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FROM SPECKER ℓ-GROUPS TO BOOLEAN ALGEBRAS VIA Γ

DANIELE MUNDICI

Abstract. The author constructed in 1986 an equivalence Γ between abelian ℓ-groups
with a strong unit and C.C. Chang MV-algebras. In 1958 Chang proved that boolean
algebras coincide with MV-algebras satisfying the equation x ⊕ x = x. In this paper it
is proved that Γ yields, by restriction, an equivalence between the category S of Specker
ℓ-groups whose distinguished unit is singular, and the category of boolean algebras. As a
consequence, Grothendieck’s K0 functor yields an equivalence between abelian Bratteli
AF-algebras and the countable fragment of S. An equivalence in the opposite direction
is obtained by a combination of Γ with the Stone and Gelfand dualities.

to Ernst Paul Specker, in memoriam

1. Introduction

. . . and one may say that the invention of functors is one of the main goals of modern

mathematicians, and one which usually yields the most startling results.

J. Dieudonné, [12, p.236]

By an ℓ-group G we mean a lattice-ordered abelian group. By a unital ℓ-group we mean a
pair (G, u) where G is an ℓ-group and u is a strong order-unit of G, [4, 2.2.12]. To avoid
trivialities, u ̸= 0. Throughout this paper, by a “unit” in an ℓ-group H we will mean a
strong order-unit. When an ℓ-homomorphism ψ:G → G′ satisfies ψ(u) = u′ we say that
ψ is unital (or unit-preserving), and we write ψ: (G, u) → (G′, u′).

We refer to [4] for ℓ-groups and their spectral spaces. An element s in an ℓ-group G is
said to be singular if s ≥ 0 and t ∧ (s− t) = 0 for each t ∈ G with 0 ≤ t ≤ s. An ℓ-group
is a Specker ℓ-group if it is generated, as a group, by its singular elements. For Specker
ℓ-groups we refer to [3, 9, 10, 16].

An MV-algebra is a structure A = (A, 0,¬,⊕) satisfying the following equations:

x⊕ (y ⊕ z) = (x⊕ y) ⊕ z

x⊕ 0 = x

¬¬x = x
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x⊕ ¬0 = ¬0

¬(¬x⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

A straightforward verification with the help of [8, 1.7] shows that Chang’s original
axioms [7] for MV-algebras are equivalent to the list of six axioms in [8, Definition 1.1.1],
given by the present axiomatization together with the commutativity axiom x⊕y = y⊕x.
In [17] it is shown that commutativity follows from the five equations listed here.

Boolean algebras coincide with idempotent MV-algebras, i.e., MV-algebras satisfying
the equation x⊕x = x. Furthermore, in any boolean algebra the MV-algebraic operation
⊕ coincides with the underlying lattice operation ∨. See [7, 1.16-1.17] or [8, 1.5.3 (i)↔(vi)].
Since any homomorphism of two boolean algebras qua MV-algebras is automatically a
boolean homomorphism, boolean algebras are a full subcategory of MV-algebras. To
avoid trivialities, in all MV-algebras in this paper 0 ̸= ¬0.

In [19, §3] an equivalence Γ is constructed between the category of unital ℓ-groups with
unital ℓ-homomorphisms and the category of MV-algebras with their homomorphisms.
See Theorems 2.1 and 2.3 for the main properties of Γ used in this paper. A functor Ξ
providing a converse categorical equivalence between MV-algebras and unital ℓ-groups is
described in Theorem 2.2 following [8, §7.1].

In view of Theorem 2.1 one may ask which (presumably relevant in the literature)
category of unital ℓ-groups is equivalent, via Γ, to boolean algebras, qua idempotent MV-
algebras. The answer given by Theorem 3.2 is that the Γ functor restricts to a categorical
equivalence between

the category S of unital Specker ℓ-groups whose distinguished unit is singular,
with their unit-preserving ℓ-homomorphisms,

and

the category BA of boolean algebras, with their homomorphisms.

In Corollary 3.4 we prove that (G, u) is a unital Specker ℓ-group whose distinguished
unit u is singular if and only if (G, u) is unitally ℓ-isomorphic to the ℓ-group of all con-
tinuous Z-valued functions over some compact Hausdorff space X, with the distinguished
unit given by the constant function 1 over X. The latter space, in turn, is homeomorphic
to the maximal spectral space µ(G).

The specification of the underlying categorical equivalence Γ and of the associated
homeomorphism X ∼= µ(G) refines the representation in [3, Corollary 2.12].

As a further refinement, in the final section of this paper we apply our results to
abelian AF-algebras. As originally defined by Bratteli in [5], an AF-algebra (which is short
for “approximately finite-dimensional C*-algebra”) is the norm-closure of an ascending
sequence of finite-dimensional C*-algebras, all with the same unit. In Theorem 4.5 it
is proved that the category of abelian AF-algebras is equivalent to the fragment of the
category S given by countable Specker ℓ-groups whose distinguished unit is singular.

There are two parallel ways to implement the equivalence between these two categories:
The first one involves composition of the following three categorical equivalences:
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G, from abelian C*-algebras to the opposite of the category of compact Hausdorff
spaces. This is a part of the (Stone-Naimark)-Gelfand duality, [1, 3.39(6), p.38],
[18].

S, from the opposite of boolean spaces to boolean algebras. This is part of Stone
duality.

Ξ, from boolean algebras to S.

The second way makes direct use of Grothendieck K0 in the framework of Elliott
classification, [13], [14, §5], [22, 7.3.4], [11, §IV].

Over the category of abelian AF-algebras and their *-algebra homomorphisms, our
final Theorem 4.5 can be summarized by writing

K0
∼= Ξ ◦ S ◦ G.

2. Equivalences

For background in category theory we refer to [1]. Readers familiar with the Γ functor
may jump to Theorem 3.2.

2.1. Theorem. ([19, §3]) For any unital ℓ-group (G, u), let Γ(G, u) be the unit interval
[0, u] equipped with the operations ¬x = u − x and x ⊕ y = u ∧ (x + y). For any unital
ℓ-group (H, v) and unital ℓ-homomorphism η: (G, u) → (H, v) let Γ restrict η to [0, u].
Then Γ is a categorical equivalence between unital ℓ-groups and MV-algebras.

Proposition 3.36(1) in [1] then ensures the existence of a converse equivalence between
MV-algebras and unital ℓ-groups. A concrete example Ξ of such equivalence is constructed
in [8, §7], where it is proved:

2.2. Theorem. (See [8, 7.1.2] for details)
(i) The composite functor Γ ◦ Ξ is naturally equivalent to the identity functor of the

category of MV-algebras. In symbols, Γ ◦ Ξ ∼= 1MV-algebras.

(ii) (See [8, 7.1.7] for details) The composite functor Ξ ◦ Γ is naturally equivalent to
the identity functor of the category of unital ℓ-groups, Ξ ◦ Γ ∼= 1unital ℓ-groups.

2.3. Theorem. ([8, §7.2]) For any unital ℓ-group (G, u) let the MV-algebra A be defined
by A = Γ(G, u). Let I(G) (resp., I(A)) denote the lattice of ℓ-ideals of G (resp., of A)
ordered by inclusion.

(i) The correspondence ϕ: J 7→ ϕ(J) = {x ∈ G | |x| ∧ u ∈ J} is an order-isomorphism
from I(A) onto I(G). The inverse order-isomorphism ψ is given by I ∈ I(G) 7→
ψ(I) = I ∩ [0, u] ∈ I(A).
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(ii) The map θ: J 7→ J ∩ [0, u] is an order-isomorphism between the set of prime ℓ-
ideals of G and the set of prime ideals of Γ(G, u), both sets being equipped with
the inclusion ordering. Thus in particular, θ restricts to an injection of the set of
maximal ℓ-ideals of G onto the set of maximal ideals of Γ(G, u).

(iii) For every ℓ-ideal J of G we have the ℓ-isomorphism

Γ(G/J, u/J) ∼= Γ(G, u)/(J ∩ [0, u]).

2.4. Theorem. Γ determines a homeomorphism of the compact space µ(G) of maximal
ℓ-ideals of any unital ℓ-group (G, u), onto the space µ(A) of maximal ideals of the MV-
algebra Γ(G, u), where both spectral spaces are equipped with their hull-kernel (Zariski-
Jacobson) topologies.

Proof. Combine Theorem 2.3(ii)-(iii) with [4, 13.2.6] and [20, §4].

The following result is an exercise in ℓ-group theory. To help the reader we give the
elementary proof.

2.5. Lemma. For any unital ℓ-group (G, u) the set [0, u] = {x ∈ G | 0 ≤ x ≤ u} generates
G as a group.

Proof. With G+ = {x ∈ G | x ≥ 0} the positive cone of G, we have G = G+ − G+.
Therefore, it is enough to show that every x ∈ G+ is a sum of elements in [0, u]. Let a ∈ G
with 0 ≤ a ≤ nu for some integer n ≥ 1. Recall that a = a+ − a− , where a+ = a∨ 0 and
a− = (−a) ∨ 0, so −a− = a ∧ 0. Because a = (a ∧ nu) − (a ∧ 0), we have

a =
n−1∑
m=0

[(a ∧ (m+ 1)u) − (a ∧mu)].

Using the ℓ-group identity (a ∧ b) − c = (a− c) ∧ (b− c) and distributivity of the lattice
reduct, we can write for each m = 0, . . . , n− 1:

(a ∧ (m+ 1)u) − (a ∧mu) = [(a ∧ (m+ 1)u) -mu] − [(a ∧mu)-mu]

= [(a−mu) ∧ u] − [(a−mu) ∧ 0]

= [(a−mu) ∧ u] − [(a−mu) ∧ u ∧ 0]

= [(a−mu) ∧ u] + [(a−mu) ∧ u]−

= [(a−mu) ∧ u]+

= [(a−mu) ∧ u] ∨ 0

= [(a−mu) ∨ 0] ∧ (u ∨ 0)

= (a−mu)+ ∧ u.



FROM SPECKER ℓ-GROUPS TO BOOLEAN ALGEBRAS VIA Γ 829

Therefore,

a =
n−1∑
m=0

[(a ∧ (m+ 1)u) − (a ∧mu)] =
n−1∑
m=0

[(a−mu)+ ∧ u],

which shows that a is a sum of elements in [0, u].

2.6. Definition. ([3, Definition 2.2]1) Let G be an ℓ-group. An element s ∈ G is said
to be singular if s ≥ 0 and t ∧ (s− t) = 0 for each 0 ≤ t ≤ s.

A moment’s reflection shows that if s is singular and 0 ≤ t ≤ s, then t is singular.
Furthermore,

if r and s are singular, then so is r ∨ s. (1)

For details see, e.g., [4, 11.2.9-11.2.10].

2.7. Lemma. Let (G, u) be a unital ℓ-group. If the unit u is singular then u is the largest
singular element of G, and [0, u] is the set of singular elements of G.

Proof. By way of contradiction, assume some singular s ∈ G satisfies s ≰ u. By (1),
s∗ = u ∨ s is singular and s∗ > u. It follows that d = s∗ − u is singular > 0, and
s∗ ∧ d = 0 = u ∧ d. By [4, 1.2.24], mu ∧ d = 0 for all 0 ≤ m ∈ Z. Since u is a unit of G,
mu ≥ d for some m = 2, 3, . . . . Hence, mu ∧ d = d > 0, a contradiction.

3. Specker lattice-ordered groups whose distinguished unit is singular

3.1. Definition. ([3, Definition 2.2(2)], [9, Definition of S-group, p. 206]).2 An ℓ-group
is a Specker ℓ-group if it is generated, as a group, by its singular elements.

Throughout this paper, by a “unit” in an ℓ-group H we will mean a strong order-unit,
[4, 2.2.12]. By [3, Lemma 2.11(2)], strong and “weak” order-units are the same in every
Specker ℓ-group.

In what follows,

The symbol S will denote the category of Specker ℓ-groups (G, u) with a
(necessarily unique by Lemma 2.7) singular unit u, and their unital ℓ-hom-
omorphisms.

By Lemma 2.5, an ℓ-group is a Specker ℓ-group if and only if it is generated, as an
ℓ-group, by its singular elements.

3.2. Theorem. Let Γ′ be the restriction to S of the Γ functor. Then Γ′ is a categorical
equivalence between S and the category of boolean algebras.

1The present definition of a singular element goes back to Iwasawa [15, top page 784]. In the definition
of a singular element s given in [9, p.207] and [4, 11.2.7] it is assumed s > 0. This has no effect on the
results of this paper.

2For the origins of this terminology see [23] and [3, §2].
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Proof. Let (G, u) ∈ S be a unital Specker ℓ-group. By Lemma 2.7, the unit interval
[0, u] of G coincides with the set of all singular elements of G. We first prove:

For all s, t ∈ [0, u], s⊕ t = s ∨ t. (2)

By [8, Corollary 1.2.14], the intersection of all prime ideals of the MV-algebra A =
Γ(G, u) is the zero ideal {0}. By Theorem 2.3(ii), the intersection of all prime ℓ-ideals
of G is the zero ideal of G. Stated otherwise, if 0 ̸= y ∈ G then 0/P ̸= y/P ∈ G/P for
some prime ideal P of G. Furthermore, by [8, Lemma 1.2.3(v)], for every prime ideal P
of A the quotient MV-algebra A/P is totally ordered, and by Theorem 2.3(iii), for every
prime ℓ-ideal Q of G the quotient G/Q is totally ordered. It follows that the unit u/Q of
G/Q is an atom (i.e., a nonzero minimal element) of G+/Q. Therefore, u/Q is the only
nonzero singular element of G/Q, and [0/Q, u/Q] = {0/Q, u/Q}. Arguing now by cases,
it is easy to see that for all s, t ∈ [0, u], (s⊕ t)/Q = (s ∨ t)/Q. This settles (2).

By definition, Γ′(G, u) = Γ(G, u) is the MV-algebra {[0, u], 0,¬,⊕} equipped with the
operations

¬x = u− x and x⊕ y = u ∧ (x+ y).

By (2) and [8, 1.5.3(i)↔(iv)], the MV-algebra Γ′(G, u) is a boolean algebra, and necessarily
the ∨ operation coincides with the ⊕ operation of Γ(G, u). In symbols,

Γ′(G, u) = {[0, u], 0,¬,∨}.

Since every unital ℓ-homomorphism of (G, u) is restricted by Γ′ to the unit interval [0, u] =
Γ′(G, u), we have proved that Γ′ is a functor from S into boolean algebras.

To prove that Γ′ is an equivalence between these two categories, according to [1,
Definition 3.33] we have to prove that Γ′ is full, faithful, and (isomorphism-)dense. To this
purpose, let us first recall that MV-algebraic homomorphisms between boolean algebras
qua MV-algebras are the same as boolean homomorphisms, [8, 1.5.3]. Then BA is a full
subcategory of MV. Since by [19, 3.5-3.4] Γ is full and faithful, then so is Γ′.

There remains to prove that Γ′ is dense. Let B be a boolean algebra, with the intent
of finding a Specker ℓ-group H with a singular unit v such that Γ′(H, v) ∼= B. To this
purpose we argue as follows: Since Γ is dense ([19, Theorem 3.8]), there is a unital ℓ-group
(H, v) and an MV-algebra B′ such that

Γ(H, v) = B′ ∼= B. (3)

As an isomorphic copy of B, B′ is a boolean algebra.

Claim: H is a Specker ℓ-group with a singular unit v

As a matter of fact, by Theorem 2.1, Γ(H, v) is the unit interval [0, v] equipped with
the operations of negation ¬x = v−x and truncated addition x⊕y = (x+y)∧v. Therefore,
B′ is a boolean algebra defined over the interval [0, v], and the ∨ operation of H restricted
to [0, v] coincides with the ⊕ operation of B′, as well as with the derived ∨ operation of
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B′ as an MV-algebra. By (3), every element of [0, v] ⊆ H is singular. By Lemma 2.7, the
unit v is the largest singular element of H. By Lemma 2.5, H is generated, as a group,
by its singular elements. Hence,

(H, v) ∈ S, (4)

as required to settle our claim.

From (3)-(4) it follows that Γ(H, v) = Γ′(H, v) ∼= B, which shows that Γ′ is dense.
This completes the proof.

3.3. Remark. An alternative proof of Theorem 3.2 can be obtained by piecing together
some existing results in the literature as follows: By [9, §4.7] a Specker ℓ-group S with a
strong order-unit has a unique multiplication such that singular elements of S are precisely
its idempotents. Therefore, S becomes a Specker Z-algebra, and hence the categories of
Specker ℓ-groups with a strong order-unit and Specker Z-algebras are isomorphic. Since Γ
applied to a Specker ℓ-group, viewed as a Specker Z-algebra, is precisely the idempotent
functor, an application of [2, Theorem 3.8] yields Theorem 3.2.

Representation of Specker ℓ-groups with a singular unit. A boolean space is a totally discon-
nected compact Hausdorff space X. To avoid trivialities, throughout we assume X ̸= ∅.
Equivalently, X is the Stone space of a nontrivial boolean algebra.

3.4. Corollary. (For (i)-(ii) see [3, Corollary 2.12]. Also see [4, 13.5.4] for a related
result. For (iii) see Remark 3.5.) For X an arbitrary boolean space, let (C(X,Z), 1) denote
the unital ℓ-group of all integer-valued continuous3 functions on X, with the constant
function 1 as the distinguished unit. We then have:

(i) (C(X,Z), 1) is a Specker ℓ-group with the singular unit 1.

(ii) Letting X range over all boolean spaces, up to unital ℓ-isomorphism in the category
S, (C(X,Z), 1) ranges over all Specker ℓ-groups with a distinguished singular unit.

(iii) Arbitrarily fix (G, u) ∈ S. In view of (ii), let X be a boolean space such that
(G, u) ∼= (C(X,Z), 1). Then X is homeomorphic to the maximal spectral space µ(G).

Proof. (i) The MV-algebra Γ(C(X,Z), 1) is the boolean algebra

C(X, {0, 1})

of all continuous {0, 1}-valued functions on X. Theorem 3.2, yields a Specker ℓ-group G
with singular unit w such that

Γ(G,w) ∼= C(X, {0, 1}) = Γ(C(X,Z), 1).

It follows that (G,w) ∼= (C(X,Z), 1), whence (C(X,Z), 1) is a Specker ℓ-group with unit
1.

3Both the ℓ-group of integers Z, and the set {0, 1} are equipped with the discrete topology.
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(ii) By Stone duality, up to isomorphism,

Γ(C(X,Z), 1) = C(X, {0, 1})

ranges over all boolean algebras. By (i) and Theorem 3.2, up to unital ℓ-isomorphism,
(C(X,Z), 1) ranges over all Specker ℓ-groups with a singular unit.

(iii) The existence of a boolean space X such that

(G, u) ∼= (C(X,Z), 1)

is guaranteed by (ii). For all x, y ∈ X with x ̸= y there is a clopen W of X such
that x ∈ W and y /∈ W. Correspondingly, there is a function in the unit interval of
(C(X,Z), 1) taking value 1 at x and value 0 at y. In other words, the functions in the
MV-algebra Γ(C(X,Z), 1) separate points. By [8, §3.6], Γ(C(X,Z), 1) is semisimple, in
the sense that the intersection of its maximal ideals is the zero ideal. Equivalently, by
[8, 3.6.4], Γ(C(X,Z), 1) has no infinitesimals. By Theorem 2.3(ii), the intersection of the
(automatically nonempty) set of maximal ℓ-ideals of the ℓ-group C(X,Z) is the zero ℓ-
ideal {0}. Letting µ(C(X,Z)) denote the maximal ℓ-ideal space of C(X,Z), by Theorem
2.4 and [20, Theorem 4.16(iv)] we have (canonical) homeomorphisms

µ(G) ∼= µ(C(X,Z)) ∼= µ(Γ(C(X,Z), 1)) ∼= X.

The proof is complete.

3.5. Remark. An alternative (shorter and more ring-theoretic) proof of Corollary 3.4(iii)
may be obtained as follows: If S = C(X,Z) with X a Stone space, then µ(S) is the
Yosida space of S, which is homeomorphic to the Stone space of the boolean algebra I
of idempotents of S. For details see [2]. Now I is isomorphic to the boolean algebra of
clopen subsets of X, and hence its Stone space is homeomorphic to X.

In general, Specker ℓ-groups need not have a strong (or weak) order-unit, in which case
they correspond to generalized Boolean algebras. Thus, their maximal spectra spaces are
only locally compact. See [3].

4. Abelian AF-algebras, Stone/Gelfand dualities, Grothendieck group

The reader of this final section is assumed to be acquainted with the Gelfand represen-
tation of abelian unital C*-algebras, [22, Theorem 1.2.3], [6, Proposition 3.1], and with
Elliott classification, [13, 14], [11], [22]

Following Bratteli’s original definition [5], an AF -algebra is the norm closure
⋃

i Ai

of the union of an ascending sequence of finite-dimensional C∗-algebras Ai, all with the
same unit. AF denotes the category of AF-algebras with *-algebra homomorphisms. We
also let

AFab
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denote the category of abelian AF-algebras and their *-algebra homomorphisms.

As the reader will recall, the functor G assigns to any A ∈ AFab its maximal spectral
space µ(A). Further, S assigns to every boolean space the boolean algebra of its clopen
sets. Finally, Ξ assigns to every boolean algebra B a unital Specker ℓ-group (G, u) such
that Γ(G, u) = B. See Theorem 2.2 for details. Since S ◦ G is a categorical equivalence,
then so is Ξ ◦ S ◦ G.

Let p be a projection in an AF-algebra A ∈ AF, i.e., p = p2 = p∗. For all projections
p, q ∈ A we write p ∼ q if there is an element x ∈ A such that p = x∗x and q = xx∗. It
turns out that ∼ is an equivalence relation on the projections of A. A projection s is a
subprojection of p (in symbols, s ≤ p) if ps = sp = s. If p is equivalent to a subprojection
of q we write p ⪯ q. The partial order ⪯ on the set of equivalence classes of projections
in any AF-algebra A ∈ AF is called the Murray-von Neumann order. Letting [p] denote
the equivalence class of a projection p we (trivially) have:

4.1. Proposition. For any abelian AF-algebra A and projections p, q ∈ A, [p] = {p}.
Also, q ⪯ p if and only if p is a subprojection of q.

When A ∈ AFab, combining Gelfand’s representation [22, Theorem 1.2.3] with Brat-
teli’s [6, Proposition 3.1], we have

4.2. Proposition. Any abelian AF-algebra A is *-isomorphic to the C*-algebra C(X,C)
of all complex-valued continuous functions on a homeomorphic copy X of the boolean space
µ(A). The projections of C(X,C) are precisely the {0, 1}-valued functions of C(X,C).
Moreover, p is a subprojection of q if and only if p ≤ q in the pointwise order of real-
valued functions over X.

Elliott classification and K0 in AFab. For any A ∈ AF, Elliott’s partial addition is defined
by setting [p]+[q] = [p+q] whenever projections p and q are orthogonal. The set of equiv-
alence classes of projections of A then has the structure of a countable partially ordered
“local” semigroup, denoted D(A). Elliott’s partially defined addition + is monotone with
respect to the ⪯-order.

In particular, when A is abelian, from p ⪯ q ⇔ p ≤ q and Proposition 4.2 we imme-
diately have:

4.3. Proposition. For any A ∈ AFab the Murray-von Neumann order of D(A) is a
lattice.

As noted by Elliott in [14, p.33], D is a functor that preserves finite direct sums and
inductive limits of sequences. D is known as Elliott’s classifier because of the following
fundamental result, proved in [13]:

D(A1) ∼= D(A2) iff A1
∼= A2.

For any AF algebra A, D(A) may be embedded in a unique way as a generating subset of a
group which turns out to coincide with the group K0(A) of algebraic K-theory. For details
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see [22, §6.3, Theorem 7.3.4] or [11, IV.1.5-1.6]. Then the group K0(A) is torsion-free, and
the semigroup K0(A)+ generated by D(A) has zero intersection with its negative; so with
this semigroup as positive cone, the group becomes a partially ordered abelian group, also
denoted K0(A). From [22, Proposition 5.1.7] or [11, IV.2.2(iii)] it follows that the K0-
image {1A} of the unit element 1A is a strong unit of K0(A). Whenever there is no danger
of confusion we will write K0(A) instead of (K0(A), {1A}) or (K0(A), K0(A)+, {1A}).

Assume A is an abelian AF-algebra. Since by Proposition 4.3 the underlying order of
the Elliott classifier D(A) is a lattice, we may apply [21, Theorem 2.1](i). This provides
a unique associative commutative monotone extension ⊕:D(A)2 → D(A) of the partial
addition + in D(A), such that for each projection p ∈ A, [1A − p] is the ⪯-smallest
equivalence class [q] = {q} ∈ E(A) satisfying [p] ⊕ [q] = [1A]. Equivalently, 1A − p is the
≤-smallest projection q of A such that p ∨ q = 1A.

For our purposes in this paper, using Proposition 4.2 and Theorem 3.2, we may con-
veniently identify (via Gelfand representation) any A ∈ AFab with C(X,C), where X is a
homeomorphic copy of its maximal spectral space µ(A). The above general construction
of K0(A) then takes the following simpler form:

4.4. Proposition. Let A ∈ AFab. For X ∼= µ(A) let us identify A with C(X,C).

(i) The uniquely determined operation ⊕:D(A)2 → D(A) provided by [21, Theorem
2.1](i) coincides with the ∨ operation of the idempotent MV-algebra (i.e., the boolean
algebra) C(X, {0, 1}). X is a separable boolean space. The countable unital ℓ-group K0(A)
is generated, as a group, by the {0, 1}-valued functions of C(X,C). Thus K0(A) is the
countable unital Specker ℓ-group C(X,Z) equipped with the distinguished unit {1A} given
by its largest singular element. In symbols, (K0(A), {1A}) = (C(X,Z), 1).

(ii) As A ranges over all abelian AF-algebras, (K0(A), {1A}) yields unitally ℓ-iso-
morphic copies of all countable unital Specker ℓ-groups (G, u) whose distinguished unit u
is singular. Furthermore, up to homeomorphism, µ(A) ranges over all separable boolean
spaces.

4.5. Theorem. Let us restrict Grothendieck’s functor K0 to the category AFab of abelian
AF-algebras and their *-algebra homomorphisms.

(i) K0 is a categorical equivalence between AFab and the fragment Sω of S given by
countable unital Specker ℓ-groups (G, u) whose distinguished unit u is singular.

(ii) For any abelian AF algebra A, K0(A) ∼= Ξ ◦ S ◦ G(A).

Proof. By [6, Proposition 3.1],

the linear span of projections of A is norm-dense in A. (5)

(i) K0 is a functor. Let A,A′ ∈ AFab. By Proposition 4.4, K0(A) and K0(A
′) are countable

Specker ℓ-groups whose distinguished units {1A} and {1A′} are singular. By (5), every
*-algebra homomorphism ϕ:A → A′ is uniquely determined by its restriction ϕ♮ to the set
of projections of A. Likewise, by Propositions 4.1 and 4.4, ϕ♮ uniquely extends to a unital



FROM SPECKER ℓ-GROUPS TO BOOLEAN ALGEBRAS VIA Γ 835

ℓ-homomorphism K0(ϕ) : (K0(A), {1A}) → (K0(A
′), {1A′}). We have thus shown that K0

is a functor from AFab to Sω.

K0 is dense. By Proposition 4.4(ii).

K0 is full. Any unital ℓ-homomorphism

ρ : (K0(A), {1A}) → (K0(A
′), {1A′})

is uniquely determined by its restriction ς to the set of singular elements of K0(A), i.e.,
the projections of A. In turn, ς uniquely determines a *-morphism σ:A → A′. This again
follows by combining Proposition 4.1 with (5). Evidently, ρ = K0(σ).

K0 is faithful. Let τ and χ be different *-algebra homomorphisms of A into A′. Again by
Proposition 4.1 and (5), τ differs from χ at some projection of A. Correspondingly, the
unital ℓ-homomorphisms K0(τ) and K0(χ) will assign different values to some singular
element of K0(A).

We have just proved that K0 is a categorical equivalence between AFab and Sω.

(ii) Let X be the maximal spectral space of A. By [21, Theorem 2.1](v), the idem-
potent MV-algebra (=boolean algebra) C(X, {0, 1}) of Proposition 4.4 is isomorphic to
Γ(K0(A), {1A}). In symbols,

C(X, {0, 1}) ∼= Γ(K0(A), {1A}).

On the other hand, by definition of the functors G and S, from the homeomorphism
X ∼= µ(C(X, {0, 1})) we get

C(X, {0, 1}) ∼= S(G(A)).

As a consequence, Γ ◦K0(A) ∼= S ◦ G(A), whence

Ξ ◦ Γ ◦K0(A) ∼= Ξ ◦ S ◦ G(A).

By Theorem 2.2 we can now write

K0(A) ∼= Ξ ◦ S ◦ G(A),

which completes the proof.
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[17] M. Kolař́ık, Independence of the axiomatic system for MV-algebras, Mathematica
Slovaca, 63 (2013) 1–4.

[18] C. J. Mulvey, A Generalisation of Gelfand Duality, J. Algebra, 56 (1979) 499-505.

[19] D. Mundici, Interpretation of AF C*-algebras in  Lukasiewicz sentential calculus, J.
Functional Analysis, 65 (1986) 15–63.

[20] D. Mundici, Advanced  Lukasiewicz calculus and MV-algebras, Trends in Logic, Vol.
35, Springer-Verlag, Berlin, NY, 2011.

[21] D. Mundici, Word problems in Elliott monoids, Advances in Mathematics, 335 (2018)
343–371.

[22] M. Rørdam, F. Larsen, N. Laustsen, An Introduction to K-theory for C*-algebras,
London Mathematical Society Student Texts, Vol. 49, Cambridge University Press,
(2000).

[23] E. Specker, Additive Gruppen von Folgen ganzer Zahlen, Portugaliae Math., 9 (1950)
131–140.

Department of Mathematics and Computer Science “Ulisse Dini”
University of Florence
Viale Morgagni 67/A, I-50134 Florence, Italy
Email: daniele.mundici@unifi.it

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

Information for authors LATEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

Managing editor. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca

TEXnical editor. Michael Barr, McGill University: michael.barr@mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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Giuseppe Metere, Università degli Studi di Palermo: giuseppe.metere (at) unipa.it

Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca
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