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THE CORE GROUPOID CAN SUFFICE

ROSS STREET

Abstract. This work results from a study of Nicholas Kuhn’s paper entitled “Generic
representation theory of finite fields in nondescribing characteristic”. Our goal is to
abstract the categorical structure required to obtain an equivalence between functor
categories rF ,V s and rG ,V s where G is the core groupoid of the category F and V
is a category of modules over a commutative ring. Examples other than Kuhn’s are
covered by this general setting.

Introduction
Let F be a finite field, let F be the category of finite dimensional vector spaces and
linear functions over F, and let G be the groupoid core of F ; that is, the subcategory
of F with all the objects and only the bijective linear functions. Let V be the category
of vector spaces over the complex numbers (say). In [12] André Joyal and I studied a
braided monoidal structure on the functor category rG ,V s. That work could be regarded
as a categorified version of the algebra studied by Sandy Green [8] in the representation
theory of the finite general linear groups.

So I was quite interested and surprised when Nicholas Kuhn told Steve Lack and me
about his equivalence of categories rF ,V s » rG ,V s (see [15]) when we were working on
Dold-Kan-type theorems (see [16] and the related [9]). That proof of equivalence refers
to a remarkable piece of linear algebra [14] by our late Australian National University
colleague Laci Kovács who built on results in the papers [6, 18].

Given Kovács’ result, the present note is a study of the rest of the argument in order
to abstract the essential categorical features to cover further examples.

Benjamin Steinberg has recently produced two alternative proofs of the result in [14];
see his excellent book [22] and paper [23].

Now let V be the monoidal category of modules over a commutative ring R. Generally,
we are interested in categories F for which there is a groupoid G such that the functor
categories rF ,V s and rG ,V s are equivalent. In particular, G could be the core groupoid of
F ; that is, the subcategory with the same objects and with only the invertible morphisms.
Every category F gives rise to a V -category (that is, an R-linear category), denoted RF ,
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with the same objects and with hom R-module RF pA,Bq free on the homset F pA,Bq.
Indeed, RF is the free V -category on F so that the V -functor category rRF ,V s is
isomorphic to the ordinary functor category rF ,V s with the pointwise R-linear structure.
In these terms, we are interested in when RF and RG are Morita equivalent V -categories.

In my joint work [16] with Steve Lack on Dold-Kan-type equivalences, we had many
examples of this phenomenon. In Section 5 and Appendix A of that work we showed how
to reduce our general setting to the core groupoid case. However, the example of Nick
Kuhn, where F is the category of finite vector spaces over a fixed finite field F with all
F-linear functions and G is the general linear groupoid over F, does not fit into our theory.
Yet the “kernel” of the equivalence is of the same type. The present work shows that the
category theory behind the Kuhn result also covers Dold-Kan-type results.

Our main general result expressed as a Morita equivalence appears as Theorem 3.10.
The more specific conclusion is Corollary 4.12 which says that, under some finiteness-type
conditions on a proper factorization system in a category F , and with the existence of
certain idempotents, we have an equivalence of categories

rF ,X s » rG ,X s

where G is the core groupoid of F and X is any R-linear category admitting finite direct
sums and splitting of idempotents.

As mentioned, a monoidal structure on the category of representations of the general
linear groupoid over a finite field was defined and studied in [12]. So finally, in Section 5,
we examine how such monoidal structures transport across the equivalences of our main
theorem.

In some ways the philosophy of this paper works in a direction opposite to the modern
trends which accept that we must study representations of categories more general than
groups or groupoids. Currently we see work on representations of free categories on graphs
(quiver representations), of categories coming from low-dimensional topology, and so on.
Our results show that sometimes representations of non-groupoids produce nothing more
than representations of their core groupoids.

I am grateful to Alexander Campbell for pointing to two gaps in the version of this
note that I presented to the Australian Category Seminar on 13 July 2022. I am grateful
to Nicholas Kuhn for his help during the writing of this material. Thanks also to Benjamin
Steinberg for his valuable feedback on the first arXiv version of this work. My sincere
thanks goes to the editors for their thoughtful consideration and to the anonymous referee
who made 42 essential suggestions and corrections.

1. Review of factorization systems
Let F be a category equipped with a factorization system pE ,M q; see [7, 13]. That is,
E and M are sets of morphisms of F satisfying

FS0. mw P M if m P M and w is invertible, while we P E if e P E and w is invertible;
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FS1. if mh “ ke with e P E and m P M then there exists a unique ℓ with ℓe “ h and
mℓ “ k (see (1.1));

FS2. every morphism f factors as f “ me for some m P M and e P E .

A
e //

h
��

B

k
��

ℓ

xx
X m

// Y

(1.1)

It follows that E XM is the set of invertible morphisms and that E and M are both closed
under composition in F . We identify E , M and G :“ E X M with the subcategories of
F containing all the objects of F but only the morphisms in those respective sets. The
following result is a well-known way to express usefully the uniqueness of factorization up
to isomorphism.

1.1. Lemma. Composition in F induces an isomorphism
ż CPG

M pC,Bq ˆ E pA,Cq – F pA,Bq

which is natural in A P E and B P M .
The factorization system is called proper when

FSP. every member of E is an epimorphism and every member of M is a monomorphism.

1.2. Proposition. In a proper factorization system, if hf P M then f P M . Dually, if
fk P E then f P E .

Proof. Assume hf P M and use FS2 to factorize f “ me with e P E and m P M . Then
phfq1 “ phmqe so, by FS1, there exists w with we “ 1 and hfw “ hm. So e is a split
monomorphism. Using properness, we know e is an epimorphism and hence invertible.
So f “ me P M by FS0.

2. Preliminaries in the bicategory of modules
Let V denote the monoidal category AbR of modules over the commutative ring R.

Let R denote the bicategory V -Mod. The objects are V -categories (also called R-
linear categories and to be thought of as “R-algebras with several objects” in as much as
a category is a “monoid with several objects”). The homcategories of R are defined to be
the V -functor V -categories

RpA ,Bq “ rBop b A ,V s ;

objects of these homs are called modules from A to B. Composition

RpB,C q b RpA ,Bq
˝
ÝÑ RpA ,C q
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is defined by

pK ˝ HqpC,Aq “

ż B

HpB,Aq b KpC,Bq .

The identity module A Ñ A is the V -valued hom functor of A .
The homcategories of R are all abelian R-linear categories. Consequently, within

them, exact sequences have meaning.
For V -functors A

F
ÝÑ C

G
ÐÝ B, we have the module C pG,F q : A Ñ B with compo-

nents C pG,F qpB,Aq “ C pGB,FAq. In particular, for each V -functor F : A Ñ B we
have the module F˚ “ Bp1, F q : A Ñ B. Also, the module F ˚ “ BpF, 1q : B Ñ A
provides a right adjoint F˚ % F ˚ for F˚ in the bicategory R.

Here is a result on Morita equivalence for R-linear categories; for example, see [25, 26].

2.1. Proposition. Let QA denote the Cauchy completion of the V -category A ; that
is, the closure of the representables in rA op,V s under finite direct sums and splittings
of idempotents. The following conditions on R-linear categories A and B are logically
equivalent:

(i) A and B are equivalent in the bicategory R;

(ii) rA op,V s » rBop,V s;

(iii) rA ,V s » rB,V s;

(iv) QA » QB.

We will need Lemma 2.2 in our bicategory R. Diagram (2.2) is half of the string proof.
The result will be used in the proof of Lemma 3.4.

2.2. Lemma. In any bicategory M, suppose f % u : A Ñ X is an adjunction with counit
ε : f ˝ u ñ 1A and unit η : 1X ñ u ˝ f . Suppose ω : f ñ f is an idempotent 2-morphism
on f with splitting provided by σ : f ñ g and ρ : g ñ f : that is, ρσ “ ω and σρ “ 1g. The
mate ω̃ : u ñ u of ω : f ñ f under f % u is an idempotent 2-morphism on f satisfying
εpωuq “ εpfω̃q. Then, any splitting of ω̃ delivers a right adjoint v for g. Explicitly, if
ρ̃σ̃ “ ω̃ and σ̃ρ̃ “ 1v then ε̃ “ εpρ ˝ ρ̃q and η̃ “ pσ̃ ˝ σqη provide a counit and unit for
g % v.



690 ROSS STREET

σ̃

η

σ

ρ

ε

ρ̃

“

v

v

u

u

f

f

g “ “

σ̃

v

u

η

ε

ρ̃

v

u
σ̃

ρ̃

v

v

v

uf (2.2)

We write RX for the free R-module with basis the set X. This defines the object
assignment of the strong-monoidal left adjoint R : Set Ñ V to the forgetful functor. We
obtain a 2-functor1 R : Cat Ñ V -Cat taking ordinary categories to R-linear categories by
applying R on the homsets of the categories. The ordinary functor category

rF ,V s

with its pointwise R-linear enrichment is isomorphic to the V -enriched V -functor category

rRF ,V s “ RpRF , R1q ,

where 1 is the terminal object of Cat.
Every module H : A Ñ B is the “kernel” of a functor pH : rB,V s Ñ rA ,V s defined

by composition with H in R thus: pHpT q “ T ˝ H : A Ñ R1. That is,

pHpT qA “

ż B

HpB,Aq b TB . (2.3)

We obtain a pseudofunctor yp´q : Rop Ñ V -Cat. Moreover, pH has a right adjoint rH :
rA ,V s Ñ rB,V s given by right extension along H in R. Explicitly,

rHpF qB “

ż

A

rHpB,Aq, FAs “ rA ,V spHpB,´q, F q . (2.4)

Return now to F and its proper factorization system pE ,M q with G “ E X M . We
write M 1, E 1, G 1 for the set of morphisms of F not in M , E , G , respectively.

The V -functor j : RG Ñ RF induced by the inclusion G ãÑ F gives the right adjoint
V -module j˚ : RF Ñ RG . So j˚pA,Bq “ RF pjA,Bq with A P RG and B P RF .

1The notation of Eilenberg-Kelly [4] would be R˚ for this 2-functor however we would rather overwork
the symbol R than the subscript ˚.
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2.3. Lemma. For g P G pC,Aq and h P F pB,Dq, there is a commutative square

RM 1pA,Bq
Ď

//

��

RF pA,Bq

RF pg,hq

��

RM 1pC,Dq
Ď

// RF pC,Dq

(2.5)

so that M 1pA,Bq “ RM 1pA,Bq defines a submodule M 1 of j˚. There is a short exact
sequence

0 // M 1 Ď
// j˚ q

// M // 0 (2.6)

in RpRF , RG q where MpA,Bq “ RM pjA,Bq. Dually, there is a short exact sequence

0 // E 1 Ď
// j˚

q̃
// E // 0 (2.7)

in RpRG , RF q where EpB,Aq “ RE pB, jAq.

Proof. Contrapose the implications hfg P M ñ hf “ hfgg´1 P M ñ f P M to
prove the first sentence. The R-linear morphism qA,B : RF pA,Bq Ñ RM pA,Bq, defined
on generators by qA,Bpfq “ f for f P M pA,Bq and qA,Bpfq “ 0 otherwise, has kernel
RM 1pA,Bq. Then, using the universal property oif cokernel, the commutative square
(2.5) induces the module structure on M and renders q a module morphism.

2.4. Lemma. The family of R-module morphisms

ϕB : EpB,Dq b MpC,Bq Ñ RG pC,Dq ,

defined by

ϕBpe b mq “

#

em for em P G

0 otherwise

for e P E pB,Dq and m P M pC,Bq, is dinatural in B P F , natural in C,D P G , and
induces an invertible morphism ϕ̄ : M ˝ E

–
ÝÑ 1RG in R.

Proof. Dinaturality requires ϕBpef b mq “ ϕB1pe b fmq for all e P E pB1, Dq, m P

M pC,Bq and f P F pB,B1q. This is true since both sides are equal to efm when this
is invertible and 0 otherwise. Naturality in C,D P G is obvious. So a natural family
ϕ̄ :

şB
EpB,Dq b MpC,Bq Ñ RG pC,Dq is induced. An inverse takes x P RG pC,Dq to

the equivalence class of x b 1C ; it is obviously a right inverse and also a left inverse since
any e b m representing a non-zero equivalence class has e b m „ em b 1C with em P G
by dinaturality of the coend inclusions.
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Diagram (2.8) may help in reading Corollaries 2.5 and 2.6.

rF ,V s

pE //

K

rG ,V s
rE

oo

xM

oo

pE˝xM // rG ,V s (2.8)

2.5. Corollary. The isomorphism ϕ̄ induces an isomorphism pE ˝ xM – 1rG ,V s. The
mate of this isomorphism, under the adjunction pE % rE, yields a natural transformation
Θ : xM Ñ rE.

The way we wish to prove rF ,V s » rG ,V s is to show that M and E appear in an
adjoint equivalence RF » RG in R. Item (iii) of Corollary 2.6 is a big step towards that
in the case where Θ is invertible.

2.6. Corollary. Suppose Θ too is invertible. Then
(i) pE % xM ;

(ii) xM is fully faithful;

(iii) ϕ̄ : M ˝ E
–
ÝÑ 1RG is the counit of an adjunction M % E in R;

(iv) rE % ĂM .

Proof. Since pE % rE and xM – rE, we obtain (i). Since pE ˝ xM – 1rG ,V s is the invertible
counit of the adjunction in (i), we obtain (ii). The pseudofunctor yp´q : Rop Ñ V -Cat
is a biequivalence onto the full subbicategory of V -Cat consisting of the V -categories of
the form rA ,V s and left adjoint V -functors between them; so pE % xM % ĂM implies (iii).
Finally, (iv) is obtained by applying the pseudofunctor Ąp´q : Rco Ñ V -Cat to M % E.

There are alternative formulas for xM and rE which can be useful. For A P F , let SubA
denote a representative set of the isomorphism classes of M {A, and let QuoA denote a
representative set of the isomorphism classes of A{E . Then

xMpT qA –
ÿ

pU
m

ÝÑAqPSubA

TU and rEpT qA –
ź

pA
e

ÝÑW qPQuoA

TW . (2.9)

In cases where SubA and QuoA are finite, both the sum and product in (2.9) are direct
sums and the components of Θ : xM Ñ rE transport across the isomorphisms to matrices
whose non-zero entries have the form T pemq : TU Ñ TW for em P G . Suppose that
elements of each SubA can be listed m0, . . . ,ms and those of each QuoA can be listed
e0, . . . , es in such a way that eimj P G implies 1 ď i ď j ď s. Then these matrices are
square and triangular with invertible morphisms down the main diagonal, and so (because
we have additive inverses in the hom R-modules) are invertible.

One way to obtain listings of the kind just described, and hence the invertibility of Θ,
is to produce an order in a manner similar to the one of Proposition 2.9 in [16].



THE CORE GROUPOID CAN SUFFICE 693

2.7. Proposition. Suppose F is the underlying category of a category P enriched in the
cartesian monoidal category of partially ordered sets; so P is a locally ordered 2-category.
Suppose each m P M has a right adjoint m˚ P E in P with identity unit. Suppose
each object of F has only finitely many automorphisms. Then a reflexive, antisymmetric,
transitive relation m Ĳ n is defined on SubA by: there exists x P G with mx ď n.

Proof. Reflexivity is clear since each 1 P G .
Suppose m Ĳ n Ĳ ℓ. Then mx ď n and ny ď ℓ for some x, y P G . So mxy ď ny ď ℓ

yields m Ĳ ℓ. This proves transitivity.
Suppose m Ĳ n Ĳ m. Then mx ď n and ny ď m for some x, y P G . So mxy ď ny ď m.

Since m is fully faithful in P, xy ď 1 and we have the chain

¨ ¨ ¨ ď pxyqr ď pxyqr´1 ď ¨ ¨ ¨ ď pxyq ď 1

which cannot be infinite since the domain of m has only finitely many automorphisms.
Since xy is invertible, this means pxyqr “ 1 for some r ě 0. Then 1 “ pxyqr ď ¨ ¨ ¨ ď

pxyq ď 1 yielding xy “ 1. So m “ mxy ď ny ď m implies m “ ny. Thus m and n are in
the same isomorphism class of M {A; since they are both in SubA, m “ n and we have
antisymmetry.

2.8. Corollary. In the situation of Proposition 2.7, suppose SubA is finite and every
pA

e
ÝÑ W q P E is isomorphic to m˚ for some m P SubA. Then there is a listing of

m0, . . . ,ms of the elements of SubA such that, together with the listing m˚
0 , . . . ,m

˚
s of

QuoA, gives an invertible matrix representing Θ : xM Ñ rE.

Proof. Take the linear order m0, . . . ,ms to contain the order Ĳ of the Proposition. Then
x “ m˚

imj P G implies mix ď mj and so mi Ĳ mj and then i ď j.

2.9. Remark. Under the assumptions in Proposition 2.7 and Corollary 2.8, the functor
xM : rG ,V s Ñ rF ,V s is actually an equivalence; so M % E is an adjoint equivalence
RF » RG in R. A proof using comonadicity is in Section 6 of [16] so we shall not
repeat it here. Therefore already we have numerous examples where the core suffices for
representations of F in V . In the next two sections we shall obtain other conditions
in order for xM to be an equivalence, and we will see that each finite field provides an
example satisfying those conditions.

2.10. Example. Let F “ ∆K be the category of non-empty ordinals a “ t0, 1, . . . , a´ 1u,
0 ă a P N, and order-preserving functions ξ : a Ñ b which also preserve first element.
Let pE ,M q be the surjective-injective factorization system. Let P be the 2-category
obtained by ordering the homs of F with the pointwise order. Each morphism ξ : a Ñ b
of F has a right adjoint ξ˚ as since ξ preserves the initial object (and so all joins since a
is linearly ordered). If ξ P M then ξ˚ P E with 1 “ ξ˚ξ, so Corollary 2.8 applies. As the
only invertible morphisms in F are identities, the groupoid G is discrete with countably
many objects; so rG ,V s is the product V ˆ V ˆ . . . of countably many copies of V , that
is, the category of objects of V graded by the positive integers.
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2.11. Example. Let A be any category in which every morphism is a monomorphism,
pullbacks exist, and each slice category A {A has finitely many isomorphism classes. Take
F “ A 7 to be the category of spans in A ; that is, the objects are those of A and the
morphisms f : A Ñ B are isomorphism classes rf1, U, f2s of spans A

f1
ÐÝ U

f2
ÝÑ B in A ,

where composition uses pullback. Take M to consist of those spans f with f1 invertible
and E to consist of those spans f with f2 invertible. Let P be the 2-category obtained
by declaring f “ rf1, U, f2s ď rg1, V, g2s “ g : A Ñ B when there exists h : U Ñ V
in A with g1h “ f1 and g2h “ f2. Corollary 2.8 applies. The core groupoid G of F
is isomorphic to the core groupoid of A . An example of this is A “ FI, the category
of finite sets and injective functions; so F “ FI7. Then G “ S, the groupoid of finite
sets and bijections, sometimes called the symmetric groupoid: so rG ,V s is the category
of R-linear Joyal species [10]; it is equivalent to the product over n ě 0 of the categories
rSn,V s of R-linear representations of the groups Sn. The equivalence rFI7,V s » rS,V s

appears in the paper [19] by Pirashvili. It was proved independently by Munn [17] and
Ponizovskĭi [20] in the language of inverse semigroups.

3. Main theorem
We continue with a proper factorization system pE ,M q on a category F .

The goal is to find other conditions under which M : RF Ñ RG in R is an equivalence.
If this is to be the case, M will need to have a left adjoint so we would like to apply
Lemma 2.2 to deduce the adjoint from the adjunction j˚ % j˚. This means we would
like M to be a retract of j˚. A natural splitting of the short exact sequence (2.6) would
suffice.

A splitting ρ : M Ñ j˚ of the epimorphism q : j˚ Ñ M has components ρA,B :
MpA,Bq Ñ RF pA,Bq which are natural in A P G and B P F . In particular they are
natural in B P RM and so, by Yoneda, are determined by the value, say pA P RF pA,Aq,
at 1A P RM pA,Aq. Then ρA,Bpmq “ mpA. This at least motivates the need for some
idempotents pA if not the need for all the conditions we place on them.

Idempotent Axiom. For each object A P F , there is a morphism pA : A Ñ A in RF
such that

p0. pApA “ pA;

p1. if f P F pA,Bq and f P M 1 then fpA “ 0;

p2. if f P F pA,Bq and f P E 1 then pBf “ 0;

p3. if g P G pA,Bq then gpA “ pBg;

p4. p1
A “ 1A ´ pA P RpE 1pA,Aq X M 1pA,Aqq.
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3.1. Example. Every groupoid G provides a trivial example with F “ E “ M “ G
and pA “ 1A. In the general case, we can think of p1

A “ 1A ´ pA as an obstruction to F ’s
being a groupoid although we will see in Theorem 3.10 a sense in which F is not too far
from G at the R-linear level.

Using p1, we have the identity linear function as the left side of a commutative square
(3.10). By Proposition 1.2, if u P M 1pA,Aq and f P F pA,Bq then fu P M 1; so, by p4,
fp1

A P RM 1pA,Bq for all f P F pA,Bq. This gives a splitting σA,B of the idempotent
RF pp1

A, 1Bq.

RM 1pA,Bq
Ď

//

1
��

RF pA,Bq

RF pp1
A,1Bq

��

σA,B

uukkkk
kkkk

kkkk
kkk

RM 1pA,Bq
Ď

// RF pA,Bq

(3.10)

Using p3, we see that the linear functions RF pp1
A, 1Bq are the components of an idempo-

tent module morphism π1 : j˚ Ñ j˚ which is split by the module morphism σ : j˚ Ñ M 1

and the inclusion M 1 ãÑ j˚. It follows that the short exact sequence (2.6) splits so that,
if we put π “ 1 ´ π1 “ RF ppA, 1Bq, we have:

3.2. Lemma. The idempotent module morphism π “ RF ppA, 1Bq : j˚ Ñ j˚ splits as

j˚ π //

q
  
AA

AA
AA

A j˚

q

  
AA

AA
AA

A

M

ρ

>>}}}}}}}

1M
// M

(3.11)

where, for m P M pA,Bq, ρA,Bpmq “ mpA and for g P G pA1, Aq and f P F pB,B1q,

Mpg, fqm “ fmgpA1 .

Dually, we also have:

3.3. Lemma. The idempotent module morphism ϖ “ RF p1A, pBq : j˚ Ñ j˚ splits as

j˚
ϖ //

q̃
��
??

??
??

? j˚

q̃

��
??

??
??

?

E
ρ̃

??�������

1E
// E

(3.12)

where EpA,Bq “ RE pA,Bq, ρ̃A,Bpeq “ pBe, and

Epf, gqe “ pB1gef ,

for e P E pA,Bq, f P F pA1, Aq, g P E ppB,B1q.
Recall that, under the conditions of Corollary 2.6, we had the adjunction M % E. In

the present circumstances, rather, we have the reverse adjunction.
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3.4. Lemma. The idempotent module morphisms π : j˚ Ñ j˚ and ϖ : j˚ Ñ j˚ are mates
under the adjunction j˚ % j˚ in R. Consequently, E % M in R.
Proof. By the Yoneda Lemma or using p3 directly, the square

RG pC,Dq
j

//

j

��

RF pjC, jDq

RF ppC ,1jDq

��

RF pjC, jDq
RF p1jC ,pDq

// RF pjC, jDq

commutes and the arrows marked j are the components of the unit of j˚ % j˚. This
proves the first sentence. The second sentence uses Lemma 2.2.

Since yp´q : Rop Ñ V -Cat (see (2.3)) is a pseudofunctor, we have:

3.5. Corollary. The functor xM : rG ,V s Ñ rF ,V s has right adjoint pE.

Since Ąp´q : Rco Ñ V -Cat (see (2.4)), we have:

3.6. Corollary. The functor ĂM : rF ,V s Ñ rG ,V s has right adjoint rE.

3.7. Corollary. From xM % ĂM and pE % rE, it follows that pE – ĂM .

3.8. Lemma. The unit 1RG ñ M ˝E of the adjunction E % M in R is invertible. So the
unit 1rG ,V s ñ pE ˝ xM of xM % pE is invertible and xM is fully faithful.
Proof. Note that pj˚ ˝ j˚qpC,Dq – RF pjC, jDq and, from Lemma 2.2, the unit of the
adjunction E % M has component at pC,Dq equal to the composite

RG pC,Dq
j

ÝÑ RF pjC, jDq –

ż BPF

RF pB, jDq b RF pjC,Bq

şBPF qbq̃
ÝÝÝÝÝÝÑ pM ˝ EqpC,Dq

which is inverse to the component of the isomorphism ϕ̄ of Lemma 2.4.
Alternatively, we take module composition of the splittings of Lemmas 3.2 and 3.3 to

obtain the splitting

RF pjC, jDq
π˝ϖ“RF ppC ,pDq

//

q˝q̃
((RR

RRR
RRR

RRR
RR

RF pjC, jDq

q˝q̃

))RR
RRR

RRR
RRR

RR

pM ˝ EqpC,Dq

ρ˝ρ̃

66lllllllllllll

1
// pM ˝ EqpC,Dq .

However, we can also compose the splittings as functions to obtain the factorization

RF pjC, jDq

q̃
((PP

PPP
PPP

PPP
P

RF p1C ,pDq
// RF pjC, jDq

q
((QQ

QQQ
QQQ

QQQ
Q

RF ppC ,1Dq
// RF pjC, jDq

RE pjC,Dq

qæ
((PP

PPP
PPP

PPP
P

Ď

66nnnnnnnnnnnn
RM pC, jDq

Ď

66mmmmmmmmmmmm

RG pC,Dq

Ď

66mmmmmmmmmmmm
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also giving a splitting of the idempotent π ˝ ϖ. The induced isomorphism RG pC,Dq –

pM ˝EqpC,Dq is the component of the unit for E % M at pC,Dq as we see by evaluating
it and the unit (as given at the beginning of this proof) at a g P G pC,Dq.

3.9. Lemma. If each object A of F has only finitely many M -subobjects (that is, each
slice category M {A has only finitely many isomorphism classes) then the counit of the
adjunction E % M in R is a split epimorphism.

Proof. First a non-proof! Since R : Set Ñ V preserves colimits and tensor products,
Lemma 1.1 yields an isomorphism

pE ˝ MqpA,Bq “

ż CPG

RM pC,Bq b RE pA,Cq – RF pA,Bq

which in natural in A P E and B P M . However it is not in A and B as objects of F .
Moreover, this isomorphism is not the counit E ˝ M ñ 1RF of E % M as obtained by
applying Lemma 2.2.

Now for the proper proof. The counit, which is natural, is the composite

pE ˝ MqpA,Bq “

ż CPG

RM pC,Bq b RE pA,Cq
ρ̃˝ρ
ÝÝÑ pj˚ ˝ j˚qpA,Bq

comp
ÝÝÝÑ RF pA,Bq

which takes the equivalence class of mbe P RM pC,BqbRE pA,Cq to mpCe P RF pA,Bq.
We claim this family has a natural right inverse. In particular, for A “ B, we must see
that the identity 1A of A is in the image. Take a finite family pCi

mi
ÝÑ Aqki“0 of morphisms

in M representing all isomorphism classes in the ordered set M {A and with the property
that mi “ mjn for some Ci

n
ÝÑ Cj implies i ď j; we can suppose Ck “ A and mk “ 1A.

Let

ϕj :
à

iďj

RM pCi, Aq b RE pA,Ciq ÝÑ RF pA,Aq

denote the function defined by ϕjpmbeq “ mpCi
e for m P RM pCi, Aq and e P RE pA,Ciq.

So the image of ϕi is contained in the image of ϕj for i ď j. We will show that every
f P F pA,Aq is in the image of the function ϕk. The proof is by induction on j, where
f “ mje for some e P E and unique j ď k. Notice that E 1pC0, C0q X M 1pC0, C0q “ H:
for, if h P M 1pC0, C0q then h “ md with pD

m
ÝÑ C0q P M and pC0

d
ÝÑ Dq P E ; so

the M -subobject D
m0m
ÝÝÝÑ A of A must be isomorphic to m0 which implies m invertible

and hence h P E pC0, C0q. By Idempotent Axiom p4, we have p1
C0

“ 0. So pC0 “ 1C0 and
f “ m0e “ m0pC0e “ ϕ0pm0beq is in the image of ϕ0. Now take 0 ă j ď k and assume the
result for indices smaller than j. Then f “ mje “ mjpCj

e`mjp
1
Cj
e “ ϕjpmjbeq`mjp

1
Cj
e.

By Idempotent Axiom p4, p1
Cj

is an R-linear combination of terms of the form ne1 with
n P M and e1 P E non-invertible. So terms of mjp

1
Cj
e are of the form mie

2 with i ă j and
e2 P E . The inductive hypothesis implies all these terms are in the image of ϕj´1. So f is
in the image of ϕj.
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Hence, 1A P F pA,Aq is in the image of the A,A component of the counit. Suppose
t P

şCPG
RM pC,Aq b RE pA,Cq maps to 1A P F pA,Aq. By the Yoneda Lemma, there

exists a unique family of morphisms

RF pA,Bq ÝÑ

ż CPG

RM pC,Bq b RE pA,Cq

which is natural in B P F taking 1A P F pA,Aq to t. Again by Yoneda, this gives right
inverses to the components of the counit. Dually, there is such a family natural in A. By
Yoneda yet again, these families agree since they have the same value at the identity. So
the counit of E % M has a natural right inverse.

Recall that a V -functor J : A Ñ X is strongly generating when the V -functor
X p´, Jq : X Ñ rA op,V s is conservative. When X is small cocomplete and A is small,
the V -functor X p´, Jq has a left adjoint and J is strongly generating if and only if the
counit of the adjunction is a strong epimorphism.

Recall that a V -functor J : A Ñ X is dense when the V -functor X p´, Jq : X Ñ

rA op,V s is fully faithful. When X is small cocomplete and A is small, the V -functor
X p´, Jq has a left adjoint and J is strongly generating if and only if the counit of the
adjunction is invertible.

A special case of Theorem 2 of [2] tells says that, if X is of the form rBop,V s with
B small, then J : A Ñ X strongly generating implies J dense.

3.10. Theorem. Suppose pE ,M q is a proper factorization system on a category F and
assume that the Idempotent Axiom holds. If each object A of F has only finitely many
M -subobjects then the adjunction E % M is an equivalence RF » RG in R.

Proof. Using Lemma 3.8 and Corollary 3.7, we know that the unit 1RG ñ ĂM ˝ xM is
invertible. So xM : rRG ,V s Ñ rRF ,V s is fully faithful and so is its composite M 1 :
RG op Ñ rRF ,V s, C ÞÑ MpC,´q, with the Yoneda embedding. Moreover, Lemma 3.9
implies M 1 is strongly generating (the required counit is a split epimorphism and so a
strong epimorphism). By Theorem 2 of [2], M 1 is also dense. So the counit of E % M is
invertible.

In the terminology of ring theory in the spirit of [25], Theorem 3.10 implies that RF
and RG are Morita equivalent several-object R-algebras. In the terminology of enriched
category theory, it implies that RF and RG are Cauchy equivalent V -categories.

3.11. Corollary. The functor xM : rG ,V s Ñ rF ,V s is an equivalence with inverse
equivalence pE.

3.12. Corollary. The functor ĂM : rF ,V s Ñ rG ,V s is an equivalence with inverse
equivalence rE.

3.13. Corollary. The equivalence ĂM is a retract of the restriction functor

rj, 1s : rRF ,V s Ñ rRG ,V s .



THE CORE GROUPOID CAN SUFFICE 699

Proof. Apply the contravariant functor rF ,V sp´, F q to diagram (3.11) of Lemma 3.2
to obtain the idempotent splitting

rF ,V spRF pj,´q, F q
rF ,V spπ,F q

//

rF ,V spρ,F q **VVV
VVVV

VVVV
VVVV

VV
rF ,V spRF pj,´q, F q

rF ,V spMp1RG ,´q, F q

rF ,V spq,F q

44hhhhhhhhhhhhhhhhh
.

The top side of the triangle transports across the Yoneda isomorphism to an idempotent
on Fj while the bottom vertex is isomorphic to ĂM .

3.14. Corollary. For any R-linear category X which has finite direct sums and split-
ting of idempotents, there is an equivalence

rF ,X s » rG ,X s .

Proof. See [24] for background. As RF and RG are equivalent in R (Morita equiva-
lent), their Cauchy completions are equivalent V -categories: QRF » QRG . Therefore
rF ,X s » rQRF ,X s » rQRG ,X s » rG ,X s since finite direct sums and splitting of
idempotents are preserved by all V -functors (they are absolute colimits).

4. Stiffness and MPK idempotents
This section provides examples of Theorem 3.10 by casting them in a general setting
where the Idempotent Axiom holds. The setting assumes a condition we call stiffness
which arises in examples from some kind of finiteness. The examples include the Kuhn
[15] result and those arising in the Dold-Kan-type work [16].

4.1. Definition. In any category F , a morphism f : A Ñ B is called stiff when the
only endomorphisms of A through which f factors are automorphisms. In other words,
f “ pA

u
ÝÑ A

v
ÝÑ Bq implies u invertible. A morphism is costiff when it is stiff in the

opposite category. A category is called stiff when the costiff and stiff morphisms are the
E and M of a proper factorization system.

The category of finite sets and the category of finite-dimensional vector spaces over a
field are stiff categories: in both costiff means surjective and stiff means injective.

Clearly any stiff endomorphism is an automorphism, so a consequence of stiffness is
what might be called “the pigeon-hole principle”:

4.2. Proposition. For all objects A in a stiff category F , the inclusions G pA,Aq Ď

M pA,Aq and G pA,Aq Ď E pA,Aq are equalities. Equivalently, if G pA,Bq ‰ H then
G pA,Bq “ E pA,Bq “ M pA,Bq.

Recall that the set G 1 of morphisms is the complement of G in F . So the identity
morphism 1C of C in the category F is never in RG 1pC,Cq. For each C in a stiff F ,
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factorization system properties imply that RG 1pC,Cq is a two-sided ideal in RF pC,Cq.
In particular RG 1pC,Cq is an R-algebra, possibly without an identity element. In the
case where F “ vectF is the category of finite vector spaces over a finite field F and the
factorization is surjective-injective F-linear functions, Laci Kovács [14] showed that there
is an identity element making RG 1pC,Cq a unital algebra provided the characteristic of
F is invertible in R; also see Subsection 3.1 of Kuhn’s paper [15] for helpful material on
this. Steinberg has two alternative methods of producing these identity elements; see
[22, 23]. A referee for the present paper pointed out that Munn [17] and Ponizovskĭı [20]
independently characterized semisimplicity of semigroup algebras of semigroups satisfying
appropriate descending chain conditions. Therefore we make the following definition in
the general situation.

4.3. Definition. An MPK idempotent is an element ℓC P RG 1pC,Cq which provides
RG 1pC,Cq with an identity as an R-algebra under composition.

4.4. Example. Return to Example 2.10 where F “ ∆K and take C “ 3 “ t0, 1, 2u. The
monoid F pC,Cq “ ∆Kp3,3q has six elements, namely, the functions

ι “

„

0 1 2
0 1 2

ȷ

σ0 “

„

0 1 2
0 0 2

ȷ

σ1 “

„

0 1 2
0 1 1

ȷ

τ “

„

0 1 2
0 2 2

ȷ

υ “

„

0 1 2
0 0 1

ȷ

ζ “

„

0 1 2
0 0 0

ȷ

A presentation of this monoid is provided by the generators σ0, σ1 and τ subject to the
relations that the generators are idempotents and

σ0σ1σ0 “ σ0σ1 “ σ1σ0σ1

τσ0 “ σ0 , τσ1 “ τ “ σ0τ , σ1τ “ σ1 .

Note that υ “ σ1σ0 while ζ “ σ0σ1 is a zero in the monoid. The only invertible element
is the identity ι. So G 1pC,Cq has the five other elements. The MPK idempotent in
RG 1pC,Cq is ℓ3 “ σ0 ` σ1 ´ υ.

Let us clarify some terminology for use in upcoming Remarks 4.5 and 4.6. For an
object C in a category F , we write F pCq for the full subcategory of F with the one
object C. With the viewpoint that monoids are one object categories, F pCq is identified
with the monoid F pC,Cq.

4.5. Remark. Perhaps this is a good point to add a little to Example 4.4 because it does
provide an example where a groupoid suffices. The core groupoid of ∆Kp3q is a discrete
category with one object. Clearly R∆Kp3q is not Morita equivalent to R1. However, in
R∆Kp3q, we have a complete list of orthogonal idempotents (see Appendix B of [16]):

e0 “ σ0σ1 , e1 “ p1 ´ σ0qσ1 , e2 “ p1 ´ σ1qσ0 , e3 “ p1 ´ σ1qp1 ´ σ0q ,
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so that, in the Cauchy completion QR∆Kp3q (see Proposition 2.1), we have

3 – E0 ‘ E1 ‘ E2 ‘ E3

where Ei is the object obtained in splitting the idempotent ei. If we put γ “ σ1σ0 ´ σ0σ1

and δ “ τ ´ σ1, using the relations in the presentation, we obtain the equations

e1γ “ γ “ γe2 , δe1 “ δ “ e2δ , γδ “ e1 , δγ “ e2 ,

yielding E1 – E2. It follows that we have an isomorphism of the form

3 – A ‘ B ‘ B ‘ C .

Transporting the endomorphisms σ0, σ1, τ on 3 across this isomorphism yields the ma-
trices

»

—

—

–

1 0 0 0
0 0 1 0
0 0 1 0
0 0 0 0

fi

ffi

ffi

fl

,

»

—

—

–

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

fi

ffi

ffi

fl

,

»

—

—

–

1 0 0 0
0 1 0 0
0 1 0 0
0 0 0 0

fi

ffi

ffi

fl

.

Any endomorphism f of A‘B ‘B ‘C which commutes with these three matrices must
be of the form f “ f0 ‘ f1 ‘ f1 ‘ f2. It follows that R∆Kp3q is V -Morita equivalent
to R3 where 3 is the discrete category with three objects. In other words, we have an
equivalence of R-linear categories

r∆Kp3q,V s – V ˆ V ˆ V .

Let us clarify some more terminology for use in the upcoming Remark 4.6. A morphism
f : A Ñ B in a category is said to split (or to be von Neumann regular) when there exists
a morphism g : B Ñ A such that fgf “ f . A monomorphism splits if and only if it
has a left inverse; that is, it is a coretraction. An epimorphism splits if and only if it has
a right inverse; that is, it is a retraction. If a morphism f factors as f “ jr with r a
retraction and j a coretraction then f splits. A category is von Neumann regular when
every morphism is split; this terminology applies to monoids as one object categories.

Every morphism in the category of sets whose domain is not empty splits. The category
of vector spaces over a division ring is von Neumann regular, as are the categories F of
Examples 2.10 and 2.11.

4.6. Remark. It can happen that RF pCq is semisimple. In particular, this is true when
Y “ F pCq is any finite monoid of Lie type and R is a field of characteristic 0; see Corollary
2.9 of [18]. Section 5.4 of Steinberg [22] provides necessary and sufficient conditions on a
finite monoid Y and field R in order for RY to be semisimple: it is necessary that Y be
regular and the characteristic of R should not divide the order of the group of invertible
elements of the monoid pY p for any idempotent p P Y . With semisimplicity of RY , the
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inclusion of every two-sided ideal J of RY into RY splits as a left module morphism
and splits as a right module morphism. The value of the left module splitting at the
identity of RY gives a right identity for J and the value of the right module splitting at
the identity of RY gives a left identity for J . So J becomes an R-algebra with identity.
This is a source of MPK idempotents for categories F whose endomorphism monoids
F pCq are finite and have RF pCq semisimple. An anonymous referee has pointed out
that the assumption on divisibility of the order of the group of invertible elements can be
dropped and you get the condition for a finite regular monoid to be Frobenius, which is
the same as saying its algebra is isomorphic to the category algebra of the core groupoid
of its Cauchy completion.

4.7. Example. As already mentioned, if F is a finite field, F “ vectF, and R is a ring in
which the characteristic of F is invertible then each object C P F has a MPK idempotent
ℓC ; see [14].

4.8. Example. Let F be a finite field. Let F be the category whose objects pV, αq are
finite F-vector spaces V equipped with an F-linear isomorphism α : V ˚ – V . A morphism
f : pV, αq Ñ pW,βq in F is an F-linear function f : V b V Ñ W b W for which there
exist λ P F and F-linear functions a : V Ñ W and b : W Ñ V such that f “ a b bt where
ab “ λ1W , ba “ λ1V , and bt “ βb˚α´1. Composition is that of F-linear functions. Each
monoid F pV, αq is a monoid of Lie type; see Example 2.3 of [18]. By Remark 4.6, every
pV, αq has a MPK idempotent.

4.9. Example. Benjamin Steinberg told me that Itamar Stein had proved the semisim-
plicity of the R-algebra R∆Kpaq for R any field; see Example 2.10 for our notation. The
proof has now appeared in [21].

4.10. Lemma. Assume the pigeon-hole principle and that each object C has a MPK idem-
potent ℓC. Then ℓC is a central idempotent in the R-algebra RF pCq and the morphisms
ℓC : C Ñ C are the components of a natural endomorphism of the inclusion functor of
j : RG Ñ RF .

Proof. Take any f : C Ñ C in F . Then, by the two-sided ideal property, both ℓCf and
fℓC are in RG 1pC,Cq so, by the identity element property, ℓCf “ pℓCfqℓC “ ℓCpfℓCq “

fℓC , proving the first clause.
Now take g P G pC,Dq. For any s P G 1pD,Dq, we have g´1sg P G 1pC,Cq. So

pg´1sgqℓC “ g´1sg. This shows that spgℓCg
´1q “ s yielding that gℓCg´1 is a right identity

in RG 1pD,Dq. By uniqueness, gℓCg´1 “ ℓD which proves the claimed naturality.

4.11. Proposition. Assume that F is stiff and that each object C has an MPK idem-
potent ℓC. Then the idempotents pA “ 1A ´ ℓA : A Ñ A satisfy the Idempotent Axiom of
Section 3.
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Proof. Since ℓA is an idempotent, so too is its complement pA yielding condition p0.
Lemma 4.10 gives the naturality condition p3. Since G 1pA,Aq “ E 1pA,Aq X M 1pA,Aq

(by Proposition 4.2) and p1
A “ ℓA P RG 1pA,Aq, we have p4. Since p1 and p2 are dual,

it remains to prove condition p1. Take f P F pA,Bq with f R M . Then f is not stiff so
there is a factorization f “ vu with u P G 1pA,Aq. Consequently, fpA “ fp1A ´ ℓAq “

f ´ vuℓA “ f ´ vu “ 0.
All this leads to the conclusion:

4.12. Corollary. Suppose pE ,M q is a proper factorization system on a stiff category
F where each object C has an MPK idempotent and only finitely many M -subobjects. Let
G denote the core groupoid of F . Let R be a commutative ring and let X be a category
whose homs are enriched in the monoidal category of R-modules. If X admits finite direct
sums and splitting of idempotents then there is an equivalence of enriched categories

rF ,X s » rG ,X s .

5. Monoidal structure on rF ,V s

In [12] we were interested in a particular monoidal structure on the category rG L pqq,VectCs

of complex representations of the general linear groupoid G L pqq over the field Fq of car-
dinality q. That tensor product categorified the multiplication on the class function ring
of the finite general linear groups over Fq due to Green [8]. As G L pqq is the core groupoid
of the category vectFq of finite vector spaces over Fq with all linear functions, and Corol-
lary 4.12 applies to F “ vectFq , it is of interest to see how the monoidal structure on
rG L pqq,VectCs manifests itself on rvectFq ,VectCs via transport of structure.

The bicategory R “ V -Mod is autonomous symmetric monoidal (see [3]). The tensor
product is the usual tensor product of V -enriched categories as per [4]: take cartesian
product of object sets and tensor over R of hom R-modules.

Comonoidales (= pseudocomonoids) in R are promonoidal V -categories in the sense of
Day [1]. As a consequence of Theorem 3.10, any promonoidal structure on RG transports
across the adjoint equivalence E % M to a promonoidal structure on RF . In the case
F “ vectFq and R “ C the complex numbers, a braided promonoidal structure was
defined on RG in Remark 4.3 of [12]. Here we will recall the general setting of Example
4 in Section 2 of [27] and transport the promonoidal structure to RF .

The assumptions of this section are that F is an abelian category, E consists of the
epimorphisms, M consists of the monomorphisms, and the Idempotent Axiom of Section 3
holds.

This promonoidal structure (unlike the braiding) actually exists on the ordinary cat-
egory G not just the R-linear category RG . It uses the exact sequences of F . We have

PG : G op ˆ G op ˆ G ÝÑ Set

defined by

PG pA,B;Cq “
␣

px, yq
ˇ

ˇ 0 Ñ A
x

Ñ C
y

Ñ B Ñ 0 is a short exact sequence in F
(

,
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PG pg1, g2; g3qpx, yq “ pg3xg1, g
´1
2 yg´1

3 q for g1 P G pA1, Aq, g2 P G pB1, Bq, g3 P G pC,C 1q, and

JG : G ÝÑ Set

defined by

JGA “

#

1 for A “ 0

H otherwise.

The associativity isomorphism

α :

ż X

PG pX,C;Dq ˆ PG pA,B;Xq –

ż Y

PG pA, Y ;Dq ˆ PG pB,C;Y q

is defined by
αrpu, vq, px, yqs “ rpx1, y1q, pu1, v1qs

as in the below 3 ˆ 3 diagram whose rows and columns are short exact sequences in F .

A

x

��

1 // A

x1

��

// 0

��

X

y

��

u // D

y1

��

v // C

1
��

B
u1

// Y
v1

// C

Day convolution yields the monoidal structure on rG ,V s with tensor product

pS bG T qC “
ÿ

HďC

SH b T pC{Hq

where the sum runs over subobjects H of C in F and C{H is the quotient object.
The promonoidal structure RPG on RG transports across the adjoint equivalence of

Theorem 3.10 to a promonoidal structure RPRF on RF defined by

PRF pA,B;Cq “

ż A1,B1,H

MpH,Cq b RPG pA1, B1;Hq b EpA,A1q b EpB,B1q

–

ż H

MpH,Cq b pEpA,´q bG EpB,´qqH

–
ÿ

KďHďC

RE pA, jKq b RE pB, jpH{Kqq . (5.13)

Day convolution yields the monoidal structure on rF ,V s with tensor product

pF bG GqC “
ÿ

KďHďC

ż A,BPF

RE pA, jKq b RE pB, jpH{Kqq b FA b GB .
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5.1. Remark. While the promonoidal structure (5.13) on RF is not the R-linearization
of one on F , it does exist at the level of the free category pF enriched in pointed sets on
F . This is clear from the formula for the effect of E on morphisms given in Lemma 3.3.
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