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CLOSED SYMMETRIC MONOIDAL STRUCTURES ON THE
CATEGORY OF GRAPHS

KRZYSZTOF KAPULKIN AND NATHAN KERSHAW

Abstract. We show that the category of (reflexive) graphs and graph maps carries
exactly two closed symmetric monoidal products: the box product and the categorical
product.

Introduction

Several notions of products are considered in graph theory, including the box product (also
occasionally called cartesian product), the Kronecker product, the lexicographic product,
and the strong product, among others [IK00]. Understanding different combinatorial
properties of these products remains an active area of research within combinatorics.

In this paper, we approach this question from the categorical perspective, namely,
we would like to understand which graph products define a closed symmetric monoidal
structure on the category of graphs. Monoidal structures are a natural framework for
capturing abstract products that can be considered on a given category.

Our interest in the subject comes from discrete homotopy theory, an area of mathe-
matics concerned with applying techniques from topology, and more precisely homotopy
theory, to study combinatorial properties of graphs. Numerous such theories are now
under active development, including the A-homotopy theory [BBdLL06,BL05,CK22] and
the ×-homotopy theory [Doc09,CS21], among others. Different models of discrete homo-
topy theory use different graph products, but end up proving similar results often with
similar looking proofs. This leads to the question of whether this development can be
done synthetically by axiomatizing the desired properties of the product. This paper is
therefore a first step towards such synthetic theory.

Our main theorem is:

0.1. Theorem. [Section 4.11] The category of (reflexive) graphs carries precisely two
closed symmetric monoidal structures: the box product and the categorical product.

Throughout the paper, we assume familiarity with category theory at the level of an
introductory text, e.g., [Rie16] or [ML98]. We recall all relevant graph-theoretic notions.

This paper is organized as follows. In Section 1, we review the background on
monoidal categories and the Day convolution product, which is a technique of upgrading
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a promonoidal structure on a small category to its presheaf category via a left Kan ex-
tension (cf. [Day70,Day72]). In Section 2, we introduce the category of graphs and graph
maps. Our proof starts with a preliminary analysis of left Kan extensions on the relevant
category of graphs in Section 3. Finally, in Section 4, we put all the pieces together and
prove the classification of closed symmetric monoidal structures on the category of graphs.
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1. Monoidal categories

As mentioned above, our goal is to analyze, through the lens of category theory, different
products of graphs. Monoidal structures are a natural way of doing so. In brief, a
monoidal structure on a category C is a bifunctor, usually denoted with the symbol ⊗,
that is unital and associative (up to a natural isomorphism). Such products can then
satisfy additional properties, like symmetry or closure.

In this section, we begin by reviewing a basic theory of monoidal structures and develop
some preliminary results allowing us to classify them on categories of interest.

1.1. Definition. A monoidal category consists of a category C together with:

• a functor ⊗ : C × C → C , referred to as the tensor product;

• an object I ∈ C , called the unit;

• three natural isomorphisms α, λ, and ρ with components:

– αa,b,c : a⊗ (b⊗ c) ∼= (a⊗ b)⊗ c, for all a, b, c,

– λa : I ⊗ a ∼= a for all a,

– ρa : a⊗ I ∼= a, for all a,

subject to the axioms:

1. the diagram
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a⊗
(
b⊗ (c⊗ d)

)

a⊗
(
(b⊗ c)⊗ d

)

(
a⊗ (b⊗ c)

)
⊗ d

(
(a⊗ b)⊗c

)
⊗ d

(a⊗ b)⊗ (c⊗ d)

id⊗α

α

α⊗ id

α

α

commutes for all objects a, b, c, d ∈ C .

2. the diagram

a⊗ (1⊗ b) (a⊗ 1)⊗ b

a⊗ b

αa,1,b

ρx⊗1y 1a⊗λy

commutes for all objects a, b ∈ C .

Examples of monoidal categories include any category with finite products (or finite
coproducts). Note that such a product need not be commutative. For instance, for a
given category C , the category of endofunctors on C is a monoidal category with the
tensor product given by composition of functors.

If we wish to further restrict our study to only commutative products, we can impose
extra conditions, which motivates the following definition.

1.2. Definition. A symmetric monoidal category is a monoidal category (C ,⊗, I) such
that for every pair of objects a, b, there is a natural isomorphism sa,b : a⊗ b → b⊗ a, such
that sa,b ◦ sb,a = 1b⊗a, and the diagram

(a⊗ b)⊗ c a⊗ (b⊗ c) (b⊗ c)⊗ a

(b⊗ a)⊗ c b⊗ (a⊗ c) b⊗ (c⊗ a)

αa,b,c

sa,b⊗1c

sa,b⊗c

αb,c,a

αb,x,c 1b⊗sa,c

commutes for all objects a, b, and c.
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1.3. Example. The category Ab of abelian groups, along with the categorical product,
is symmetric monoidal with the trivial group being the unit. We can also equip Ab with
the tensor product to form a symmetric monoidal structure. In this case, the unit is Z.

For a given monoidal category (C ,⊗, I), and object X ∈ C , one might ask whether
the functor X ⊗ − : C → C admits a right adjoint. Such a right adjoint would then act
as the object of morphisms, e.g., in the case of the category of sets with the cartesian
product, the right adjoint gives exactly the set of functions from X to another object.
This leads to the final property of monoidal structures we shall discuss.

1.4. Definition. A symmetric monoidal category is closed if for every object a in C ,
the functor a⊗− : C → C has a right adjoint hom(a,−) : C → C .

1.5. Example. The following are closed symmetric monoidal categories:

• The category Set of sets, equipped with the cartesian product. The unit is the
singleton set, and given a set X, the right adjoint is given by hom(X, Y ) = Y X .

• The category Ab, of abelian groups, equipped with the tensor product. For a given
group G, the right adjoint is given by the set of group homomorphisms hom(G,H)
with the group structure defined pointwise.

• The categorical product on Ab is not closed. If it were closed, then since there is
an infinite number of group homomorphisms f : Z × 1 → Z, we should expect an
infinite number of homomorphisms f : 1 → ZZ. Since this is clearly not the case,
the categorical product cannot be closed.

• We will also see in Section 2, that two products of graphs, the box and categorical
products, are closed symmetric monoidal (see Section 2.4).

We now turn our attention toward classifying monoidal structures on categories of
interest. We begin by establishing restrictions on what the unit of such a monoidal
structure might be. To do so, we work in the generality of well-pointed categories whose
definition we recall.

1.6. Definition. A category C with a terminal object 1 is well pointed if for every pair
of morphisms f, g : A → B such that f ̸= g, there exists a morphism p : 1 → A such that
f ◦ p ̸= g ◦ p.

In other words, equality of morphisms in a well-pointed category is detected on the
global sections of the domain. Examples of well-pointed categories include the category
of sets and that of topological spaces, but not the category of groups.

1.7. Proposition. Let C be a well-pointed category with a monoidal structure (C ,⊗, I),
and let 1 be the terminal object of C . Then the canonical map I → 1 is a monomorphism.
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Proof. Since C is well-pointed, it suffices to show that for any pair of maps x, y : 1 → I,
we have x = y. Consider the following square

1⊗ 1 I ⊗ 1

1⊗ I I ⊗ I

x⊗id

id⊗y id⊗y

x⊗id

which commutes by functoriality of the tensor product. Using the fact that I is the unit
of the monoidal product, we observe that the square above simplifies to

1⊗ 1 1

1 I

!

! y

x

but since there is a map 1 ∼= 1⊗ I → 1⊗ 1, this square commutes exactly when x = y.

As described above, our goal is to classify closed symmetric monoidal structures on the
category of graphs, which is a reflective subcategory of a presheaf category, i.e., a category
of the form SetC

op

. For notational convenience, we will write Ĉ for SetC
op

throughout.
Closed symmetric monoidal structures on presheaf categories are known to arise via the
Day convolution product. The Day convolution of a promonoidal functor F : C × C → Ĉ
is obtained by taking the left Kan extension of F along よ×よ:

C × C Ĉ

Ĉ × Ĉ

よ×よ

F

lanよ×よF

where we write よ : C → Ĉ for the Yoneda embedding. This leads to the following
theorem:

1.8. Theorem. [Day70] Let C be a small category. Then there exists a bijection between
the set of closed symmetric monoidal structures on Ĉ and promonoidal functors F : C ×
C → Ĉ.

It will not be important to us what a promonoidal structure is, but a key consequence
of this theorem is that to characterize closed symmetric monoidal structures on a category
Ĉ we only need to consider functors F : C × C → Ĉ. To present a sample application,
we show (a well known fact) that the category of sets carries a unique closed symmetric
monoidal structure.

1.9. Proposition. The only closed symmetric monoidal structure in the category Set is
the cartesian product.



CLOSED SYMMETRIC MONOIDAL STRUCTURES ON THE CATEGORY OF GRAPHS 765

Proof. We know from Section 1.5 that the cartesian product defines a closed symmetric
monoidal structure on Set. It remains to verify that it is the only such structure. First,
we use Section 1.7 to show that the singleton set, call it 1, is the unit. We know in Set
that 1 is the terminal object, with subobjects 1 and ∅. Now, suppose (Set,⊗,∅) is a
closed symmetric monoidal structure. Since ∅ is the initial object, it must be preserved
by −⊗X for any set X. But since ∅ is also the unit, we would have ∅ ∼= ∅⊗X ∼= X, a
contradiction.

Now note that Set ∼= Set[0]
op

, where [0] is the terminal category (i.e., the category with
one object and only the identity morphism). We thus must consider functors F : [0]×[0] →
Set whose left Kan extension along よ×よ

is a closed symmetric monoidal structure.
Writing 0 for the unique object in [0], we know that (よ ×よ)(0, 0) = (1, 1). Using

closure of the monoidal structure, lanよ×よ(F )(1, 1) = 1. By commutativity, we must have
that F (0, 0) = 1, which defines F . Using the pointwise formula for Kan extensions, we
obtain that lanよ×よ(F )(X, Y ) is indeed the cartesian product of X and Y .

Unfortunately, the category of graphs is not a presheaf category, but rather a reflective
category thereof. For that reason, we need to strengthen Section 1.8 to the setting of
presentable categories. Similar strengthening was considered by Day [Day72,Day73].

For the remainder of this section, we fix a presentable category C , i.e., a category
along with a full embedding i : C ↪→ Ĉ that admits a left adjoint, called the reflector,
L : Ĉ → C . In particular, Li ∼= id.

We further require that よ factors as

C Ĉ

C
よ̂

よ

i

Now, before stating the resulting proposition from this setup, we first must state the
following lemma:

1.10. Lemma. Let C be a reflective category as above, and fix objects X and Y in C .
Then there are isomorphisms:

よ̂ ↓ X × よ̂ ↓ Y ∼= よ̂× よ̂ ↓ (X, Y ) (1)

Defined by sending objects
((

a ∈ C, f : よ̂(a) → X
)
,
(
b ∈ C, g : よ̂(b) → Y

))
in よ̂ ↓

X × よ̂ ↓ Y to
(
(a, b), (f, g) :

(
よ̂(a), よ̂(b)

)
→ (X, Y )

)
in よ̂× よ̂ ↓ (X, Y ).

よ̂× よ̂ ↓ (X, Y ) ∼=よ×よ ↓ (X, Y ) (2)

Defined by sending(
(a, b), (f, g) :

(
よ̂(a), よ̂(b)

)
→ (X, Y )

)
to

(
(a, b), (f, g) :

(
よ(a),よ(b)

)
→ (X, Y )

)
.
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よ×よ ↓ (X, Y ) ∼=よ ↓ X ×よ ↓ Y (3)

Defined by sending(
(a, b), (f, g) :

(
よ(a),よ(b)

)
→ (X, Y )

)
to

((
a, f : よ(a) → X

)
, (b, g : よ(b) → Y )

)
.

Note that in (2) and (3) we treat X and Y as elements of Ĉ, and omit the inclusion
i in the equations.

1.11. Proposition. Let C, C , and Ĉ be as above. Then, if ⊗ : C × C → C defines
a closed symmetric monoidal structure on C , ⊗ is equal to the left Kan extension of

⊗ ◦ (よ̂× よ̂) along よ̂× よ̂:

C × C C

C × C

よ̂×よ̂

⊗◦(よ̂×よ̂)

i.e. ⊗ ∼= lan
よ̂×よ̂

(
⊗ ◦ (よ̂× よ̂)

)
.

Proof. For simplicity, we write ⊗̃ for lan
よ̂×よ̂

(
⊗◦(よ̂×よ̂)

)
. Our goal is to show that ⊗ ∼=

⊗̃. To do this, we define another product ⊗ : Ĉ × Ĉ → C by ⊗ = lanよ×よ(⊗◦
(
よ̂× よ̂)

)
.

The relevant functors are displayed in the following diagram:

C × C C Ĉ × Ĉ

C × C

Ĉ × Ĉ

C × C

よ̂×よ̂

よ×よ

⊗◦(よ̂×よ̂) i

L

i×i

⊗̃

⊗

L×L

⊗

Our proof is divided into two parts:

⊗̃ ∼= ⊗ ◦ (i× i) (i)

⊗ ∼= ⊗ ◦ (L× L) (ii)

Once these are established, we get that:

⊗ ∼= ⊗ ◦ (L× L) ◦ (i× i)
∼= ⊗ ◦ (i× i)
∼= ⊗̃
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as desired.
For part (i), we fix X, Y ∈ C . We have that by the pointwise formula:

X⊗̃Y = Colim
(
よ̂× よ̂ ↓ (X, Y )

π−→ C × C
⊗◦(よ̂×よ̂)−−−−−−→ C

)
i(X)⊗i(Y ) = Colim

(
よ×よ ↓ (i× i)(X, Y )

π−→ C × C
⊗◦(よ̂×よ̂)−−−−−−→ C

)
We see from equation (2) in Section 1.10 that X⊗̃Y ∼= i(X)⊗i(Y ), and thus ⊗̃ ∼= ⊗◦(i×i)
as desired.

For part (ii) it suffices to show that ⊗ preserves colimits in each variable. Indeed,
since ⊗ ◦ (L× L) and ⊗ agree on representables, and both preserve colimits, we get that
⊗ ∼= ⊗ ◦ (L× L).

To do this, we show that ⊗ is a Kan extension in each variable. We claim that for any
X, Y in Ĉ:

X⊗− ∼= lanよ
(
(X⊗−) ◦ よ̂

)
(1)

−⊗Y ∼= lanよ
(
(−⊗Y ) ◦ よ̂

)
(2)

We show (1) and the proof of (2) is identical. Consider the pointwise formula:

X⊗Y ∼= Colim
(
よ×よ ↓ (X, Y ) → C × C

⊗◦(よ̂×よ̂)−−−−−−→ C
)

∼= Colim
(
よ ↓ X ×よ ↓ Y → C × C

⊗◦(よ̂×よ̂)−−−−−−→ C
)

By equation (3) of Section 1.10

∼= Colim
(
よ ↓ Y

π−→ C
(X⊗−)◦よ̂−−−−−−→ C

)
Since colimits commute with colimits

But this is exactly the formula for lanよ
(
(X⊗−)(Y ) ◦ よ̂

)
. Thus ⊗ is a Kan extension in

each variable. Since よ is the free cocompletion, we get that ⊗ preserves colimits in each
variable, completing the proof.

2. The category of graphs

In this section, we introduce the category of graphs that we will be working with. While
there are many different flavors of graphs, here, we work specifically with undirected
simple graphs without loops. We introduce this category as a subcategory of a presheaf
category we shall now define.

Let G be the category generated by the diagram

V E
s

t

r σ
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subject to the identities
rs = rt = idV σ2 = idE

σs = t σt = s
rσ = r.

We call the functor category SetG
op

the category of marked multigraphs.
For X ∈ SetG

op

, we write XV and XE for the sets X(V ) and X(E), respectively.
Explicitly, such a functor consists of sets XV and XE together with the following functions
between them

XV XEr
s

t

σ

subject to the dual versions of identities in G. The category SetG
op

can be viewed as the
category of undirected multigraphs such that each vertex has a specified loop. We can
define the category of undirected simple graphs with no loops as a subcategory of SetG

op

:

2.1. Definition. The category Graph is defined to be the full subcategory of SetG
op

spanned by elements X ∈ SetG
op

such that the map (s, t) : XE → XV ×XV is a monomor-
phism.

For X ∈ Graph, we see that XV represents the vertex set and XE represents the edge
set. The map (s, t) : XE → XV ×XV assigns to each edge a source and a target vertex.
The monomorphism condition ensures that for every vertex pair (v, w) there exists at
most one edge from v to w. The map σ ensures that whenever there is an edge from
v to w, there is also an edge from w to v, hence making our graphs undirected. The
map r sends each vertex to a loop on that vertex, meaning every vertex has exactly one
loop.1 This is logically the same as treating the graphs as having no loops, however the
mandatory loop ensures that a morphism in this category is precisely a graph map, as it
is usually defined:

If X,X ′ are graphs in Graph, and f : X → X ′ is a natural transformation, the natu-
rality condition means that if there is an edge between vertices v and w in X, there must
be an edge between f(v) and f(w) in X ′. Since each vertex has a loop, this is equivalent
to the condition that either f(v) and f(w) are different vertices connected by an edge, or
they are the same vertex. Thus morphisms in this category are maps f : XV → X ′

V , such
that if v is connected to w in X, either f(v) is connected to f(w) or f(v) = f(w).

We write In to represent the graph in this category with n + 1 vertices connected in
a line, as seen in Figure 1.

0 1 2 3 4

Figure 1: The graph I4

1In some literature on graph theory, edges from a fixed vertex to itself satisfying σl = l might be
called semi-edges, while those with σl ̸= l are called loops. According to that terminology, which we do
not follow, our graphs would have unique semi-edges and no loops.
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We also write Cn to represent the cyclic graph on n vertices, and Kn to represent the
complete graph on n vertices.

Note that by this definition, we are in the same case as with Section 1.11, as Graph is
a reflective subcategory of SetG

op

. The reflector in this case takes a marked multigraph
to the graph obtained by removing instances of multiple edges between two vertices, and
replacing them with only a single edge.

The setup also requires that the Yoneda embedding factors through Graph. In this
case, よ : G → SetG

op

takes an object X ∈ G (either V or E) and sends it to the functor
G(−, X) : Gop → Set.

Thus the graph よ(V ) has a vertex set G(V, V ) = {id} and edge set G(E, V ) = {r}.
There are precomposition maps s∗, t∗ : G(E, V ) → G(V, V ) sending r to rs = id and
rt = id respectively. Thus the edge r is from id to itself. Hence よ(V ) is the graph with
a single vertex and a unique loop, in other words, よ(V ) = I0.

The graphよ(E) has vertex set G(V,E) = {s, t} and edge set G(E,E) = {id, σ, sr, tr}.
Again, we have precomposition maps s∗, t∗ : G(E,E) → G(V,E). Here s∗ takes id to s
and t∗ takes id to t, so id is an edge from s to t. Moreover, s∗ takes σ to σs = t and t∗

takes σ to σt = s. Thus σ is an edge in the opposite direction, from t to s. As stated
earlier, pairs of edges like this are treated as one undirected edge. The maps s∗ and t∗

both map sr to srs = srt = s and map tr to trs = trt = t. Thus sr is a loop on the
vertex s and tr is a loop on the vertex t. In this way, よ(E) = I1.

We see that as desired, よ does factor through Graph. This is summarized in the
following figure and proposition.

id

r

s

t

id σ

tr

sr

Figure 2: The graphs I0 and I1 as the image of the Yoneda embedding

2.2. Proposition. The Yoneda embedding よ : G → SetG
op

sends V to I0 and E to I1.

With the category Graph defined, we now state a corollary of Section 1.7 regarding
possible units for closed symmetric monoidal structures:

2.3. Corollary.

1. The unit of any monoidal structure on Graph is either the empty graph ∅ or the
graph with a single vertex I0.
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2. The unit of any closed monoidal structure on Graph is I0 and hence it is semi-
cartesian.

Proof. This follows from Section 1.7. In the category of graphs, I0 is the terminal object
and it has exactly two subobjects: ∅ and I0. Moreover, ∅ is the initial object and hence
it must be preserved by the functor −⊗X if the monoidal structure were closed. If ∅ is
the unit, we get X ∼= ∅⊗X ∼= ∅.

We finally define two products of graphs that are of interest to us in this paper, in a
graph theoretical sense:

2.4. Definition. Let X, X ′ be graphs in Graph.

• The box product, denoted X□X ′, is the graph with the vertex set XV × X ′
V , and

vertices (v, v′), (w,w′) have an edge between them if and only if either v ∼ w and
v′ = w′, or v = w and v′ ∼ w′.

• The categorical product, denoted X⊠X ′, is the graph with the vertex set XV ×X ′
V ,

and vertices (v, v′), (w,w′) have an edge between them if and only if either v = w
or v ∼ w, and either v′ = w′ or v′ ∼ w′

Note that here we are writing v ∼ w to represent an edge between two vertices v and
w.

With these products defined, we have the following proposition:

2.5. Proposition.Both the box and categorical products define closed symmetric monoidal
structures on Graph

Proof. It is easy to check that both products are monoidal with unit I0, and are each
symmetric. All that remains is closure:

For the box product, the right adjoint toX□− is given by hom□(X,X ′)V = Graph(X,X ′),
the set of graph maps from X to X ′. There is an edge between distinct maps f and g if
for all v ∈ XV , either f(v) = g(v) or f(v) ∼ g(v).

For the categorical product, the right adjoint to X ⊠ − is given by hom⊠(X,X ′)V =
Graph(X,X ′), the set of graph maps from X to X ′. There is an edge between distinct
maps f and g if whenever two vertices v and w inX are connected by an edge, f(v) ∼ g(w)
in X ′.

There are also several other notions of products of graphs, all with the vertex set given
by XV × YV , which are summarized in the table below:
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Name Edge Condition Monoidal Symmetric Closed

Categorical (v = w ∨ v ∼ w) ∧ (v′ = w′ ∨ v′ ∼ w′) Yes Yes Yes
Box (v = w ∧ v′ ∼ w′) ∨ (v ∼ w ∧ v′ = w′) Yes Yes Yes

Tensor v ∼ w ∧ v′ ∼ w′ No N/A N/A
Lexicographical (v ∼ w) ∨ (v = w ∧ v′ ∼ w′) Yes No No

Conormal v ∼ w ∨ v′ ∼ w′ Yes Yes No
Modular (v ∼ w ∧ v′ ∼ w′) ∨ (v ≁ w ∧ v′ ≁ w′) No N/A N/A

3. Products via the left Kan extension

To classify closed symmetric monoidal structures on Graph, we mimic the proof of Sec-
tion 1.9, relying on Section 1.11. As such, we need to examine possible functors F : G×
G → Graph such that the left Kan extension of F along よ̂ × よ̂ is closed symmetric
monoidal. In this section, we establish preliminary results that will be used in the follow-
ing section to provide the desired classification.

Our analysis depends primarily on the pointwise formula for the left Kan extension,
which for graphs X and X ′ is given by:

(lan
よ̂×よ̂F )(X,X ′) = Colim

(
よ̂× よ̂ ↓ (X,X ′)

π(X,X′)
−−−−→ G×G F−→ Graph

)
.

Recall that a colimit in the category of graphs is computed by taking the disjoint union
of all vertices in the diagram, and quotienting by an equivalence relation ∼. Here ∼ is
generated by the condition that a vertex v ∼ w if there exists a map f in the colimit
diagram such that f(v) = w. There is an edge between equivalence classes [v] and [w] if
there exists a a ∈ [v] and b ∈ [w] such that there is an edge between a and b.

For notational convenience, going forward, we write π for π(X,X′) and よ for よ̂.
We first analyze the category よ ×よ ↓ (X,X ′). The objects in this category are of

the form (
(A,A′) ∈ G2, (f, f ′) :

(
よ(A),よ(A′)

)
→ (X,X ′)

)
.

We see that if (A,A′) = (E,E), this corresponds to a choice of an edge in X and an edge
in X ′. If (A,A′) = (V, V ) this corresponds to a choice of a vertex in each graph, and if
(A,A′) = (V,E) or (E, V ) this corresponds to a choice of a vertex in one graph and edge
in another. A morphism H :

(
(A,A′), (f, f ′)

)
→

(
(B,B′), (g, g′)

)
is a morphism in G×G

such that the diagram

よ×よ(A,A′) (G,G′)

よ×よ(B,B′)

(f,f ′)

よ×よ(H)
(g,g′)
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commutes.
To compute the colimit, one might want to work with a subcategory ofよ×よ ↓ (X,X ′)

which we now define.

3.1. Definition. Let X,X ′ be graphs.

1. The edge subcategory
(
よ × よ ↓ (X,X ′)

)
(E,E)

of よ × よ ↓ (X,X ′) is the full

subcategory with objects of the form
(
(E,E), (f, f ′) : (I1, I1) → (X,X ′)

)
.

2. The edge subcategory (よ ↓ X)E of よ ↓ X is the full subcategory with objects of
the form (E, f : よ(E) → X).

3.2. Lemma. The inclusion of the edge subcategory i : (よ ↓ X)E ↪→ よ ↓ X is final for
any graph X.

Proof. We want to show that for every object c ∈よ ↓ X the comma category (c ↓ i) is
connected. We know that c is either of the form

(
V, f : よ(V ) → X

)
which is precisely a

choice of a vertex in X, or
(
E, f : よ(E) → X

)
which is precisely a choice of edge (possibly

a loop) in X, where one vertex is identified as the s vertex and the other as t. Recall that
objects in (よ ↓ X)E are of the form

(
E, e : よ(E) → X

)
which again is simply a choice

of an edge. Thus, if c is of the form
(
A, c : よ(A) → X

)
objects in (c ↓ i) are a choice of

an edge in X (with source and target identified), along with a morphism k : A → E in G
such that the following diagram commutes:

よ(A) X

よ(E)

c

よ(k) e

We thus have two cases, as c can either be a choice of edge or vertex. We show that
c ↓ i is connected in either case.

Case 1: Suppose first that c corresponds to a choice of vertex. Moreover suppose
(c, e1, f1), (c, e2, f2) ∈ (c ↓ i), where f1, f2 ∈ G(V,E). Here c is of the form

(
V, c : よ(V ) →

G
)
, and e1, e2 are of the form

(
E, e1 : よ(E) → X

)
and

(
E, e2 : よ(E) → X

)
. Since both

f1 and f2 make the above diagram commute, we have that

e1よf1 = c = e2よf2.

Note that よ(V ) is I0 and よ(E) is I1, with one vertex labelled s and the other t. Thus
よf1 corresponds to the map taking the single vertex in よ(V ) to the f1 vertex of よ(E),
since f1 is either s or t. The map f2 also acts identically. Thus, the above equation simply
means that the f1 vertex of the edge chosen by e1 must equal the f2 vertex of the edge
chosen by e2, which both must be the vertex chosen by c. For simplicity, we refer to the
vertex in the image of c simply as c.

Now, consider the element (c, e, s) of (c ↓ i), where e corresponds to choosing the loop
on c as the edge, and s : V → E (note that t also works). We claim that the diagram:
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V

E E E

X

f1
s

f2

e1

f1r f2r

e
e2

commutes. Clearly the top triangles commute since f1rs = f1 idV = f1 and similarly
f2rs = f2. But we also know that f1r maps both vertices to the f1 vertex (recall f1 = s
or t) which is by definition c. Then e1f1r is equal to choosing the loop on vertex c, so
e1f1r = e. Similarly e2f2r = e. This shows that the two objects (c, e1, f1) and (c, e2, f2)
are connected through (c, e, s).

Case 2: Suppose c corresponds to a choice of edge. Let (c, e1, f1) and (c, e2, f2) be as
above, where f1, f2 ∈ G(E,E). Then if e represents the map: よ(E) → G corresponding
to the choice of edge c in X, clearly the diagram:

E

E E E

X

f1
idE

f2

e1

f1 f2

e
e2

commutes, since by definition e1f1 = e and e2f2 = e since (c, e1, f1) and (c, e2, f2) are
objects in the comma category. So both objects are connected through (c, e, idE).

Thus, for any c, the comma category (c ↓ i) is connected, so i is final.

We now have the following corollaries:

3.3. Corollary. Let X,X ′ ∈ Graph. Then the inclusion i :
(
よ×よ ↓ (X,X ′)

)
(E,E)

↪→
よ×よ ↓ (X,X ′) is final.

Proof. This follows by Section 3.2 and the fact that the product of final functors is
final.

3.4. Corollary. The monoidal structure ⊗ is completely determined by F (E,E).

Proof. Let F : G × G → Graph be such that (lan
よ̂×よ̂F ) is a monoidal product ⊗ on

Graph. By the pointwise formula for left Kan extensions, X⊗X ′ is given by Colim
(
よ̂×よ̂ ↓

(X,X ′)
π(X,X′)
−−−−→ G×G F−→ Graph

)
. Since

(
よ×よ ↓ (X,X ′)

)
(E,E)

↪→よ×よ ↓ (X,X ′) is

final, we could instead compute the colimit over
(
よ ×よ ↓ (X,X ′)

)
(E,E)

for which only

the value of F at (E,E) is required.
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4. Main Theorem

In this section, we prove our main theorem (Section 4.11), characterizing closed symmetric
monoidal structures on the category of graphs.

For the remainder of the paper, we impose the following assumption:

4.1. Assumption. Fix a closed symmetric monoidal structure ⊗ on Graph, and set F⊗ :=
⊗ ◦ (よ×よ).

We claim that the only two such functors ⊗ are the box and categorical products. In
broad strokes, the argument can be summarized as:

1. F⊗(E,E) cannot be a graph with more than four vertices (Section 4.2).

2. F⊗(E,E) cannot be a graph with less than four vertices (Section 4.9).

3. If F⊗(E,E) has exactly four vertices, and the resulting product is closed symmet-
ric monoidal, then the resulting product is either the box or categorical product
(Section 4.10).

Recall that, by Section 1.11, we know that ⊗ ∼= lanよ×よF⊗. By Section 3.4, we only
need to consider the action of F⊗ on (E,E).

4.2. Lemma. The product I1 ⊗ I1 has at most four vertices.

Proof. Consider the following pushout square in Graph:

I0 ⊔ I0 I1

I1 I1

∂

∂ id

id

Applying I1 ⊗− and using the fact that the monoidal structure is closed and has unit I0,
we get a pushout square

I1 ⊔ I1 I1 ⊗ I1

I1 ⊗ I1 I1 ⊗ I1

∂⊗id

∂⊗id id

id

(Note that we used here that functors preserve identity morphisms.) But a square of this
form is a pushout if and only if ∂ ⊗ id : I1 ⊔ I1 → I1 ⊗ I1 is an epimorphism, and hence
in particular surjective on vertices. As its domain has four vertices, the codomain cannot
have more than four vertices.
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The task of showing that F⊗(E,E) must have at least four vertices is significantly
more involved. We begin with the following proposition and definition, which are used
throughout the remainder of this section:

4.3. Proposition. The functor F⊗ must satisfy:

F⊗(V, V ) = I0 and F⊗(V,E) = F⊗(E, V ) = I1.

Proof. We have:

F⊗(V, V ) = ⊗ ◦よ×よ(V, V )

= I0 ⊗ I0

= I0

since ⊗ is monoidal and I0 must be the unit by Section 2.3. The other parts are analogous.

4.4. Definition. We define labelled vertices as follows:

(1) We say a vertex w in F⊗(E,E) is labelled (a, a′) for a, a′ ∈ {s, t} if F⊗(a, a
′)(0) = w,

where 0 is the unique vertex of I0.

(2) We say a vertex w in F⊗(E, V ) is labelled a for a ∈ {s, t} if F⊗(a, id)(0) = w
(where, once again, 0 is the unique vertex of I0), and the vertices in F⊗(V,E) are
labelled analogously.

4.5. Example. Consider the closed symmetric monoidal product □. If F□ is such
that □ ∼= lanよ×よF□, then by Section 1.11 we must have F□(V, V ) = I0, F□(E, V ) =
F□(V,E) = I1 and F□(E,E) = C4. We also know F□ also acts on the morphisms (s, s),
(s, t), (t, s), and (t, t) by sending them to distinct graph maps from I0 to C4. So, in this
case, the four vertices of F□(E,E) are each are labelled one of (s, s), (s, t), (t, s), and
(t, t), based on where F□(s, s), F□(s, t), F□(t, s), and F□(t, t) map I0, as shown below.

(s, s) (t, s)

(t, t)(s, t)

Many of the following proofs also rely on using the pointwise formula and analyzing
the colimit diagrams. As the diagrams can get rather complex, before proceeding it makes
sense to first gain some familiarity with what these colimits can look like. We know that
objects in

(
よ ×よ ↓ (X,X ′)

)
(E,E)

are of the form
(
(E,E), (f, f ′) : (I1, I1) → (X,X ′)

)
.

For simplicity, we refer to such an object as (f, f ′).
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4.6. Example. Consider the category
(
よ ×よ ↓ (I0, I1)

)
(E,E)

. This category has four

objects, each defined by a map (I1, I1) → (I0, I1). As there is only one map from I1 to
I0, these objects are completely determined by maps I1 to I1. Call the four objects Idty,
Flip, Consts, and Constt, based how they map I1. Note that we label the vertices of I1 as
s and t. The resulting diagram and morphisms can be seen below:

Consts Idty Constt

Flip

(−,sr)

(−,tr)

(−,−)

(−,σ)

(−,id)

(−,tr)

(−,sr)

(−,−)

(−,σ)

(−,id)

Here each arrow represents multiple morphisms, as ‘-’ is used to represent any morphism
in G(E,E).

The objects represent maps as follows:

• The object Idty corresponds to the identity map, sending the vertex s to s and t to
t.

• The object Flip corresponds to the map sending the s vertex to t and the t vertex
to s.

• The object Consts corresponds to the constant map sending both vertices to the s
vertex of I1.

• The object Constt corresponds to the constant map sending both vertices to the s
vertex of I1.

If F⊗ is a functor F⊗ : G×G → Graph, each of these objects get sent to graphs in the
colimit diagram by F⊗ ◦ π, and the morphisms between them to graph maps.

With this out of the way, we now proceed with further restricting the possibilities
for F⊗. Note that in the following proofs, for simplicity, when referring to maps such as
F⊗(sr, σ), we omit the F⊗ and simply write (sr, σ).

4.7. Lemma. Suppose F⊗(E,E) has a vertex with more than one label. Then either
(s, s) = (t, s) and (s, t) = (t, t), (s, s) = (s, t) and (t, s) = (t, t), or both.
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Proof. Suppose that F⊗(E,E) contains a double-labelled vertex. Then at least one of
the following must hold:

1. (s, s) = (t, s)

2. (s, t) = (t, t)

3. (s, s) = (s, t)

4. (t, s) = (t, t)

5. (s, s) = (t, t)

6. (s, t) = (t, s)

We show that (1) if and only if (2), (3) if and only if (4), (5) implies both (1) and (3),
and hence also (2) and (4), and finally that (6) implies (5).

(1) ⇐⇒ (2): Suppose (s, s) = (t, s). Then:

(s, t) = (id, σ)(s, s)

= (id, σ)(t, s)

= (t, t)

Now suppose (t, t) = (s, t). Then:

(t, s) = (id, σ)(t, t)

= (id, σ)(s, t)

= (s, s)

(3) ⇐⇒ (4): Suppose (s, s) = (s, t). Then:

(t, s) = (σ, id)(s, s)

= (σ, id)(s, t)

= (t, t)

Now suppose (t, t) = (t, s). Then:

(s, t) = (σ, id)(t, t)

= (σ, id)(t, s)

= (s, s)

(5) =⇒ (1): Suppose (s, s) = (t, t). Then:

(s, s) = (id, sr)(s, s)

= (id, sr)(t, t)

= (t, s)
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(5) =⇒ (3): Suppose (s, s) = (t, t). Then:

(s, s) = (sr, id)(s, s)

= (sr, id)(t, t)

= (s, t)

(6) =⇒ (5): Suppose (s, t) = (t, s). Then:

(s, s) = (σ, id)(t, s)

= (σ, id)(s, t)

= (t, t)

Thus, if F⊗(E,E) has a double label, either (s, s) = (t, s) and (s, t) = (t, t), (s, s) =
(s, t) and (t, s) = (t, t), or both.

4.8. Lemma. The graph F⊗(E,E) cannot be such that any vertex has more than one
label.

Proof. Suppose F⊗(E,E) contains a double labelled vertex. We show that ⊗ is not
closed symmetric monoidal. By Section 4.7, we have two possibilities to consider. Either
(s, s) = (t, s) and (s, t) = (t, t) or (s, s) = (s, t) and (t, s) = (t, t). For this proof, assume
that (s, s) = (s, t) and (t, s) = (t, t). The proof where (s, s) = (t, s) and (s, t) = (t, t) is
identical, the coordinates are just reversed. Also note that we are not assuming both are
not the case, just that at least (s, s) = (s, t) and (t, s) = (t, t). To show that ⊗ is not
closed symmetric monoidal, we show that I0 is not the unit, which must be the case if ⊗
was closed symmetric monoidal by Section 2.3.

Before we begin, first note that the graph F⊗(E,E) may have vertices that are unla-
belled. These unlabelled vertices are vertices that are not mapped to by any map of the
form F⊗(a, b) : I0 → F⊗(E,E), where a, b ∈ {s, t}. We break the proof into two separate
cases, based on how the map (sr, id) : F⊗(E,E) → F⊗(E,E) acts on any unlabelled
vertices:

Case 1: The map (sr, id) is not such that (sr, id)(a) = b for some (not necessarily dis-
tinct) unlabelled vertices a and b.

Case 2: The map (sr, id) is such that (sr, id)(a) = b for some (not necessarily distinct)
unlabelled vertices a and b.

The proof goes roughly as follows:
In case (1), we consider the product I0 ⊗ I1. We show that I0 ⊗ I1 = I0, which

contradicts unitality. This is roughly because, in the colimit diagram, all vertices get
related through the double labelled vertices along with the maps of the form (sr, id).

In case (2), we consider the product I0 ⊗ I3. We show that I0 ⊗ I3 ̸= I3, again
contradicting unitality. This roughly happens because certain unlabelled vertices do not
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end up getting related to any other vertices, which causes there to be extra vertices in
the colimit. More formally, we have:

Case 1: Suppose the map (sr, id) sends any unlabelled vertices in F⊗(E,E) to labelled
ones (or that there are no unlabelled vertices). Consider the product I0 ⊗ I1. Recall from
Section 4.6 that the category (よ×よ ↓

(
I0, I1)

)
(E,E)

looks like:

Consts Idty Constt

Flip

(−,sr)

(−,tr)

(−,−)

(−,σ)

(−,id)

(−,tr)

(−,sr)

(−,−)

(−,σ)

(−,id)

Our goal is to show that all vertices in the colimit diagram get related, and thus belong
to the same equivalence class. This would show that the colimit has only one vertex, and
is thus I0.

First, we show that all labelled vertices are in the same equivalence class. Let
v be a vertex labelled (s, s), and thus also (s, t) in F⊗

(
π(Idty)

)
. Consider the map

(sr, sr) : F⊗
(
π(Consts)

)
→ F⊗

(
π(Idty)

)
. This map is constant with a value of v, since

for a vertex w ∈ F⊗
(
π(Const)

)
:

(sr, sr)(w) = (s, s) ◦ (r, r)(w)
= (s, s)(I0)

= v

since v has a the label (s, s). Likewise, there is a constant map (sr, tr) : F⊗
(
π(Constt)

)
→

F⊗
(
π(Idty)

)
which is constant with a value of v. What we have just shown is that the

vertex labelled both (s, s) and (s, t) in F⊗
(
π(Idty)

)
belongs to the same equivalence class

as all vertices in both F⊗
(
π(Consts)

)
and F⊗

(
π(Constt)

)
.

We can use the same method, however, to show that this is the case for all labelled
vertices in F⊗

(
π(Idty)

)
and F⊗

(
π(Flip)

)
:

• For the vertex labelled (t, s) and (t, t) in F⊗
(
π(Idty)

)
, there are constant maps

(tr, sr) and (tr, tr) from F⊗
(
π(Consts)

)
and F⊗

(
π(Constt)

)
, respectively.

• For the vertex labelled (s, s) and (s, t) in F⊗
(
π(Flip)

)
, there are constant maps

(sr, tr) and (sr, sr) from F⊗
(
π(Consts)

)
and F⊗

(
π(Constt)

)
, respectively.

• For the vertex labelled (t, s) and (t, t) in F⊗
(
π(Flip)

)
, there are constant maps (tr, tr)

and (tr, sr) from F⊗
(
π(Consts)

)
and F⊗

(
π(Constt)

)
, respectively.
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Thus, all labelled vertices in both F⊗
(
π(Idty)

)
and F⊗

(
π(Flip)

)
belong to the same equiv-

alence class as all vertices in both F⊗
(
π(Consts)

)
and F⊗

(
π(Constt)

)
.

The only vertices that remain are potentially unlabelled vertices in F⊗
(
π(Idty)

)
and

F⊗
(
π(Flip)

)
, if they exist. By assumption, however, the map (sr, id) must map any

unlabelled vertex to labelled ones. Since there is a map (sr, id) from both F⊗
(
π(Idty)

)
to itself and F⊗

(
π(Flip)

)
to itself, we have that any unlabelled vertices in these two

graphs must also belong to the same equivalence class as all the labelled vertices. Thus,
since there is only one equivalence class of vertices in the colimit, we get I0 ⊗ I1 = I0,
contradicting unitality, so ⊗ cannot be closed symmetric monoidal.

Case 2: Suppose (sr, id) is such that (sr, id)(a) = b for some (not necessarily distinct)
unlabelled vertices a and b. In this case, the trick of considering I0 ⊗ I1 does not work.
Instead, we must consider I0 ⊗ I3. This is more complicated, however, and requires some
setup before proceeding.

We first note that (sr, id)(b) = b. This is because:

(sr, id)(b) = (sr, id)
(
(sr, id)(a)

)
= (sr, id) ◦ (sr, id)(a)
= (sr, id)(a)

= b

With this in mind, we construct a set of vertices in F⊗(E,E) which we call Invσ. The
purpose of this construction, roughly, is to have a set of vertices that do not get related
to other vertices in the colimit.

First, add a and b into Invσ. Next, if there exists a vertex c such that (sr, id)(c) ∈ Invσ,
add c to Invσ. Repeat this step until no such c exists. Finally, for every vertex a ∈ Invσ,
add in (id, σ)(a) and (σ, id)(a). Note that we only need to do this once, since (id, σ)2 =
(id, id) = (σ, id)2.

Note that Invσ cannot contain any labelled vertices. This is because none of (sr, id),
(σ id), or (id, σ) can map a labelled vertex to an unlabelled one. To see this, suppose v is
labelled (x, y) for x, y ∈ {s, t}. This means that (x, y)(I0) = v. Then by functoriality:

(sr, id)(v) = (sr, id) ◦ (x, y)(I0)
= (srx, id y)(I0)

= (s, y)(I0)

which is another labelled vertex by definition. An identical argument shows that (id, σ)(v)
and (σ, id)(v) must also be labelled. So Invσ cannot contain any labelled vertex. We thus
have a set of unlabelled vertices Invσ, such that (sr, id)(Invσ) ⊆ Invσ, (id, σ)(Invσ) ⊆ Invσ,
(σ, id)(Invσ) ⊆ Invσ, and for any vertex v /∈ Invσ, (sr, id)(v) /∈ Invσ. In order to show that
the vertices in Invσ don’t get related to other vertices in the colimit, we have the following
claim:

Claim:
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(1) For any map f of the form (−, id), f(Invσ) ⊆ Invσ

(2) For any map f of the form (−, σ), f(Invσ) ⊆ Invσ

(3) For any map f of the form (−, id), and any any vertex v /∈ Invσ, f(w) /∈ Invσ

(4) For any map f of the form (−, σ), and any any vertex v /∈ Invσ, f(w) /∈ Invσ

Proof of claim: For (1), (sr, id) and (σ, id) are given by construction. Consider
the map (tr, id). We have that (sr, id)(Invσ) = (sr, id) ◦ (tr, id)(Invσ). But we know
(sr, id)(Invσ) ⊆ Invσ and for any v /∈ Invσ, (sr, id)(v) /∈ Invσ. Thus (tr, id)(Invσ) ⊆ Invσ.

For (2), we have four possibilities: (id, σ), (sr, σ), (tr, σ), and (σ, σ). By construction,
we know that (id, σ)(Invσ) ⊆ Invσ. Then from (1), the remaining three can all be written
as composites of maps f ◦ g such that f(Invσ) ⊆ Invσ and g(Invσ) ⊆ Invσ.

For (3), there are three possibilities to consider: (sr, id), (tr, id), and (σ, id). (sr, id) is
given by construction. Now, let v /∈ Invσ. We have that (sr, id)(v) = (sr, id) ◦ (tr, id)(v).
Thus (tr, id)(v) /∈ Invσ, else we would have (sr, id)(v) ∈ Invσ, a contradiction. We also have
that v = (σ, id) ◦ (σ, id)(v). So if (σ, id)(v) ∈ Invσ, we would get that (σ, id)(Invσ) ̸⊆ Invσ,
which is another contradiction.

Finally, for (4), there are four more cases to consider: (id, σ), (sr, σ), (tr, σ), and
(σ, σ). But (id, σ) can be proven using an identical argument to (σ, id) in (3). Then from
(3), the remaining three can be written as compositions of maps f ◦ g, such that for any
v /∈ Invσ f(v) /∈ Invσ and g(v) /∈ Invσ. This completes the proof of the claim.

Note that in a colimit diagram, every graph will have one of these sets of vertices Invσ.
What we have just shown is that for a given graph, none of the vertices in Invσ get related
to any other vertices by any maps of the form (−, id) or (−, σ), except possibly vertices
in Invσ for another graph. We use this fact to arrive at a contradiction when considering
I0 ⊗ I3.

Consider two vertices v and w connected by an edge in I3. We know there exists a
graph in the colimit diagram corresponding to the edge from v to w. Call this graph Idtyvw.
For a graph of this form, we refer to the set Invσ ⊂ (Idtyvw)V by Invσvw. There is also a
graph Idtywv corresponding to the edge going in the opposite direction, which is analogous
to Flip in the case of I0 ⊗ I1. There also exist two more objects, one corresponding to the
loops on each vertex v and w. Call these objects Constv and Constw, respectively.

We know that both Idtyvw and Idtywv both a set of unlabelled vertices Invσvw and
Invσwv, respectively, which we constructed above. Our goal is to show that no vertex in
Invσvw ∪ Invσwv belongs to an equivalence class containing any vertex not in Invσvw ∪ Invσwv.
We showed above that any maps from either Idtyvw, or Idtywv, to themselves, or between
the two, do not relate the vertices in Invσvw ∪ Invσwv to any vertices not in Invσvw ∪ Invσwv.
This is because maps between these graphs, or to themselves, are of the form (−, id) and
(−, σ), as was the case in Section 4.6.

There also do not exist any maps from either of these graphs to any other ones, and
the only other maps to these graphs are from Constv and Constw. These maps are of the
form (id, sr), (id, tr), or (ar, br) for a, b ∈ {s, t}. We show that these maps must not send
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any vertex in Constv and Constw to any vertex a ∈ Invσvw, and the case of Invσwv is identical.
The maps (ar, br) are obvious since they’re constant to the labelled vertices. For the other
maps, we have (sr, id)◦ (id, sr) = (sr, sr) which must map all vertices to the vertex (s, s).
Then if (id, sr)(v) ∈ Invσvw, we’d get (sr, sr)(v) ∈ Invσvw since (sr, id)(Invσvw) ⊆ Invσwv. This
is a contradiction, so this cannot be the case. The same can be said for (tr, id).

Thus, for a pair of distinct vertices v, w with an edge between them, no vertex in
Invσvw ∪ Invσwv belongs to an equivalence class containing any vertex not in Invσvw ∪ Invσwv.

Now, for every edge e from vertices v to w in I3, choose a vertex ae in Invσvw, and let
[ae] be the equivalence class in the colimit that ae belongs to. Then, we can choose edges
e1, e2 and e3, such that no pair of these edges is between the same two vertices. We then
have three distinct equivalence classes [ae1 ], [ae2 ], and [ae3 ], such that there is not an edge
between any two of them. This is because if vertices a and b are in separate equivalence
classes, they must be in separate graphs. Then, in the product I0 ⊗ I3, there exists a set
of three vertices, none of which are connected by edges. Since no such set exists in I3, we
have that I0 ⊗ I3 ̸= I3, and thus ⊗ is not monoidal.

4.9. Corollary. The graph F⊗(E,E) must be a graph of four vertices, such that each
vertex has exactly one label.

Proof. By Section 4.2 we know that F⊗(E,E) cannot have more than four vertices. We
also know by Section 4.8 that F⊗(E,E) cannot have any double labels. Thus, F⊗(E,E)
must be a graph with exactly four vertices, as if it had fewer we would have at least one
double label. We also have that each vertex in F⊗(E,E) must then have exactly one
label, since if there was an unlabelled vertex, we would have to again have at least one
double-labelled vertex.

We are now ready to prove the main result of this paper:

4.10. Theorem. Let F⊗ and ⊗ be as in Section 4.1. Then either ⊗ = ⊠ or ⊗ = □.

Proof.We know by Section 4.9 that F⊗(E,E) is a graph of four vertices all with distinct
labels. Note that since there are no vertices in F⊗(E,E) with double labels, then there
also cannot be vertices in F⊗(E, V ) or F⊗(V,E) with double labels. If this were the case,
the maps from F⊗(E, V ) or F⊗(V,E) would result in double labelled vertices in F⊗(E,E).
Thus, in both F⊗(E, V ) and F⊗(V,E), one vertex must be labelled s and the other t.

We now show that F⊗(E,E) must be either C4 orK4. As always, label the four vertices
(s, s), (s, t), (t, s) and (t, t). We first show that we must have at least the condition that
if (a, a′) and (b, b′) are such that a = b or a′ = b′ then (a, a′) ∼ (b, b′). First consider
(a, s) and (a, t) (the other case is analogous). Suppose there is no edge between (a, s) and
(a, t). We show that F is not a functor. Consider the morphism (a, id) : (V,E) → (E,E).
Then the image of this morphism must send the s vertex of I1 to (a, s) and the t vertex
to (a, t). But this is not a graph map since s and t have an edge between them in I1, but
(a, s) and (a, t) don’t in F⊗(E,E). The case of (s, a) and (t, a) is identical. Thus F⊗ is
not a functor. So, if F⊗ is a functor, we must have that (a, a′) ∼ (b, b′) whenever a = a′

or b = b′. Thus C4 must be a subgraph of F⊗(E,E).
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Now suppose F⊗(E,E) has one of the diagonal edges. Assume that (s, s) ∼ (t, t). We
know that (σ, id) must be a graph map. But this map sends (s, s) to (t, s) and (t, t) to
(s, t). Since it’s a graph map we get that (s, t) ∼ (t, s). Similarly if (s, t) ∼ (t, s) we must
have (s, s) ∼ (t, t). So if F⊗(E,E) is not C4, then it must be K4. Note that if F⊗(E,E)
is K4 or C4 with no unlabelled vertices, then the action of F⊗ on any morphism is fully
determined by its action on (s, s), (s, t), (t, s) and (t, t) which are already defined.

Finally, by Section 1.11, the first case corresponds to the functor resulting in the
product □ and the second case corresponds to the functor resulting in the product ⊠.
Thus, if F⊗ is a functor such that ⊗ is a closed symmetric monoidal structure, then ⊗
must be either ⊠ or □.

4.11. Theorem. There are only two closed symmetric monoidal products on the category
Graph: the box and categorical products.

Proof. By Section 4.10, we know that if a closed symmetric monoidal product ⊗ arises
as a Kan extension ⊗ ∼= lanよ×よF⊗, then either ⊗ ∼= □ or ⊗ ∼= ⊠. But, by Section 1.11,
every closed symmetric monoidal product must arise in this manner.
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