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RELATIVE IDEALS IN HOMOLOGICAL CATEGORIES
WITH AN APPLICATION TO MV-ALGEBRAS

SERAFINA LAPENTA, GIUSEPPE METERE, AND LUCA SPADA

Abstract. Let A be a homological category and U : B → A be a faithful conservative
right adjoint. We introduce the notion of relative ideal with respect to U and show
that, under suitable conditions, any object of A can be seen as a relative ideal of some
object in B. We then develop a case study: we first prove that the category of hoops
is semi-abelian and that the category of MV-algebras is protomodular; then we apply
our results to the forgetful functor from the category of MV-algebras to the category of
Wajsberg hoops.

1. Introduction
The forgetful functor

U : CRing → CRng ,
from the protomodular category of commutative unital rings to the semi-abelian category
of commutative rings has a left adjoint F that freely adds the multiplicative identity. In
greater detail, if R is a commutative ring, then F (R) has underlying abelian group given
by the direct product R × Z, endowed with a multiplication defined by the formula

(r, n)(r′, n′) := (rn′ + nr′ + rr′, nn′) (1)

and with multiplicative identity (0, 1). It is easy to see that the ring R is contained in F (R)
as an ideal. By the arbitrary choice of R, this means that every commutative ring can be
seen as an ideal of a suitable unital commutative ring. More precisely, one can prove that
there is an equivalence of categories CRing/Z ≃ CRng which is defined by taking kernels
in CRng of the “objects” in the slice category.

Now, it is well known that ideals of commutative unital rings make it easier to deal
with congruences (and quotients) in CRing, but since they are not subobjects in CRing, it
is not immediate to describe them categorically. On the other hand, ideals of commutative
unital rings are subobjects in CRng. This makes it possible to exploit the categorical
properties of the semi-abelian category CRng in order to study the, still protomodular but
not pointed, category CRing.
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The purpose of this article is to set a study of these facts in a more general framework.
This is described at the beginning of Section 3, where we introduce a notion of U-ideal,
with U : B → A a faithful conservative right adjoint functor, and A a regular protomodular
category. The varietal case is analyzed in detail in Theorem 3.13, where we prove that,
under suitable conditions, U -ideals are the same as the 0-ideals due to Ursini [23]. In
Theorem 3.17 we establish a general version of the above equivalence, when the codomain
A is a homological category.

In Section 4, we develop a case study. In Theorem 4.3, we prove that the category Hoops
is semi-abelian, so that our setting applies to certain categories of interest in algebraic
logic, such as Wajsberg, Product, and Gödel hoops, with respect to MV, Product and
Gödel algebras. We analyze in detail the case of the forgetful functor

U : MVAlg → WHoops

from the category of MV-algebras into the category of Wajsberg hoops. In Corollary
4.9 we establish an equivalence of categories MVAlg/2 ≃ WHoops — 2 being the initial
MV-algebra. In particular, this shows that every Wajsberg hoop can be seen as (the order
dual of) an ideal of a suitable MV-algebra.

2. Preliminaries
In this section, we recall some standard categorical and algebraic notions and we fix the
related notation. For the sake of the reader, we refer to [6, 7] where all these notions can
be found, rather than pointing to the original papers where the concepts were introduced.

Let B be a category. We denote by PtB the category whose objects (called points) are
the split epimorphisms of B, together with a chosen section, i.e. the four-tuples (B, J, p, s)
in B such that p : B → J and p ◦ s = idJ . The morphisms of PtB are pairs of arrows
(f, g) : (B′, J ′, p′, s′) → (B, J, p, s) such that both the upward and downward directed
squares below commute.

B′

p′

��

f // B

p

��
J ′

s′

OO

g
// J

s

OO

(2)

Given an object J of B, we denote by PtB(J) the subcategory of PtB obtained by fixing
J ′ = J and g = idJ in diagram (2). This is called the category of points over J . In order to
simplify the notation, a morphism between two points (f, idJ) : (B′, J, p′, s′) → (B, J, p, s)
will usually be written f : (p′, s′) → (p, s).

If the category B has pullbacks, any arrow g : J ′ → J determines a functor g∗ : PtB(J) →
PtB(J ′) defined by pulling back along g the objects of PtB(J), as shown in the pullback
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diagram below:
J ′ ×J B

π1
��

π2 // B

p

��
J ′

s′

OO

g
// J

s

OO

(3)

Here s′ is the unique section of the first pullback projection π1 obtained by the universal
property of the pullback, i.e. it is such that π1 ◦ s′ = idJ ′ and π2 ◦ s′ = s ◦ g. The category
B is protomodular [8] if, for every arrow g, the functor g∗ defined above is conservative, i.e.
it reflects isomorphisms.

A category is pointed if it has a zero-object, that is, an object 0 that is both terminal
and initial. In a pointed category, a kernel of a map p : B → J is the pullback of p along
the initial map 0 → J . More generally, a kernel pair of p is the pullback of p with itself. An
(internal) equivalence relation is called effective when it is the kernel pair of a morphism.
A category B is regular, if it is finitely complete, has pullback-stable regular epimorphisms,
and all effective equivalence relations admit coequalizers. A regular category is Barr-exact
[4] when all equivalence relations are effective. A pointed regular protomodular category
is called homological; it is called semi-abelian [18] if it is also Barr exact and has finite
coproducts. The notion of protomodular (and semi-abelian) category encompasses a wide
range of categories of interest to algebraists, including categories of groups, rings, Lie
algebras, associative algebras, and cocommutative Hopf algebras, among others. Of course,
all abelian categories are semi-abelian.

Finally, recall that, if a finitely complete category is pointed, protomodularity is
equivalent to the so-called split short five lemma. For the reader’s convenience, here we
recall a version of it. Let (p, s) and (p′, s′) be two split epimorphisms over J , with kernels
(K, k) and (K, k′) respectively,

B
p

&&
ϕ

��

K

k

88

k′
&&

J
s

ff

s′
xxB′

p′
88

if ϕ is a morphism between them, i.e. it is such that p′ ◦ ϕ = p, ϕ ◦ s = s′ and ϕ ◦ k = k′,
then ϕ is an isomorphism.

3. Relative U -ideals
In this section we provide a definition that comprises the leading example in the Introduction
and several more.

3.1. Basic setting for relative U-ideals. Let A be a pointed category with pullbacks
and U : B → A be a faithful functor.
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3.2. Definition. A relative U -ideal of an object B of B (or U-ideal, or simply ideal,
when U is understood) is a morphism k : A → U(B) of A such that there exists a morphism
f : B → B′ of B that makes the following diagram a pullback in A:

A
k //

��

U(B)
U(f)
��

0 // U(B′)

In other words, a U -ideal is a kernel in A of a map that lives in B. Since kernels
are monomorphisms, U -ideals can be seen as subobjects in a “larger” category; when
the monomorphism k is understood, we feel free to say that the object A is a U -ideal of
B. Prototypical examples of U -ideals come from the inclusion U : Ring → Rng of unital
rings into rings: U -ideals in Ring are nothing but the usual bilateral ideals of ring theory.
Notice that in concrete situations, namely, when U is a forgetful functor between concrete
categories, we identify the subobject A of U(B) with its image, namely a subset A ⊆ B.

The example from ring theory suggests considering a more robust environment for
dealing with the notion of U -ideal.

3.3. Definition. A basic setting for relative U-ideals is an adjunction

B
U
// A

F

⊥��
, (4)

where the category A is homological and U is a conservative faithful functor.

3.4. Remark. The right adjoint U preserves finite limits and is conservative; therefore,
it reflects protomodularity (see [7, Example 3.1.9]); it follows that the category B is
protomodular, too. On the other hand, the left adjoint F preserves finite colimits, so the
object I := F (0) is initial in B.

3.5. Remark. It is worth to observe that, most often, the requirement for U to be faithful
comes for free. More precisely, for a functor U that preserves finite limits between finitely
complete categories, it is easy to show that “U conservative” implies “U faithful”.

3.6. Relative U-ideals and varieties of algebras. Let us recall the characterization
of protomodular varieties, as established by Bourn and Janelidze in [11].

3.7. Theorem. A variety V of universal algebras is protomodular if and only if there is a
natural number n, 0-ary terms e1, . . . , en, binary terms α1, . . . , αn, and (n+ 1)-ary term θ
such that:

V |= θ(α1(x, y), . . . , αn(x, y), y) = x and
V |= αi(x, x) = ei for i = 1, . . . , n .

(5)
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3.8. Remark. Since any variety is co-complete and Barr-exact, if V is protomodular and
pointed then it is semi-abelian. Notice that being pointed is equivalent to having a unique
definable constant 0 [7, Proposition 0.2.6], so, in the above characterization, one has n > 0
and necessarily e1 = · · · = en = 0.

3.9. Basic setting for varieties. Let A (resp. B) be the variety of universal algebras
with signature ΣA (resp. ΣB) defined by a set ZA (resp. ZB) of equations. Moreover,
we require A to be homological (thus semi-abelian), ΣA ⊆ ΣB and ZA ⊆ ZB. The
obvious forgetful functor U : B → A is an algebraic functor between the categories of
set-theoretical models of two algebraic theories. We call a functor U as above a basic
setting for varieties. Notice that, according to [6, Proposition 3.5.7 and Theorem 3.7.7], U
is a faithful conservative right adjoint, thus satisfies the conditions of Definition 3.3.

3.10. Remark. Janelidze recently introduced the novel notion of ideally exact category,
as a first step towards “a development of a new non-pointed counterpart of semi-abelian
categorical algebra” ([17]). It is immediate to see that, in our basic setting for varieties,
the category B is ideally exact (see [17, Theorem 3.1, Definition 3.2]).

We now recall the following definitions introduced by Ursini in [23] (see also [15]).

3.11. Definition. Let V be a variety with a constant symbol 0 in its signature ΣV.
• A term t(x1, . . . , xm, y1, . . . , yn) over ΣV is called 0-ideal term in the variables
y1, . . . , yn if

V |= t(x1, . . . , xm, 0, . . . , 0) = 0 .

• A non-empty subset H of an algebra A in V is called 0-ideal if, for every 0-ideal
term t(x1, . . . , xm, y1, . . . , yn) in the variables y1, . . . , yn, any a1, . . . , am ∈ A, and
any h1, . . . , hn ∈ H, one has

t(a1, . . . , am, h1, . . . , hn) ∈ H .

It is easy to see that the equivalence class of 0 under any given congruence is a 0-ideal.
Vice versa, one calls 0-ideal determined, or just ideal determined (cf. [15, Definition 1.3])
a variety V where every 0-ideal is the equivalence class of 0 for a unique congruence
relation. A relevant subclass of the class of ideal determined varieties is the class of the
so-called classically ideal determined [25]. A variety V is named so, when it satisfies the
conditions of Theorem 3.7, with all ei’s equal to a single constant 0 ∈ ΣV. By Remark 3.8,
it is immediately noticed that all semiabelian varieties are classically ideal determined.
Classically ideal determined varieties were introduced in [24] with the name BIT speciale
varieties, whereas ideal determined ones where called BIT varieties in [23]. The following
result needs no explanation.

3.12. Lemma. Let U : B → A be a basic setting for varieties. Then B is classically ideal
determined.

The next result establishes a connection between the varietal notion of 0-ideal and the
categorical notion of U -ideal.
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3.13. Theorem. Let U : B → A be a basic setting for varieties. A subset H of an algebra
B of B is a 0-ideal of B if and only if H ⊆ U(B) is a U-ideal of B with respect to
U : B → A.

Proof. Let H be a 0-ideal of the algebra B of B. All the 0-ideal terms of the variety
A are still 0-ideal terms when considered in the variety B. Therefore, H ⊆ U(B) is a
0-ideal in A. On the other hand, by [19, Equation 8.5] (see also [21]), in any semi-abelian
variety, the 0-ideals coincide with kernels, thus H is a kernel in A. Now we claim that it
is a kernel of a homomorphism U(f), with f in B. Indeed, since B is ideal determined,
there exists a unique congruence R on B such that H is the 0-class of R. Let f : B → Q
be the canonical quotient over R. By [6, Proposition 3.7.5], U preserves (and reflects)
coequalizers of equivalence relations, thus U(f) is the canonical quotient over U(R) in A.
It is easy to see that H ⊆ U(B) is then the 0-class of U(R), thus its normalization. In
conclusion, H ⊆ U(B) is the kernel of U(f), i.e. H is a U -ideal.

Vice versa, let H ⊆ B be a U -ideal of B. This means that H ⊂ U(B) is the kernel
in A of a morphism U(f), i.e. it is the 0-class of the kernel pair relation of U(f). Now,
again by [6, Proposition 3.7.5], U preserves and reflects small limits, as a consequence the
kernel pair of U(f) is the image under U of the kernel pair of f . Since U is constant on
the underlying sets, H is the 0-class of the corresponding congruence in B, hence it is a
0-ideal of B.

3.14. Augmentation U-ideals. Let us come back to a more general (not necessarily
varietal) situation and consider a basic setting as in (4). For every object A of A, let pA be
the morphism of B given by the universal property of the unit η of the adjunction, with
respect to the zero morphism 0: A → U(I). Namely, the unique map pA : F (A) → I such
that U(pA) makes the triangle below commute:

F (A)
∃!pA such that

��

A
ηA //

0 ""

UF (A)
U(pA)
��

I U(I)

(6)

3.15. Definition. We say that ηA is an augmentation U -ideal, or more simply an
augmentation ideal, if it is the kernel of U(pA).

Notice that the proposed terminology is consistent, since any augmentation U -ideal is
a U -ideal of F (A) according to Definition 3.2.

3.16. Remark. Recall from [22, Proposition 2.1] that the unit η of an adjunction is called
cartesian when the squares expressing its naturality are pullbacks. For a basic setting like
in (4), there is an unexpected connection between the notion of augmentation ideal and
that of cartesian unit: the unit η of the adjunction is cartesian if and only if

for every A in A, ηA is an augmentation ideal. (∗)
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3.17. Theorem. Suppose that in a basic setting like in (4) condition (∗) holds. Then,
the kernel functor

K : B/I → A

defined on objects by letting K(f) := Ker(U(f)), is an equivalence of categories. (Notice
that the kernel is computed in A.)

Proof. We observe that, since I is initial in B, every object in B/I is a split epimorphism
whose unique section is given by the initial arrow. Thus, the slice category B/I is the same
as the category PtB(I) of points over I, and one can consider the functor K : PtB(I) → A,
defined on objects by

K(f, s) := Ker(U(f)) .
K is essentially surjective. Indeed, given any object A of A, let us consider the point

(pA, σA), where pA is the map of diagram (6) and σA its unique section. K(pA, σA) is a
kernel of U(pA), moreover, by condition (∗), also A is a kernel of U(pA), therefore the two
are isomorphic to each other.

K is faithful. Indeed, let us consider two morphisms ϕ, ϕ′ : (f, s) → (f ′, s′) between
points over I, and suppose K(ϕ) = ψ = K(ϕ′). The situation is represented by the
diagram below:

Ker(f)

ψ

��

i // U(B)
U(f)

**
U(ϕ)

��

U(ϕ′)

��

U(I)
U(s)

jj

U(s′)
ttKer(f ′)

i′
// U(B′)

U(f ′)
44

Recall that, since A is homological and hence protomodular, by [7, Lemma 3.1.22] the pair
(i, U(s)) is jointly strongly epic. We prove that U(ϕ) and U(ϕ′) are equal by precomposing
them with the pair (i, U(s)). Indeed, by hypothesis,

U(ϕ) ◦ i = i′ ◦ ψ = U(ϕ′) ◦ i .

Furthermore, since I is initial,
ϕ ◦ s = s′ = ϕ′ ◦ s ,

and therefore
U(ϕ) ◦ U(s) = U(ϕ′) ◦ U(s) .

Hence U(ϕ) = U(ϕ′), and by the faithfulness of U , we conclude ϕ = ϕ′.
K is full. We have to prove that, given two points (f, s) and (f ′, s′) as above, and a

morphism ψ : K(f, s) → K(f ′, s′), one can find a morphism of points ϕ : (f, s) → (f ′, s′)
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such that K(ϕ) = ψ. To this end, let us consider the following construction:

Ker(f)

ψ

��

ηKer(f) ))

i // U(B)
U(f)

++
UF (Ker(f))

U(τ)

OO

U(γ)
��

U(pKer(f))
// U(I)

U(s)

kk

U(s′)
ss

U(σKer(f))
oo

Ker(f ′)
i′

// U(B)′

U(f ′)

33

By the universal property of the unit ηKer(f), we obtain the unique morphism τ : F (Ker(f)) →
B such that U(τ) ◦ ηKer(f) = i. In fact, one also has f ◦ τ = pKer(f), since, by the universal
property of the unit, there exists a unique arrow F (Ker(f)) → I whose image under
U , precomposed with ηKer(f), equals 0. Notice that, by the short five lemma, U(τ) is
an isomorphism. Since U is conservative, τ is an isomorphism too. Similarly, by the
universal property of the unit, there exists a unique morphism γ : F (Ker(f)) → B′ such
that U(γ) ◦ ηKer(f) = i′ ◦ ψ. Moreover, repeating the same argument as above, one easily
sees that γ gives a morphism of points (pKer(f), σKer(f)) → (f ′, s′) over I. Let us define
ϕ = γ ◦ τ−1. It is immediate to notice that ϕ yields a morphism of points over I, as
required. Moreover, one readily checks that γ ◦ τ−1 ◦ i = γ ◦ ηKer(f) = i′ ◦ ψ, so that
K(ϕ) = ψ.

3.18. Remark. The proof of Theorem 3.17 can also be obtained by a less explicit and
more general argument, as explained by G. Janelidze in [17, Remark 2.7(b)].

3.19. Example. [Unitalization of associative algebras] Let us fix a commutative unital
ring R and consider the forgetful functor

U : UAss → Ass

from the category of unital associative R-algebras to the semi-abelian category of associative
R-algebras. The functor U has a right adjoint F which freely adds the multiplicative
identity. Given an associative algebra A, the unital associative algebra F (A) has an
underlying abelian group given by the direct product A×R endowed with a multiplication
defined by

(a, r)(a′, r′) := (r′a+ ra′ + aa′, rr′), (7)
a scalar multiplication

r(a, r′) := (ra, rr′), (8)
and a multiplicative identity (0, 1). The ring R is the initial algebra in UAss. Since
condition (∗) holds, by Theorem 3.17, we get an equivalence of categories UAss/R ≃ Ass,
it follows that the U -ideals here are precisely the bilateral ideals of unital associative
algebras.
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3.20. Remark. The functor F is not conservative, in general. A counterexample in the
case of associative algebras is given in [1].

3.21. Example. [Unitalization of C∗-algebras] Let CStar denote the category of non-
unital C∗-algebras, with ∗-homomorphisms as arrows. CStar is a semi-abelian category
(see [14]), moreover, if UCStar denotes the category of unital C∗-algebras, the forgetful
functor U : UCStar → CStar admits a faithful conservative left adjoint F . For a C∗-algebra
A, its unitalization F (A) underlies the complex vector space A⊕ C, with multiplication
as in (7), unit (0, 1) and involution

(a, z)∗ := (a∗, z)

where z is the complex conjugate of z. Given that condition (∗) holds, Theorem 3.17
establishes an equivalence of categories UCStar/C ≃ CStar.

3.22. Example. Recall that a Boolean ring is a commutative ring R where all elements are
idempotent. Boolean algebras can be seen as Boolean rings with unit, with the operations
translating in this way:

x ∨ y = x+ xy + y, x ∧ y = xy, x+ y = (x ∧ ¬y) ∨ (¬x ∧ y) .

Let us denote by U : BooAlg → BooRng the forgetful functor from Boolean algebras to
Boolean rings, which is nothing but the restriction to BooAlg of the functor U : CRing →
CRng recalled in the introduction. In fact, the left adjoint restricts, too. Since the
category of Boolean rings is semi-abelian and condition (∗) holds, Theorem 3.17 applies
and provides the equivalence of categories BooAlg/B2 ≃ BooRng, where B2 = {0, 1} is the
initial Boolean algebra.

The next section is devoted to the study of a similar situation, stemming from algebraic
logic, that involves MV-algebras instead of Boolean algebras.

4. Hoops and basic algebras
In this section, we prove that the variety of hoops is semi-abelian. From this fact,
we immediately deduce that many varieties of algebras used in substructural logic are
protomodular. In [20] Johnstone proves that the variety HSLat of Heyting semilattices
is semi-abelian and, in turns, that the variety HAlg of Heyting algebras is protomodular.
His argument uses the characterization of protomodular varieties by Bourn and Janelidze
(as recalled in Theorem 3.7). Our proof of the fact that hoops are semi-abelian relies on
the same terms as those used in [20], with only one of them adapted to our more general
framework. Notice that our result is not a special case of Johnstone’s; on the contrary, the
latter can be deduced from our Theorem 4.3.

At the end of the section, we apply Theorem 3.17 to the forgetful functor from MV-
algebras to Wajsberg hoops. We refer the interested reader to [5, 9, 10, 12] for the missing
notions on hoops and basic algebras.
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4.1. Hoops are semi-abelian. A hoop is an algebra (A; ·,→, 1) such that (A; ·, 1) is a
commutative monoid and the following equations hold:

(H1) x → x = 1 ;

(H2) x · (x → y) = y · (y → x) ;

(H3) (x · y) → z = x → (y → z) .

Obviously, the class of hoops forms an algebraic variety (see [10, Theorem 1.8]), which we
denote by Hoops. In the following, we adopt the convention that the monoid operation
· is more binding than the residual operation →. Any hoop is partially ordered by the
relation ≤ (often referred to as its natural order), defined by

x ≤ y iff x → y = 1 iff ∃u(x = u · y) . (9)

In fact, the rightmost condition above describes the inverse right-divisibility relation of the
monoid (A; ·, 1), where u is the residual y → x. Furthermore, with respect to this partial
order, hoops are ∧-semilattices and the meet is term-definable as

x ∧ y := x · (x → y). (D)

Hoops with their homomorphisms form a category which we denote by Hoops.
Given a hoop (A; ·,→, 1), a subset F of A is called an implicative filter, or simply a

filter, if 1 ∈ F and whenever x ∈ F and x → y ∈ F , then also y ∈ F .

4.2. Lemma. [10, Theorem 1.6] A subset F ⊆ A is a filter on A if and only if (F ; ·, 1) is
a submonoid of (A; ·, 1) which is upward closed with respect to the natural order ≤ of the
hoop.

In Hoops, filters determine congruences and vice versa (see [10, Theorem 1.11]); in fact,
the formers coincide with kernels of homomorphisms and are also subhoops.

4.3. Theorem. The variety Hoops is semi-abelian.

Proof. Since Hoops is a variety of algebras, it has finite coproducts and is Barr-exact.
Furthermore, Hoops is pointed, as the one-element hoop is both initial and terminal. To
conclude, we prove that Hoops is protomodular. Define the terms:

e1 := 1 , e2 := 1 , α1(x, y) := (x → y) ,

α2(x, y) := (((x → y) → y) → x) , θ(x, y, z) := ((x → z) · y) .
Now, α1(x, x) = x → x = 1 by axiom (H1); similarly,

α2(x, x) = ((x → x) → x) → x = (1 → x) → x = x → x = 1,
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where 1 → x = x by [10, Lemma 1.5]. Finally,

θ(α1(x, y), α2(x, y), y) = ((x → y) → y) · (((x → y) → y) → x)
= x · (x → ((x → y) → y)) by (H2)
= x · (x · (x → y) → y) by (H3)
= x · ((x → y) → (x → y)) by (H3)
= x · 1 = x by (H1)

Thus, Theorem 3.7 applies.
Notice that, as remarked in [11], p(x, y, z) := θ(α1(x, y), α2(x, y), z) is a Mal’tsev term.

Indeed, p(x, y, y) = x holds by the above computations. Moreover:

p(x, x, y) = (α1(x, x) → y) · α2(x, x) = (1 → y) · 1 = y.

Thus, as any semi-abelian variety, Hoops is also a Mal’tsev variety.
We briefly recall below the definitions of some subvarieties of hoops well-known for

their role in the algebraic study of logic. The equations on the left define the subvarieties
of hoops indicated on the right, respectively. Below we use x ∨ y as an abbreviation for
((x → y) → y) ∧ ((y → x) → x).

(x → y) → y = (y → x) → x Wajsberg hoops (WHoops) (W)
(x → y) ∨ (y → x) = 1 Basic hoops (BHoops) (S)
x · x = x Idempotent hoops (IHoops) (I)
(S) + (I) Gödel hoops (GHoops)
(S) + (x → z) ∨ ((y → x · y) → x) = 1 Product hoops (PHoops).

Idempotent hoops are term equivalent to Brouwerian semilattices (also known as
Heyting semilattices, i.e. the {∧,→, 1}-subreducts of Heyting algebras) by defining the
hoop operation as x · y := x∧ y in any Brouwerian semilattice (see also [10, Theorem 1.22]).
If the theory of Basic hoops is expanded by adding a constant 0 and an axiom stating
that 0 is the minimum of the algebra, one obtains Basic algebras. The same expansion
applied to Wajsberg, Product and Gödel hoops, yields the varieties of Wajsberg, Product
and Gödel algebras. Algebras obtained through the expansion of idempotent hoops are
term equivalent to Heyting algebras (see [3, Section 4]).

Thus, Theorem 4.3 has two immediate corollaries. The first, to our knowledge, is new;
the second is Johnstone’s result in [20].

4.4. Corollary. The varieties of Basic, Wajsberg, Product and Gödel algebras are
protomodular and the varieties of Basic, Wajsberg, Product and Gödel hoops are semi-
abelian.
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4.5. Corollary. The variety HSLat of Heyting semilattices is semi-abelian, and the
variety IAlg of Heyting algebras is protomodular.

Summing up, the algebraic categories GHoops, PHoops, BHoops and WHoops are semi-
abelian by Corollary 4.4, thus homological. Clearly, forgetful functors U : XAlg → XHoops
that forget the constant 0 are algebraic for any X ∈ {G,P,W,B, I}, and finally the two-
element algebra 2 = {0, 1} is initial in each of the above-mentioned categories of algebras.
This provides several instances of the basic setting of diagram (4). In the next section,
we explore the case of Wajsberg algebras. Although we do not explore in detail the other
cases apart from MV-algebras, we mention that the recent results in [13] on the algebraic
closure in Product and Gödel hoops hint at some connection with our setting.

4.6. Wajsberg hoops and MV-algebras.

4.7. Definition. An MV-algebra is an algebra (A; ⊕,¬, 0) that satisfies:
1. x⊕ (y ⊕ z) = (x⊕ y) ⊕ z ;

2. x⊕ y = y ⊕ x ;

3. x⊕ 0 = x ;

4. ¬¬x = x ;

5. x⊕ ¬0 = ¬0 ;

6. ¬(¬x⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x .
Further derived operations can be defined as follows:

1 := ¬0 , x⊙ y := ¬(¬x⊕ ¬y) , x → y := ¬x⊕ y

x ∨ y := ¬(¬x⊕ y) ⊕ y and x ∧ y := x⊙ (¬x⊕ y),
It can be proved that with these definitions (A; ⊙,→, 1, 0) is a Wajsberg algebra and
(A; ∨,∧, 0, 1) is a bounded distributive lattice with top and bottom. In fact, as shown in
[12, Lemma 4.2.2 and Theorem 4.2.5], the variety of Wajsberg algebras is term equivalent
to the variety MVAlg of MV-algebras. Therefore, modulo a term equivalence, there is a
functor U : MVAlg → WHoops that forgets the constant 0.

The kernels of homomorphisms of MV-algebras are called ideals and can be characterized
as follows. A subset I ⊆ A of an MV-algebra is an ideal if and only if it is a submonoid of
(A; ⊕, 0) which is downward closed with respect to the natural order ≤ of the MV-algebra.
This may cause terminology clash, since kernels of MV-algebras are no longer kernels when
considered in the language of Wajsberg algebras. In fact, in MV-algebras, the roles of
filters and ideals are completely interchangeable. Indeed, for any MV-algebra (A; ⊕,¬, 0),
the negation operation yields an isomorphism of MV-algebras:

¬ : (A; ⊕,¬, 0) −→ (A; ⊙,¬, 1) (10)
that maps ideals to filters and vice versa. For this reason, we will (unconventionally) call
kernels the filters given by the inverse image of 1 under an arbitrary MV-homomorphism.
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4.8. The MV-closure revisited. When the basic setting is instantiated in the case
MV-algebras, the left adjoint to U : MVAlg → WHoops is called MV-closure of a Wajsberg
hoop, and has been described in [2]. It is obtained by freely adding a neutral element 0
for the operation ⊕ defined in an arbitrary Wajsberg hoop (W ; ⊙,→, 1) as

w ⊕ w′ := (w → (w ⊙ w′)) → w′ , w, w′ ∈ W .

The resulting MV-algebra has an operation ⊕ that extends the former.
Here we revisit the construction given in [2], adapting it to our notational choices.

Consider a Wajsberg hoop (W ; ⊙,→, 1). We define the MV-algebra

M(W ) := (W × 2; ⊕,¬, 0) ,

where 0 := (1, 0), ¬(w, i) := (w, 1 − i), and

(w, 1) ⊕ (w′, 1) := (w ⊕ w′, 1) , (w, 0) ⊕ (w′, 0) := (w ⊙ w′, 0) ,
(w, 0) ⊕ (w′, 1) = (w′, 1) ⊕ (w, 0) := (w → w′, 1) .

This construction is functorial by [2, Corollary 3.7] and, as explained in [2], it gives the
left adjoint M to the forgetful functor U .

As can be deduced from [2, Theorem 3.5], for every Wajsberg hoop W , the unit com-
ponent of the adjunction ηW : W → U(M(W )) is given by ηW (w) := (w, 1). Furthermore,
2 is a retract of M(W ) by the maps pW (w, i) := i and σW (i) := (1, i). Therefore, there is
a split short exact sequence:

W
ηW // UM(W )

U(pW )// U(2)
U(σW )
oo .

Notice that the split epimorphism pW is a homomorphism of MV-algebras, therefore σW
is its unique section in MVAlg. Moreover, the kernel of pW computed in WHoops is the
unit ηW of the adjunction, thus condition (∗) holds. The following statement translates
Theorem 3.17.

4.9. Corollary. The kernel functor

K : MVAlg/2 → WHoops

defined on objects by letting, for f : A → 2, K(f) := Ker(f), is an equivalence of categories.
As a consequence of Corollary 4.9, W can be seen as a maximal filter of M(W ) (see

also [2, Theorem 3.5]).
The inverse functor of the equivalence K provides a unitalization functor. As in the

case of rings, associative algebras, etc., the unitalization can be expressed as a semidirect
product. A categorical reason for this is the fact that the slice category over an initial
object coincides with the category of points and, in any semi-abelian category, points are
equivalent to actions. In the case under investigation, this is better understood by making
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explicit the essential surjectivity of the inverse functor of K. To this end, let us consider a
homomorphism of MV-algebras f : A → 2. Since 2 is initial in MVAlg, f comes equipped
with a unique section s : 2 → A which is an MV-homomorphism and witnesses the fact
that f is a retraction. Let us call W the filter f−1(1), which is the kernel of f with respect
to its hoop structure (⊙,→, 1). Then the assignment ϕ : M(W ) → A given by

(w, i) 7→ (s(i) → w) ⊙ (w → s(i)) (11)

is an isomorphism, as we check by a case inspection. Indeed, ϕ preserves ⊕:

ϕ(w, 1) ⊕ ϕ(w′, 1) = (1 → w) ⊙ (w → 1) ⊕ (1 → w′) ⊙ (w′ → 1)
= w ⊙ 1 ⊕ w′ ⊙ 1
= w ⊕ w′

= (1 → w ⊕ w′) ⊙ (w ⊕ w′ → 1)
= ϕ(w ⊕ w′, 1)
= ϕ((w, 1) ⊕ (w′, 1)) ,

ϕ(w, 0) ⊕ ϕ(w′, 1) = (0 → w) ⊙ (w → 0) ⊕ (1 → w′) ⊙ (w′ → 1)
= 1 ⊙ ¬w ⊕ w′ ⊙ 1
= ¬w ⊕ w′

= w → w′

= ϕ(w → w′, 1)
= ϕ((w, 0) ⊕ (w′, 1)) ,

ϕ(w, 0) ⊕ ϕ(w′, 0) = (0 → w) ⊙ (w → 0) ⊕ (0 → w′) ⊙ (w′ → 0)
= 1 ⊙ ¬w ⊕ 1 ⊙ ¬w′

= ¬w ⊕ ¬w′

= ¬(w ⊙ w′)
= (0 → w ⊙ w′) ⊙ (w ⊙ w′ → 0)
= ϕ(w ⊙ w′, 0)
= ϕ((w, 0) ⊕ (w′, 0)) ;

ϕ preserves the negation:

¬ϕ(w, 1) = ¬((1 → w) ⊙ (w → 1))
= ¬(w ⊙ 1)
= ¬w
= (0 → w) ⊙ (w → 0)
= ϕ(w, 0)
= ϕ(¬(w, 1)) ,

¬ϕ(w, 0) = ¬((0 → w) ⊙ (w → 0))
= ¬(1 ⊙ ¬w)
= w

= (1 → w) ⊙ (w → 1)
= ϕ(w, 1)
= ϕ(¬(w, 0)) .
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Finally, ϕ preserves the constant:

ϕ(1, 0) = (0 → 1) ⊙ (1 → 0) = 1 ⊙ 0 = 0.

This shows that the map ϕ is a homomorphism of MV-algebras. Since ϕ commutes
with the kernels, the sections and the retractions, is indeed an isomorphism, by the split
short five lemma.
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