such infinite subsequence, {xnm}m∈N, where
for all m ∈ N, f(xnm) = ui(xnm) and d

dx
f(xnm) = d

dx
ui(xnm). Along this subsequence,

∆f,b(xnm) = ∆ui,b(xnm), and this converges to d
dx
ui(b). On the other hand, by the con-

tinuity of d
dx
ui(x), { d

dx
f(xnm)} = { d

dx
ui(xnm)} converges to d

dx
ui(b), a cluster point. By

part (1), there is only one such. Hence, all those infinite subsequences converge to the
same value, d

dx
ui(b). This is true of any sequence {xn} converging to b from the left, since

a finite number of points can be ignored. Hence, f has a left derivative at b.
The last remark follows since d

dx
f(x) is continuous in (a, b) and has one-sided limits

at the endpoints.

As mentioned above, the left and right cluster points for an element of T can be shown
to be unique. This will require the examination of points of Dc not endpoints of intervals
belonging to D.

4.35. Theorem. Let (f,D) ∈ T using u1, . . . , uk ∈ R. Then, for every point in x0 ∈ Dc,
the left and the right cluster points at x0 are unique.

Proof. The proof will look at a single point x0 ∈ Dc and at right cluster points. If x0 is
the left endpoint of an interval inD, then its right cluster point is unique by Lemma 4.34(2)
so it will be assumed that x0 is an accumulation point of (x0,∞) ∩ Dc. The rest of the
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proof will be by contradiction with the assumption that x0 ∈ Dc has l > 1 distinct right
cluster points, r1, . . . , rl. Put e = minj ̸=j′ |rj − rj′ |. Define Uj = (rj − e/4, rj + e/4). Note
that the Uj have disjoint closures. If the right cluster point rj is attained using ui, write
i ∈ j̄. The set j̄ could have more than one element.

The first step will be to get close enough to x0, say in (x0, α1), to make sure that
if x ∈ D and f(x) = ui(x) and d

dx
f(x) = d

dx
ui(x), then i ∈

⋃l
j=1 j̄. If i /∈

⋃
j≤l j̄ then

(1) f(x0) ̸= ui(x0), or (2) f(x0) = ui(x0) but there is no descending sequence {yn}n∈N in
D converging to x0, such that for all n, f(yn) = ui(yn) and

d
dx
f(yn) =

d
dx
ui(yn). In case

(1), there is β > x0 such that for (x0, β), f(x) ̸= ui(x). In case (2), there is γ > x0, such
that for x ∈ (x0, γ) ∩ D, if f(x) = ui(x) then d

dx
f(x) ̸= d

dx
ui(x), since

d
dx
ui(x0) is not a

right cluster point of f at x0. Choose β and γ small enough so that these properties hold
for all i /∈

⋃
j≤l j̄, this is possible since the number of such ui is finite. Put α1 = min(β, γ).

The next stage is again to approach x0 so that if i ∈ j̄ then d
dx
ui(x) ∈ Uj, for x ∈

(x0, α). There is also α > x0, chosen so that x0 < α ≤ α1, such that for all j ≤ l and all
i ∈ j̄, d

dx
ui(x) ∈ Uj, for all x ∈ (x0, α). This is possible since all the d

dx
ui are continuous

and d
dx
ui(x0) = rj ∈ Uj. Notice that by this choice of α, if x ∈ (x0, α) ∩ Dc, then any

cluster point (left or right) at x will be a limit of a sequence { d
dx
ui(yn)}, with {yn} in

(x0, α)∩D converging to x on the appropriate side with values in some unique Uj, where
i ∈ j̄, and, hence, will lie in clUj. This uses the properties that define α and the fact that
α ≤ α1.

With this choice of α, if (a, b) in an interval belonging to D contained in (x0, α), then
for some y ∈ (a, b), f(y) = ui(y) and d

dx
f(y) = d

dx
ui(y), for some i ∈

⋃
j≤l j̄. Since d

dx
f

is a continuous function on (x0, α) ∩D, d
dx
f((a, b)) is connected. However, d

dx
f(y) ∈ Uj.

Hence, d
dx
f((a, b)) ⊆ Uj. When this occurs, (a, b) is said to be attached to Uj.

Because of the nature of x0, the point α may be chosen to be in Dc. With such a
choice, V = [x0, α] ∩ D = (x0, α) ∩ D is dense open in [x0, α]. If (a, b) is an interval
belonging to D inside V , then (a, b) is attached to some Uj. For each j = 1, . . . , l, put Σj

to be the union of the intervals in V attached to Uj. Then, V =
⋃l

j=1 Σj.
If y ∈ cl Σj ∩ Dc, the left and/or right cluster points of f at y are in clUj. This is

because these cluster points are limits of numbers in Uj. Note that, for each j = 1, . . . , l,
Σj ̸= ∅ because of the l right cluster points at x0. If the cl Σj were disjoint, [x0, α] would
be disconnected. Hence, there are j and j′, j ̸= j′, with cl Σj ∩ cl Σj′ ̸= ∅. If y is in the
intersection, then y ∈ Dc and its cluster points are in clUj ∩ clUj′ , which is impossible.
Hence, l = 1, as was to be proved.

Theorem 4.35 has a corollary showing that for elements of f ∈ T , for all x ∈ R, d+

dx
f(x)

and d−

dx
f(x) exist.

4.36. Corollary. Let (f,D) ∈ T using u1, . . . , uk ∈ R. Then, for each x ∈ R, d+

dx
f(x)

and d−

dx
f(x) exist. Moreover, if x ∈ Dc, then d+

dx
f(x) is the unique right cluster point at x

and d−

dx
f(x) is the unique left cluster point at x.
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Proof. Since d
dx
f exists on D, it suffices to look at x0 ∈ Dc. The proof will be for the

left derivative. The structure of the proof will be to show that limx→x−
0
∆f,x0(x) exists

and that it is the unique left cluster point at x0.
Consider a sequence {xn}n∈N converging to x0 from the left. If infinitely many terms

are in D, there is an infinite subsequence {xn}n∈B1 and some i such that for all n ∈ B1,
f(xn) = ui(xn) and d

dx
f(xn) = d

dx
ui(xn). The sequence {∆f,x0(xn)}n∈B1 converges to

d
dx
ui(x0). Moreover, { d

dx
ui(xn)}n∈B1 converges to

d
dx
ui(x0), the unique left cluster point of

x0. If there is another infinite subsequence {xn}n∈B2 with the same properties but with uj,
j ̸= i, the limits would be the same because the left cluster point is unique. This suggests
that d−

dx
f(x0) is the left cluster point at x0. This will need to be verified. However, the

sequence {xn}n∈N may have an infinite subsequence in Dc. It has been shown how any
infinite subsequence in D behaves as predicted in the statement. So it may be assumed
that xn ∈ Dc, for all n ∈ N.

Recall that each xn, n ∈ N, will have a unique right cluster point. For each n, fix a
descending sequence from D converging to xn from the right, say {yn,m(n)}m(n)∈N, chosen
from (xn, x0) ∩ D, so that for some j(n), 1 ≤ j(n) ≤ k, f(yn,m(n)) = uj(n)(yn,m(n)) and
d
dx
f(yn,m(n)) =

d
dx
uj(n)(yn,m(n)); it follows that

d
dx
uj(n)(xn) is the unique right cluster point

at xn. Since there are finitely many j(n), there is at least one occurring infinitely often,
call it j, say for all n ∈ C ⊆ N.

One m(n) will be chosen for each n ∈ C, but satisfying the constraints to be specified
below. Throughout this discussion it will be assumed that n ∈ C. The idea is to show
that d

dx
uj(x0) is the unique left cluster point at x0.

Put the unique right cluster point of f at xn to be Mn. The sequence {xn} can be
chosen to be in some interval (α, x0) and, hence, there is some M > 0 so that |Mn| ≤M
for all n, since the Mn are all from the set { d

dx
uj(xn)}. Now look at ∆f,x0(xn). It can be

rewritten:
f(xn)− f(yn,m(n)) + f(yn,m(n))− f(x0)

xn − x0
=

(∗)
f(xn)− f(yn,m(n))

xn − yn,m(n)

·
xn − yn,m(n)

xn − x0
+
f(yn,m(n))− f(x0)

yn,m(n) − x0
·
yn,m(n) − x0
xn − x0

Now choose yn,m(n) so that xn − yn,m(n) < (x0 − xn)/n,

xn − yn,m(n) < (xn − x0)
2 and

∣∣∣∣f(xn)− f(yn,m(n))

xn − yn,m(n)

−Mn

∣∣∣∣ < 1/n .

Since the Mn are bounded, the first term in (∗) goes to 0 as n→ ∞. In the second term
of (∗), the first factor is ∆f,x0(yn,m(n)) = ∆uj ,x0(yn,m(n)), and it converges to d

dx
uj(x0), the

unique left cluster point of f at x0, while the second factor goes to 1.
However, the calculations above depended on the choices of C and j. This is of

no consequence since, with different choices, say C ′ and j′, the conclusion would be
d
dx
uj′(x0) =

d
dx
uj(x0), because of the uniqueness of the left cluster point at x0.

It follows that {∆f,x0(xn)}n∈N converges to the left cluster point at x0. But this is the

definition of d−

dx
f(x0).
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It has now been established that for f ∈ T , both d+

dx
f(x) and d−

dx
f(x) exist for all

x ∈ R. It will be seen that the function d+

dx
f is right continuous and also that d−

dx
f is left

continuous. In [K, Example 7.5] a subring H of C(R) is defined as the set of functions
that have, for all x ∈ R, a left and a right derivative. This is shown to be a subring and
a lattice. Corollary 4.36 shows that T ⊆ H. However, this will later be refined.

4.37. Corollary. Let f ∈ T with the notation of Theorem 4.35. Then, the function
d−

dx
f is left continuous and d+

dx
f is right continous.

Proof. The left continuity of d−

dx
f will be shown. As in Corollary 4.36, it was shown that

for x0 ∈ R there is i, 1 ≤ i ≤ k, such that f(x0) = ui(x0) and
d−

dx
f(x0) =

d
dx
ui(x0). Pick

a sequence in R, {xn}n∈N converging to x0 from the left. For each n, there is j(n) such
that f(xn) = uj(n)(xn) and

d−

dx
f(xn) =

d
dx
uj(n)(xn).

Except for finitely many terms, the sequence is a union of infinite subsets where j(n) is
constant. Pick one such, say {xn}n∈B with fixed j(n) = j. It follows that f(x0) = ui(x0) =
uj(x0) and

d−

dx
f(x0) =

d
dx
ui(x0) =

d
dx
uj(x0). Moreover, the proof of Corollary 4.36 shows

that this common value is the unique left cluster point at x0. The continuity of d
dx
uj shows

that { d
dx
uj(xn)}n∈B converges to d

dx
uj(x0) = d

dx
ui(x0). But this reasoning applies to all

the infinite subsequences of {xn} where j(n) is constant and the limit is always d
dx
ui(x0).

Hence, for any sequence {xn} converging to x0 from the left, {d−

dx
f(xn)} converges to

d−

dx
f(x0).

Note: If f ∈ T \ R, there must be x ∈ Dc where d−

dx
f(x) ̸= d+

dx
f(x). More generally,

in light of Proposition 4.30, if I is any open interval meeting Dc, there is x ∈ I such that
d+

dx
f(x) ̸= d−

dx
f(x).

This concludes a description of the elements of T . It is not known if (f,D) ∈ L with
all the properties of Corollaries 4.36 and 4.37 characterizes elements of T . However, these
are very strong properties. And, in fact, there are conditions on D where Corollaries 4.36
and 4.37 have a converse, as will be seen (Theorem 4.40).

In [K, Example 7.5] a subring of H0 ⊆ H is defined that also is related to T . Recall
that H is the subring of C(R) of those functions having right and left derivatives for all
x ∈ R. The elements of H0 have three additional properties: for f ∈ H0, the function

d+

dx
f

is right continuous and d−

dx
f is left continuous; in addition for all x0 ∈ R, limx→x+

0

d−

dx
f(x) =

d+

dx
f(x0), and similarly on the left. Corollaries 4.36 and 4.37 already show that elements

of T satisfy most of the conditions to be in H0. The next proposition supplies the one
remaining one. The ring H0 is shown in [K, Example 7.5] to be a subring and a lattice.

4.38. Proposition. The ring T is a subring of H0.

Proof. The only item to be shown for (f,D) ∈ T is the right convergence of the d−

dx
f .

Fix x0 ∈ R. It is to be shown that limx→x+
0

d−

dx
f(x) = d+

dx
f(x0) (and, in the same manner,

the corresponding left version). Pick any sequence {xn}n∈N converging to x0 from the
right. For each xn there is yn ∈ D with x0 < yn < xn, |d

−

dx
f(yn) − d−

dx
f(xn)| < 1/n, and
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xn − yn < 1/n. Then, {yn} converges to x0 from the right. Since yn ∈ D, d−

dx
f(yn) =

d
dx
f(yn) and { d

dx
f(yn)} converges to the unique right cluster point of f at x0, hence, to

d+

dx
f(x0).

Form ∈ N there is n ∈ N that can be taken ≥ m, such that |d+
dx
f(x0)− d

dx
f(yn)| < 1/m.

Then, |d+
dx
f(x0)− d−

dx
f(xn)| < (1/m)+(1/n) ≤ 2/m, by the Triangle Inequality. This shows

the convergence.

In [K, Example 7.5] it is conjectured that H0 = K. By what was shown, K ⊆ T ⊆ H0

and T ⊂ L. The results above do show the close connection between it and the existence
and behaviour of the one-sided derivatives and the elements of K ⊆ T ; certainly T ⊆
H0 ∩L. Alan Dow has kindly supplied an example showing that the conjecture fails. See
Example 5.51 and the discussion around it.

The first step in finding a partial converse Corollaries 4.36 and 4.37 is to determine a
family of functions in K. The proposition will also be the first step in an induction but
the class of function it defines are worth being given a name.

For the purposes of the next set of examples, a piecewise C 1 function c ∈ C(R) is
defined as follows. There is a discrete closed subset F of R indexed by B ⊆ Z, {yn}n∈B,
where for m,n ∈ B with m < n, ym < yn, and for each interval In = [yn, yn+1], n, n+ 1 ∈
B, there is a C 1 function cn on In, in the sense that cn is C 1 on (yn, yn+1), cn has a
right derivative at yn and a left derivative at yn+1, and

d
dx
cn is continuous on In, and

if n, n + 1 ∈ B, d−

dx
cn(yn) ̸= d+

dx
cn+1(yn). There are suitable modifications: if B has a

maximum element m, then cm is defined on [ym,∞), and similarly if B has a minimal
element. Then let c(x) = cn(x) for x ∈ In.

An example would be a continuous piecewise linear function.

4.39. Proposition. For an element (f,D) ∈ L the following are equivalent:
(1) f is piecewise C 1,
(2) (f,D) ∈ L, Dc is discrete and for all x ∈ R, d+

dx
f(x) and d−

dx
f(x) exist.

When the two conditions above are satisfied for (f,D) ∈ L, then there is r ∈ R such
that f − r ∈ S, showing that f ∈ K.

Proof. (1)⇒ (2): Clearly (f,D) ∈ L, where D is the union of the open intervals where
f is C 1 and the points where f does not have a derivative form a discrete set, ordered by
B ⊆ Z. The functions u1, . . . , uk ∈ R must be found (here k = 3). If B is bounded above
or below, it can be artificially extended to Z by taking integer points beyond the first
or last elements of B, if any. For yn and yn+2 in Z, form a cubic spline, sn, connecting
(yn, f(yn)) and (yn+2, f(yn+2)) with the added data d−

dx
f(yn) and

d+

dx
f(yn+2) for the slopes

at the endpoints. Also, let fm be the function f restricted to [ym, ym+1]. The three
functions in R are defined as follows:

u1 =

{
fm(x), x ∈ [ym, ym+1],m = 3k + 2

sn(x), x ∈ [yn, yn+2], n = 3k
,
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u2 =

{
fm(x), x ∈ [ym, ym+1],m = 3k

sn(x), x ∈ [yn, yn+2], n = 3k + 1
,

u3 =

{
fm(x), x ∈ [ym, ym+1],m = 3k + 1

sn(x), x ∈ [yn, yn+2], n = 3k + 2
.

By construction (f − u1)(f − u2)(f − u3) = 0.
(2)⇒ (1): As usual, D is presented as a disjoint union of intervals. In each interval

f is a C 1 function. In order to have a piecewise C 1 function, it is required that f have
one-sided derivatives at the endpoints of the intervals. This is given by hypothesis, and,
if y ∈ Dc, the left and right derivatives of f at y must be different.

For the last part, notice that when (f,D) satisfies the conditions (1) and (2), there is
an element r ∈ R such that r and f coincide on Dc; this is the method of Theorem 4.31(2).
Then, as in Theorem 4.31(1), f − r ∈ S (and, in addition, f − r is also piecewise C 1).

Recall the definition of the Cantor-Bendixson index (C-B index ), here restricted to
subsets of R (see, for example, [KR, Definitions 1.1 and 1.2], where the induction in ibid
Definition 1.2 is finite). Let X ⊆ R and put A1 to be the set of isolated points of X. Put
A2 to be the set of isolated points of X \ A1. This process is continued: for i > 1, Ai is
the set of isolated points of X \ (A1 ∪ · · · ∪Ai−1). If, for some m > 0, A1 ∪ · · · ∪Am = X,
X is said to be of C-B index m. Note that if X is closed of C-B index m, then Am is
closed. In any case the elements of Ai are called the elements of C-B index i.

With the above remark, (2) ⇒ (1) of Proposition 4.39 can be the first step in an
induction where Dc is discrete, i.e., of C-B index 1. Since it may come up in the following
proof, the only set of C-B index 0 is ∅, and if (g,D) ∈ L and if Dc

g is of C-B index 0, then

g is C 1.

4.40. Theorem. Suppose (f,D) ∈ L and that Dc is of C-B index m. Assume, moreover,
that f is such that, for all x ∈ R, both d−

dx
f(x) and d+

dx
f(x) exist. Then, f ∈ T .

Proof. The case m = 1 follows from Proposition 4.39. The proof will be by induction
on n. The last statement in 4.39 is not part of the induction assumption, since it is only
asserted here that f ∈ T .

Fix m ≥ 1 and assume that for all functions (g,Dg) ∈ L satisfying the conditions of
the theorem with Dc

g of C-B index p ≤ m that (1) g ∈ T using k(p) elements of R and
where k(p) is a non-decreasing function of p. Note that when p = 1, k(1) ≤ 3 according
to the proof of 4.39. Notice that when a function g satisfies the induction assumption for
C-B index ≤ m the result that g ∈ T can be taken to using exactly k(m) functions from
R, by duplicating some, if necessary.

Now assume that (f,D) ∈ L satisfies the conditions of the statement and that Dc

is of C-B index m + 1. Let A be the set of points of Dc of C-B index m + 1. It is a
closed discrete set in R. The elements of A can be ordered in the natural order {xi}i∈B⊆Z.
However, using the artificial method of (1) ⇒ (2) of 4.39, it may be assumed that B = Z.
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For any i ∈ Z, consider the interval Ii = (xi, xi+1). All the points of Ei = Ii∩Dc are of
C-B index ≤ m. There is a C 1 order preserving homeomorphism ϕi : Ii → R with ϕ−1 also
C 1. Then, gi = f |Iiϕ

−1
i is in L with Dc

gi
= ϕi(Ei) and the induction hypothesis applies to

gi making gi ∈ T . Hence, there are ui,1, . . . , ui,k(m) ∈ R with
∏k(m)

j=1 (gi − ui,j) = 0.

Now put vi,j = ui,jϕi : Ii → R. Note that
∏k(m)

j=1 (f |Ii − vi,j) = 0.

It will be necessary to have a C 1 spline connecting any x to any y, x < y, with
prescribed slopes at the endpoints. Such splines exist; one such is called the M-spline –
see Section 6: Addendum, for details. M-splines are, in fact, C∞.

For later parts of the proof, it is required that each vi,j converge to f(xi) on the
left and to f(xi+1) on the right. However, for any sequence {yn} in Ii converging to
xi from the right, there are infinite subsequences where f and vi,j coincide, for some j.
Hence, some of the vi,j converge to f(xi), say vi,1, . . . , vi,l. Similarly at xi+1. If l < k(m),
there is a ∈ Ii so that vi,l+1, . . . , vi,k(m) are bounded away from f(xi) on (xi, a). In these

cases, connect (xi, f(xi)) and (a, vi,j(a)) with an M-spline ζj with
d+

dx
ζj(xi) =

d+

dx
f(xi) and

d−

dx
ζj(a) =

d
dx
vi,j(a), for j = l + 1, . . . , k(m). Similarly, at xi+1 perhaps with different vi,j,

with b ∈ (xi, xi+1), a < b. Redefine the vi,j on (xi, a) and on (b, xi+1), if necessary. The
same symbols, vi,j, are kept for the modified functions. Now, all the vi,j can be extended to

cl Ii so that they coincide with f at the endpoints. Note the equation
∏k(m)

j=1 (f |Ii−vi,j) = 0

still holds.
It is required to find elements of R that put f into T . It turns out that 2k(m) such

elements can be found.
Once again M-splines will be used. For i ∈ Z, j = 1, . . . , k(m), define µi,j : [xi−1, xi] →

R as an M-spline using the following data:
µi,j(xi−1) = vi,j(xi−1) = f(xi−1) , µi,j(xi) = vi,j(xi) = f(xi) ,
d+

dx
µi,j(xi−1) =

d−

dx
vi−1,j(xi−1) and

d−

dx
µi,j(xi) =

d+

dx
vi,j(xi) . Recall that µi,j and vi,j are

C 1 where defined.
From now on it will be necessary to consider two cases, i even and i odd. For i even,

define νe,j : R → R as follows:

νe,j(x) =

{
vi,j(x) if x ∈ cl Ii ,

µi,j(x) if x ∈ cl Ii−1 .

Because of the slopes chosen for the endpoints of Ii−1, νe,j ∈ R.
Now construct νo,j is the same manner, using i odd. Again νo,j ∈ R. Because of

the nature of the vi,j, the following equation holds,
∏k(m)

j=1 (f − νe,j)
∏k(m)

j=1 (f − νo,j) = 0,
showing that f ∈ T .

In the proof of Theorem 4.40 the one-sided continuity of the one-sided derivatives (true
from Corollary 4.37) is not used but is a consequence of the theorem.

Theorem 4.40 gives a converse to Corollaries 4.36 and 4.37 in the case where Dc is of
finite C-B index. However, there are functions in (f,D) ∈ T , in fact in K, where Dc is not
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of finite C-B index. The set F , in the next proposition, when compact, is homeomorphic
to the Cantor set.

4.41. Proposition. Assume F is a nowhere dense closed subset of R such that for every
x ∈ F and every neighbourhood N of x, N contains an interval making up R \ F of the
form (x1, x2) with x1, x2 ∈ F . Then there is f ∈ K such that, with the usual notation, Dc

contains F and Dc \ F consists of isolated points.

Proof. The distance function d is used, where d(x) is the distance from x to the closed
set F . The function in the statement of the proposition is f = d2. Notice that this is a C 1

function except at the points x1+x2

2
where (x1, x2) is a finite interval in R \F ; call this set

of midpoints A. At these points f does not have a derivative. However, by hypothesis, if
x ∈ F , there is no neighbourhood of x where f is C 1.

The largest open set on which f is C 1, call it D, excludes the midpoints of the previous
paragraph but also, as pointed out, every point of F . In other words, if x ∈ F , there is
no open interval containing x where f is C 1. In other words, D is R \ (F ∪ A).

It will turn out that Theorem 4.31 (1) can be used but it first must be shown that
f ∈ T . To this end, let the set of bounded intervals among those disjoint open intervals
making up R \ F be denoted F and an element is written (x, y) ∈ F. Now consider the
closed set V =

⋃
(x,y)∈F[x,

x+y
2
] ∪ F ∪ Z, where Z is the closure of the infinite intervals

in R \ F (if any). (Notice that if z /∈ V , z ∈ (x+y
2
, y) for some (x, y) ∈ F, making V

closed.) Since f has a left continuous left derivative at each x+y
2
, f |V is C 1. By the

Whitney Extension Theorem ([W, Theorem I]), there is g ∈ R such that g|V = f |V . The
same method can be used with the right hand intervals, [x+y

2
, y] to produce h ∈ R. Then,

(f − g)(f − h) = 0, making f ∈ T .
In order to use Theorem 4.31 (1), it is necessary to find l ∈ R so that l|Dc

= f |Dc
.

To do this, it is only necessary to modify f in each (x, y) ∈ F. The method is to divide
(x, y) ∈ F, say, into thirds via x < a < b < y and to connect the points (a, f(a)) with
(x+y

2
, f(x+y

2
)) using smooth spline with slopes d

dx
f(a) and 0, respectively. The same is

done connecting (x+y
2
, f(x+y

2
)) and (b, f(b)), in the same manner. The resulting function

l will be in R and l|Dc
= f |Dc

. This shows that f ∈ K.

To have a familiar example, let F , in the above, be the standard Cantor set in [0, 1].
Then, A consists of the midpoints of the “middle thirds”.

The following example uses Proposition 4.29. It is one of many illustrations of how S
differs from K.

5.42. Example. Let f be the function f(x) = x2 sin(1/x), for x ̸= 0 and f(0) = 0. Then
f ∈ S \ T , and, hence, f /∈ K.

Proof. Notice that f 2, f 3 ∈ R, hence, f is in the (2,3)-closure, S, of R. If f ∈ T , there
would be u1, . . . , uk ∈ R with

∏k
i=1(f − ui) = 0. However as x→ 0, d

dx
f(x) has infinitely

many cluster points, which is impossible for elements of T . Notice that f has a derivative
everywhere but it is not continuous at 0. Moreover, since T ∩S = K, f cannot be in K.
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This and similar examples show that the split integral closure can be strictly smaller
than the integral closure; here of R in L.

The following is also a corollary of Proposition 4.29.

5.43. Corollary. Let (f,D) ∈ L be such that for some x0 ∈ Dc, there is an interval
(r, x0) ⊂ D such that f has a vertical tangent line as x0 is approached from the left, or
there is an interval (x0, s) ⊂ D such that f has a vertical tangent line as x0 is approached
from the right, then f /∈ T .

Proof. Consider the first case and a sequence {xn}n∈N in (r, x0) converging to x0. The
sequence { d

dx
f(xn)} will grow indefinitely, contradicting Proposition 4.29. The other case

is similar.

This corollary will be used to find additional sorts of elements in S \K.

5.44. Examples. For m > 1 an odd positive integer the function fm(x) = x1/m is not in
T . For m an even positive integer the function gm(x) = x1/m for x > 0 and 0 if x ≤ 0 is
not in T . Both these types of functions are in S.

Proof. These are not in T by Corollary 5.43, and, as will be seen, since they are in S,
they are not in K.

For odd n ∈ N, n > 1, fn
n is clearly in R. In addition fn+1

n (x) = x
n+1
n has a continuous

derivative and is also in R. This means that fn
n and fn+1

n are in R showing, by [BKR,
Lemma 5.1.5], that fn ∈ S, since n and n+1 are relatively prime ((2,3)-closed is the same
as (n, n+ 1)-closed).

For even n, gn is similar except that gnn ∈ K ⊂ S (by Examples 4.33) while gn+1
n ∈ R.

Again, gn ∈ S.

The next example shows that not all elements of K are in simple DL-extensions of R.

5.45. Example. Suppose (g,D) ∈ K is such that there is x0 ∈ Dc where there is a
sequence {yn} in Dc converging to x0 from the left and a sequence {zn} in Dc converging
to x0 from the right, and for all n ∈ N, g(yn) = g(zn) = 0. For any h ∈ K such that
Dc

h = {x0}, put f = g + h. Then, f ∈ K is not in any simple DL-extension of R.

Proof. Note that d−

dx
h(x0) ̸= d+

dx
h(x0). Suppose that s ∈ S and that f = as+ b, a, b ∈ R.

Then, as ∈ R, which is impossible, or as ∈ S. Suppose yn ∈ Das, then there is an open
neighbourhood N of yn on which as is C 1, Hence, in N , f would be C 1. This is not the
case and, therefore, yn ∈ Dc

as. It follows that as(yn) = 0 (Proposition 4.32). Similarly
for each zn. Hence, for each n ∈ N, f(yn) = h(yn) = b(yn) and f(zn) = h(zn) = b(zn).
Calculating the derivative of b along {yn} yields d

dx
b(x0) and similarly using {zn}. But

these same calculation give, on one side, d−

dx
h(x0) and, on the other, d+

dx
h(x0). Since these

are unequal, there is a contradiction.
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As an instance of this, take l(x) = x3 sin(1/x) for x ̸= 0 and l(0) = 0 and g = |l|. Any
h as in the above will work, for example h(x) = |x| and x0 = 0.

The functions of Proposition 4.41 also produce illustrations. Take g to be one of these.
For x0, pick any element of F that is not an endpoint of one of the open intervals making
up R \F . Then, it is possible to find sequences as required in Example 5.45. Any h as in
the example will work. Then, f = g + h is not in any simple DL-extension of R.

The next results show that L is not integral over R and, hence, that S is a proper
subring of L, since S is integral over R.

5.46. Proposition. Let n be an odd integer ≥ 3 and fn(x) = x1/n. Then fn is integral
of degree n over R and n is the minimal degree.

Proof. Let n > 1 be an odd integer. Put fn(x) = x
1
n . Certainly, Xn − x = 0 is satisfied

by fn.
Suppose that for a0, a1, . . . , an−2 ∈ R that

Xn−1 + an−2X
n−2 + · · ·+ a1X + a0 = 0 .

If this equation is satisfied by fn then

x
n−1
n + an−2x

n−2
n + · · ·+ a1x

1
n + a0 = 0 .

This expression can be differentiated when x ̸= 0, to get

(1)

(
n− 1

n
x−

1
n +

n− 2

n
an−2(x)x

− 2
n + · · ·+ x−

n−1
n a1(x)x

−n−1
n

)
+(

d

dx
an−2(x)x

n−2
n + · · ·+ d

dx
a1(x)x

n−1
n +

d

dx
a0(x)

)
= 0

The second term in (1) is denoted B(x). Notice that as x → 0, B(x) → d
dx
a0(0). For

x close to 0, the C 1 functions ai(x) can be approximated by linear functions, ai(x) ≈
d
dx
ai(0)x+ ai(0). Then (1) becomes

(2) 0 ≈
(
n− 1

n
x−

1
n +

n− 2

n
an−2(0)x

− 2
n + · · ·+ 1

n
a1(0)x

−n−1
n

)
+(

n− 2

n

d

dx
an−2(0)x

n−2
n + · · ·+ 1

n

d

dx
a1(0)x

1
n +B(x)

)
The second term of (2) goes to d

dx
a0(0) as x → 0. The first term, call it A(x) begins

with n−1
n
x−

1
n that is unbounded as x→ 0 since its coefficient is 1. The coefficients of the

remaining terms of A(x), since continuous, are all bounded as x→ 0 and, hence, the first
term dominates the others showing, that A(x) → ∞ as x → 0. This is a contradiction.
This shows that the original expression is not possible and fn is integral over R of degree
n but not of smaller degree.



ON DOMAIN-LIKE OBJECTS 953

The following consequence of Proposition 5.46 is clear.

5.47. Corollary. The ring S is not the result of a finite sequence of simple (2,3)-
extensions starting at R.

Corollary 5.47 could also be stated that S has elements of arbitrarily high integrality
degree over R.

Notice that in Proposition 5.46 that the conclusion remains true if the functions are
viewed as on an interval containing 0; this will be used below.

5.48. Proposition. The ring L is not integral over R. Hence, S is a proper subring of
L.

Proof. From Proposition 5.46, for each odd n ≥ 3 there is an element of L, namely
fn(x) = x1/n, integral of degree exactly n over R. To simplify notation f1 ∈ R is also
used. Define F ∈ L as follows.

F (x) =



−1 ifx ≤ −1

fn(x− 2k) ifn = 2k + 1, k ≥ 0, k even,

2k − 1 ≤ x ≤ 2k + 1

−fn(x− 2k) ifn = 2k + 1, k ≥ 0, k odd,

2k − 1 ≤ x ≤ 2k + 1 .

Since the pieces making up F are designed so that F is continuous; it is clear that F is
C 1 on a dense open subset of R, i.e, F ∈ L. If F were integral over R then Proposition 5.46
would be contradicted.

In the remark after Proposition 4.32, it was shown that for (f,D) ∈ L, if R[f ] is a
simple (2,3)-extension then f |Dc

= 0. This necessary condition is not sufficient.

5.49. Corollary. There is (f,D) ∈ L with f |Dc
= 0 but f /∈ S.

Proof. The function F constructed in the proof of Proposition 5.48 is in L \ S but does
not have the property that F |Dc

= 0. However, F can be modified to create such an

example, as follows. Consider horizontal lines through 1/2 and −1/2. These will meet
the graph of F at pairs of points. The idea is to connect adjacent intersections with M-
splines to make the new function C 1 at the odd positive integers. A slight modification is
needed at the point (−1/2,−1/2); it can be connected to (−3/2,−1). As an illustration,
one M-spline connects (1/2, 1/2) with (2−1/8, 1/2) with slope at (1/2, 1/2) equal to 1 and
that at (2− 1/8, 1/2) equal to −4/3. Call the resulting function f and Dc

f = {2, 4, 6, . . .};
f is not integral over R because it behaves like F in intervals around each even integer
≥ 2.
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The next step is to reinforce the idea that S and K are of very different natures. The
process will be to show that for any proper dense open set D of R, there is (f,D) ∈ S (in
fact in a simple (2,3)-extension of R) that is not in K.

5.50. Proposition. Let D be a dense open set in R with D ̸= R. Then there exists an
everywhere differentiable function f ∈ S such that f is C 1 on D and D is the largest open
set on which it is C 1. In addition, f /∈ T .

Proof. As usual D is expressed as a countable (possibly finite) disjoint union of open
intervals (an, bn). These sets will be used to defined a countable family of functions and
the desired function f will be their uniform limit.

The basis for the construction is the function

k(x) = x2(1− x)2 sin(
π

8x(1− x)
)

on (0, 1) and 0 elsewhere. It follows that d
dx
k exists everywhere but is discontinuous at 0

and at 1. Notice that k2 and k3 are C 1 functions.
Notice as well that k and d

dx
k can be seen to be bounded. Both of these hold because

k and k′ vanish outside of the interval (0, 1).
For a finite interval (an, bn), write gn(x) = k( x−an

bn−an
). For an infinite interval, say,

(am,∞), a slight modification is needed. Here, k is adapted to the interval (am, am + 1)
and at the midpoint, which is the maximum of the function with value r > 0, gm continues
to the right with the constant r. An infinite interval to the left is done in the same way.
The function gn has the same properties as k, namely it is differentiable everywhere, but
not continuously so at an and bn; its square and cube are C 1 and it and its derivative are
bounded.

The functions gn will be scaled by constants ρn > 0 so that both |ρngn| and |ρn d
dx
gn|

are less than 2−n−1. Furthermore the ρn will be chosen so that

|(ρn)2g2n|, |(ρn)3g3n|, |2(ρn)2gn
d

dx
gn| and |3(ρn)3g2n

d

dx
gn|

are all less than 2−n−1. These properties collectively are referred to as (∗).
This is clearly possible since gn and its derivative are bounded. These conditions will

allow us to apply the Weierstrass M-test to different sums.
Now let the function f =

∑
n∈B ρngn. When B is finite it is obvious that f has the

required properties. Hence, assume that B = N. By the M-test f is continuous on R.
We first want f to be differentiable. It suffices to show differentiability for any point

internal to an interval [u, v], u < v. Note that [u, v] can, if necessary, be chosen large
enough to contain a point in Dc where all the gn vanish, so that

∑
gn converges. The

choice of the ρn implies that the
∑
ρn

d
dx
gn converges uniformly on [u, v].

By a result, often called the “third preservation theorem”, (for example [DS, Theo-
rem 8.7] or [T, Theorem 4.4.11])

∑
ρn(gn) converges uniformly to a differentiable function

on all of [u,v] whose derivative is the
∑
ρn

d
dx
gn. This makes

∑
ρngn differentiable on all

of R.
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Now we would like f to be in S. It follows from (∗) and the third preservation theorem
that f 2 and f 3 are differentiable and that their derivatives are uniform limits of continuous
functions, and hence continuous.

Lastly the claim that D is the largest subset on which f is C 1.
At each finite endpoint of an interval in D, the derivative is discontinuous by calcula-

tion. Moreover, if there is x0 ∈ Dc that is not such an endpoint, every interval around x0
has points where f is zero, and then d

dx
f(x0) = 0. In addition, in any such interval there

are points where d
dx
f is discontinuous. Thus f is not C 1 at such an x0.

By Proposition 4.30, none of the functions constructed above can be in T .

The functions constructed in Proposition 5.50 are in the ring D1, the ring of functions
that have a derivative for all x ∈ R, of [K, Example 7.5], but not in the ring H0 defined
there. This is because an everywhere differentiable function in H0 would be C 1.

The next step is to show that there is h ∈ H0 \ L. This demonstrates that H0 ̸= K,
contrary to what was conjectured in [K, Example 7.5]. In Proposition 4.38, it was shown
that K ⊆ T ⊆ H0. However, as remarked at the start of Section 2, there is only one
isomorphic copy over R of K in C(R), and it was shown to be in L.

Alan Dow has kindly contributed an example of a function, defined on (0, 1), that has
all the properties of a function in H0. It only needs to be “stretched” to be defined on R
to yield the example as required.

5.51. Example. [Dow] There is a function h ∈ H0 \ L.
Proof. The start is to define a function f : (0, 1) → R. Let {qn | n ∈ N} be an enumer-
ation of Q ∩ (0, 1). Define f : (0, 1) → R by

f(x) =
∑
n∈N

2−n|x− qn| .

It will be shown that f has all the properties of an element of H0 (although only defined
on (0, 1)).

If, for each n ∈ N, fn(x) = 2−n|x− qn|, then f(x) =
∑

n∈N fn(x) is continuous by the
M-test.

Let x, t ∈ (0, 1), x < t. Then

f(t)− f(x) =
∑
n∈N

2−n(|t− qn| − |x− qn|)

=
∑
qn≤x

2−n(t− x) +
∑

x<qn≤t

2−n((t− qn)− (qn − x))

+
∑
t<qn

2−n(x− t) .

In the above, now assume that x /∈ Q and x < t. Consider ∆f,x(t). By the above, this
is the sum ∑

qn<x

2−n −
∑
t<qn

2−n +
∑

x<qn≤t

2−n (t− qn)− (qn − x)

t− x
.



956 W.D. BURGESS, R. RAPHAEL

However, in the numerator of the third term t − qn < t − x and qn − x < t − x. Hence,
the absolute value of the third term is at most 2 ·

∑
x<qn≤t 2

−n. By taking t sufficiently
close to x, for any n0 ∈ N, it can be assumed that x < qn ≤ t means n ≥ n0. Hence, the
third term goes to 0 as t→ x+. When, t < x, the calculation is the same. Hence, d

dx
f(x)

exists when x /∈ Q ∩ (0, 1).
When x ∈ Q, there is an extra term. Put x = qm. Then ∆f,qm(t) is as above plus

2−m|t− qm|/(t− qm). The conclusion is that d+

dx
f(qm) = 2−m +

∑
qn<qm

2−n −
∑

qm<qn
2−n

and d−

dx
f(qm) = −2−m +

∑
qn<qm

2−n −
∑

qm<qn
2−n.

Hence, one-sided derivatives exist for all x ∈ (0, 1).
There are proofs of one-sided continuity to be added.
1. The right continuity of d

dx
f(x) where x /∈ Q: for x < t

d+

dx
f(t) =

{∑
qn<t 2

−n −
∑

t<qn
2−n , t /∈ Q

2−m +
∑

qn<qm
2−n −

∑
qm<qn

2−n , t = qm .

In the second expression, as t = qm approaches x, the term 2−m can be chosen so that
m ≥ n0, for any n0 ∈ N. Hence, both expressions converge to

∑
qn<x 2

−n −
∑

x<qn
2−n.

2. The right continuity of the right derivative of f at x = qm. The right derivative at
t > qm, t /∈ Q, is ∑

qn<t

2−n −
∑
t<qn

2−n = 2−m +
∑

qn<t,n ̸=m

2−n −
∑
t<qn

2−n .

Note that, since t /∈ Q, the first term could also be written
∑

qn≤t,n ̸=m 2−n.
The right derivative of f at qz with qm < qz is

2−z +
∑
qn<qz

2−n −
∑
qz<qn

2−n

=
∑
qn≤qz

2−n −
∑
qz<qn

2−n = 2−m +
∑

qn≤qz ,n̸=m

2−n −
∑
qz<qn

2−n .

Since these expressions are the same, the limit as t → q+m is the same whether t is
rational or irrational. It is the right derivative of f at qm.

3. The final step to show that f satisfies the remaining condition, i.e., that of the
right limit of the left derivatives. It is to be shown that when t→ x+, the left derivative
at t converges to the right derivative at x.

Suppose first that x /∈ Q. When t /∈ Q, the left derivative at t is
∑

qn<t 2
−n−

∑
t<qn

2−n.
Note that since t /∈ Q, the second term can be written −

∑
t≤qn

2−n.
When t = qz, the left derivative is

−2−z +
∑
qn<qz

2−n −
∑
qz<qn

2−n =
∑
qn<qz

2−n −
∑
qz≤qn

2−n.

Both expressions converge to d
dx
f(x) as t→ x+.
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If t > qm and t /∈ Q, the left derivative at t is∑
qn<t

2−n −
∑
t<qn

2−n = 2−m +
∑

qn<t,n ̸=m

2−n −
∑
t<qn

2−n.

Again, the last term can be written −
∑

t≤qn
2−n.

If t = qz > qm, the left derivative is

−2−z +
∑
qn<qz

2−n −
∑
qz<qn

2−n = 2−m +
∑

qn<qz ,n̸=m

2−n −
∑
qz≤qn

2−n.

This shows the convergence.
The final step is to get a function defined on all of R. Let ϕ : (0, 1) → R be an

order preserving C 1 homeomorphism with ϕ−1 also C 1. Then, h = f ·ϕ−1 is a continuous
function satisfying all the conditions of H0. The usual formulas for the Chain Rule apply
to one-sided derivatives. These and the fact that the homeomorphism ϕ−1 is both order
preserving and C 1 show that all the properties of f also hold for h.

6. Addendum: M-splines. In the proofs of Theorem 4.40 and Corollary 5.49, it is
required that, over an interval, a smooth function be found that has prescribed endpoints
and prescribed one-sided slopes at these endpoints. The M-spline gives this. One starting
point for the M-spline is found in [Ho, Lemma 1.2.3], although only dimension one is
required here. The basis for the Mollifier-spline, or M-spline that is used above, is the
Mollifier function:

σ(x) =

{
exp −1

1−x2 if |x| < 1

0 if |x| ≥ 1
.

Let C =
∫ 1

−1
σ(x)dx. Put ϕ(x) = (1/C)σ(x). Thus

∫∞
−∞ ϕ(x)dx exists and is equal to

1. Now define Φ(x) =
∫ x

−∞ ϕ(t)dt. It follows that d
dx
Φ(x) = ϕ(x) and, from that, all

the derivatives of Φ(x) are zero at ±1, and, between −1 and 1, Φ(x) is a C∞ function
increasing from 0 to 1.

If, now, the idea is to have a C∞ spline between the points (a, b) and (c, d) in R2, with

a < c, first define Φa,c(x) = Φ(2x−(a+c)
c−a

) and then γ(x) = b + (d − b)Φa,c(x) is defined on
the interval [a, c]. The right derivatives of γ(x) at a and the left derivative at c exist and
are zero. If, for example, b > d, then γ(x) decreases as x goes from a to c. (This part can
also be found in [BR, Section 2a].)

M-splines will be modified again so that they do not have the same derivatives at the
two endpoints of the interval. The schema used follows that suggested by Simone Brugia-
paglia. The endpoints and the slopes will be specified after the general statement. Let the
standard M-spline between the points (a, c) and (b, d) be written Φc,d

a,b(x). It is monotone

between a and b and d
dx
Φc,d

a,b(a) =
d
dx
Φc,d

a,b(b) = 0. Suppose the slopes at the endpoint of the

spline are to be m1 and m2, respectively. Next define Ψ(x) =
∫ x

a
Φm1,m2

a,b (t)dt. From this:

Ψ(a) = 0,Ψ(b) =
∫ b

a
Φm1,m2

a,b (t)dt, d+

dx
Ψ(a) = Φm1,m2

a,b (a) = m1, and
d−

dx
Ψ(b) = Φm1,m2

a,b (b) =

m2. Finally the function g is defined by g(x) = Φ
c,d−Ψ(b)
a,b (x) + Ψ(x). By the previous
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calculations, g(a) = c + 0 = c, g(b) = d − Ψ(b) + Ψ(b) = d, d+

dx
g(a) = 0 +m1 = m1, and

d−

dx
g(b) = 0 +m2 = m2.
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