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INDEXED GROTHENDIECK CONSTRUCTION

ELENA CAVIGLIA AND LUCA MESITI

Abstract. We produce an indexed version of the Grothendieck construction. This
gives an equivalence of categories between opfibrations over a fixed base in the 2-category
of 2-copresheaves and 2-copresheaves on the Grothendieck construction of the fixed
base. We also prove that this equivalence is pseudonatural in the base and that it
restricts to discrete opfibrations with small fibres and copresheaves. Our result is a
2-dimensional generalization of the equivalence between slices of copresheaves and co-
presheaves on slices. We can think of the indexed Grothendieck construction as a si-
multaneous Grothendieck construction on every index that takes into account all bonds
between different indexes.
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1. Introduction

The Grothendieck construction, also known as the construction of the category of ele-
ments, is a fundamental tool in category theory. It establishes an equivalence between
indexed categories and Grothendieck fibrations. The construction reorganizes the data
of an indexed family of categories in a total category equipped with a functor that tells
which index each object came from. It also abstractly captures the concept of change of
base.

Originally introduced by Grothendieck in [5] in a purely geometrical context, the
Grothendieck construction has since found numerous applications in both logic and alge-
bra. In algebra, it brought for example to the total category of all modules, collecting
together R-modules for every ring R. While logicians have particularly used the restric-
tion of the Grothendieck construction to the equivalence between families of sets indexed
over a category and discrete fibrations (with small fibres). This allowed to consider such
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families of sets without mentioning morphisms that land into the universe of all sets.
We believe that the general framework of the Grothendieck construction could yield new
applications in logic, especially within the realm of 2-dimensional logic. For this pur-
pose, the 2-category of elements, a natural extension of the Grothendieck construction,
is particularly promising. This extension has been studied in detail by the second author
in [9].

The equivalence between indexed categories and Grothendieck fibrations offers the
advantages of both worlds. Additionally, the Grothendieck construction itself has signif-
icant and useful implications. Notably, it allows to conicalize all weighted Set -enriched
(i.e. ordinary) limits, and to almost conicalize weighted 2-limits (see Street’s [12] and the
second author’s [9]). This also presents every presheaf as a colimit of representables and
gives the famous explicit formula for the ordinary Kan extension.

In this paper, we produce an indexed version of the Grothendieck construction, that
does not seem to appear in the literature. Our main results (Theorem 4.7 and Theo-
rem 4.9) are condensed in the following theorem. Op and non-split variations are also
considered in Remark 4.12 and Remark 4.13.

1.1. Theorem. Let A be a small category and consider the functor 2-category [A ,Cat ].
For every 2-functor F : A → Cat , there is an equivalence of categories

OpFib [A ,Cat ] (F ) ≃
[∫
F,Cat

]
between split opfibrations in the 2-category [A ,Cat ] over F and 2-(co)presheaves on the
Grothendieck construction

∫
F of F .

This restricts to an equivalence of categories

DOpFib s
[A ,Cat ] (F ) ≃

[∫
F,Set

]
between discrete opfibrations in [A ,Cat ] over F with small fibres and 1-copresheaves on∫
F .
Moreover, both the equivalences of categories above are pseudonatural in F .

When A = 1, we recover the usual Grothendieck construction. Indeed [A ,Cat ] reduces
to Cat , a 2-functor F : 1 → Cat is just a small category C and

∫
F = C . So we find

OpFib (C ) ≃ [C ,Cat ] .

But we introduce an indexed version of the Grothendieck construction that allows A to be
an arbitrary small category and F : A → Cat to be an arbitrary 2-functor. Interestingly,
the data of such general opfibrations in [A ,Cat ] over F are still packed in a Cat -valued
copresheaf, now on the Grothendieck construction of F .

We can think of the indexed Grothendieck construction as a simultaneous Grothendieck
construction on every index A ∈ A , taking into account the bonds between different in-
dexes. Indeed, an opfibration φ in [A ,Cat ] is, in particular, a natural transformation
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such that every component φA is a Grothendieck opfibration (in Cat ). Our construction
essentially applies the quasi-inverse of the usual Grothendieck construction to every com-
ponent of φ at the same time. All the obtained copresheaves in Cat are then collected
into a single total copresheaf, exploiting the usual Grothendieck construction on F .

The restricted equivalence of categories

DOpFib s
[A ,Cat ] (F ) ≃

[∫
F,Set

]
further reduces, when F : A → Set , to the well known equivalence

[A ,Set ]/F ≃
[∫
F,Set

]
.

When F is a representable y(A) : A → Set , this is the famous equivalence

[A ,Set ]
/
y(A) ≃

[A /A,Set
]

between slices of (co)presheaves and (co)presheaves on slices. Our theorem also guarantees
its pseudonaturality in A, which does not seem to be stated in the literature.

The last equivalence between slices of (co)presheaves and (co)presheaves on slices
had many applications in geometry and logic. In particular, it is the archetypal case
of the fundamental theorem of elementary topos theory, showing that every slice of a
Grothendieck topos is a Grothendieck topos. Our equivalence

OpFib [A ,Cat ] (F ) ≃
[∫
F,Cat

]
gives a 2-dimensional generalization of this, and we thus expect it to be very fruitful.
Indeed, the concept of (op)fibrational slice has recently been proposed as the correct
upgrade of slices to dimension 2. Rather than taking all maps into a fixed element, we
restrict to the (op)fibrations over that element. This idea appears in Ahrens, North and
van der Weide’s [1], where it is attributed to Shulman. Our equivalence can be thought of
as saying that every (op)fibrational slice of a Grothendieck 2-topos is again a Grothendieck
2-topos.

Our motivating application of the indexed Grothendieck construction is to produce a
nice candidate for a 2-classifier in the 2-category of 2-presheaves, in line with Hofmann
and Streicher’s [6]. We describe this in Example 5.9. The second author has shown in the
following paper [10] that such candidate is indeed a 2-dimensional classifier in [Aop,Cat ],
towards a 2-dimensional elementary topos structure on [Aop,Cat ]. A 2-classifier, which is
a generalization of the concept of subobject classifier to dimension 2, proposed by Weber
in [13], can also be thought of as a Grothendieck construction inside a 2-category. So it is
natural to expect an indexed version of the Grothendieck construction to give a 2-classifier
in the 2-category of 2-presheaves.

The strategy to prove our main theorem will be to use that the Grothendieck construc-
tion of a 2-functor F : A → Cat is equivalently the oplax colimit of F . So that we will be
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able to apply the usual Grothendieck construction on every index A ∈ A . We will then
show that all the opfibrations produced for each A can be collected into an opfibration
in [A ,Cat ] over F . For this, we will also need to prove that the usual Grothendieck con-
struction is pseudonatural in the base category. The chain of abstract processes above will
then be very useful to conclude the pseudonaturality in F of the indexed Grothendieck
construction.

We will also give an explicit description of the indexed Grothendieck construction, in
Construction 4.8, so that it can be applied more easily.

We will conclude showing some interesting examples, choosing particular A ’s and
F ’s in Theorem 1.1. Among them, we will consider the cases A = 2 (arrows between
opfibrations) and A = ∆ (cosimplicial categories).

Outline of the paper. In Section 2, we recall that the Grothendieck construction can
be equivalently expressed as an oplax colimit and as a lax comma object. We prove that
the equivalence of categories given by the Grothendieck construction is pseudonatural in
the base category.

In Section 3, after recalling the notion of opfibration in a 2-category, we show an
equivalent characterization of the opfibrations in [A ,Cat ]. This also allows us to define
having small fibres for a discrete opfibration in [A ,Cat ]. We produce a pseudofunctor
F 7→ OpFib [A ,Cat ] (F ).

In Section 4, we present our main theorems, proving an equivalence of categories
between (split) opfibrations in [A ,Cat ] over F and 2-copresheaves on

∫
F . We also show

that such equivalence is pseudonatural in F . We present the explicit indexed Grothendieck
construction.

In Section 5, we show some interesting examples. In particular, we obtain a nice
candidate for a Hofmann–Streicher universe in 2-presheaves.

Notation. We fix Grothendieck universes U, V and W such that U ∈ V ∈ W . We
denote as Set the category of U-small sets, as Cat the 2-category of V -small categories
(i.e. categories such that both the collections of their objects and of their morphisms are
V -small) and as CAT the 2-category of W -small categories. So that Set ∈ Cat and the
underlying category Cat 0 of Cat is in CAT . Small category will mean V -small category.
Small fibres, for a discrete opfibration in Cat , will mean U-small fibres. 2-category will
mean a W -small Cat -enriched category. Small 2-category will mean V -small 2-category.

2. Some properties of the Grothendieck construction

In this section, we recall two useful equivalent characterizations of the usual Grothendieck
construction. We then prove that the equivalence of categories given by the Grothendieck
construction is pseudonatural in the base category.

It is known that the Grothendieck construction
∫
F of a 2-functor F : C → Cat with

C a category is equivalently the oplax colimit of F . As we could not find a proof of this in
the literature, we show a proof below (Theorem 2.9). Another useful characterization is
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that
∫
F is equivalently the lax comma object from 1 : 1 → Cat to F in 2-Catlax. This has

been explored in detail by the second author in [9] and is recalled below (Theorem 2.11).

2.1. Remark. In this paper, we focus on the Grothendieck construction of (strict) 2-
functors F : C → Cat with C a small category, which correspond with split opfibrations
over C . We will consider variations of this setting in Remark 4.12 (fibrations) and Re-
mark 4.13 (C a 2-category and non-split opfibrations).

We first recall some basic definitions (Definition 2.2 and Construction 2.4) from Ja-
cobs’s book [7]. Such concepts have been introduced by Grothendieck in [5].

2.2. Definition. [5] A functor p : E → C is called a (Grothendieck) opfibration (in
Cat ) (over C ) if for every object E ∈ E and every morphism f : p(E) → C in C , there

exists an opcartesian lifting f
E
: E → f∗E of f to E

E f∗E

p(E) C

f
E

p p

f

Opcartesian means that for every E ′ ∈ E , every morphism w : C → p(E ′) in C and
every morphism e : E → E ′ in E such that p(e) = w ◦ f , there exists a unique morphism

v : f∗E → E ′ such that p(v) = w and v ◦ fE = e.

E ′

E f∗E

p(E ′)
p(E) C

p

e

f
E

p

∃!v

p

f
w

We call cleavage a choice of cartesian liftings f
E
for every f and E. An opfibration with

a cleavage is called split if the cleavage is functorial in the following sense:

(i) for every E ∈ E we have id
E
= idE;

(ii) for every E ∈ E and morphisms f : p(E) → C and g : C → C ′ in C we have

gf∗E ◦ fE = (g ◦ f)
E
.

A cleavage preserving morphism between split opfibrations p : E → C and q : F → D
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is a commutative square in Cat
E F

C D

H

p q

K

such that for every E ∈ E and every f : p(E) → C in C we have H(fE) = K(f)
H(E)

.

H(E) H(f∗E)

q(H(E)) q(H(f∗E))

H(f
E
)

q q

q(H(f
E
))

H(E) K(f)∗H(E)

K(p(E)) K(C)

K(f)
H(E)

q q

K(f)

If we restrict the attention to split opfibrations over a fixed C , we require cleavage pre-
serving morphisms (H,K) to have K = IdC .

Split opfibrations over C and cleavage preserving morphisms form a category OpFib (C ).
A functor p : E → C is called a discrete opfibration (in Cat ) (over C ) if for

every object E ∈ E and every morphism f : p(E) → C in C , there exists a unique

lifting f
E
: E → f∗E of f to E. In particular, f

E
is cartesian and p is a Grothendieck

opfibration. Cleavage preserving morphisms are just commutative squares in Cat and we
obtain a category DOpFib (C ) of discrete opfibrations over C . We denote as DOpFib s

(C )
its full subcategory on the discrete opfibrations with small fibres.

2.3. Remark. The pullback H∗p of a split opfibration p : E → C along H : D → C is
a split opfibration. We can choose the cleavage of H∗p to make the universal square that
exhibits the pullback into a cleavage preserving morphism.

2.4. Construction. [5] Let C be a small category and let F : C → Cat be a 2-functor.
We can think of F as a family of categories indexed over a category, taking into account
any bond between different indexes. The Grothendieck construction is a process of re-
organization of these data in terms of a single total category equipped with a projection
functor that tells which index each object came from. The categories of the family are then
recovered by taking the fibres of this projection functor. This process is based on the idea
of taking the disjoint union of the categories of the family, but it also applies a change of
scalars operation to handle the bonds between different indexes.

The Grothendieck construction of F is the functor G (F ) :
∫
F → C of projection

on the first component from the category
∫
F , which is defined as follows:

an object of
∫
F is a pair (C,X) with C ∈ C and X ∈ F (C);

a morphism (C,X) → (D,X ′) in
∫
F is a pair (f, α) with f : C → D a morphism in C

and α : F (f)(X) → X ′ a morphism in F (D).

G (F ) :
∫
F → C is a split opfibration, with cleavage given by the morphisms (f, id).
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2.5. Remark. Notice that every morphism (f, α) : (C,X) → (D,X ′) in
∫
F can be fac-

torized as

(C,X)
(f,id)−−−→ (D,F (f)(X))

(id,α)−−−→ (D,X ′)

That is, as a cartesian morphism of the cleavage followed by a morphism which is over
the identity (also called vertical morphism).

This means that the Grothendieck construction of F is somehow given by collecting all
F (C) together, where we have the morphisms (id, α), and adding the morphisms (f, id)
to handle change of index. This idea will be made precise in Theorem 2.9.

The following fundamental theorem is due to Grothendieck [5] (see also Borceux’s [3]).

2.6. Theorem. [5] The Grothendieck construction extends to an equivalence of categories

G (−) : [C ,Cat ] ∼→ OpFib (C )

Given a natural transformation γ : F =⇒ G : C → Cat , the functor G (γ) :
∫
F →

∫
G is

defined to send (C,X) to (C, γ(X)) and (f, α) : (C,X) → (D,X ′) to (f, γD(α)).
The quasi-inverse is given by taking fibres on every C ∈ C .
Moreover, the equivalence above restricts to an equivalence of categories

G (−) : [C ,Set ] ∼→ DOpFib s
(C )

Aiming at proving that the Grothendieck construction is equivalently given by an
oplax colimit, we recall the definition of oplax colimit.

2.7. Definition. Let F : C → D be a 2-functor with C small. The oplax (conical)
colimit of F , denoted as oplax -colimF , is (if it exists) an object K ∈ D together with
an isomorphism of categories

D (K, U) ∼= [C op,Cat ]oplax (∆1,D (F (−), U))

2-natural in U ∈ D, where [C op,Cat ]oplax is the 2-category of 2-functors, oplax natural
transformations and modifications from C op to Cat . ∆1 is the functor which is constant
at singleton category 1 and the right hand side of the isomorphism above should be thought
as the category of oplax cocones on F with vertex U . Indeed we also have an isomorphism

[C op,Cat ]oplax (∆1,D (F (−), U)) ∼= [C ,D ]lax (F,∆U)

2-natural in U , where [C ,D ]lax is the 2-category of 2-functors, lax natural transformations

and modifications, and ∆U is the functor which is constant at U .

2.8. Remark. When oplax -colimF exists, taking U = K and considering the identity
on K gives us in particular a lax natural transformation

λ : F =⇒
lax

∆K

which is called the universal oplax cocone on F .
An equivalent way to show that K = oplax -colimF is to exhibit such a lax natural

transformation λ that is universal in the following 2-categorical sense:
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(i) for every lax natural transformation σ : F =⇒
lax

∆U , there exists a unique morphism

s : K → U in D such that ∆s ◦ λ = σ;

(ii) for every s, t : K → U in D and every modification Ξ: ∆s ◦λ ≡⇛ ∆t ◦λ, there exists
a unique 2-cell χ : s =⇒ t in D such that ∆χ ⋆ λ = Ξ.

We will need the following known characterization of the Grothendieck construction.
As we could not find a proof of this in the literature, we show a proof here.

2.9. Theorem. Let C be a small category and let F : C → Cat be a 2-functor. The
Grothendieck construction

∫
F of F is equivalently the oplax (conical) colimit of the 2-

diagram F : ∫
F = oplax -colimF

Proof. Following Remark 2.8, we produce a lax natural transformation inc : F =⇒
lax

∆
∫
F

and prove that it is universal in the 2-categorical sense. For every C ∈ C we define the
component of inc on C to be the functor

incC : F (C) −→
∫
F

X

X ′
α 7→

(C,X)

(C,X ′)

(id,α)

For every morphism f : C → D in C , we define the structure 2-cell of inc on f to be the
natural transformation

F (C)
∫
F

F (D)

F (f)

incC

incf

incD

that has components (incf )X = (f, id) for every X ∈ F (C). The naturality of incf
expresses

(f, id) ◦ (id, α) = (id, F (f)(α)) ◦ (f, id).

As explained with more detail in the second author’s [9], to get the whole
∫
F we just

need the two kinds of morphisms (id, α) and (f, id) as building blocks. This is what will
ensure the universality of inc. Composition of morphisms of type (id, α) corresponds with
the functoriality of incC . While composition of morphisms of type (f, id) corresponds
with the lax naturality of inc. We could then define general morphisms to be formal
composites (id, α) ◦ (f, id), following the factorization of morphisms in

∫
F described in

Remark 2.5. And the equation above, that swaps the two kinds of morphisms, tells how
to reduce every composition to this form.
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We prove that inc is universal in the 2-categorical sense. Given a lax natural trans-
formation σ : F =⇒

lax
∆U , we show that there exists a unique s :

∫
F → U such that

∆s◦ inc = σ. These conditions impose to define for every (f, α) : (C,X) → (D,X ′) in
∫
F

s(C,X) = (s ◦ incC) (X) = σC(X)

s(idD, α) = (s ◦ incD) (α) = σD(α)

s(f, id) = s
(
(incf )X

)
= (σf )X

So by the factorization described in Remark 2.5, we need to define

s(f, α) = s(id, α) ◦ s(f, id) = σD(α) ◦ (σf )X .

s is a functor by naturality of σg, functoriality of σE and lax naturality of σ. And
∆s ◦ inc = σ by construction.

Take now s, t :
∫
F → U and a modification Ξ: ∆s ◦ inc ≡⇛ ∆t ◦ inc. Ξ has as

components on C natural transformations ΞC : s ◦ incC =⇒ t ◦ incC . We show that there
exists a unique natural transformation χ : s =⇒ t such that ∆χ ⋆ inc = Ξ. We need to
define

χ(C,X) = (χ ⋆ incC)X = ΞC,X

and this works. So inc is universal.

2.10. Remark. Let C be a small category and let F : C → Cat be a 2-functor.
∫
F is also

the oplax (conical) colimit, with respect to the enrichment over CAT , of the 2-diagram

C F−→ Cat ↪→ CAT . Indeed the Grothendieck construction of the latter composite is clearly
just

∫
F .

We also need the following result from the second author’s [9].

2.11. Theorem. [9] Let C be a category and F : C → Cat be a 2-functor. The Grothendieck
construction

∫
F of F is equivalently given by the lax comma object∫

F 1

C Cat

G(F ) 1
lax comma

F

in 2-Catlax (the lax 3-category of 2-categories, 2-functors, lax natural transformations and
modifications).

As a consequence, it is then also given by the strict 3-pullback in 2-Catlax between
F and the replacement τ of 1 : 1 → Cat obtained by taking the lax comma object of
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1 : 1 → Cat along the identity of Cat (that is a lax 3-dimensional version of the lax limit
of the arrow 1 : 1 → Cat ): ∫

F Cat •,lax 1

B Cat Cat

⌟
G(F ) τ 1

lax comma

F

The domain of τ is a lax pointed version of Cat , whence the notation Cat •,lax.

We can now prove that the Grothendieck construction is pseudonatural in the base
category. Such result does not seem to appear in the literature.

2.12. Proposition. The equivalence of categories

GC : [C ,Cat ] ∼→ OpFib (C )

of Theorem 2.6 given by the Grothendieck construction is pseudonatural in C ∈ Cat op.

Proof. The assignment C 7→ OpFib (C ) extends to a pseudofunctor

OpFib (−) : Cat op → CAT

that on the underlying category of the domain Cat op is a restriction of the pseudofunctor
that does the pullback. So given H : D → C and a split opfibration p : E → C , we define
the action of OpFib (−) on H to be the pullback functor H∗.

H∗E E

D C

H̃

H∗p p

H

Given a natural transformation α : H =⇒ K : D → C , we use the cleavage of p to define
OpFib (α) = α∗ as the natural transformation that has as component on p the functor

α∗p : H∗E → K∗E

that sends (D,E) ∈ H∗E to (D, (αD)∗E) ∈ K∗E . We will prove that OpFib (−) is
indeed a pseudofunctor in Proposition 3.9, for general split opfibrations in a 2-category.
In that general setting, we can define α∗ by lifting a 2-cell along an opfibration. This
point of view is helpful to apply below the universal property of the lax comma object,
using Theorem 2.11.

We define a pseudonatural transformation

G− : [−,Cat ] ===⇒
pseudo

OpFib (−)
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that has component on C given by GC . Given a functor H : D → C , we define the
structure 2-cell GH to be the natural isomorphism

[C ,Cat ] OpFib (C )

[D ,Cat ] OpFib (D)

≃

−◦H H∗∼=
GH

≃

that is given by the pseudofunctoriality of the pullback (or actually by the fact that the
pullback of a lax comma is isomorphic to the lax comma with the composite), thanks to
Theorem 2.11: ∫

(F ◦H)

H∗ ∫ F ∫
F Cat •,lax

D C Cat

∼=(GH)−1
F

G(F◦H) H∗G(F ) G(F ) τ

H F

GH is indeed a natural transformation thanks to the universal property of the lax comma
object. And G− satisfies the 1-dimensional condition of pseudonatural transformation by
the pseudofunctoriality of the pullback (choosing the pullbacks along identities to be the
identity).

Take now a natural transformation α : H =⇒ K : D → C . In order to prove the 2-
dimensional condition of pseudonatural transformation for G−, we need to show that the
following square is commutative for every F : C → Cat :

H∗ ∫ F K∗ ∫ F
∫
(F ◦H)

∫
(F ◦K)

α∗
G(F )

(GH)F (GK)F

G(F⋆α)

This is shown by the universal property of the lax comma object (or of the pullback)
∫
F .

For this we use the fact that the chosen cleavage on G (F ) :
∫
F → C (with f

(C,X)
= (f, id),

see Construction 2.4) makes the square∫
F Cat •,lax

C Cat

⌟
G(F ) τ

F

into a cleavage preserving morphism.
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3. Opfibrations in the 2-category of 2-presheaves

In this section, after recalling the notion of opfibration in a 2-category, we characterize
the opfibrations in the functor 2-category [A ,Cat ] with A a small category. We will show
that such characterization restricts to one of discrete opfibrations as well. This will allow
us to define having small fibres for a discrete opfibration in [A ,Cat ] (Definition 3.7).

The definition of (op)fibration in a 2-category is due to Street [11], in terms of algebras
for a 2-monad. It is known that we can equivalently define (op)fibrations in a 2-category
by representability, as done in Weber’s [13].

3.1. Definition. Let L be a 2-category. A split opfibration in L is a morphism
φ : G→ F in L such that for every X ∈ L the functor

φ ◦ − : L (X, G) → L (X, F )

induced by φ between the hom-categories is a split Grothendieck opfibration (in Cat ) and
for every morphism λ : K → X in L the commutative square

L (X, G) L (K, G)

L (X, F ) L (K, F )

−◦λ

φ◦− φ◦−

−◦λ

is cleavage preserving.
We call φ a discrete opfibration in L if for every X the functor φ ◦ − above is a

discrete opfibration (in Cat ). In this case, the second condition is automatic.
Given split opfibrations φ : G→ F and ψ : H → F in L over F , a cleavage preserving

morphism from φ to ψ is a morphism ξ : φ → ψ in L /F such that for every X ∈ L the
triangle

L (X, G) L (X, H)

L (X, F )

ξ◦−

φ◦− ψ◦−

is cleavage preserving.
If φ and ψ are discrete opfibrations, any morphism in L /F is cleavage preserving.
Split opfibrations in L over F and cleavage preserving morphisms form a category

OpFibL (F ). We denote the full subcategory on discrete opfibrations in L as DOpFibL (F ).

3.2. Remark. By definition, a (split) opfibration φ : G→ F in L is required to lift every
2-cell θ : φ◦α =⇒ β to a cartesian 2-cell θ

α
: α =⇒ θ∗α. We can draw the following diagram
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to say that φ ◦ θ∗α = β and φ ⋆ θ
α
= θ.

X G

G
X F

α

θ∗α
φ

φα

β

θ
α

θ

θ
α
cartesian means that for every 2-cell ρ : α =⇒ α′ and 2-cell σ : β =⇒ φ ◦ α′ such that

φ ∗ ρ = σ ◦ θ, there exists a unique 2-cell ν : θ∗α =⇒ α′ such that φ ⋆ ν = σ and ν ◦ θα = ρ.
Analogously, we can express being split in these terms.

The second condition of Definition 3.1 then requires the chosen lifting of θ ⋆ λ to be
θ
α
⋆ λ (i.e. the chosen lifting of θ whiskered with λ).
φ is a discrete opfibration in L when the liftings θ

α
are unique.

Cleavage preserving morphisms can be expressed analogously.

3.3. Remark. Pullbacks of split opfibrations are split opfibrations, because L (X,−) pre-
serves pullbacks (as it preserves all limits) and pullbacks of split opfibrations in Cat are
split opfibrations in Cat . We are also using (for the second condition) that we can choose
the cleavage of the pullback of a split opfibration in L so that the universal square that
exhibits the pullback is cleavage preserving.

3.4. Remark. We can of course apply Definition 3.1 to L = Cat . The produced notion
is equivalent to the usual notion of Grothendieck opfibration (of Definition 2.2). This
is essentially because for L = Cat it suffices to ask the above liftings for X = 1. We
are then able to lift entire natural transformations θ as a consequence, componentwise.
Analogously with discrete opfibrations in L = Cat .

We extend this idea below and characterize opfibrations in [A ,Cat ].
The following proposition does not seem to appear in the literature.

3.5. Proposition. Let A be a small category and consider a morphism φ : G → F in
[A ,Cat ] (i.e. a natural transformation). The following facts are equivalent:

(i) φ : G→ F is a split opfibration in [A ,Cat ];

(ii) for every A ∈ A the component φA : G(A) → F (A) of φ on A is a split opfibration
(in Cat ) and for every morphism h : A→ B in A the naturality square

G(A) G(B)

F (A) F (B)

G(h)

φA φB

F (h)
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is cleavage preserving.

Analogously with discrete opfibrations in [A ,Cat ], where the condition on the naturality
square of (ii) is automatic.

Proof. We prove (i) =⇒ (ii). Let A ∈ A . Taking X = y(A) in Definition 3.1 with
L = [A ,Cat ], we obtain that

φ ◦ − : [A ,Cat ] (y(A), G) → [A ,Cat ] (y(A), F )

is a split opfibration in Cat . By Yoneda lemma, we have isomorphisms that form a
commutative square

[A ,Cat ] (y(A), G) G(A)

[A ,Cat ] (y(A), F ) F (A)

∼=

φ◦− φA

∼=

We can then choose a cleavage on φA that makes it into a split opfibration in Cat such
that the square above is cleavage preserving. Given h : A → B in A we have that the
naturality square of φ on h is equal to the pasting

G(A) [A ,Cat ] (y(A), G) [A ,Cat ] (y(B), G) G(B)

F (A) [A ,Cat ] (y(A), F ) [A ,Cat ] (y(B), F ) F (B)

φA

∼=

φ◦−

−◦y(h) ∼=

φ◦− φB

∼= −◦y(h)
∼=

and is thus cleavage preserving.
When φ is a discrete opfibration, φA is discrete as well for every A ∈ A .
We now prove (ii) =⇒ (i). Let X ∈ [A ,Cat ], α : X → G, β : X → F and consider

θ : φ ◦ α =⇒ β. We need to produce a cartesian lifting θ
α
: α =⇒ θ∗α of θ to α.

X G

G
X F

α

θ∗α
φ

φα

β

θ
α

θ

As θ∗α is a natural transformation and θ
α
is a modification, we can define them on

components. Given A ∈ A and Z ∈ X(A), we define the image of the functor (θ∗α)A on
Z and the morphism (θ

α
)A,Z in G(A) to be given by the chosen cartesian lifting along φA
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of θA,Z to αA(Z):

αA(Z) (θ∗α)A(Z)

φA(αA(Z)) βA(Z)

(θ
α
)A,Z

φA φA

θA,Z

Given a morphism f : Z → Z ′ in X(A), we define (θ∗α)A(f) by cartesianity of (θ
α
)A,Z ,

making by construction (θ
α
)A into a natural transformation. (θ∗α)A is then automatically

a functor. In order to prove that θ∗α is a natural transformation, we need to show that
for every h : A→ B in A the following square is commutative:

X(A) G(A)

X(B) G(B)

(θ∗)A

X(h) G(h)

(θ∗)B

This is straightforward using the hypothesis that (G(h), F (h)) is cleavage preserving. The
argument shows at the same time that θ

α
is a modification. θ

α
is then a lifting of θ to α by

construction, as this can be checked on components. It is straightforward to show that it
is cartesian as well, inducing the required morphism on components by the cartesianity of
all the (θ

α
)A,Z . Coherences are shown using again that (G(h), F (h)) is cleavage preserving.

φ is split because all φA are split.
Given λ : K → X in [A ,Cat ], we prove that

L (X, G) L (K, G)

L (X, F ) L (K, F )

−◦λ

φ◦− φ◦−

−◦λ

is cleavage preserving. This means that

K X G

G
K X F

λ

α

θ∗α
φ

φ

λ

α

β

θ
α

θ

exhibits the chosen cartesian lifting of θ ⋆ λ to α ◦ λ. This works by construction, as the
lifting of every 2-cell along φ is reduced to lift morphisms of F (A) along φA for every
A ∈ A .
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When φA is a discrete opfibration for every A ∈ A , the argument above produces the
needed cartesian liftings. We only need to show that such liftings are unique. But any
lifting θ

α
needs to have as component (θ

α
)A,Z on A ∈ A and Z ∈ X(A) the unique lifting

of θA,Z to αA(Z) along φA.

3.6. Proposition. Let A be a small category and consider φ, ψ ∈ OpFib [A ,Cat ] (F ). Let

then ξ : φ→ ψ be a morphism in [A ,Cat ]/F . The following facts are equivalent:

(i) ξ : φ→ ψ is cleavage preserving;

(ii) for every A ∈ A , the component ξA : φA → ψA is cleavage preserving (between split
opfibrations in Cat ).

Proof. We prove (i) =⇒ (ii). Given A ∈ A we have that

G(A) [A ,Cat ] (y(A), G) [A ,Cat ] (y(A), H) H(A)

F (A) [A ,Cat ] (y(A), F ) [A ,Cat ] (y(A), F ) F (A)

φA

∼=

φ◦−

ξ◦− ∼=

ψ◦− ψA

∼= ∼=

is cleavage preserving.
We prove (ii) =⇒ (i). The equality of modifications that we need to prove can be

checked on components, where it holds by hypothesis.

Thanks to Proposition 3.5, we can define having small fibres for a discrete opfibration
in [A ,Cat ].

3.7. Definition. Let A be a small category. A discrete opfibration φ : G→ F in [A ,Cat ]
has small fibres if for every A ∈ A the component φA of φ on A has small fibres.

We denote as DOpFib s
[A ,Cat ] (F ) the full subcategory of DOpFib [A ,Cat ] (F ) on the dis-

crete opfibrations with small fibres.

3.8. Remark. The property of having small fibres for a discrete opfibration in [A ,Cat ]
is stable under pullbacks. Indeed taking components on A ∈ A preserves 2-limits in 2-
presheaves and discrete opfibrations in Cat with small fibres are stable under pullbacks.

We will also need the following result.

3.9. Proposition. Let L be a 2-category with pullbacks. The assignment F ∈ L 7→
OpFibL (F ) ∈ CAT extends to a pseudofunctor

OpFibL (−) : Lop → CAT .

Moreover, this pseudofunctor restricts to a pseudofunctor

DOpFib s
L (−) : Lop → CAT .
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Proof. On the underlying category of Lop, we define OpFibL (−) as the restriction of
the pseudofunctor given by the pullback (to consider opfibrations rather than general
morphisms). So given α : F ′ → F in L , we have

OpFibL (α) = α∗ : OpFibL (F ) → OpFibL (F ′)

We are also using Remark 3.3. We immediately get also the isomorphisms that regulate
the image of identities and compositions.

Given a 2-cell δ : α =⇒ β : F ′ → F in L , we define OpFibL (δ) = δ∗ as the natural
transformation with component on a split opfibration φ : G → F in L given by the
morphism δ∗φ : α

∗φ→ β∗φ induced by lifting δ ⋆ α∗φ along φ:

α∗G

β∗G G

F ′ F

α∗φ

δ∗φ
δ⋆α∗φ

β∗φ φ

α

β

δ

Indeed the codomain of the lifting of δ ⋆α∗φ along φ induces the morphism δ∗φ by the uni-
versal property of the pullback β∗G. δ∗ is a natural transformation because the morphisms
in OpFibL (F ) are cleavage preserving.

OpFibL (−) preserves identity 2-cells and vertical compositions of 2-cells because the

objects of OpFibL (F ) are split. We already know that the isomorphisms that regulate the
image of identities and compositions satisfy the 1-dimensional coherences. It only remains
to prove their naturality (actually, only the one for compositions). This essentially means
that it preserves whiskerings, up to pasting with the isomorphisms that regulate the
image of compositions. For whiskering on the left, this is true by the second condition of
Definition 3.1. For whiskerings on the right, we use that the universal square that exhibits
a pullback is cleavage preserving.

Thus we conclude that OpFibL (−) is a pseudofunctor. It then readily restricts to a

pseudofunctor DOpFib s
L (−).

4. Indexed Grothendieck construction

In this section, we present our main results. We prove an equivalence of categories between
split opfibrations in [A ,Cat ] over F and 2-copresheaves on

∫
F . This equivalence restricts

to one between discrete opfibrations in [A ,Cat ] over F with small fibres and Set -valued
copresheaves on

∫
F . We also show that both such equivalences are pseudonatural in F .

We introduce the explicit indexed Grothendieck construction and show how our results
recover known useful results. In particular, we recover the equivalence between slices
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of presheaves over F : A → Set and presheaves on
∫
F , that shows how the slice of a

Grothendieck topos is a Grothendieck topos. We interpret our main theorem as a 2-
dimensional generalization of this.

Let A be a small category and consider the functor 2-category [A ,Cat ].

4.1. Remark. We aim at proving that for every 2-functor F : A → Cat , there is an
equivalence of categories

OpFib [A ,Cat ] (F ) ≃
[∫
F,Cat

]
between split opfibrations in [A ,Cat ] over F (see Proposition 3.5) and 2-copresheaves on
the Grothendieck construction

∫
F of F .

Our strategy will be to use Theorem 2.9, that states that the Grothendieck construction∫
F of F is equivalently the oplax colimit of the 2-diagram F : A → Cat . Notice that

a (strict) 2-functor from a category to Cat is the same thing as a functor into the 1-
category Cat 0. In Remark 4.13, we will say what we could do to extend our results to A
a 2-category or F a pseudofunctor.

4.2. Proposition. There is an isomorphism of categories[∫
F,Cat 0

]
∼= [Aop,CAT ]oplax (∆1, [F (−),Cat 0])

which is (strictly) 2-natural in F .

Proof. We obtain the isomorphism of categories in the statement by Theorem 2.9, that
proves that

∫
F = oplax -colimF (see also Definition 2.7). The isomorphism is 2-natural

in F by a general result on weighted colimits, see Kelly’s [8] (Section 3.1). We can apply
this result on an oplax colimit as well because by Street’s [12] any oplax colimit is also a
weighted one.

4.3. Remark. Thanks to Proposition 4.2, we can reduce ourselves to apply the usual
Grothendieck construction on every index. For this we also need the pseudonaturality of
the Grothendieck construction (Proposition 2.12).

4.4. Proposition. There is an equivalence of categories

[Aop,CAT ]oplax (∆1, [F (−),Cat 0]) ≃ Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (F (−))

)
which is pseudonatural in F , where Ps [Aop,CAT ]oplax is the 2-category of pseudofunctors,
oplax natural transformations and modifications.

Proof. Notice that

[Aop,CAT ]oplax (∆1, [F (−),Cat 0]) ∼= Ps [Aop,CAT ]oplax (∆1, [F (−),Cat 0])

So it suffices to exhibit an equivalence

[F (−),Cat 0] ≃ OpFib (F (−))
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in the (large) 2-category Ps [Aop,CAT ]oplax. Indeed, for a general (large) 2-category,
postcomposing with a morphism that is an equivalence in the 2-category gives a functor
between hom-categories that is an equivalence of categories. The left hand side is certainly
a 2-functor, while the right hand side is a pseudofunctor by Proposition 3.9. We have
that the Grothendieck construction gives a pseudonatural adjoint equivalence

G− : [−,Cat 0] ≃ OpFib (−) ,

by Proposition 2.12. Whiskering it with F op on the left gives another pseudonatural
adjoint equivalence, that is then also an equivalence in the 2-category Ps [Aop,CAT ]oplax
as needed. The quasi-inverse is given by extending to a pseudonatural transformation
the quasi-inverses of the Grothendieck construction on every component. This can always
be done by choosing as structure 2-cells the pasting of the inverse of the structure 2-
cells of the Grothendieck construction with unit and counit of the adjoint equivalences
on components. The triangular equalities then guarantee that we have an equivalence in
Ps [Aop,CAT ]oplax (we have that the two composites are isomorphic to the identity).

We now prove that the equivalence of categories

GF (−)◦− : [Aop,CAT ]oplax (∆1, [F (−),Cat 0]) ≃ Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (F (−))

)
that we have produced is pseudonatural in F .

We show that Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (+(−))

)
: [A ,Cat ]op → CAT is a

pseudofunctor. Given α : F ′ → F in [A ,Cat ], we define the image on α to be α∗
− ◦ −,

where
α∗
− : OpFib (F (−)) ===⇒

pseudo
OpFib (F ′(−)) : Aop → CAT

is the pseudonatural transformation described as follows. For every A ∈ A , we define
(α∗

−)A := α∗
A (see Proposition 3.9). For every h : A → B in A , we define the structure

2-cell (α∗
−)h to be the pasting

OpFib (F (B)) OpFib (F ′(B))

OpFib (F (A)) OpFib (F ′(A))

∼=

∼=
(F (h)◦αA)∗F (h)∗

α∗
B

F ′(h)∗

α∗
A

where the two isomorphisms are the ones given by the pseudofunctoriality of OpFib (−)
(see Proposition 3.9). We are using that F (h) ◦αA = αB ◦F ′(h) by naturality of α. Then
α∗
− is a pseudonatural transformation because OpFib (−) is a pseudofunctor. As α∗

− is a
morphism in the (large) 2-category Ps [Aop,CAT ]oplax, we have that α∗

− ◦ − is a functor.

Considering F ′′ α′
−→ F ′ α−→ F in [A ,Cat ], there is a an invertible modification

(α′
−)

∗ ◦ α∗
−
∼= (α ◦ α′)

∗
−
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with components given by the pseudofunctoriality of OpFib (−). And then whiskering
with this gives the natural isomorphism that regulates the image on the composite α ◦α′.

Given δ : α =⇒ β : F ′ → F in [A ,Cat ], we define the image on δ to be δ∗− ⋆−, where δ∗−
is the modification that has components δ∗A on every A ∈ A (see Proposition 3.9). This
forms indeed a modification by pseudofunctoriality of OpFib (−). It is straightforward to

check that Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (+(−))

)
is a pseudofunctor.

We prove that GF (−) ◦ − is pseudonatural in F ∈ [A ,Cat ]op. Given α : F ′ → F in
[A ,Cat ], we define the structure 2-cell on α to be Gα− ⋆ −, where Gα− is the invertible
modification

[F (−),Cat 0] OpFib (F (−))

[F ′(−),Cat 0] OpFib (F ′(−))

≃
GF (−)

−◦α α∗
−∼=

Gα−

≃
GF ′(−)

with components defined by the pseudonaturality of the Grothendieck construction in the
base (see Proposition 2.12). The latter pseudonaturality also guarantees that Gα− is a
modification. Whence Gα− ⋆− is a natural isomorphism. We then conclude that GF (−)◦−
is pseudonatural in F ∈ [A ,Cat ]op because the needed equalities of modifications can be
checked on components, where everything holds because the Grothendieck construction
is pseudonatural in the base (we also need the 2-dimensional condition of this pseudonat-
urality).

4.5. Remark. An object of Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (F (−))

)
is essentially a

collection of opfibrations on every index A ∈ A together with a compact information on
how to move between different indexes. The last ingredient that we need in order to prove
our main result is that we can pack these data in terms of an opfibration in [A ,Cat ] over
F .

4.6. Proposition. There is an isomorphism of categories

Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (F (−))

) ∼= OpFib [A ,Cat ] (F )

which is pseudonatural in F (with the structure 2-cells being identities).

Proof. Given φ : G→ F an opfibration in [A ,Cat ], we produce an oplax natural

[φ] : ∆1 ===⇒
oplax

OpFibCat (F (−)) : Aop → CAT .

For every A ∈ A , we define [φ]A := φA, thanks to Proposition 3.5. For every h : A → B
in A , the structure 2-cell [φ]h is the functor φA → F (h)∗(φB) defined by the universal
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property of the pullback in Cat :

G(A)

F (h)∗(G(B)) G(B)

F (A) F (B)

G(h)

φA

[φ]h

F (h)∗(φB)
⌟

φB

F (h)

[φ]h is cleavage preserving because (G(h), F (f)) and the universal square that exhibits the
pullback are cleavage preserving, thanks to Proposition 3.5. [φ] is an oplax natural trans-
formation by the universal property of the pullback, using also the pseudofunctoriality of
the pullback.

Given
γ : ∆1 ===⇒

oplax
OpFibCat (F (−)),

we produce an opfibration γ̂ : G → F in [A ,Cat ]. We define the (2-)functor G sending
A ∈ A to dom(γA) and h : A→ B to the composite above of the diagram

dom(γA) F (h)∗ dom(γB) dom(γB)

F (A) F (A) F (B)

γh

γA
⌟

F (h)∗(γB) γB

F (h)

G is a functor because γ is oplax natural. For every A ∈ A , we define γ̂A := γA. Then
γ̂ is a natural transformation by construction of G. And the naturality squares of γ̂ are
cleavage preserving because every γh and every universal square that exhibits a pullback
are cleavage preserving. By Proposition 3.5, we conclude that γ̂ is a split opfibration in
[A ,Cat ].

We can extend both constructions to functors, that will be inverses of each other.
Given a cleavage preserving morphism ξ : φ → ψ between split opfibrations in [A ,Cat ]
over F , we produce a modification [ξ] : [φ] ≡⇛ [ψ]. For every A ∈ A , we define [ξ]A := ξA,
thanks to Proposition 3.6. It is straightforward to prove that this is a modification using
the universal property of the pullback. Then [−] is readily seen to be a functor, because
the conditions can be checked on components. Given a modification

ζ : γ ≡⇛ δ : ∆1 ===⇒
oplax

OpFibCat (F (−)),

we produce a cleavage preserving morphism ζ̂ : γ̂ → δ̂. For every A ∈ A , we define
ζ̂A := ζA, and this is then clearly cleavage preserving. ζ̂ is a natural transformation
because ζ is a modification. By Proposition 3.6, we conclude that ζ̂ is a cleavage preserving
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morphism. Then −̂ is readily seen to be a functor because the conditions can be checked
on components. It is straightforward to check that [−] and −̂ are inverses of each other.

We now prove the pseudonaturality in F , with the structure 2-cells being identities,
of the isomorphism of categories we have just produced. The left hand side extends to
a pseudofunctor by the proof of Proposition 4.4, while the right hand side extends to a
pseudofunctor by Proposition 3.9. Given a morphism α : F ′ → F in [A ,Cat ], we show
that the following square is commutative:

OpFib [A ,Cat ] (F ) Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (F (−))

)
OpFib [A ,Cat ] (F

′) Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (F

′(−))
)

≃

α∗ α∗
−◦−

≃

Let φ : G → F be a split opfibration in [A ,Cat ]. For every A ∈ A , since pullbacks in
[A ,Cat ] are calculated pointwise,

(α∗
− ◦ [φ])A = α∗

A(φA) = (α∗φ)A = [α∗φ]A.

For every h : A→ B in A , we have that [α∗φ]h is equal to the pasting

1 OpFib (F (B))] OpFib (F ′(B))

1 OpFib (F (A)) OpFib (F ′(A))

φB

∼=

∼=
(F (h)◦αA)∗F (h)∗

α∗
B

F ′(h)∗
[φ]h

φA α∗
A

by the universal property of the pullback, using again that pullbacks in [A ,Cat ] are
calculated pointwise. It is then easy to see that the square above is commutative on
morphisms ξ : φ→ ψ as well, since it can be checked on components A ∈ A .

We prove that identities are the structure 2-cells of an isomorphic pseudonatural trans-
formation

OpFib [A ,Cat ] (+) ∼= Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (+(−))

)
: [A ,Cat ]op → CAT

This means that the isomorphisms that regulate the image of the two pseudofunctors on
identities and compositions are compatible, and that the two pseudofunctors agree on 2-
cells. The first condition holds because it can be checked on components and pullbacks in
[A ,Cat ] are calculated pointwise (choosing pullbacks along identities to be the identity).
The second condition is, for every δ : α =⇒ β : F ′ → F in [A ,Cat ],

[−] ⋆ δ∗ = (δ∗− ⋆−) ⋆ [−]

This can be checked on components φ : G → F (split opfibration in [A ,Cat ]). On such
components we need to prove an equality of modifications, that can be then checked on
components A ∈ A . So we need to show

(δ∗φ)A = δ∗A(φA).
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This holds because the components of the liftings along φ are the liftings along the
components of φ. Indeed, for a general θ as below,

y(A) X G

G
y(A) X F

x

α

θ∗α
φ

φ

x

α

β

θ
α

θ

the second condition of Definition 3.1 ensures that the lifting of θA,x along φ is equal to
θ
α

A,x. But the former is also the lifting of θA,x (seen as a morphism in F (A)) along φA,
thanks to Proposition 3.5. And everything works on morphisms f : x → x′ in X(A) as
well by cartesianity arguments, using the naturality of θ

α

A.

We are now ready to prove our main result.

4.7. Theorem. Let A be a small category and consider the functor 2-category [A ,Cat ].
For every 2-functor F : A → Cat , there is an equivalence of categories

OpFib [A ,Cat ] (F ) ≃
[∫
F,Cat

]
between split opfibrations in [A ,Cat ] over F and 2-copresheaves on the Grothendieck con-
struction

∫
F of F . Moreover this equivalence is pseudonatural in F .

Proof. It suffices to compose the equivalences of categories of Proposition 4.2, Proposi-
tion 4.4 and Proposition 4.6.[∫

F,Cat 0

]
∼= [Aop,CAT ]oplax (∆1, [F (−),Cat 0]) ≃

≃ Ps [Aop,CAT ]oplax
(
∆1,OpFibCat (F (−))

) ∼= OpFib [A ,Cat ] (F )

Notice that a 2-functor from a category into Cat is the same thing as its underlying
functor. As all three equivalences are pseudonatural in F ∈ [A ,Cat ]op, so is the composite.

We can extract the explicit indexed Grothendieck construction from the proof of The-
orem 4.7.

4.8. Construction. [Indexed Grothendieck construction] We can follow the chain of
equivalences of the proof of Theorem 4.7 to get its explicit action. Let φ : G → F be a
split opfibration in [A ,Cat ] over F . We first produce the oplax natural transformation

[φ] : ∆1 ===⇒
oplax

OpFibCat (F (−))
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with [φ]A := φA for every A ∈ A and

G(A)

F (h)∗(G(B)) G(B)

F (A) F (B)

G(h)

φA

[φ]h

F (h)∗(φB)
⌟

φB

F (h)

for every h : A → B in A . Then we produce the oplax natural transformation with com-
ponents on A ∈ A and structure 2-cells on h : A→ B defined by the pasting

1 OpFib (F (B)) [F (B),Cat 0]

1 OpFib (F (A)) [F (A),Cat 0]

φB

F (h)∗

G ′
F (B)

−◦F (h)
[φ]h

φA G ′
F (A)

∼=G ′
F (h)

where G ′
− is the quasi-inverse of the Grothendieck construction. We have that G ′

F (A)(φA)

sends every X ∈ F (A) to the fibre (φA)X of φA over X and every morphism α : X → X ′

in F (A) to the functor
α∗ : (φA)X → (φA)X′

that lifts α (on morphisms, it is defined by cartesianity). The structure 2-cell on h is the
natural transformation with component on X ∈ F (A) given by

(φA)X
[φ]h−−→ (F (h)∗(φB))X ∼= (φB)F (h)(X)

which coincides with G(h).
Finally, we induce the 2-functor

G ′ (φ) :
∫
F −→ Cat

(A,X)

(B,F (h)(X))

(B,X ′)

(h,α)

(h,id)

(id,α)

7→

(φA)X

(φB)F (h)(X)

(φB)X′

G(h)

α∗

using the universal property of the oplax colimit
∫
F , as in the proof of Theorem 2.9.
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Let Z :
∫
F → Cat be a 2-functor. We produce the oplax natural transformation γ with

components on A ∈ A and structure 2-cells on h : A→ B in A defined by the pasting

1 [F (B),Cat 0] OpFib (F (B))

1 [F (A),Cat 0] OpFib (F (A))

Z◦incB

−◦F (h)

GF (B)

F (h)∗
Z⋆inch

Z◦incA GF (A)

∼=GF (h)

We have that GF (A) ◦ Z ◦ incA : G(A) → F (A) is the Grothendieck construction of the 2-
functor F (A) → Cat that sends every object X ∈ F (A) to Z(A,X) and every morphism
α : X → X ′ in F (A) to Z(id, α). Its domain G(A) has the following description:

an object is a pair (X, ξ) with X ∈ F (A) and ξ ∈ Z(A,X);

a morphism (X, ξ) → (X ′, ξ′) is a pair (α,Ξ) with α : X → X ′ in F (A) and
Ξ: Z(id, α)(ξ) → ξ′ in Z(A,X ′).

These are then collected as a split opfibration G (Z) : G → F in [A ,Cat ] over F whose
components on every A are the projections G(A) → F (A) on the first component. For
every h : A→ B in A , the functor G(h) is defined by the composite above in the diagram

G(A) F (h)∗G(B) G(B)

F (A) F (A) F (B)

γh

G(Z)A
⌟

F (h)∗(G(Z)B) G(Z)B

F (h)

Explicitly,
G(h) : G(A) −→ G(B)

(X, ξ)

(X ′, ξ′)

(α,Ξ) 7→
(F (h)(X), Z(h, id)(ξ))

(F (h)(X ′), Z(h, id)(ξ′))

(F (h)(α),Z(h,id)(Ξ))

We can see how this construction is indeed an indexed Grothendieck construction. We
essentially collect together triples (A,X, ξ) with A ∈ A , X ∈ F (A) and ξ ∈ Z(A,X).

4.9. Theorem. Let A be a small category. For every 2-functor F : A → Cat , the equiv-
alence of categories

OpFib [A ,Cat ] (F ) ≃
[∫
F,Cat

]
of Theorem 4.7 restricts to an equivalence of categories

DOpFib s
[A ,Cat ] (F ) ≃

[∫
F,Set

]
between discrete opfibrations in [A ,Cat ] over F with small fibres and Set -valued co-
presheaves on

∫
F . Moreover this equivalence is pseudonatural in F .
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Proof. The isomorphism of Proposition 4.2 restricts to one with Set on both sides in
the place of Cat 0 by 2-naturality in U of the isomorphism given by an oplax colimit (see
Definition 2.7). Pseudonaturality in F still holds by the same general argument that
guaranteed it with Cat 0 on both sides.

The equivalence of Proposition 4.4 restricts to one with Set in the place of Cat 0 on
the left hand side and discrete opfibrations with small fibres in the place of opfibrations
in the right hand side. Indeed the following is a commutative square of pseudonatural
transformations:

[F (−),Set ] DOpFib s
(F (−))

[F (−),Cat 0] OpFib (F (−))

GF (−)

GF (−)

On components A ∈ A , this is true by the classical Theorem 2.6. And it is straightforward
to check that it is true on structure 2-cells as well, since structure 2-cells are given by the
pseudofunctoriality of the pullback. Then pseudonaturality in F holds for the restricted
equivalence as well, as one can readily check.

The isomorphism of Proposition 4.6 restricts to one with discrete opfibrations with
small fibres on both sides in the place of opfibrations, because it suffices to look at the
components. Then pseudonaturality in F holds as well, precomposing the pseudonatural
transformation produced in the proof of Proposition 4.6 with the inclusion of discrete
opfibrations with small fibres into opfibrations.

4.10. Remark. When F : A → Set , the equivalence of categories

DOpFib s
[A ,Cat ] (F ) ≃

[∫
F,Set

]
becomes the well known

[A ,Set ]/F ≃
[∫
F,Set

]
.

Indeed any discrete opfibration φ : G→ F in [A ,Cat ] over F : A → Set with small fibres
needs to have G : A → Set , and all functors G → F in [A ,Set ] are discrete opfibrations
with small fibres. Our theorem guarantees that this equivalence is pseudonatural in F ,
which does not seem to appear in the literature.

When F is a representable y(A) : A → Set , we obtain the famous equivalence

[A ,Set ]
/
y(A) ≃

[A /A,Set
]

between slices of (co)presheaves and (co)presheaves on slices. We will apply its pseudo-
naturality in F in Example 5.9 to get a nice candidate for a Hofmann–Streicher universe
(see [6]) in 2-presheaves.
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4.11. Remark. The equivalence

[A ,Set ]/F ≃
[∫
F,Set

]
.

had many applications in geometry and logic. It is the archetypal case of the fundamental
theorem of elementary topos theory, as it shows that every slice of a Grothendieck topos
is a Grothendieck topos.

We can interpret our main theorem as a 2-dimensional generalization of this. Indeed,
the concept of (op)fibrational slice has recently been proposed as the correct upgrade of
slices to dimension 2. This idea appears in Ahrens, North and van der Weide’s [1], where
it is attributed to Shulman. Our equivalence

OpFib [A ,Cat ] (F ) ≃
[∫
F,Cat

]
says that every opfibrational slice of a Grothendieck 2-topos is again a Grothendieck 2-
topos. Notice that a morphism in a 2-category St (A , J) of stacks is a discrete opfibration
if and only if its underlying morphism in [Aop,Cat ] is so (see the second author’s [10]).

We can now explore some variations on the indexed Grothendieck construction.

4.12. Remark.We can change A to Aop and get the 2-category [Aop,Cat ] of 2-presheaves.
Then F : Aop → Cat . Be careful that, for opfibrations in [Aop,Cat ], we still need to apply
the Grothendieck construction to F as if we did not know that the domain of F is an
opposite category. We write

∫ op
F for this Grothendieck construction on F , to emphasize

that it is not the most natural one for a 2-functor Aop → Cat . We obtain

OpFib [Aop,Cat ] (F ) ≃
[∫ op

F,Cat
]

The most natural Grothendieck construction
∫
F of a contravariant 2-functor F : Aop →

Cat appears instead to handle fibrations in the place of opfibrations. Such Grothendieck
construction

∫
F is the lax colimit of F . Then −op : Cat → Cat co, where Cat co is the

dualization on 2-cells of Cat , preserves this colimit. We obtain that
(∫
F
)op

is the lax
colimit in Cat co of F (−)op, which means that(∫

F
)op

= oplax -colim(F (−)op)

in Cat . Then we have the following chain of equivalences of categories:[(∫
F
)op
,Cat 0

]
∼= [A ,CAT ]oplax (∆1, [F (−)op,Cat 0]) ≃

≃ Ps [A ,CAT ]oplax
(
∆1,FibCat (F (−))

) ∼= Fib [Aop,Cat ] (F )
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4.13. Remark. We believe that, when A is a 2-category, one can still obtain an equiva-
lence of categories

OpFib [A ,Cat ] (F ) ≃
[∫
F,Cat

]
where

∫
F is now the 2-Set -enriched Grothendieck construction (introduced by Street

in [12] and explored more in detail by the second author in [9]). In order to adapt our
proof of Theorem 4.7 to this setting, one would need

∫
F to be a kind of oplax colimit in

2-Cat . We believe that F is the 2-oplax colimit of F followed by the inclusion i of Cat
into 2-Cat , where a 2-oplax natural transformation is a Crans’s [4] oplax 1-transfor. Such
transformations have the same 1-dimensional conditions of an oplax natural transforma-
tion but now also have structure 3-cells on every 2-cell in A . Having as codomain 2-Cat ,
they compose well. The added structure 3-cells are precisely what one needs in order to
encode the 2-cells

δX : (f, F (δ)X) =⇒ (g, id) : (A,X) → (B,F (g)(X))

in
∫
F for every δ : f =⇒ g : A→ B in A . As explained by the second author in [9], every

2-cell in
∫
F is a whiskering of such particular 2-cells (in some sense, these 2-cells are

the only ones we need). The middle equivalence of the chain that proves our Theorem 4.7
would then be given by the 2-Set -enriched Grothendieck construction. Finally, the last part
of the chain would probably work as well, with the structure 3-cells managing to encode
the action of G on 2-cells. However, we have not checked these details.

Such generalization would be helpful also to handle non-split opfibrations and pseudo-
functors from

∫
F into Cat , for which we cannot reduce to functors into Cat 0. Of course,

for this, one could also extend the explicit indexed Grothendieck construction.
For the restriction to copresheaves and discrete opfibrations, we need to be careful that

2-Cat
(∫

F , i(Set )
)
∼= Cat

(
π∗
∫
F , Set

)
where π∗ is the left adjoint of i : Cat → 2-Cat . So a quotient of

∫
F by its 2-cells appears:

morphisms in
∫
F that were connected via a 2-cell becomes equal.

5. Examples

In this section, we show some interesting examples. We can vary both A and F in our main
results. We start with A = 1, that recovers the usual Grothendieck construction. A =
2 represents the simultaneous Grothendieck construction of two opfibrations connected
by an arrow. While A = ∆ considers (co)simplicial categories. We also explore other
examples. In particular, we obtain a nice candidate for a Hofmann–Streicher universe in
2-presheaves.
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5.1. Remark. [A = 1] When A = 1, the 2-category [A ,Cat ] reduces to Cat . A 2-functor
F : 1 → Cat is just a small category C and

∫
F = C . So Theorem 4.7 gives the classical

OpFib (C ) ≃ [C ,Cat ] .

The explicit indexed Grothendieck construction becomes the usual Grothendieck construc-
tion. Indeed the first part and the last part of the chain become trivial, while the middle
part is the Grothendieck construction on the unique index ∗ ∈ 1.

5.2. Example. [A discrete] When A is discrete, the 2-category [A ,Cat ] is a product of
copies of Cat . A 2-functor F : A → Cat just picks as many categories as the cardinality of
A , without bonds. Since the diagram F is parametrized by a discrete category, we have that∫
F = oplax -colimF becomes the coproduct of the categories picked by F . And

[∫
F,Cat

]
is then a collection of functors from every such category into Cat . On the other hand, by
Proposition 3.5, a split opfibration in [A ,Cat ] is just a collection of as many opfibrations
as the cardinality of A , without bonds. The indexed Grothendieck construction[∫

F,Cat
]
≃ OpFib [A ,Cat ] (F )

is the simultaneous Grothendieck construction of all the functors into Cat that are collected
as a single functor from the coproduct. This shows the indexed nature of the indexed
Grothendieck construction.

5.3. Example. [A = 2] When A = 2, the 2-category [A ,Cat ] is the arrow category of

Cat and F : 2 → Cat is a functor F̃ : C → D. The Grothendieck construction
∫
F has

as objects the disjoint union of the objects of C and of D, denoted respectively (0, C) and
(1, D) with C ∈ C and D ∈ D. The morphisms of

∫
F are of three kinds: morphisms

in C (over 0), morphisms in D (over 1) and morphisms over 0 → 1 that represents

the objects (C,D, F̃ (C) → D) of the comma category F̃ /D . On the other hand, given

G : 2 → Cat corresponding to G̃ : E → L , a split opfibration φ : G → F in [2,Cat ] is a
cleavage preserving morphism

E L

C D

G̃

φ0 φ1

F̃

between split opfibrations φ0 and φ1. So Theorem 4.7 gives an equivalence of categories
between morphisms of (classical) split opfibrations (in Cat ) which have F̃ as second compo-
nent and 2-copresheaves on a category that collects together C , D and the comma category

F̃ /D .
Following Construction 4.8, we get the explicit (quasi-inverse of the) indexed Grothen-

dieck construction in this case. The arrow above between split opfibrations φ0 and φ1 can
be reorganized as the functor

∫
F → Cat that sends
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(i) (0, C) to the fibre of φ0 on C and every morphism f in C to the functor f∗ that lifts
it along φ0;

(ii) (1, D) to the fibre of φ1 on D and every morphism g in D to the functor g∗ that
lifts it along φ1;

(iii) every morphism corresponding to an object (C,D, α : F̃ (C) → D) of the comma

category F̃ /D to the composite functor

(φ0)C
G̃−→ (φ1)F̃ (C)

α∗−→ (φ1)D.

In the particular case in which F : 2 → Set , we have that F̃ : S → T is a function
between sets. Then

∫
F is a poset with objects the disjoint union of the objects of S and

of T and such that (0, s) ≤ (1, t) with s ∈ S and t ∈ T if and only if F̃ (s) = t. On the
other hand, a split opfibration in [2,Cat ] over F is precisely a commutative square in Set
with bottom leg equal to F̃ .

5.4. Example. [A = I] When A is the walking isomorphism I, we have that F : I →
Cat is an invertible functor F̃ : C → D. Then

∫
F is similar to the one of Example 5.3, but

there is now a fourth kind of morphisms, that represents the objects (D,C, F̃−1(D) → C)

of the comma category F̃−1 /C .
If F : I → Set , the partial order of the poset constructed as in Example 5.3 now

becomes an equivalence relation. Every object is in relation precisely with itself and with
its copy in the other set.

5.5. Example. [A = ∆] When A is the simplex category ∆, we have that F : ∆ → Cat
is a cosimplicial category. This is equivalently a cosimplicial object in Cat or an internal
category in cosimplicial sets. The Grothendieck construction

∫
F collects together all the

cosimplexes in a total category, taking into account faces and degeneracies. Theorem 4.7
gives an equivalence of categories between split opfibrations between cosimplicial categories
over F and functors into Cat from the total category that collects all the cosimplexes given
by F .

5.6. Example. [F = ∆1] Given any small category A , we can consider F = ∆1: A →
Cat the functor constant at the terminal 1. We have that

∫
∆1 = A . So Theorem 4.7

gives an equivalence of categories

OpFib [A ,Cat ] (∆1) ≃ [A ,Cat ] .

Indeed, as being opfibred over 1 means nothing, a split opfibration φ : G → ∆1 is a
collection of categories G(A) and of functors G(h) for every h : A→ B in A . This forms
a functor A → Cat because φ is split.

Putting together this equivalence with that of Example 5.1, we obtain

OpFib [A ,Cat ] (∆1) ≃ OpFibCat (A)
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5.7. Example. [F = ∆B ] Given any small category A , we can consider F = ∆B : A →
Cat the functor constant at a fixed category B. We have that

∫
∆B = A ×B and G (∆B)

is the projection A × B → A . Theorem 4.7 characterizes functors A × B → Cat , and
hence the Cat -enriched profunctors, in terms of split opfibrations in [A ,Cat ] over ∆B.

5.8. Example. [semidirect product of groups] Let A be the one-object category BG cor-
responding to a group G. Consider then F : BG→ Cat that sends the unique object of BG
to the one-object category that corresponds to a group H. Functoriality of F corresponds
precisely to giving a group homomorphism ρ : G → Aut(H) where Aut(H) is the group
of automorphisms of H. Then the Grothendieck construction

∫
F is a one-object category

corresponding to the semidirect product H⋊ρG. Thus Theorem 4.7 characterizes functors
H ⋊ρ G→ Cat in terms of opfibrations in [BG,Cat ] over the functor F that corresponds
with ρ : G→ Aut(H).

5.9. Example. [Hofmann–Streicher universe in 2-presheaves] We apply Theorem 4.7
to get a nice candidate for a Hofmann–Streicher universe (see [6]) in the 2-category
[Aop,Cat ] of 2-presheaves. The second author has shown in the following paper [10] that
such candidate is indeed a 2-dimensional classifier in [Aop,Cat ], towards a 2-dimensional
elementary topos structure on [Aop,Cat ]. This was actually the starting motivation for
the second author to produce the indexed Grothendieck construction.

Recall that the archetypal subobject classifier is T : 1 → {T, F} in Set . Every subset
A ⊆ X is classified by its characteristic function χA : X → {T, F}. More precisely, pulling
back T : 1 → {T, F} gives a bijection

[X, {T, F}] ∼= Sub(X)

for every X ∈ Set , exhibiting Set as the archetypal elementary topos. Notice that injective
functions have as fibres either the empty set or the singleton; we could say that we are
classifying morphisms with fibres of dimension 0.

Moving to dimension 2, the 2-category Cat becomes the archetypal elementary 2-topos.
And we now want to classify morphisms with fibres of dimension 1, i.e. fibres that are gen-
eral sets. As proposed by Weber in [13], the correct 2-categorical generalization of subobject
classifiers are classifiers of discrete opfibrations. The archetypal 2-dimensional classifying
process is, in Cat , the construction of the category of elements (i.e. the Grothendieck con-
struction restricted to functors into Set ). This can be captured as a comma object from
1 : 1 → Set or as a pullback of the forgetful Set • → Set from pointed sets to sets, on the
line of Theorem 2.11. Doing either of the two provides an equivalence of categories

G (−) : [C ,Set ] ∼→ DOpFib s
(C )

for every C ∈ Cat , exhibiting Set as the 2-dimensional universe of the elementary 2-
topos Cat . Looking at the archetypal 2-dimensional classifying process, we can think of a
2-classifier as a Grothendieck construction inside a 2-category. So it is natural to expect
an indexed version of the Grothendieck construction to give a 2-classifier in the 2-category
of 2-presheaves.
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Given a category A , we would like to produce a 2-dimensional universe Ω in the 2-
category [Aop,Cat ] of 2-presheaves. We then want an equivalence of categories

G (−) : [F,Ω] ∼−→ DOpFib s
[Aop,Cat ] (F )

for every F ∈ [Aop,Cat ]. In particular, this needs to hold for representables F = y(A)
with A ∈ A . So by Yoneda’s lemma, we want

Ω(A) ≃ DOpFib s
[Aop,Cat ] (y(A))

Trying to define Ω to send A ∈ A precisely to DOpFib s
[Aop,Cat ] (y(A)), we only get a

pseudofunctor Ω′, defined by Proposition 3.9, that does not even clearly land in small
categories. Theorem 4.7 (together with Remark 4.12) offers a nice way to replace such
pseudofunctor Ω′ with a strict 2-functor Ω, that moreover lands in small categories. Indeed
it gives an equivalence of categories

DOpFib s
[Aop,Cat ] (y(A)) ≃

[∫ op
y(A) ,Set

]
that is pseudonatural in A ∈ Aop, by precomposing the equivalence that is pseudonatural in
F ∈ [Aop,Cat ]op with yop : Aop → [Aop,Cat ]op. So the right hand side of the equivalence
above gives a strict 2-functor Ω that is pseudonaturally equivalent to Ω′.

When A is a category,∫ op
y(A) =

(A /A
)op

and Ω(A) =
[(A /A

)op
,Set

]
.

Ω acts on morphisms by postcomposition. Notice that in this case y(A) : Aop → Set
and so the left hand side of the equivalence above simplifies to [Aop,Set ]

/
y(A) , but we

still need the pseudonaturality in A, that does not seem to appear in the literature. Our
Theorem 4.7 guarantees such pseudonaturality and therefore that we get a strict 2-functor
Ω pseudonaturally equivalent to Ω′. This is a Hofmann–Streicher universe, in line with
the ideas of [6] and with Awodey’s recent work [2]. The second author has shown in
the following paper [10] that Ω is indeed a 2-classifier in [Aop,Cat ], by an argument of
reduction of the study of 2-classifiers to dense generators. He has then restricted this
2-classifier to one in stacks.

When A is a 2-category, the 2-Set -enriched Grothendieck construction (introduced by
Street in [12] and explored by the second author in [9]) gives∫ op

y(A) =
(A /oplax A

)op
Checking the details of the strategy proposed in Remark 4.13, we would get a refined strict
2-functor Ω defined by

Ω(A) =
[
π∗
(A /oplax A

)op
,Set

]
.

Interestingly, such quotients of (op)lax slices give the right weights to represent (op)lax
(co)limits as weighted ones, by Street’s [12].
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Giuseppe Metere, Università degli Studi di Palermo: giuseppe.metere (at) unipa.it

Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca
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