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A MODEL FOR THE HIGHER CATEGORY OF HIGHER
CATEGORIES

NIMA RASEKH

Abstract. We use fibrations of complete Segal spaces as introduced in [Ras22, Ras23a]
to construct four complete Segal spaces: Reedy fibrant simplicial spaces, Segal spaces,
complete Segal spaces, and spaces. Moreover, we show each one comes with a universal
fibration that classifies Reedy left fibrations, Segal coCartesian fibrations, coCartesian
fibrations and left fibrations and prove these are representable fibrations in the sense
of [Ras22]. Finally, we use equivalences between quasi-categories and complete Segal
spaces constructed in [JT07, Ras21a] to present analogous constructions using fibrations
of quasi-categories.

As part of establishing the results, we also develop a theory of minimal Reedy fibrations
for elegant Reedy categories, which can be of independent interest.

1. Introduction

1.1. The (Higher) Category of (Higher) Categories. Category theory has been
very effective in the study of a very diverse range of mathematical objects and their rela-
tion to each other. We can deduce various formal properties about different mathematical
objects (such as the existence of free objects or preservation of universal properties) by
using formal categorical results. A key illustration of these powerful methods is the study
of sets via the category Set, which can be realized as the free cocompletion of the category
with one object and so interesting properties, such as the fact that algebraic structures
in sets are preserved by limits, follows formally [ML98, Rie16].

This powerful perspective has been turned on category theory itself via the study of
the (large) category of categories with objects small categories and morphisms functors,
and we can similarly now deduce many valuable properties of categories, such as the
construction of free categories, by analyzing properties of the category of categories.1

While categories are a powerful tool in the study of classical mathematics, they are less
suitable for objects that arise in homotopical mathematics. This starts with homotopy
types of topological spaces or Kan complexes (which can be thought of as homotopical
analogues of sets), but also A∞-groups [Sta63] (which, up to homotopy, have a group
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1We can in fact deduce all properties of categories by studying the 2-category of categories, which is
known as formal category theory [Gra74].
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structure) and even further derived schemes [Toë14]. In order to effectively study such
homotopical objects, various notions of weak or homotopical categories have been devel-
oped, now known as higher categories or (∞, 1)-categories or simply∞-categories [Ber10].
The most popular model is the model of quasi-categories [BV73], and other important
models are Kan enriched categories [DK80, Ber07a] and complete Segal spaces [Rez01],
which are related to each other via various equivalences [JT07, Ber07b, Lur09]. These
various models of∞-categories give us the appropriate framework to study concepts such
as homotopical algebra and derived geometry.

The analogy with classical category theory would suggest that similar to the category
of sets, there is an easily constructed higher category of spaces that can be studied using
higher categorical methods. While there is such a higher category, the construction is
by no means immediate. The situation gets worse when trying to construct the higher
category of higher categories. It is in fact a cruel joke of higher categorical mathematics
that the construction of the higher category of higher categories requires us to change
models, making the construction quite complicated.

1.2. Strict Categories and Nerves.The easiest way to construct an (∞, 1)-category
is via Kan enriched categories and so our first way to approach this problem is by con-
structing a Kan enriched category. Constructing the Kan enriched category of Kan com-
plexes is fairly straightforward and has been known at least since work of Quillen [Qui67].
We can use a similar line of thinking to construct an (∞, 1)-category of (∞, 1)-categories.
Indeed, following work of Rezk, the category of complete Segal spaces is in fact enriched
over Kan complexes [Rez01]. On the other hand, the category of quasi-categories is not
directly enriched over Kan complexes but rather over quasi-categories themselves, how-
ever, we can easily construct a Kan enriched category by taking the underlying Kan
complexes of the mapping quasi-categories [RV22]. On the other side, as suggested by
the slogan above, while we can construct the category of Kan enriched categories, there
is no (known) way to enrich this category over Kan complexes, making it challenging to
define the higher category of higher categories with objects Kan enriched categories.

While the construction of the Kan enriched category of spaces and (∞, 1)-categories
might initially appear to be a satisfactory answer, we are quickly confronted with various
challenges. First of all, most of (∞, 1)-category theory has not been developed in the con-
text of Kan enriched categories2. Historically speaking, most higher categorical concepts
have been developed using quasi-categories [Joy08a, Joy08b, Lur09]. Moreover, in an effort
to move beyond one specific model Riehl and Verity developed a new method to approach
higher category theory model-independently via the notion of an ∞-cosmos, which can
then, in particular, be applied to quasi-categories, but also complete Segal spaces, Segal
categories and even 1-complicial sets, but notably not Kan enriched categories [RV22].

This motivates the construction of the higher category of spaces and (∞, 1)-categories
using more established models, such as quasi-categories and complete Segal spaces. One

2In fact even the construction of a simple over-category can be a challenge in this setting, see [Hor19,
Appendix A].
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first approach might be to simply translate the construction from Kan enriched categories
to these models using various nerve constructions, which take Kan enriched categories
to (bi)simplicial sets. In particular, we can use the homotopy coherent nerve, first intro-
duced by Cordier–Porter [CP86] and studied further by Joyal [Joy07] and Lurie [Lur09],
to construct quasi-categories out of Kan enriched categories. Similarly we can use the
Rezk nerve3 or its variant due to Barwick and Kan to construct complete Segal spaces
out of Kan enriched categories [Rez01, Ber09, BK12, Mei16]. These constructions are
theoretically very satisfying, however, are computationally very challenging. Indeed, the
construction due to Rezk requires a fibrant replacement in the Reedy model structure
[Rez01, Section 8], which, while preserving the level-wise homotopy type of the complete
Segal space, completely changes the point-set structure. The simplicial nerve [Lur09,
Proposition 1.1.5.10] and the nerve by Barwick-Kan [BK12, Theorem 6.1] do not require
such additional steps, however, are by definition far more complicated constructions.4

1.3. Higher Categories via Fibrations. What makes the nerve constructions so
complicated is the fact that maps of spaces (and functors of Kan enriched categories) are
by definition strictly functorial, and so we either need to use a very complicated nerve con-
struction (such as the Rezk nerve or simplicial nerve) or use a naive construction and then
apply a Reedy fibrant replacement, both with the goal of “destrictifying” the functors in
order to allow for the possibility of higher categorical pseudo-functors, whose functoriality
only holds up to higher equivalences. Ideally, we could have directly constructed a Kan-
enriched category of spaces or ∞-categories where the morphisms directly correspond to
some notion of pseudo-functors. However, directly defining pseudo-functors would re-
quire specifying an infinite tower of data and so we need to find a way to circumvent this
dilemma. We need to choose a notion of functor of spaces (and ∞-categories) that is by
definition weaker, yet still manageable. Fortunately, there is already an excellent solution
in the category theory literature: fibrations.

The idea of using fibrations as a replacement for functors goes back to work of
Grothendieck and Bourbaki, who used the (now called) Grothendieck fibrations to study
set-valued and category-valued functors [Gro03]. In particular, Grothendieck opfibrations
over a category C correspond to a pseudo-functor C→ Cat. Following the definition of a
pseudo-functor [Bén67], a pseudo-functor [0] → Cat, is the data of a category C and an
automorphism that is naturally isomorphic to the identity. Similarly, a pseudo-functor
[1] → Cat is the data of a functor C → D, and choices of automorphisms of C and D,
that all interact with each other in the appropriate manner. These examples already
illustrate that by taking Grothendieck opfibrations over the categories [n], we obtain a
much less rigid object than we would if we use the classical nerve, which is defined as
NCatn = Fun([n],Cat) i.e. strict functors out of [n].

This philosophy expands to the ∞-categorical setting. We hence want to construct
a quasi-category and complete Segal space of spaces and ∞-categories by choosing an

3Called classifying diagram in [Rez01].
4Indeed, there are several papers dedicated to understanding the left adjoint C to the simplicial nerve

[DS11, Rie11].
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appropriate notion of fibration over the representable diagrams (i.e. the appropriate
analogue to [n]). This requires us to use the vast literature on fibrations of ∞-categories.
Concretely, for many theories of ∞-categories (such as quasi-categories, complete Segal
spaces and in fact every other ∞-cosmos) ∞-categorical functors from an ∞-category
C into spaces correspond to left fibrations5 [BdB18, HM15, Ras23b, Cis19]. Similarly,
functors from C valued in ∞-categories are classified by coCartesian fibrations over C

[Ras23a, Ras21a, AF20, Lur09, RV22].

1.4. Constructing Complete Segal Spaces via Fibrations. The goal of this
paper is to make the intuition outlined in the previous section into precise mathematical
statements. Let ∆[n, l] (Notation 2.3) denote the representable presheaves in the category
of bisimplicial sets Fun(�op × �

op, Set). Then we can construct the bisimplicial set S (7)
such that Sn,l is given by the set of left fibrations over ∆[n, l]. Our first major claim
is that S is an ∞-category of spaces. To this end, let N∆ denote the simplicial nerve,
which takes a simplicially enriched category to a strict Segal category (10) and Kan the
Kan-enriched category of Kan complexes. We now have the following major result about
S:

1.5. Theorem. [Theorem 3.9] There is a complete Segal space equivalence I : N∆Kan→
S to the complete Segal space S. Moreover, we have a natural bijection LF ib(−) ∼=
Hom(−,S).

The construction of S corresponds to a similar result by Kazhdan and Varshavsky
[KV14] (Remark 3.3) and generalizes a result by Kapulkin and Lumsdaine [KL21] (Remark
3.11). The bijection between left fibrations over a bisimplicial set X and maps from X
into S is a manifestation of the straightening construction, which at the higher categorical
level originated in [Lur09].

Having used left fibrations of simplicial spaces to construct the ∞-category of spaces,
we next generalize our result in order to construct the ∞-category of ∞-categories. We
in fact obtain a far more general result. Using the observation that every complete Segal
space is a Reedy fibrant simplicial space, we first use the theory of Reedy left fibrations
(Definition 4.3) to construct the ∞-category of Reedy fibrant simplicial spaces.

Concretely, we can construct a bisimplicial set sS (16) with sSn,l being Reedy left
fibrations over �[n, l]. We now claim that sS gives us an∞-category of simplicial spaces.
To this end, we have the following result, where Ree (18) denotes the Kan enriched
category of Reedy fibrant simplicial spaces:

1.6. Theorem. [Theorem 4.13] There is a complete Segal space equivalence sI : N∆Ree→
sS to the complete Segal space sS. Moreover, we have a bijection ReeLF ib(−) ∼=
Hom(−, sS).

The construction of the ∞-category of simplicial spaces via fibrations is a new devel-
opment. Similarly, the bijection between Reedy left fibrations and morphisms into sS

5Also called discrete coCartesian fibration over C in [RV22].
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gives us a generalization of the straightening construction to simplicial spaces. While the
construction of the complete Segal space of simplicial spaces could have relevance in the
study of certain type theories that arise in the work of Riehl and Shulman [RS17] (as
further discussed in Remark 4.14) our main focus here is to restrict to the sub-complete
Segal space of (complete) Segal spaces. Let Seg be the sub-bisimplicial set of sS with
Segn,l consisting of Segal coCartesian fibrations over ∆[n, l] and similarly CSS be the
sub-bisimplicial set of Seg with CSSn,l consisting of coCartesian fibrations over ∆[n, l].
On the other side, let Seg (CSS) denote the full sub-categories of Ree with objects
(complete) Segal spaces.

1.7. Theorem. [Theorem 4.16] In the following diagram the top (bottom) horizontal
functors are fully faithful functors of strict Segal categories (complete Segal spaces) and
the vertical maps are complete Segal space equivalences

N∆CSS N∆Seg N∆Ree

CSS Seg sS

≃sI ≃sI ≃sI

meaning Seg is the complete Segal space of Segal spaces and CSS is the complete Segal
space of complete Segal spaces. Moreover, we have bijections

SegcoCart(−) ∼= HomssSet(−,Seg),

coCart(−) ∼= HomssSet(−,CSS).

The existence of the desired complete Segal spaces of (simplicial) spaces and (complete)
Segal spaces with the universal property outlined above implies the existence of universal
fibrations, which is the focus of Section 5. We, in particular, establish that the universal
left fibration is represented by the terminal object (Theorem 5.3) and that the universal
Reedy left fibration, Segal coCartesian fibration and coCartesian fibration are represented,
in the sense of [Ras22], by the cosimplicial object � → Cat∞ taking [n] to n composable
morphisms (Theorem 5.8/Corollary 5.9), which has also been discussed in [Ras22, Ste20]
(Remark 5.10).

While most of our work focuses on constructing complete Segal spaces, in the last
section we use equivalences constructed by Joyal and Tierney [JT07] and its fibrational
analogue [Ras23b, Ras21a] to construct various quasi-categories, beginning with the quasi-
category of spaces. Let SQCat denote the quasi-categorical version of S, meaning (SQCat)n
given by left fibrations of simplicial sets over ∆[n] (which coincides with [Cis19, Definition
5.2.3]). On the other side, let i∗1S denote the underlying quasi-category ofS [JT07]. Then
we have the following:

1.8. Theorem. [Theorem 6.5] The maps T : SQCat → i∗1S (22) and I : i∗1S → SQCat

(23) are inverses of quasi-categories.
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This hence recovers the result by Cisinski [Cis19], who proved directly that SQCat

is a quasi-category of spaces. As a next step, we can further generalize the result to
quasi-category of simplicial spaces (Remark 6.6). Let sSQCat denote the quasi-categorical
version of sS, meaning the simplicial1 set with n-simplices given by Reedy left fibrations
of bisimplicial sets over ∆[0, n]. On the other side, let i∗1sS denote the underlying quasi-
category of sS. Then we have the following:

1.9. Theorem. [Theorem 6.10] The maps sT : sSQCat → i∗1sS and sI : i∗1sS → sSQCat

(24) are inverses of quasi-categories.

We can easily restrict this equivalence to a quasi-category of (complete) Segal spaces
to obtain a diagram of equivalences, presented in Corollary 6.11.

1.10. Technical underpinning: Minimal Reedy fibrations. The construction
of the complete Segal spaces of interest (S and sS) and their equivalences with the
corresponding Segal categories rely on a robust theory of minimal fibrations, both for
bisimplicial and trisimplicial sets, which appropriately generalizes the results established
for minimal Kan fibrations. Hence, Section A focuses on defining and developing a broad
theory of minimal Reedy fibrations, resulting in the following major result:

1.11. Theorem. [Theorem A.11] Let R be an elegant Reedy category. Then every Reedy

fibration p : Y → X admits a factorization p : Y
≃
↠Min(Y )

min
↠ X into a trivial fibration

followed by a minimal fibration, which is unique up to isomorphism.

This very general result will, in particular, apply to bisimplicial and trisimplicial sets
and enable us to prove the results reviewed in Subsection 1.4.

1.12. Background and Notation.We will assume familiarity with standard category
theory as can be found in [ML98, Rie16]. Also some familiarity with complete Segal spaces
[Rez01] and quasi-categories [Rez17] would be helpful. Moreover, we make extensive use
of left and coCartesian fibrations as studied in [Ras23b, Ras22, Ras23a, Ras21a], however,
key results have been reviewed when necessary.

Throughout, � denotes the simplex category. We both use the functor category and
the set of functors and hence denote the functor category by Fun, whereas the set of
functors is Fun. Moreover, for a given functor F : C → D, the set of objects in the slice
category Fun(C,D)/F is also denoted by Fun(C,D)/F .

Finally, we will have a category of small sets, denoted Set, and for every category C

and functor X : C→ Set, we use Fun(C, Set)/X to denote the set of objects of the category
Fun(C, Set)/X .

1.13. Acknowledgments. I would like to thank William Balderrama for many help-
ful conversations and, particularly for suggesting [Cis19, Definition 5.2.3] as a relevant
reference. I also would like to thank Emily Riehl for many helpful conversations and, in
particular, for making me aware of the non-functoriality of pullbacks. I also would like to
thank Hoang Kim Nguyen for discussion regarding minimal fibrations. Moreover, I would
like to thank Denis-Charles Cisinski for several helpful explanations regarding his results
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in [Cis19]. Finally, I would also like to thank both referees for many helpful suggestions
and comments.

2. Background & Technicalities

As explained in Subsection 1.3, we want to construct a complete Segal space of spaces
S (which we will do in Section 3) which is level-wise given by a set of left fibrations
over representable objects. However, there are two significant theoretical challenges that
we need to overcome. First of all, if we naively define Snl as the set of left fibrations
over ∆[n, l] (Notation 2.3), then the functoriality needs to follow from pulling back left
fibrations. However, a pullback is only determined up to isomorphisms, hence a functor
�
op × �

op → Set that takes each pair ([n], [l]) to the set of left fibrations over ∆[n, l]
and each morphisms to the pullback would only be pseudo-functorial. In order to avoid
this problem, we associate functors to our fibrations, that can then be strictly composed,
which is the goal of Subsection 2.11.

Having taking care of the pseudo-functoriality, we can in fact directly define a bisim-
plicial set S with Snl given by left fibrations over ∆[n, l] and we would like to prove that
this is in fact a complete Segal space. Here the next problem arises. In order to prove
that S is a complete Segal space we need to show that for every trivial cofibration in the
complete Segal space model structure i : A ↪→ B the map

i∗ : Hom(B,S)→ Hom(A,S)

is surjective (Remark 2.6). As we will establish in 7 this is equivalent to i∗ : LF ib(B)→
LF ib(A) being surjective, which means we need to prove that every left fibration over A
can be obtained as a pullback of a left fibration over B. By 3 it is immediate that every
left fibration is a homotopy pullback of a left fibration over B, however we need a strict
pullback. In order to guarantee we can obtain this strict pullback, we need to review the
theory of minimal fibrations, which is the goal of Subsection 2.23.

2.1. Remark. There are alternative ways to the ones introduced in Subsection 2.11 to
avoid the pseudo-functoriality of the pullback of fibrations. For example, we can choose
well-orderings on all the fibers of the fibrations as has been done in [KL21, Subsection
2.1] or one can make a choice of a collection of pullbacks as has been done in [Cis19,
Subsection 2.1]. On the other hand, all these sources also rely on minimal fibrations
(similar to Subsection 2.23) to guarantee the existence of strict lifts.

2.2. Simplicial Objects and Fibrations. In this short section we give a quick review
of the necessary simplicial objects, relevant notation and their fibrations.

2.3. Notation. Denote the category of simplicial sets by sSet with generators ∆[−].
Moreover, use ∂∆[−] to denote its boundary and Λ[−]i its i-th horn [GJ09, Subsection
I.3]. Similarly, denote the category of bisimplicial sets by ssSet and the generators by
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∆[−,−]. Notice both categories are simplicially enriched and we denote the enrichment
by Map(−,−) [GJ09, Subsection I.V].

For a given bisimplicial set X•• we use the notation Xn to denote the simplicial set
(Xn)l = Xnl. Our first important fibration of bisimplicial sets are Reedy fibrations.

2.4. Definition. A Reedy fibration is a map of bisimplicial set p : Y → X that has the
right lifting property with respect to the maps

∆[n, 0]× Λ[0, l]i
∐

∂∆[n,0]×Λ[0,l]i

∂∆[n, 0]×∆[0, l] ↪→ ∆[n, 0]×∆[0, l] ∼= ∆[n, l],

for all n, l ≥ 0 and 0 ≤ i ≤ l. A Reedy fibration is moreover trivial if it satisfies the right
lifting property with respect to all inclusions of bisimplicial sets.

The Reedy fibrancy condition is equivalent to the map Yn → Xn ×MnX MnY being a
Kan fibration of simplicial sets, where MnY,MnX are the matching spaces, which in the
particular case of bisimplicial sets are given by the simplicial setMnX = MapssSet(∂∆[n, 0],
X). Reedy fibrations are part of a model structure with cofibrations given by inclusions of
bisimplicial sets and equivalences given by level-wise Kan equivalences. In particular, all
trivial Reedy fibrations are Reedy weak equivalences. See Section A, [Rez01, Subsection
2.4] or [Hov99, Subsection 5.1] for more details. Reedy fibrations can be used to define a
prominent model of (∞, 1)-categories, complete Segal spaces, which are defined by Rezk
[Rez01] and proven to be models of (∞, 1)-categories in [Ber07b, JT07, Toë05].

2.5. Definition. A complete Segal space W is a Reedy fibrant simplicial space that sat-
isfies the following two conditions:

• Segal Condition: The restriction map

Wn ↠ W1 ×W0 ...×W0 W1

is a Kan equivalence for all n ≥ 2.

• Completeness Conditions: The map W0 → (W0 ×W0) ×(W1×W1) W3 is a Kan
equivalence.

Complete Segal spaces can be used to do (∞, 1)-category theory. Here we think of the
objects as the set W00 and for two objects x, y in W , the mapping space is defined as

MapW (x, y) = ∆[0]×(W0×W0) W1. (1)

For more details regarding the category theory of complete Segal space see [Rez01, Section
5]. Complete Segal spaces are in fact fibrant objects in a model structure, the complete
Segal space model structure on ssSet, defined originally by Rezk [Rez01, Theorem 7.2].
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2.6. Remark. This, in particular, implies that a bisimplicial set W is a complete Segal
space if and only if for every trivial cofibration i : A → B in the complete Segal space
model structure, the map i∗ : Hom(B,W ) → Hom(A,W ) is surjective, meaning every
map f : A→ W lifts along i.

Next, we have left fibrations.

2.7. Definition. A left fibration is a Reedy fibration of bisimplicial sets p : L→ X that
for all n, l ≥ 0 satisfies the right lifting property with respect to maps

∆[n, 0]× ∂∆[0, l]
∐

∆[0,0]×∂∆[0,l]

∆[0, 0]×∆[0, l]→ ∆[n, 0]×∆[0, l] ∼= ∆[n, l],

induced by the map {0} : ∆[0, 0] → ∆[n, 0] i.e. the morphism that corresponds to
0 ∈ Hom(∆[0, 0],∆[n, 0]) = ∆[n, 0]00 = {0, ..., n}. By [Ras23b, Proposition 3.7] this
is equivalent to being a Reedy fibration and for all n, the map

Ln ↠ Xn ×X0 L0 (2)

induced by the inclusion {0} : ∆[0, 0]→ ∆[n, 0], being trivial Kan fibrations.

2.8. Remark. If X = ∆[0, 0] then the condition 2 implies L is homotopically constant,
meaning Ln ≃ L0 for all n ≥ 0, and so L is (homotopically) uniquely determined by the
Kan complex L0.

While it is generally difficult to construct left fibrations out of general maps of bisimpli-
cial sets, under the right circumstances, we can significantly simplify such computations.

2.9. Lemma. Let X be a bisimplicial set, such that X0 is discrete (meaning X0k
∼= X00),

and p : L → X be a map of bisimplicial sets such that the map Ln
≃−→ Xn ×X0 L0 is an

equivalence. Moreover, let p̂ : L̂ → X be a Reedy fibrant replacement of p : L → X over
X via a map i : L

≃−→ L̂. Then p̂ : L̂→ X is a left fibration.

Proof. By assumption, p̂ : L̂→ X is a Reedy fibration and hence it suffices to establish
the equivalence L̂n

≃−→ Xn×X0 L̂0. For a given element x in X00, let us denote the fiber of
L0 → X0 over x by F ibxL0 and define F ibxL̂0 analogously. As X0 is discrete, for every
element x ∈ X00, the map {x} : ∆[0] → X0 is a Kan fibration. So, by pullback stability,
the pullback F ibxL̂0 → L̂0 is a Kan fibration as well. We now have the following pullback
diagram

F ibxL0 L0

F ibxL̂0 L̂0

≃ ⌜ ≃

and so it follow from the right properness of the Kan model structure that the induced map
F ibxL0 → F ibxL̂0 is also a Kan equivalence. We now have the following commutative
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diagram

Ln L0 ×X0 Xn

∐
x∈X00

F ibxXn ×F ibxL0

L̂n L̂0 ×X0 Xn

∐
x∈X00

F ibxXn ×F ibxL̂0

≃

in ≃ (i0,idXn )

∼=

≃

∼=

The top left map is a Kan equivalence by assumption, and the map in on the left is
a Kan equivalence by definition of Reedy equivalences. Finally, the right hand map is
an equivalence by the argument above and the fact that Kan equivalences are stable
under products and coproducts. Hence, by 2-out-of-3, the bottom left map is also a Kan
equivalence and we are done.

Left fibrations and complete Segal space equivalences interact well with each other.
Concretely, for every complete Segal space equivalence i : A → B and left fibration
p : L→ A, there exists a left fibration L̂→ B obtained as the factorization of pi : L→ B

into a trivial cofibration followed by a left fibration L
≃
↪→ L̂ ↠ B and a homotopy pullback

square

L L̂

A B

⌜

i

(3)

formally given as the derived unit of the Quillen equivalence constructed in [Ras23b,
Theorem 5.1], meaning L is Reedy equivalent to i∗L̂.

2.10. Remark. Analogous to the definition of left fibrations (2) we can also define right
fibrations as Reedy fibrations R→ X such that Rn → Xn ×X0 R0 is an equivalence, this
time induced by the map {n} : ∆[0, 0]→ ∆[n, 0] [Ras23b, Remark 4.25]. Right fibrations
are completely determined by left fibrations. Indeed, let (−)op : ssSet → ssSet be the
automorphism induced by the unique non-trivial automorphism σ×σ from �×� to itself.
Then a map R→ X is a right fibration if and only if Rop → Xop is a left fibration.

2.11. Fibrations vs. Functors. In this subsection we construct a precise way to
translate between functors and fibrations to avoid the pseudo-functoriality that arises
when using pullback (as discussed in the beginning of Section 2). We will start by re-
viewing basic facts regarding functors and fibrations as discussed in [MLM94] or [Joh02a,
Joh02b].

Recall that a discrete Grothendieck fibration is a functor p : D → C such that for
every morphism f : c→ c′ and chosen lift d′ in D of c′ (meaning p(d′) = c′) there exists a
unique f̂ : d→ d′ in D such that p(f̂) = f . For a given functor F : Cop → Set, recall that
the Grothendieck construction

∫
C
F → C is given as a category over C with objects pairs

(c, x ∈ F (c)) and morphisms (c, x ∈ F (c))→ (d, y ∈ F (d)) given by morphisms f : c→ d
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such that F (f)(y) = x. It was shown by Grothendieck [Gro03]6 that this induces a fully
faithful functor

∫
C
: Fun(Cop, Set)→ Cat/C with essential image precisely given by discrete

Grothendieck fibrations.7

Following the convention from Subsection 1.12, we use Groth(C) to denote the full
subcategory of Cat/C with objects discrete Grothendieck fibrations of the form

∫
C
F and

Groth(C) for the large set of discrete Grothendieck fibrations of the form
∫
C
F , for a given

functor F : Cop → Set. From the previous paragraph it follows that Groth(C) is equivalent
to the functor category Fun(Cop, Set), however, we need an isomorphism and hence state
the desired result explicitly.

2.12. Lemma. Let C be a small category. There is an isomorphism of categories

Fun(Cop, Set) Groth(C)

∫
C

∼=

Proof. We show that the equivalence
∫
C
is in fact an isomorphism. Fully faithfulness

implies that that
∫
C
is bijective on morphisms, so it suffices to prove that

∫
C
is bijective on

objects. First,
∫
C
is surjective on objects by definition of the category Groth(C). Second,

for given functors F,G : Cop → Set,
∫
C
F =

∫
C
G implies that for all object c in C, we have

an equality of fibers
{(c, x)|x ∈ F (c)} = {(c, y)|y ∈ G(c)}.

This gives us the desired equality F (c) = G(c) for all objects c ∈ C.

This lemma has two important corollaries. Let Groth =
∐

C∈Cat Groth(C) be the large
set of all discrete Grothendieck fibrations of the form

∫
C
F . Moreover, recall the notation

convention from Subsection 1.12 regarding Fun(Cop, Set)/F .

2.13. Corollary. Let F : Cop → Set be a functor. Then the isomorphism in Lemma
2.12 induces a bijection of large sets

Fun(Cop, Set)/F ∼= Groth(C)/
∫
C
F .

2.14. Corollary. The isomorphism in Lemma 2.12 induces a bijection of sets∐
C∈Cat

Fun(Cop, Set) Groth

Cat

∫
∼=

.

We can now move on to construct a functor with value fibrations, that avoids the
pseudo-functoriality of the pullback. Let All : ssSetop → Set be defined as the composition

Fun(�op × �
op, Set)op

(
∫
�×�)

op

−−−−−−→ Groth(�× �)op
πop

−−−→ Catop
Fun(−,Set)−−−−−−−→ Set, (4)

6See [LR20, Theorem 2.1.2] for a modern treatment of this result.
7In fact we have far more general results for Grothendieck fibrations [Joh02a, Theorem B1.3.6].
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where π : Groth → Cat is the projection that sends an object D → C to its source D.
More concretely, this means All(X) = Fun((

∫
�×�X)op, Set). Now, we have the following

key lemma with regard to All(−).

2.15. Lemma. For every bisimplicial set X there is a bijection of sets

ΓX : All(X)
∼=−−→ ssSet/X .

Proof. First of all, by restricting the bijection in Corollary 2.14 to the fiber over
∫
�×�X,

we have the bijection

All(X) ∼= Groth(

∫
�×�

X).

Now, there is an evident discrete Grothendieck fibration
∫
�×�X → � × � and so every

discrete Grothendieck fibration
∫
�×�X is simply a discrete Grothendieck fibration into

�× � that factors through
∫
�×�X, meaning we have the bijection

Groth(

∫
�×�

X) ∼= Groth(�× �)/
∫
�×�X .

Finally, by Corollary 2.13, we have the bijection

Groth(�× �)/
∫
�×�X

∼= Fun(�op × �
op, Set)/X = ssSet/X .

Combining these three bijections gives us the desired bijection All(X) ∼= ssSet/X .

This bijection is in fact quite well-behaved as we can easily witness by tracing through
the definition.

2.16. Lemma. Let f : X → Y be a morphism of bisimplicial sets. Then the following
square commutes.

All(Y ) ssSet/Y

All(X) ssSet/X

ΓY

∼=

All(f) f∗

ΓX

∼=

.

As a result of this lemma we can think of elements in All(X) as simplicial spaces over
X. Now, we want to prove that All(−) is representable. Define ssSet as the bisimplicial
set obtained by precomposing All(−) with the Yoneda embedding �op × �

op → ssSetop.
Concretely, as we can immediately compute

∫
�×�Hom�×�(−, ([n], [l])) = �/[n] × �/[l], we

have ssSet(n, l) = Fun((�/[n])
op × (�/[l])

op, Set). We now have the following key result.

2.17. Corollary. There is a natural isomorphism All(−) ∼= HomssSet(−, ssSet).
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Proof. The functor Hom(−, ssSet) preserves colimits by definition and All(−) preserves
colimits as the three functors in 4 defining All(−) preserve colimits. Hence, it suffices to
observe a natural isomorphism at the level of representables. However, we have

All(∆[n, l]) = Fun(�/[n] × �/[l], Set) ∼= HomssSet(∆[n, l], ssSet)

where the last step follows from the Yoneda lemma, giving us the desired natural isomor-
phism.

The construction of All(−) and ssSet is too broad and we often want to restrict it
appropriately. We have the following simple observation.

2.18. Lemma. Let S be a (possibly large) set of morphisms in ssSet. The following are
equivalent.

1. The pullback of a morphism in S (along any morphisms) is in S.

2. Let F : (
∫
�×�X)op → Set be a functor such that ΓX(F ) is in S, then for any

morphism of bisimplicial sets f : Y → X, ΓY (All(f)(F )) is in S.

Proof. Condition (1) corresponds to f ∗ : ssSet/Y → ssSet/X restricting to the full subset
of morphisms in S, whereas condition (2) corresponds to All(f) : All(Y ) → All(X)
restricting similarly. By Lemma 2.16 these two conditions are equivalent as the horizontal
morphisms ΓX ,ΓY are bijections.

We say S is pullback stable if it satisfies the equivalent conditions in Lemma 2.18. For
a given pullback stable set of morphisms S, let AllS(−) be the sub-functor of All(−) with
F ∈ AllS(X) if and only if ΓX(F ) is in S. The functoriality immediately follows from
Lemma 2.18. We can similarly define ssSetS as the sub-bisimplicial set of ssSet. We
now want to deduce a result analogous to Corollary 2.17. For that we need the following
additional condition.

2.19. Lemma. Let S be a pullback stable set of morphisms in ssSet. The following are
equivalent.

1. A morphism Y → X is in S if and only if for all ∆[n, l] → X, the pullback Y ×X

∆[n, l]→ ∆[n, l] is in S.

2. For a functor F : (
∫
�×�X)op → Set we have ΓX(F ) in S if and only if for every

functor G : �/[n] × �/[l] →
∫
�×�X we have Γ�[n,l](F ◦Gop) is in S.

Proof. First of all, the fully faithfulness of
∫
�×� gives us a bijection Hom(∆[n, l], X) ∼=

Fun(�/[n] × �/[l],
∫
�×�X), using the fact that

∫
�×�∆[n, l] = �/[n] × �/[l]. This implies

that every functor G : �/[n] × �/[l] →
∫
�×�X is necessarily of the form

∫
�×� f for some

f : ∆[n, l]→ X.
Now, for a given morphism f : ∆[n, l] → X, Lemma 2.16 gives us the following

diagram
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All(X) ssSet/X

All(∆[n, l]) ssSet/∆[n,l]

ΓX

∼=

All(f) f∗

Γ∆[n,l]

∼=

.

The assumptions are now direct translations along the bijections Γ∆[n,l] and ΓX .

A pullback stable set of morphisms that satisfies the equivalent conditions of Lemma
2.19 is called local.

2.20. Lemma. If S is local, then the natural bijection given in Corollary 2.17 restricts to
a natural bijection AllS(−) ∼= HomssSet(−, ssSetS).

Proof. Let X be a bisimplicial set. As S is local, the bijection

All(X) ∼= lim
∆[n,l]→X

All(∆[n, l])

restricts to a bijection
AllS(X) ∼= lim

∆[n,l]→X
AllS(∆[n, l]).

On the other side, HomssSet(−, ssSetS) takes colimits to limits, by representability, and
so it suffices to establish the result in the particular case of ∆[n, l], where it follows from
the same argument used in Corollary 2.17.

It is useful to have a quick criterion to determine local classes of morphisms with a
proof analogous to [Ras23b, Lemma 3.10].

2.21. Corollary. Let S be a set of morphism of bisimplicial sets determined by a right
lifting property with respect to a set of morphisms A→ ∆[n, l]. Then S is pullback stable
and in fact local.

We end this subsection with an elegant example of the previous corollary.

2.22. Example.By Definition 2.4, the large set of Reedy fibrations satisfies the condition
of Corollary 2.21. We denote AllRee(−) by Ree(−) and ssSetRee by Ree and notice that
by Lemma 2.20 we have a natural bijection

Ree(−) ∼= HomssSet(−,Ree).

2.23. Minimal Fibrations. In this subsection we introduce minimal Reedy and left
fibrations, which play a key role in the construction of strict pullbacks (as discussed in
the beginning of Section 2). Recall that a Kan fibration p : Y → X is a minimal fibration
if for any two maps f, g : ∆[n]→ Y , such that f is homotopic to g relative to ∂∆[n] and
pf = pg, then f = g. For more details see [GJ09, Diagram I.10.1]. We can now generalize
this definition directly.
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2.24. Definition. A Reedy fibration of simplicial spaces Y → X is minimal if the Kan
fibration Yn → Xn ×MnX MnY is a minimal Kan fibration for all n ≥ 0.

Our aim is to show that a variety of properties about minimal Kan fibrations, as proven
in [GJ09, Section I.10] generalize to minimal Reedy fibrations. However, as the proofs
are quite technical, the detailed statements and proofs have been relegated to Section A
and here we use the implications thereof. First we establish the desired locality property
(Lemma 2.19).

2.25. Lemma. Minimal Reedy fibrations are local.

Proof. Follows from applying Lemma A.5 to the case of �, by Definition A.2.

One key result regarding minimal Kan fibrations is that every Kan fibration p : Y → X
can be factored into trivial fibration followed by a minimal fibration Y →Min(Y )→ X
[GJ09, Proposition 10.3], [Qui68], which generalizes appropriately.

2.26. Proposition. Every Reedy fibration of simplicial spaces p : Y → X admits a (up

to isomorphism) unique factorization Y
q
↠ Min(Y )

Min(p)
↠ X into a trivial fibration q

followed by a minimal fibrationMin(p).

Proof. Follows directly from applying the general theorem for minimal Reedy fibrations
Theorem A.11 to the case of �, which indeed applies by Definition A.2 and Example A.9.

Our construction works well for an individual Reedy fibration, however, we would like
to have a construction of the minimal Reedy fibration that is consistent with pullback.
This requires us to make a globally consistent choice of minimal fibrations for all Reedy
fibrations at once, which we achieve in the following way.

Let Reemin(−) ⊆ Ree(−) be the sub-functor of minimal Reedy fibration and denote
the corresponding subobject of the bisimplicial set of Ree by Reemin. By Lemma 2.25
minimal Reedy fibrations are local and so we have a natural bijection

Reemin(−) ∼= HomssSet(−,Reemin) (5)

and, in particular, we have a bijection of sets Reemin(Ree) ∼= HomssSet(Ree,Reemin).
Now, applying Proposition 2.26 to the Reedy fibration over Ree that corresponds to the
identity map in Example 2.22 we obtain a minimal Reedy fibration over Ree that by 5
corresponds to a map of bisimplicial sets

Min : Ree→ Reemin. (6)

Let Min : Ree(−) → Reemin(−) be the map represented by Min. This map sends
every Reedy fibration to its corresponding unique minimal Reedy fibration constructed in
Proposition 2.26. Indeed, by naturality of 5, for every Reedy fibration Y → X, we have
the following diagram, where Ree∗ → Ree is the Reedy fibration corresponding to the
identity morphism in Example 2.22
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Y Ree∗

Min(Y ) Min(Ree∗)

X Ree

≃
⌜

≃

min
⌜

min

,

where we are using the fact that both minimal Reedy fibrations and trivial fibrations are
stable under pullback and uniqueness of the factorization.

2.27. Remark. The fact that the trivial fibration Ree∗ → Min(Ree∗) comes with a

sectionMin(Ree∗)
≃
↪→ Ree∗

≃
↠Min(Ree∗) implies that for every minimal fibration Y →

X we haveMin(Y ) = Y .

How does the minimality construction interact with left fibrations?

2.28. Lemma. Let L→ X be a left fibration, thenMin(L)→ X is also a left fibration.

Proof. We already know that Min(L) → X is a Reedy fibration, hence, by Definition
2.7 it suffices to observe that Min(L)n → Min(L)0 ×X0 Xn is an equivalence, which
follows directly from the fact that L is a left fibration and Ln ≃ Min(L)n for all n ≥ 0
(Proposition 2.26).

Finally, the key concept that makes minimal Kan fibrations so useful is that every
equivalence between two minimal Kan fibrations is in fact an isomorphism [GJ09, Lemma
10.4] and we have the following analogous result.

2.29. Lemma. Let p : Y → X, q : Z → X be two minimal Reedy fibrations and f : Y → Z
a map over X. Then f is a Reedy equivalence if and only if it is an isomorphism.

Proof. Follows from applying Proposition A.6 to the case �, as the definitions of minimal
fibrations coincide by Definition A.2.

The lemma has the following valuable corollary.

2.30. Corollary. Let Y → X,Z → X be two Reedy fibrations over X and let f : Y → Z
be a morphism over X. Then f is an equivalence if and only ifMin(Y ) ∼=Min(Z).

Proof. Let us assume f is an equivalence, then the morphism Min(Y ) ↪→ Y → Z →
Min(Z), where the first map is the section to Y → Min(Y ), is an equivalence over X
and so the result follows from Lemma 2.29. On the other side, if Min(Y ) ∼= Min(Z),
then we have the diagram

Y Z

Min(Y )

f

≃ ≃

and so the result follows from 2-out-of-3.
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3. The Complete Segal Space of Spaces

In this section we finally make the intuition outlined in Subsection 1.3 precise and con-
struct the desired complete Segal space of spaces using left fibrations. Let LF ib be the
large set of left fibrations. By Definition 2.7 and Corollary 2.21, LF ib is local (Lemma
2.19) and so we can take the sub-functor of All : ssSetop → Set with value left fibrations,
that we denote by LF ib(−) : ssSetop → Set, which, by Lemma 2.20, is represented by a
bisimplicial set that we denote by S, meaning we have a natural bijection

LF ib(−) ∼= HomssSet(−,S). (7)

We now want to prove that S is a complete Segal space of spaces. Before we can get
to the main result we need the appropriate lemma that helps us understand extension
properties of trivial fibrations. For that we can directly generalize [Cis19, Lemma 5.1.20]
to bisimplicial sets.

3.1. Lemma. Let p : Y → A be a trivial Reedy fibration of bisimplicial sets and i : A→ B
an inclusion of bisimplicial sets, inducing an adjunction i∗ ⊣ i∗. Then i∗p is a trivial Reedy

fibration and p
∼=−−→ i∗i∗p.

3.2. Proposition. The bisimplicial set S is a complete Segal space.

Proof.The argument is analogous to [KL21, Theorem 2.2.1] and [Cis19, Theorem 5.2.10].
By Remark 2.6, we need to prove that for every trivial cofibration i : A → B in the
complete Segal space model structure, the induced map HomssSet(B,S)→ HomssSet(A,S)
is surjective. By 7, this is equivalent to LF ib(B) → LF ib(A) being surjective, which
concretely means proving that every left fibration over A is the pullback of a left fibration
over B via i.

Fix a left fibration p : L→ A. We now have the following diagram

L (r̂j)∗L

Min(L) L̂ Min(L̂)

A B

p

≃r

⌜
≃ (r̂j)∗r

Min(p)

j

≃
⌜

p̂

≃
r̂

Min(p̂)

i

,

which satisfies the following conditions:

• Min(p) is a minimal left fibration (Lemma 2.28),

• r a trivial fibration (Proposition 2.26),

• p̂ is a left fibration (3),
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• j a trivial complete Segal space equivalence (3),

• r̂ a trivial fibration (Proposition 2.26),

• Min(p̂) a minimal left fibration (Lemma 2.28),

• (r̂j)∗r is a trivial fibration (Lemma 3.1).

Now, by the properties of the homotopy pullback square (3), the mapMin(L)→ i∗Min(L̂)
induced by the pullback is a Reedy equivalence and hence, by Lemma 2.29, a bijection
and, by Lemma 3.1, the top rectangle is a pullback. Hence p is the pullback of the left
fibrationMin(p̂) ◦ (r̂j)∗r : (r̂j)∗L→ B and we are done.

3.3. Remark. There is a similar result in [KV14, Theorem 2.2.11] without addressing
the functoriality of the construction, given that their definition of the simplicial space
uses pullbacks [KV14, Main construction 2.2.3].

We now want to understand the mapping spaces of S. For that we need the following
strictification. Combining the locality of left fibrations (7) and minimal Reedy fibrations
(5) it follows, by Lemma 2.20, that the set of minimal left fibrations is local and so we
have a sub-bisimplicial set of S, that we denote by Smin ↪→ S, and natural bijection

LF ibmin(−) ∼= HomssSet(−,Smin). (8)

On the other hand, the map Min : Ree→ Reemin defined in 6, by Lemma 2.28, restricts
to a map Min : S → Smin. We now have the following result with regard to these two
maps.

3.4. Lemma. The maps Smin → S→ Smin are equivalences of complete Segal spaces.

Proof. First of all the composition Smin → S→ Smin is the identity, as it takes every
minimal left fibration to itself (Remark 2.27). Hence, Smin is a retract of S and so a
complete Segal space. Next, we prove that S→ Smin is a trivial fibration and this implies
that the inclusion is an equivalence as well. Following Definition 2.4, we need to prove
that for every inclusion of simplicial spaces i : A→ B the following diagram has a lift

A S

B Smin

i Min ,

which, by 7 and 8, is equivalent to the map

LF ib(B)→ LF ib(A)×LF ibmin(A) LF ibmin(B)

being surjective. Unwinding the definitions this means we have the data of the following
diagram
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L

Min(L) L̂

A B

r≃

p̂∗i

p
⌜ p̂

i

,

where r is a trivial fibration and p, p̂ are minimal left fibrations and we need to find a left
fibration p̃ : L̃ → B, such that i∗p̃ = pr andMin(p̃) = p̂. However, by Lemma 3.1, this
is given by (p̂∗i)∗r : (p̂∗i)∗L → L̂. Here, the uniqueness of the factorization (Proposition
2.26) and that (p̂∗i)∗r is an equivalence, guarantees thatMin((p̂∗i)∗r) ∼= L̂.

We now want to use Lemma 3.4 to better understand the mapping spaces (1) of
S. This requires us to better understand minimal left fibrations over ∆[1, 0]. First we
introduce a notation that will be useful in the next proofs.

3.5. Notation. Let X → ∆[1, l] be a map of bisimplicial sets. We use the following
three notational conventions

• X/0 = Map/∆[1,l](d
1 : ∆[0, l]→ ∆[1, l], X)

• X/1 = Map/∆[1,l](d
0 : ∆[0, l]→ ∆[1, l], X)

• X/01 = Map/∆[1,l](id, X)

Notice, the two maps d0, d1 : ∆[0, l]→ ∆[1, l] induce maps of simplicial sets s : X/01 → X/0

and t : X/01 →/1.

3.6. Lemma. Let L and L′ be two left fibrations over ∆[1, l] such that the two morphisms
tL : L/01 → L/1, tL′ : L′

/01 → L′
/1 are Kan equivalent morphisms. Then Min(L) =

Min(L′).

Proof.By Corollary 2.30 the result will follow if we can prove that L and L′ are equivalent
over ∆[1, l]. Now, the projection map ∆[1, l]→ ∆[1, 0] is a level-wise equivalence and so,
by 3, we have level-wise equivalences L ≃ L̂ ×∆[1,l] ∆[1, 0] and L′ ≃ L̂′ ×∆[1,l] ∆[1, 0] for

left fibrations L̂ → ∆[1, 0] and L̂′ → ∆[1, 0]. Hence, without loss of generality, we can
assume that l = 0. Denote the equivalence tL → tL′ by α.

We now use the adjunction (s
∫
[1]
, sH[1]) as defined in [Ras23b, Lemma 4.9]. Concretely,

by definition of sH[1] we have sH[1](L) = tL, sH[1](L
′) = tL′ and by [Ras23b, Theorem

4.18] the counit of the adjunction gives us a level-wise equivalence and so we have

L ≃ s

∫
[1]

sH[1]L = s

∫
[1]

tL
s
∫
[1] α−−−→
≃

s

∫
[1]

tL′ = s

∫
[1]

sH[1]L
′ ≃ L′

and hence we are done.
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As explained in Subsection 1.2 one easy way to construct an (∞, 1)-category of spaces
is via nerves of Kan enriched categories. We hence want to compare S to the nerve
of the Kan enriched category of Kan complexes. Following the notational convention
of Subsection 1.12, let Kan be the Kan enriched category of Kan complexes, which has
objects Kan complexes and for two objects K,L we have

MapKan(K,L)n = HomKan(K ×∆[n], L) ∼= Hom/∆[n](K ×∆[n], L×∆[n]) (9)

For further details regarding this Kan enriched category see [GJ09, Subsection I.5].

3.7. Remark.Recall that a Kan complexK isminimal if the mapK ↠ ∆[0] is a minimal
Kan fibration. Define Kanmin as the full Kan enriched subcategory of Kan with objects
the minimal Kan complexes and notice the inclusion Kanmin → Kan is an equivalence of
Kan enriched categories, in the sense of [Ber07a], as every Kan complex is equivalent to
a minimal Kan complex [GJ09, Proposition 10.3].

We now want to apply the nerve to these Kan enriched categories. For a given sim-
plicially enriched category C, let N∆C be the bisimplicial set with N∆C0 = ObjC and

N∆Cn =
∐

X0,...,Xn

MapC(X0, X1)× ...×MapC(Xn−1, Xn). (10)

While N∆C is not a complete Segal space it is in fact a Segal category [Ber07b, Propo-
sition 8.3] (where the nerve N∆ is denoted R instead) and we can characterize their
equivalences via Dwyer-Kan equivalences [Ber07b, Definition 3.9].

3.8. Proposition. Let C be a Kan enriched category and W a complete Segal space.
A map F : N∆C → W is an equivalence in the complete Segal space model structure
if ObjC → W00 is surjective and for objects x, y in C, the induced map MapC(x, y) →
MapW (Fx, Fy) is a Kan equivalence.

Proof. Let I denote the inclusion of Segal precategories into bisimplicial sets, which
comes with a right adjoint denoted by R, described explicitly in [Ber07b, Section 6]. The

map F factors as N∆C
G−→ IRW

C−→ W , where C is the counit of the adjunction (I, R),
by the universal property of counits [Ber07b, Proposition 6.1]. As W is a complete Segal
space, C is a complete Segal space equivalence by [Ber07b, Theorem 6.3], and G is a
Dwyer-Kan equivalence of Segal categories by assumption and so also a complete Segal
space equivalence, by [Ber07b, Proposition 6.2]. Hence the composition, namely F , is also
a complete Segal space equivalence.

We now have the necessary pieces to prove the main result.

3.9. Theorem. There is a complete Segal space equivalence I : N∆Kan → S to the
complete Segal space S. Moreover, we have a natural bijection LF ib(−) ∼= Hom(−,S).
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Proof. We have established that S is a complete Segal space in Proposition 3.2 and the
bijection in 7 and so we only need to prove the equivalence with N∆Kan. Let L be the
bisimplicial set given level-wise by

Ln =
∐

X0,...,Xn∈Kan

X0 ×Map(X0, X1)× · · · ×Map(Xn−1, Xn). (11)

The first two face maps L1 =
∐

X0,X1
X0 ×Map(X0, X1) →

∐
X0∈Kan X0 = L0 are given

by d0(x, f) = x and d1(x, f) = f(x) and all higher face maps are given by applying d0
and d1 at the appropriate index. Similarly, the degeneracy s0 : L0 → L1 is given by
s0(x) = (x, id) and a general degeneracy inserts an identity at the appropriate index.

There is a projection morphism π2 : L→ N∆Kan that is level-wise given by

(π2)n : Ln =
∐

X0,...,Xn∈Kan

X0 × (Map(X0, X1)× · · · ×Map(Xn−1, Xn))

→
∐

X0,...,Xn∈Kan

Map(X0, X1)× · · · ×Map(Xn−1, Xn) = Kann,

meaning it forgets the X0 component.
As Kan0 = ObjKan is a set and the projection map π2 : L → N∆Kan gives us the

strict pullback of simplicial sets, Ln
∼= L0 ×ObjKan

N∆Kann , by Lemma 2.9, the Reedy

fibrant replacement π̂2 : L̂ → N∆Kan over N∆Kan is a left fibration. By 7, this induces
a functor I : N∆Kan→ S. We want to prove I is a complete Segal space equivalence.

By Lemma 3.4, it suffices to prove that the composition N∆Kan→ Smin is an equiv-
alence. Moreover, by Remark 3.7, we can further reduce it to showing that N∆Kanmin →
Smin, which we denote by Lift, is a Dwyer-Kan equivalence. By Remark 2.8 and Lemma
2.29 every minimal left fibration over L → ∆[0, 0] is uniquely (up to isomorphism) de-
termined by the minimal Kan complex L0 and so Lift is surjective on objects and so, by
Proposition 3.8, it suffices to prove Lift induces an equivalence of mapping spaces. We
will in fact show that the map of simplicial sets Lift1 : N∆Kanmin

1 → (Smin)1 induces a
bijection on mapping spaces.

Before we proceed, we will thoroughly analyze the morphism Lift : N∆Kanmin →
Smin. By 8, Min(L̂) → N∆Kan corresponds to the composition N∆Kan → S

Min−−→
Smin. So, precomposition with the inclusion N∆Kanmin → N∆Kan corresponds to the
minimal left fibration L̂min =Min(L̂) ×N∆Kan N∆Kanmin over N∆Kanmin, via pullback.
More explicitly for an (n, l)-simplex σ, which corresponds to a morphism σ : ∆[n, l] →
N∆Kanmin, Lift(σ) is the minimal left fibration over ∆[n, l] obtained by pulling back the
minimal left fibration over Smin, which by the pasting lemma for pullbacks is given by
Lift(σ) = σ∗L̂min → ∆[n, l].

By definition of the simplicial nerve (10) (N∆Kanmin)1l is the set of l-morphisms in
the simplicially enriched category Kanmin, which by 9 is explicitly given by a morphism
of simplicial sets X ×∆[l]→ Y ×∆[l] over ∆[l], where X, Y are minimal Kan complexes.
For such a given morphism f , Lift(f) is a minimal left fibration over ∆[1, l] which fits



42 NIMA RASEKH

into the following diagram

X ×∆[0, l]
∐

Y ×∆[0, l] Lift(f) L̂min

∆[0, l]
∐

∆[0, l] ∆[1, l] N∆Kanmin

⌜ ⌜

{X}
∐

{Y }

{f}

,

where we are using [GJ09, Corollary 10.8] to deduce that the outer rectangle is also a
pullback. This implies the following (using the notation introduced in Notation 3.5):

• Lift(f)/0 = X,Lift(f)/1 = Y ,

• Lift(f)/01 is the minimal Kan fibration over X × Y equivalent to the map (id, f) :
X → X × Y , which determines Lift(f)/01 uniquely.

The equivalence X ≃ Lift(f)/01 in particular implies that

Min(Lift(f)/01) = X (12)

and X =Min(Lift(f)/01)→ X × Y
π2−−→ Y is given by f .

We will now prove Lift1 is a bijection by constructing an inverse Sec : (Smin)1 →
N∆Kanmin

1 . For a given minimal left fibration L→ ∆[1, l], let Sec(L) =Min(L/01)→ L/1

over ∆[l]. We now prove that Sec is injective and that Sec is a left inverse of Lift1 which
will prove they are inverses.

The statement of Lemma 3.6 and the definition of Sec(L) as Min(L/01) → L/1 im-
mediately implies that Sec is injective on minimal left fibrations. Moreover, we observed
in 12 that for a given morphism of minimal left fibrations f : X ×∆[l] → Y ×∆[l] over
∆[l], X =Min(Lift(f)/01) and the composition

X =Min(Lift(f)/01) ↪→ Lift(f)/01 → Lift(f)/1 = Y

is given by f . This proves that Sec ◦ Lift1 is the identity and hence we are done.

3.10. Remark. We constructed a complete Segal space of spaces using left fibrations.
However, based on Remark 2.10, we could have also used right fibrations to construct a
bisimplicial set SR with SR

nl given by right fibrations over ∆[n, l]. Now, Remark 2.10
implies that (−)op induces a bijection between S and SR that flips the directionality of
the morphisms, immediately implying that SR is just the opposite complete Segal space
of spaces, Sop.

3.11. Remark. One implication of Theorem 3.9 and the fact that S is complete (Propo-
sition 3.2) is that the space of Kan equivalences from X to Y is equivalent to the space
of left fibrations over ∆[0, •] with fiber over the initial vertex in ∆[0, •] given by X and
fiber over terminal vertex in ∆[0, •] given by Y . As left fibrations L→ ∆[0, n] are up to
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homotopy uniquely determined by Kan fibrations over ∆[n] [Ras23b, Theorem 3.17], this
means we are getting an equivalence between the space of equivalences and the space of
Kan fibrations over ∆[•], meaning we get an alternative proof to the simplicial univalence
of the universe of Kan fibrations [KL21, Theorem 3.4.1].

4. The Complete Segal Space of (Complete) Segal Spaces

We now want to generalize the results from the previous section from a complete Segal
space of spaces to a complete Segal space of complete Segal spaces. Here we rely on the
complete Segal object approach to coCartesian fibrations as outlined in the beginning
of [Ras21a]. The benefit of this approach is that we can use the results of the previous
sections level-wise to immediately deduce the desired results.

Let us start with the appropriate generalizations of Subsection 2.2. The category of
trisimplicial sets is denoted by sssSet and the generators are denoted by ∆[−,−,−]. We
can, analogous to Definition 2.4, characterize Reedy fibrations via right lifting properties
against certain morphisms with codomain ∆[k, n, l]. Again, Reedy fibrations are part of a
model structure with cofibrations given by inclusions of trisimplicial sets and equivalences
given by level-wise Kan equivalences. In particular, all trivial Reedy fibrations are Reedy
weak equivalences. See [Ras23a, Subsection 2.8] for more details.

4.1. Notation. For a trisimplicial set X, we use Xk to denote the bisimplicial set with
(Xk)nl = Xknl and use Xkn to denote the simplicial set with (Xkn)l = Xknl.

We have analogous generalizations of left fibrations (Definition 2.7).

4.2. Definition. Let ιst : ssSet→ sssSet, the standard embedding, take a bisimplicial set
X to the trisimplicial set ιst(X) characterized as ιst(X)knl = Xnl. Moreover, for a map
of trisimplicial sets p : Y → ιstX, we denote by pk : Yk → X the map of bisimplicial sets
defined as (pk)nl = pknl.

4.3. Definition. Let X be a bisimplicial set and p : L → X be a Reedy fibration of
trisimplicial sets.

• p is a Reedy left fibration if pk : Lk → X (Notation 4.1) is a left fibration for all
k ≥ 0.

• p is a Segal coCartesian fibration if it is a Reedy left fibration and it satisfies the
Segal condition, meaning the map

Lkn ↠ L1n ×L0n ...×L0n L1n

is a Kan equivalence for all k ≥ 2 and n ≥ 0.

• p is a coCartesian fibration if it is a Segal coCartesian fibration and it satisfies the
completeness condition, meaning the map

L0n → L3n ×(L1n×L1n) (L0n × L0n)
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is a Kan equivalence for all n ≥ 0.

The Segal condition and completeness condition are evident analogues to the ones
used to define complete Segal spaces (Definition 2.5) and so we would expect a close
connection. Indeed, we have the following remark.

4.4. Remark. By [Ras23a, Theorem 5.7], if p : L→ X is a Reedy left fibration, then p
is a Segal coCartesian fibration if and only if for every x : ∆[0, 0]→ X, the fiber x∗L•0 is
a Segal space and similarly between coCartesian fibrations and complete Segal spaces.

4.5. Remark. Following Remark 2.8, a Reedy left fibration L over ∆[0, 0] is a homo-
topically constant trisimplicial set, meaning Lkn ≃ Lk0. Similarly, a (Segal) coCartesian
fibration over ∆[0, 0] is a homotopically constant trisimplicial set L such that L0 is a
(complete) Segal space.

We have a similar interaction between Reedy left fibrations and complete Segal equiv-
alences as in 3, meaning for every Reedy left fibration p : L → A and complete Segal
space equivalence A→ B, we can obtain p as a homotopy pullback square of a Reedy left
fibration p̂ : L̂→ B

L L̂

A B

j

p
⌜

p̂

i

(13)

where L
j−→ L̂

p̂−→ B is given via a factorization into a trivial cofibration followed by a
Reedy left fibration [Ras23a, Theorem 5.12].

4.6. Remark.Generalizing Remark 2.10, we can analogous to Definition 4.3 define Reedy
right fibrations as Reedy fibrations p : R → X, such that for all k, pk : Rk → X is
a right fibration. Moreover, we then define (Segal) Cartesian fibrations as Reedy right
fibrations, that satisfy the Segal and completeness condition, as described in Definition 4.3.
Moreover, by Remark 2.10, a map R→ X is a Reedy right, Segal Cartesian or Cartesian
fibration if and only if Rop → Xop is a Reedy left, Segal coCartesian or coCartesian
fibration, respectively. Here (−)op : sssSet → sssSet takes (−)op defined in Remark 2.10
level-wise, meaning it is defined as Fun(�op, (−)op).

We move on to appropriate generalizations of Subsection 2.11. Let All : sssSetop →
Set be the functor All(X) = Fun((

∫
�×�×�X)op, Set). We can restrict this functor by

precomposing with the standard embedding (ιst)
op : ssSetop → sssSetop to define sAll :

ssSetop → Set. Similar to Lemma 2.15 for every bisimplicial set X we have a bijection

sAll(X) ∼= sssSet/ιstX .

Now, define sssSet : �op×�op → Set as sAll(−) precomposed with the Yoneda embedding
and, analogous to Corollary 2.17 we have a natural isomorphism

sAll(−) ∼= HomssSet(−, sssSet). (14)
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Finally, if S is a local set of morphisms, then, similar to Lemma 2.20, this bijection
restricts to a bijection

sAllS(−) ∼= HomssSet(−, sssSet), (15)

where sAllS(X) ⊆ sAll(X) is the sub-functor of objects over ιstX that are in S and
sssSetS is again the restriction of sAllS(−) along the Yoneda embedding. Finally, we
have the analogue of Corollary 2.21 for trisimplicial sets.

4.7. Corollary. Let S be a set of morphisms of trisimplicial sets determined by a right
lifting property with respect to a set of morphisms A → ∆[k, n, l]. Then S is pullback
stable and in fact local.

We can use the corollary to generalize 7. By Definition 4.3, Reedy left fibrations are
local and so we get a bisimplicial set sssSetReeLF ib that we denote by sS and a natural
bijection

ReeLF ib(−) ∼= HomssSet(−, sS). (16)

We want to prove that sS is a complete Segal space of Reedy fibrant simplicial spaces.
This requires us to understand minimal Reedy fibration and minimal Reedy left fibrations
of trisimplicial sets, similar to Subsection 2.23. A Reedy fibration of trisimplicial sets
Y → X is minimal if for all k, n ≥ 0 the induced map of simplicial sets (using Notation
4.1)

Ykn ↠ MknY ×MknX Xkn

is a minimal Kan fibration. By Example A.9 all the results in Section A also apply to
Reedy fibrations of trisimplicial sets and so can recover the analogous results to Subsection
2.23 with the same proofs. In particular, analogous to Lemma 2.25, Reedy left fibrations
are local and, analogous to Proposition 2.26, we have the following factorization.

4.8. Proposition. Every Reedy fibration of trisimplicial sets p : Y → X admits a (up

to isomorphism) unique factorization Y
q
↠ Min(Y )

Min(p)
↠ X into a trivial fibration q

followed by a minimal fibrationMin(p).

Moreover, as being a Reedy left fibration is determined level-wise, by Definition 4.3, it
follows directly from Lemma 2.28 that if L→ X is a Reedy left fibration, thenMin(L)→
X is also a Reedy left fibration. LetReeLF ibmin(−) ⊆ ReeLF ib(−) be the sub-functor of
minimal Reedy left fibrations and denote the corresponding subobject of the bisimplicial
set of sS by sSmin. The locality of minimal Reedy left fibrations gives us the natural
bijection ReeLF ibmin(−) ∼= HomsssSet(−, sSmin) and so we can apply Proposition 4.8 to
the fibration sS∗ → sS corresponding to the identity, which by the natural bijection
corresponds to a map of bisimplicial sets, Min : sS→ sSmin, which represents a map

sMin : ReeLF ib(−)→ ReeLF ibmin(−). (17)

Naturality again implies that sMin sends a fibration to its corresponding unique minimal
Reedy left fibration constructed in Proposition 4.8 and, analogous to Remark 2.27, is the
identity when restricted to minimal Reedy left fibrations.
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We can now use this result to study the bisimplicial set sS. Before that we need the
following last lemma, which follows analogous to Lemma 3.1.

4.9. Lemma. Let p : Y → A be a trivial Reedy fibration of trisimplicial sets and i : A→ B
an inclusion of trisimplicial sets, inducing an adjunction i∗ ⊣ i∗. Then i∗p is a trivial

Reedy fibration and p
∼=−−→ i∗i∗p.

4.10. Proposition. The bisimplicial set sS is a complete Segal space.

Proof. We will follow the steps given in Proposition 3.2. The bijection 16 allows us to
again reduce the proof to showing that every Reedy left fibration L→ A can be obtained
as the pullback of a Reedy left fibration R → B along a trivial complete Segal space
cofibration i : A→ B. We can obtain this lift using the same diagram as in the proof of
Proposition 3.2 this time relying on Proposition 4.8 whenever we need a minimal Reedy
left fibration, 13 when we need to extend L along i : A → B, and Lemma 4.9 when we
need a trivial Reedy fibration.

As sSmin is a retract of sS, Proposition 4.10 implies that sSmin is a complete Segal
space as well. Using this bijection along with Lemma 4.9 in the proof of Lemma 3.4 we
obtain the following result about this retract.

4.11. Lemma. The maps sSmin → sS → sSmin are equivalences of complete Segal
spaces.

We now want to use these result to finally prove that sS is in fact the complete Segal
space of Reedy fibrant simplicial spaces. Let Ree denote the Kan enriched category of
Reedy fibrant simplicial spaces, where, by analogy with 9, the mapping spaces for two
Reedy fibrant simplicial spaces are defined as follows:

MapRee(K,L)n = HomRee(K ×∆[0, n], L) ∼= Hom/∆[0,n](K ×∆[0, n], L×∆[0, n]). (18)

4.12. Remark. Similar to Remark 3.7, a Reedy fibrant simplicial space K is minimal
if the unique map K → ∆[0, 0] is a minimal Reedy fibration. Denote by Reemin the
full simplicially enriched subcategory of Ree consisting of minimal Reedy fibrant simpli-
cial spaces. Notice, the inclusion Reemin ↪→ Ree is an equivalent full subcategory, by
Proposition 2.26.

Using 10 we obtain a Segal category N∆Ree. We now have the following result.

4.13. Theorem. There is a complete Segal space equivalence sI : N∆Ree → sS to the
complete Segal space sS. Moreover, we have a bijection ReeLF ib(−) ∼= Hom(−, sS).

Proof. sS is a complete Segal space by Proposition 4.10 and the bijection follows from
16. Hence, we only need to prove the equivalence. Let sLn be the trisimplicial set, given
level-wise by

sLn =
∐

X0,...,Xn∈Ree

X0 ×Map(X0, X1)× ...×Map(Xn−1, Xn) (19)
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and with face and degeneracy maps given analogous to the ones for L (as constructed in
Theorem 3.9). We similarly get a projection map π2 : sL → N∆Ree given by forgetting
the first coordinate. Again, N∆Ree0 = ObjRee is a set and π2 induces a strict pullback
sLn
∼= N∆Reen×ObjRee

sL0, and so, by applying Lemma 2.9 level-wise, the Reedy fibrant

replacement π̂2 : ŝL → N∆Ree over N∆Ree is a Reedy left fibration. The bijection 16
gives us a functor sI : N∆Ree→ sS. We want to prove this is a Dwyer-Kan equivalence.
Now, combining Lemma 4.11 and Remark 4.12, this proof reduces to showing that sLift :
N∆Reemin → sSmin is a Dwyer-Kan equivalence, which follows from establishing the
conditions in Proposition 3.8.

By Remark 4.5, Reedy left fibrations over ∆[0, 0] are determined by a Reedy fibrant
simplicial space and so the functor is surjective, meaning we only need to show it is an
equivalence of mapping spaces. We can now follow the same steps as in Theorem 3.9
to deduce that sLift1 : N∆Reemin → sSmin

1 is a bijection by constructing an explicit
inverse.

4.14. Remark. General Reedy fibrant simplicial spaces are too broad to give us a model
of ∞-categories, however, bisimplicial sets with the Reedy model structure do give us a
model topos [Rez10b], which have been established as models for homotopy type theories
[Shu19], and so have been studied extensively by Shulman [Shu15a, Shu15b, Shu17]. In
particular, bisimplicial sets are the key example of a model of type theories with shapes
introduced by Riehl and Shulman with the goal of ∞-category theory internal to type
theories [RS17]. From this perspective, an explicit construction of a complete Segal space
for Reedy fibrant simplicial spaces is an important step towards better understanding its
properties as a model of type theories.

We can now restrict this construction in the following two ways to get the results we
wanted. Using the fact that (Segal) coCartesian fibration are local (by Definition 4.3)
we denote sssSetSegcoCart by Seg and sssSetcoCart by CSS. Similarly, let Seg denote
the full simplicially enriched category with objects Segal spaces and CSS denote the full
simplicially enriched subcategory of complete Segal spaces. We now have the following
lemma and theorem, giving us a complete Segal space of (complete) Segal spaces.

4.15. Lemma. Let W be a complete Segal space. Let V00 ⊆ W00 be a subset of objects
in W closed under equivalences, meaning any object in W equivalent to an element in
V00 is already in V00. Define V ⊆ W as the sub-bisimplicial set of W with elements in
σ ∈ Vnl ⊆ Wnl if for all d : Wnl → W00, d(σ) ∈ V00. Then V is a complete Segal space
and V → W is fully faithful.

Proof. Let i : A→ B be a trivial cofibration in the complete Segal space model structure
and let f : A → V be a map. Then there exists a map f̂ : B → W lifting i. Now, every
trivial cofibration in the complete Segal space model structure is surjective on equivalence
classes of objects [Ras21b, Lemma 3.54]. Hence, the objects in W that lie in the image of
f̂ are all equivalent to objects in the image of f : A→ V ⊆ W and hence in V themselves.
This proves that the lift factors through V and hence V is a complete Segal space. Finally,
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for given objects x, y in V , by the definition of V and mapping spaces of complete Segal
spaces (1), MapV (x, y)→ MapW (x, y) is the identity and so we are done.

4.16. Theorem. In the following diagram the top (bottom) horizontal functors are fully
faithful functors of strict Segal categories (complete Segal spaces) and the vertical maps
are complete Segal space equivalences

N∆CSS N∆Seg N∆Ree

CSS Seg sS

≃sI ≃sI ≃sI

meaning Seg is the complete Segal space of Segal spaces and CSS is the complete Segal
space of complete Segal spaces. Moreover, we have bijections

SegcoCart(−) ∼= HomssSet(−,Seg),

coCart(−) ∼= HomssSet(−,CSS).

Proof. The bijections follow directly from 15 and the fact that (Segal) coCartesian
fibrations are local (Definition 4.3). Now, by Theorem 4.13, sS is a complete Segal space
of bisimplicial sets and, by Lemma 4.15 and Remark 4.4, Seg ↪→ sS is a fully faithful
inclusion of complete Segal spaces. Here we are using the fact that the Segal condition in
Definition 4.3 is by definition up to equivalence and so any Reedy left fibration equivalent
to a Segal coCartesian fibration is in fact a Segal coCartesian fibration, proving that the
condition in Lemma 4.15 is in fact satisfied. Finally, by Remark 4.5, the objects in Seg
are Segal spaces. We can use the same arguments to prove that CSS → Seg is a fully
faithful functor of complete Segal spaces with CSS having objects complete Segal spaces.

Finally, we have already constructed an equivalence sI : N∆Ree → sS, so it suffices
to show its restriction N∆Seg → sS has essential image Seg. Let X be an object in
Seg i.e. a Segal space. Then sI(X) is the homotopically constant Reedy left fibration
with sI(X)0 = X, which satisfies the Segal condition by assumption, making it a Segal
coCartesian fibration. On the other side, if L→ ∆[0, 0, 0] is a Segal coCartesian fibration,
then L is homotopically constant and L0 is a Segal space (Remark 4.5), so sI(L0) ≃ L.
This proves sI : N∆Seg → Seg is an equivalence. We can repeat the same argument to
deduce that sI restricts to an equivalence sI : N∆CSS → CSS finishing the proof.

4.17. Remark. Combining Remark 3.10 and Remark 4.6 directly implies that the bisim-
plicial set with (k, n)-simplices given by Reedy right fibrations over ∆[n, l] is precisely the
opposite complete Segal space of Reedy fibrant simplicial spaces, sSop. Moreover, re-
stricting those to (Segal) Cartesian fibrations gives us the opposite complete Segal spaces
of (complete) Segal spaces as constructed in Theorem 4.16, Segop and CSSop.
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5. Universal Fibrations

Up until this point we have constructed various complete Segal spaces that have relevant
universal properties in the sense that functors into them correspond to various fibrations
over them. This, in particular, implies the existence of a universal fibration corresponding
to the identity map. In this section we want to focus on these universal fibrations.

We will, in particular, prove that these universal fibrations are all representable. This
gives us a very explicit characterization of the domain of these universal fibrations and
helps us establish key properties thereof. In particular, representability of the universal
left fibration proves that the complete Segal space of spaces has a “generating object”
(which we prove to be the terminal object in 5.3), meaning an object in S is uniquely
characterized by maps out of the terminal object into it. Similarly, representability of the
other universal fibrations proves that the complete Segal space of Reedy fibrant simplicial
spaces, and the sub-complete Segal space of (complete) Segal spaces, have a “generating
cosimplicial object”.

We will start with the case for spaces. Denote by pssSet : ssSet∗ → ssSet the map
that corresponds to the identity map under the bijection in Corollary 2.17. Notice, a map
∆[n, l] → ssSet∗ corresponds to a map σ : ∆[n, l] → ssSet along with a section of the
pullback diagram σ∗pssSet : σ

∗ssSet∗ → ∆[n, l]. This means we have a bijection of sets

(ssSet∗)nl ∼=
∐

σ∈ssSetnl

Hom/∆[n,l](id, σ
∗pssSet). (20)

Under this bijection the morphism pssSet : ssSet∗ → ssSet is the evident projection of
a pair (σ, s) 7→ σ. Moreover, the naturality of the bijection Corollary 2.17 implies the
following helpful result.

5.1. Lemma. The bijection All(−) ∼= HomssSet(−, ssSet) is induced by pulling back along
pssSet.

Now, for every local class of morphisms S, we can obtain pssSetS : ssSetS∗ → ssSetS

by using the bijection Lemma 2.20. This map satisfies the following simple, yet useful,
lemma that helps us better understand it.

5.2. Lemma. Let S be a local class of morphisms of bisimplicial sets. Then we have the
following pullback square

ssSetS∗ ssSet∗

ssSetS ssSet

⌜ .

In particular, elements in (ssSetS∗ )nl are morphisms p : X → ∆[n, l] that are in S along
with a choice of section.

We can now in particular apply this to S = LF ib and deduce that the universal left
fibration, that we denote by pS : S∗ → S, has as elements in (S∗)nl diagrams of left
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fibrations ∆[n, l]→ L over ∆[n, l]. We now want to study the representability of this left
fibration. Recall that a left fibration L → W is representable if there exists an object x
in W such that

L ≃ Wx/ = W∆[1,0] ×W ∆[0, 0]. (21)

See [Ras23b, Definition 3.41, Theorem 3.44] for a more detailed analysis of representable
left fibrations of bisimplicial sets.

5.3. Theorem. The universal left fibration pS : S∗ → S is a representable left fibration,
represented by the terminal object. Moreover, the bijection 7 is induced by pulling back
the universal left fibration pS.

Proof. The fact that the bijection 7 is induced by pulling back pS follows directly from
Lemma 5.2 and Lemma 5.1. We now want to prove that pS : S∗ → S is representable and
concretely represented by the object id∆[0,0] in S. By [Ras23b, Theorem 3.55] it suffices
to prove that S∗ has an initial object in the fiber of pS over id∆[0,0].

By Theorem 3.9, we have an equivalence I : N∆Kan → S, which is induced by a
left fibration L̂ over N∆Kan, which implies that L → N∆Kan, as constructed in 11, is
equivalent to the homotopy pullback of pS along the complete Segal space equivalence
N∆Kan → S. Hence, by [Ras23b, Theorem 4.32], we have a complete Segal space
equivalence L ≃ S∗ that takes (∆[0], 0) to id∆[0,0], where we used the fact that by 11,
L00 =

∐
X∈KanX0, meaning objects in L are of the form (X, x ∈ X0), where X is a Kan

complex.
This implies that in order to finish the proof we only need to observe that (∆[0], 0) is

initial in L. By definition L1 =
∐

X,Y X ×MapKan(X, Y ) and so for an object (X, x), by
1 the mapping space MapL((∆[0], 0), (X, x)) is given via the following pullback

MapL((∆[0], 0), (X, x)) ∆[0]×MapKan(∆[0], X)

∆[0] X

∼=
⌜

ev∼=

x

Now the map on the right hand side is a bijection and so MapL((∆[0], 0), (X, x)) is bijective
to ∆[0] as well, finishing the proof.

5.4. Remark. One of the main results regarding left fibrations of bisimplicial sets is
that they are always fibrations in the complete Segal space model structure [Ras23b,
Corollary 5.11]. Using Theorem 5.3 we can deduce the following result more simply.
Indeed, Theorem 5.3 and 21 imply that S∗ ≃ S∆[1,0]×S ∆[0, 0] is a complete Segal space
as the complete Segal model structure is Cartesian (see [Ras23b, Lemma 3.43] for a more
detailed argument). As a result, pS is a Reedy fibration between complete Segal spaces
and so a complete Segal fibration [Rez01, Theorem 7.2]. Now, by Theorem 5.3, every left
fibration is a pullback of the complete Segal space fibration S∗ → S and so a complete
Segal space fibration as well.



A MODEL FOR THE HIGHER CATEGORY OF HIGHER CATEGORIES 51

We now want to generalize Theorem 5.3 to trisimplicial sets. Let psssSet : sssSet∗ →
sssSet be the map that corresponds to the identity map under the bijection 14. First, we
want to generalize 20.

5.5. Lemma. There is a bijection

(sssSet∗)knl ∼=
∐

σ∈sssSetknl

Hom/∆[k,n,l](∆[k, n, l], σ∗psssSet),

meaning an element in (sssSet∗)knl corresponds to a choice of trisimplicial set X → ∆[n, l]
along with a choice of section for the map of bisimplicial sets Xk → ∆[n, l].

Proof. An element in (sssSet∗)knl is given by a map ∆[k, n, l]→ sssSet∗, which is given
by a map σ : ∆[k, n, l]→ sssSet along with a lift. By 14 an element in sssSetknl is given
by a map of trisimplicial sets σ∗psssSet → ∆[0, n, l]. Now for such a fixed map, a section
precisely corresponds to a choice of element in (σ∗psssSet)knl, which is precisely the data
of a section (σ∗psssSet)k → ∆[n, l].

This also has the following useful implication.

5.6. Lemma. The bijection sAll(−) ∼= HomssSet(−, sssSet) is induced by pulling back
along psssSet.

Now, for every local class of morphisms S, we can obtain psssSetS : sssSetS∗ → sssSetS

by using the bijection 15 and again we have a result analogous to Lemma 5.2.

5.7. Lemma. Let S be a local class of morphisms of bisimplicial sets. Then we have the
following pullback square

sssSetS∗ sssSet∗

sssSetS sssSet

⌜ .

In particular, elements in (sssSetS∗ )knl are morphisms p : X → ∆[n, l] that are in S along
with a choice of section of pk : Xk → ∆[n, l].

We can now apply this lemma to the case S = ReeLF ib to obtain the universal Reedy
left fibration pReeLF ib : sS∗ → sS. We want to observe that this Reedy left fibration is
representable, in the sense of [Ras22]. Recall from [Ras22, Proposition 2.4] that for a
cosimplicial object X• : �→ W in a complete Segal space W , we can construct a Reedy
left fibration W/X• → W uniquely characterized by the fact that (W/X•)k ≃ W/Xk

(where
W/Xk

was defined in 21). Now, following [Ras22, Definition 2.1], an arbitrary Reedy left
fibration L → W is representable if there exists a cosimplicial object X• in W and an
equivalence W/X• ≃ L over W . We now prove that the universal Reedy left fibration
pReeLF ib : sS∗ → sS is representable via a cosimplicial object in sS.
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5.8. Theorem. The universal Reedy left fibration psS : sS∗ → sS is a representable
Reedy left fibration represented by the cosimplicial object id∆[0,•,0] : � → sS. Moreover,
the bijection 16 is induced by pulling back the universal Reedy left fibration psS.

Proof. The fact that the bijection is induced by pullback follows from combining Lemma
5.7 and Lemma 5.6. Now, in order to prove that psS : sS∗ → sS is representable, by
[Ras22, Lemma 4.1], it suffices to prove that the left fibration (psS)k : (sS∗)k → sS is
represented by id∆[0,k,0] for all k ≥ 0. From here on we can follow the steps of the proof
of Theorem 5.3.

We need to show that (sS∗)k has an initial object over id∆[0,k,0]. By Theorem 4.13,
we have an equivalence sI : N∆Ree → sS, which is induced by the Reedy left fibration
ŝL over N∆Ree, which implies that the Reedy left fibration sL→ N∆Ree, as constructed
in 19, is the homotopy pullback of the Reedy left fibration sS∗ → sS, and, in particular,
the left fibration ŝLk → N∆Ree is the homotopy pullback of the left fibration (sS∗)k →
sS. Hence, by [Ras23b, Theorem 4.32], we have a complete Segal space equivalence
sLk ≃ (sS∗)k that takes (∆[k, 0], idk) to id∆[0,k,0]. Here we used the fact that by 19,
sLk00 =

∐
X∈Ree Xk0, meaning objects in sLk are of the form (X, x ∈ Xk0), where X is a

Reedy fibrant simplicial space.
This implies that in order to finish the proof we only need to observe that (∆[k, 0], idk)

is initial in sLk. By definition sLk1 =
∐

X,Y ∈Ree Xk × MapRee(X, Y ) and so for an ob-
ject (X, x ∈ Xk0), by 1 the mapping space MapsLk

((∆[k, 0], idk), (X, x)) is given via the
following pullback

MapsLk
((∆[k, 0], idk), (X, x)) ∆[k, 0]k ×MapRee(∆[k, 0], X)

∆[0] ∆[k, 0]k ×Xk

∼=
⌜

ev∼=
(idk,x)

Now, the map on the right hand side is a bijection, as MapRee(∆[k, 0], X) ∼= Xk by 18.
As a result, the mapping space MapsLk

((∆[k, 0], idk), (X, x)) is bijective to ∆[0] as well,
finishing the proof.

We now use Theorem 4.16 to get the universal Segal coCartesian fibration, that we
denote by pSeg : Seg∗ → Seg and the universal coCartesian fibration, that we denote by
pCSS : CSS∗ → CSS. Lemma 5.7 and Theorem 5.8 now immediately give the following
result.

5.9. Corollary. The universal (Segal) coCartesian fibration pCSS (pSeg) is represented
by ∆[•, 0]. Moreover, we have pullback squares

CSS∗ Seg∗ sS∗

CSS Seg sS

pCSS
⌜

pSeg
⌜

psS .
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Finally, pulling back along the universal fibrations induces bijections given in Theorem
4.16

HomssSet(−,Seg) ∼= SegcoCart(−),

HomssSet(−,CSS) ∼= coCart(−).

5.10. Remark. The representability of the universal left fibration is well-established
(and has for example been studied in [Cis19, Subsection 5.2],) however, the representabil-
ity of the the universal coCartesian fibration is a more modern phenomena and can be
found in [Ras22, Subsection 4.2], [Ste20, Example 3.26], and more recently [CN22]. The
representability of the universal Reedy left fibration and the universal Segal coCartesian
fibration was not studied before.

6. Comparison with Quasi-Categories

Up until here we constructed the complete Segal spaces of spaces, Reedy fibrant simpli-
cial spaces, and (complete) Segal spaces. In this last section we want to use the fact
that we can translate between complete Segal spaces and quasi-categories, another im-
portant model of (∞, 1)-categories, to construct quasi-categories of spaces, Reedy fibrant
simplicial spaces, and (complete) Segal spaces. This requires us to review left fibrations
of simplicial sets [Joy08b, Lur09, Cis19], as well as the translation results between quasi-
categories and complete Segal spaces due to Joyal and Tierney [JT07], their generalization
to left fibrations in [Ras23b, Appendix B], and their generalization to Reedy left fibrations
[Ras21a, Section 1.6].

6.1. Definition. A left fibration of simplicial sets is map that satisfies the right lifting
property with respect to horn inclusions Λ[n]i ↪→ ∆[n], for 0 ≤ i < n.

Left fibrations of simplicial sets can be translated to left fibrations of bisimplicial
sets (Definition 2.7) and vice versa. Let i∗1 : ssSet → sSet be the functor that takes
a bisimplicial set X•• to the simplicial set X•0 [JT07, Section 4]. Moreover, let t! :
sSet → ssSet be the functor that takes a simplicial set X to the bisimplicial set t!Xnl =
HomsSet(∆[n] × N(I[l]), X) [JT07, Theorem 2.12]. Here I[l] is the groupoid with l + 1
objects and a unique morphism between any two objects.

These two functors are both right adjoints of Quillen equivalences [JT07, Theorem
4.11, Theorem 4.12], which in particular has the following implications:

6.2. Lemma. i∗1 takes complete Segal spaces to quasi-categories and t! takes quasi-categories
to complete Segal spaces. Moreover, i∗1t

! : sSet → sSet is the identity map and t!i∗1 :
ssSet→ ssSet is equivalent to the identity. Finally, i∗1 preserves and reflects equivalences
between complete Segal spaces.

These results have been generalized in [Ras23b, Theorem B.12, Theorem B.14] to a
comparison between left fibrations of simplicial sets and bisimplicial sets, giving us the
following valuable result.
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6.3. Lemma. i∗1 takes left fibrations of bisimplicial sets to left fibrations of simplicial sets
and t! takes left fibrations of simplicial sets to left fibrations of bisimplicial sets.

We now use the ability to translate between quasi-categories and complete Segal spaces
to construct additional (∞, 1)-categories of spaces. First of all, we can apply i∗1 to the
complete Segal space S (Theorem 3.9) to obtain the following result.

6.4. Corollary. i∗1S is a quasi-category of spaces with i∗1Sn given by left fibrations of
bisimplicial sets over ∆[n, 0].

We now want to illustrate how we can use left fibrations of simplicial sets internally to
construct a quasi-category of spaces, using analogous steps to Section 3. Let SQCat be the
simplicial set with (SQCat)n given by left fibrations of simplicial sets over ∆[n] (where we
are using the translation to functors as given in Lemma 2.15 to take care of functoriality).

Now, by Lemma 6.3, t! preserves left fibrations, and moreover, we have t!(∆[n]) =
∆[n, 0]. Hence t! induces a morphism of quasi-categories

T : SQCat → i∗1S, (22)

that takes a left fibration of simplicial sets L→ ∆[n] to t!L→ t!∆[n] = ∆[n, 0]. Similarly,
by Lemma 6.3, i∗1 also preserves left fibrations and i∗1(∆[n, 0]) = ∆[n] and so i∗1 similarly
induces a morphism of quasi-categories

I : i∗1S→ SQCat, (23)

that takes a left fibration of bisimplicial sets L → ∆[n, 0] to i∗1(L) → i∗1(∆[n, 0]) = ∆[n].
We now have the following result.

6.5. Theorem. The maps T : SQCat → i∗1S and I : i∗1S → SQCat are inverses of quasi-
categories.

Proof. First, we prove SQCat is a quasi-category. By Lemma 6.2, t! ◦ i∗1 is the identity
and so IT is the identity as well, meaning SQCat is a retract of the quasi-category i∗1S
(Corollary 6.4) and so a quasi-category as well. We now move on to prove T and I are
inverses of quasi-categories. As IT is the identity we only need to show TI : i∗1S →
i∗1SCSS is equivalent to the identity. By Lemma 6.2 and Lemma 3.4, the two morphisms

i∗1S
min i∗1J−→ i∗1S

i∗1Min
−−−→ i∗1S

min are equivalences of quasi-categories, hence it suffices to
prove that i∗1J ◦ T ◦ I ◦ (i∗1Min) : i∗1S

min → i∗1S
min is equal to the identity.

Let L→ ∆[n, 0] be a left fibration. By Lemma 6.2, there is an equivalence of complete
Segal spaces t!i∗1L → L over ∆[n, 0], which implies they are equivalent left fibrations
[Ras23b, Theorem 5.11] and soMin(t!i∗1L) andMin(L) are equal (Lemma 2.29) finishing
the proof.
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6.6. Remark. The elements in the quasi-category SQCat are precisely left fibrations over
∆[n]. Hence this construction coincides with the construction of the quasi-category of
spaces by Cisinski [Cis19, Theorem 5.2.10, Corollary 5.4.7] and hence gives us an inde-
pendent proof thereof.

We can take the opposite route to Corollary 6.4 to get the following result.

6.7. Corollary. t!SQCat is a complete Segal space of spaces with (t!SQCat)nl given by
left fibrations of simplicial sets over ∆[n]×N(I[l]).

We can now use the results from Section 4, and more precisely apply Lemma 6.2
to Theorem 4.16, to construct quasi-categories of Reedy fibrant simplicial spaces and
(complete) Segal spaces.

6.8. Corollary. i∗1sS is a quasi-category with i∗1sSn given by Reedy left fibrations of
trisimplicial sets over ∆[0, n, 0]. Moreover, we have inclusions of quasi-categories

i∗1CSS ↪→ i∗1Seg ↪→ i∗1sS,

where i∗1Seg (i∗1CSS) is the quasi-category of (complete) Segal spaces.

We now want to generalize the results in Theorem 6.5 to define the quasi-categorical
analogue to sS, which will then also result in the quasi-categorical analogue to Seg and
CSS. Here we fundamentally rely on work in [Ras21a, Section 1.6]. Recall that a Reedy
fibration of bisimplicial sets L → ∆[0, n] is a Reedy left fibration of bisimplicial sets if
for all k ≥ 0 the restricted map Lk → ∆[0, n]k = ∆[n] (Notation 2.3) is a left fibration
of simplicial sets. Let sSQCat be the simplicial set with (SQCat)n given by Reedy left
fibrations of bisimplicial sets over ∆[0, n] (where we are using the translation to functors
as given in Lemma 2.15 to take care of functoriality).

We want to prove that sSQCat and i∗1sS are equivalent quasi-categories. For that we
define analogues to T, I that we prove are inverses of each other. Let st! : ssSet→ sssSet
be defined as Fun(�op, t!) and similarly, let si∗1 = Fun(�op, i∗1) : ssSet → sssSet. We now
have the following facts about si∗1 and st!.

6.9. Lemma. si∗1 takes Reedy left fibrations of trisimplicial sets to Reedy left fibrations
of bisimplicial sets and st! takes Reedy left fibrations of bisimplicial sets to Reedy left
fibrations of trisimplicial sets. Moreover, si∗1st

! is the identity and st!si∗1 takes a Reedy
left fibration of trisimplicial sets to an equivalent one.

See [Ras21a, Theorem 1.35] for further details about these functors. Using this result
we can generalize the maps of quasi-categories T, I to maps

sT : sSQCat → i∗1sS,

sI : i∗1sS→ sSQCat,
(24)

where sT takes a Reedy left fibration of bisimplicial sets L→ ∆[0, n] to st!L→ st!∆[0, n] =
∆[0, n, 0] and sI takes a Reedy left fibration of trisimplicial sets L → ∆[0, n, 0] to
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si∗1(L) → si∗1(∆[0, n, 0]) = ∆[0, n]. Now following the same steps of the proof of The-
orem 6.5 (this time with the construction of minimal Reedy left fibrations given in 17)
gives us the following result.

6.10. Theorem. The maps sT : sSQCat → i∗1sS and sI : i∗1sS→ sSQCat are inverses of
quasi-categories.

We now proceed to restrict the results to (Segal) coCartesian fibrations. Following
[Ras21a, Definition 1.34] a Reedy left fibration of bisimplicial sets p : L → ∆[0, n] is a
Segal coCartesian fibration if the map Lk → L1 ×L0 ... ×L0 L1 is an equivalence of left
fibrations for all k ≥ 2. Moreover, it is a coCartesian fibration if it is a Segal coCartesian
fibration and the map L0 → L3 ×(L1×L1) (L0 × L0) is an equivalence of left fibrations.
The similarity with the conditions in Definition 4.3 is of course not coincidental and,
by [Ras21a, Theorem 1.35], both st! and si∗1 preserve and reflect (Segal) coCartesian
fibrations.

LetSegQCat ↪→ sSQCat denote the full sub-simplicial set consisting of Segal coCartesian
fibrations over ∆[0, n]. Similarly, let CSSQCat ↪→ SegQCat denote the full sub-simplicial
set consisting of coCartesian fibrations over ∆[0, n]. The fact that st! and si∗1 preserve and
reflect Segal coCartesian fibrations implies that the morphisms of quasi-categories sT, sI
restrict to morphisms

sT : SegQCat → i∗1Seg, sI : si∗1Seg→ SegQCat

and remain equivalences after restriction. We have the same equivalences

sT : CSSQCat → si∗1CSS, sI : i∗1CSS→ CSSQCat,

due to the fact that coCartesian fibrations are preserved and reflected by st! and si∗1.
Combining these observations gives us the following corollary.

6.11. Corollary. We have the following diagram of quasi-categories, where the hori-
zontal maps are inclusions and the vertical maps equivalences.

i∗1CSS i∗1Seg i∗1sS

CSSQCat SegQCat sSQCat

i∗1CSS i∗1Seg i∗1sS

sI≃ sI≃ sI≃

sT≃ sT≃ sT≃

Finally, we have the following result analogous to Corollary 6.7.

6.12. Corollary. t!CSSQCat is a complete Segal space of complete Segal spaces with
(t!CSSQCat)nl given by coCartesian fibrations of bisimplicial sets over ∆[0, n]×N(I[l]).
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A. Minimal Reedy Fibrations

As part of our effort to construct and study the complete Segal spaces of interest, we, in
particular, need a theory of minimal fibrations in a variety of settings (examples include
Proposition 2.26 and Proposition 4.8). Hence, in this appendix we develop a theory of
minimal Reedy fibrations for a wide range of Reedy categories. In particular, we prove that
every equivalence between two minimal Reedy fibrations is an isomorphism (Proposition
A.6), and every Reedy fibration on an elegant Reedy category (which contains all examples
of interest by Example A.9) admits a unique factorization into a trivial fibration followed
by a minimal fibration (Theorem A.11). The content of this technical section does not
rely on the contents of the remainder of this paper and hence can be read independently.

Recall that a Reedy category is a quadruple (R, deg : ObjR → N,R−,R+) of a category
R, the degree function deg, a wide subcategory R− in which all non-identity morphisms
decrease the degree, a wide subcategory R+ in which all non-identity morphisms increase
the degree, and in which (R−,R+) is a factorization system, meaning every map f : r → r′′

in R admits a unique factorization r
g−−→ r′

h−−→ r′′, with g in R− and h in R+. For further
details, see the original source due to Reedy [Ree74] or more modern sources, such as
[Hov99, Definition 5.2.1] or [Hir03, Definition 15.1.2]. To simplify notation for a given
morphism in R between objects r, r′ we adopt the notation r →− r′ for a non-identity
morphism in R− and r →+ r′ for a non-identity morphism in R+.

For a given object r in the Reedy category R denote by ∂(R+
/r) (∂(R−

r/)) the full

subcategory of R+
/r (R−

r/) only lacking the identity. Recall, for a given functor X : Rop →
Set, we have latching objects LrX = colim((∂(R−

r/))
op → (R−)op → Set) and matching

objects MrX = lim((∂(R+
/r))

op → (R+)op → Set), which come with canonical natural

morphisms LrX → Xr →MrX. See [Hov99, Definition 5.2.2] or [Hir03, Definition 15.2.3]
for more details. For a given presheaf X : Rop → Set and element x in Xr, we denote the
image in MrX by ∂x.

For a given object r, denote by F [r] : Rop → Set the presheaf representing r. Recall
that for a given object r in R we define ∂F [r] = colimr0→+rF [r0] and for every X : Rop →
C, we have the bijections

MrX = lim
r0→+r

Xr0
∼= lim

r0→+r
Hom(F [r0], X) ∼= Hom(colim

r0→+r
F [r0], X) = Hom(∂F [r], X).

(25)
We can characterize ∂F [r] more formally. For n ≥ 0, denote by R≤n the full subcat-

egory of R with objects having degree less than or equal to n . The evident inclusion
R≤n → R induces by restriction and left Kan extension an adjunction

Fun(Rop
≤n, Set) Fun(Rop, Set)

skn

trn

⊥

A.1. Remark. We make the following observations about the adjunction (skn, trn).

• Both skn and trn preserve colimits, as trn also has a right adjoint via right Kan
extension.



58 NIMA RASEKH

• The inclusion R≤n → R is fully faithful, and so the left Kan extension skn is also
fully faithful [Rie16, Corollary 6.3.9].

• For every objectX in Fun(Rop, Set) we have a colimit diagram colimn→+∞skntrnX ∼=
X [Hir03, Proposition 15.1.25].

• For an object r in R with degree n+ 1, by construction the inclusion ∂F [r]→ F [r]
corresponds to the unit map skntrnF [r]→ F [r].

For a given Reedy category R, the category Fun(Rop, sSet) admits a model structure,
the Reedy model structure, in which a morphism Y → X is a fibration if for all objects
r in R, the map Yr → Xr ×MrX MrY is a Kan fibration of simplicial sets and it is a
weak equivalence if the map Yr → Xr is a Kan equivalence for all objects r in R [Hir03,
Definition 15.3.3, Theorem 15.3.4]. We aim to generalize minimal fibrations from Kan
fibrations to Reedy fibrations. We commence with the definition of a minimal Reedy
fibration. Recall that minimal Kan fibrations were introduced with the aim of studying
key properties of Kan fibrations and their relation to Serre fibrations [Qui68]. We will
primarily rely on [GJ09, Section I.10].

A.2. Definition. A Reedy fibration Y → X is minimal, if for all objects r in R the Kan
fibration Yr → Xr ×MrX MrY is a minimal Kan fibration.

Before we proceed with a thorough study of minimal Reedy fibrations, let us note
that there are several other generalizations of minimal Kan fibrations. First of all, there
is a notion of minimal inner fibrations and particularly minimal quasi-categories [Lur09,
Section 2.3.3], still working in the context of simplicial sets. There is also a generalization
to dendroidal sets [MN16]. Closest to our approach is a generalization to Cisinski model
structures on Eilenberg-Zilber Reedy categories [Cis14].

We commence our study by giving an alternative characterization in analogy to [GJ09,
Diagram 10.2]. Recall we denote the constant presheaf Rop → sSet with value ∆[n] also
by ∆[n]. Moreover, for an object r in R and n ≥ 0, to simplify notation we use the
notation F [r, n] for the presheaf F [r]×∆[n].

A.3. Definition. Let R be a Reedy category and p : Y → X be a morphism in Fun(Rop,
sSet). Two elements f, g : F [r, n] → Y are p-equivalent if there exists a commutative
diagram of the following form

∂F [r, n]×∆[1] ∂F [r, n]

F [r, n] F [r, n]×∆[1] Y

F [r, n] X

{0}

{1}

f

g

,
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A.4. Lemma. Let R be a Reedy category. Then a Reedy fibration p : Y → X is a minimal
Reedy fibration if and only if all p-equivalent (r, n)-simplices are equal.

Proof. By definition p : Y → X is a minimal fibration if for all objects r in R, Yr →
MrY ×MrX Xr is a minimal fibration. This is equivalent to stating that for every r, every
n ≥ 0 and every f, g : F [n, r] → Y , f = g if there exists a commutative diagram of the
following shape

∂∆[n]×∆[1] ∂∆[n]

∆[n] ∆[n]×∆[1] Yr

∆[n] Xr ×MrX MrY

{0}

{1}

f

g

.

By 25, we have MrY ∼= Hom(∂F [r], Y ). So, using the fact that, by [Hir03, Lemma
15.5.1], we have ∂F [r, n] = F [r]× ∂∆[n]

∐
∂F [r]×∂∆[n] ∂F [r]×∆[n] and Hom(∂∆[n], Yr) ∼=

Hom(F [r]×∂∆[n], Y ), it follows from direct inspection that the data of this commutative
diagram coincides with the data of the commutative diagram in Definition A.3.

Let us establish elementary properties of minimal Reedy fibrations.

A.5. Lemma. Minimal Reedy fibrations are stable under pullback. Moreover, minimal
Reedy fibrations are local in the sense of Lemma 2.19, meaning a Reedy fibration p : Y →
X is minimal if and only if for all morphisms h : F [r, n] → X the pullback h∗p : h∗Y →
F [r, n] is minimal.

Proof. Let us assume we have a pullback square

h∗Y Y

Z X

j

h∗p
⌜

p

h

,

where p is minimal. It follows immediately that h∗p is a Reedy fibration and so we only
need to establish the minimality property. Let f, g : F [r, n]→ h∗Y be two h∗p-equivalent
(r, n)-simplices in h∗Y . Then, jf, jg are p-equivalent (r, n)-simplices in Y and so equal
as p : Y → X is a minimal fibration. On the other hand, h∗p(f), h∗p(g) are equal by
assumption of being h∗(p)-equivalent. Hence, by the universal property of pullbacks f = g
and so h∗p : h∗Y → Z is minimal.

Now, let us assume p : Y → X is a Reedy fibration satisfying the locality assumption
stated in the lemma. Let f, g : F [r, n] → Y be two p-equivalent (r, n)-simplices in Y .
This means that by assumption there exists a morphism F [r, n] × ∆[1] → Y , such that
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its projection via p : Y → X factors through a morphism h : F [r, n] → X. This induces
the following commutative diagram

∂F [r, n]×∆[1] ∂F [r, n] ∂F [r, n]

F [r, n] F [r, n]×∆[1] h∗Y Y

F [r, n] F [r, n] X

⌜

{0}

{1}

f ′

g′
⌜

j

h∗p p

h

,

where the existence of the morphism ∂F [r, n]→ h∗Y follows from the universal property of
pullbacks and the fact that the inclusion ∂F [r, n] → X factors through h : F [r, n] → X.
Moreover, f ′, g′ : F [r, n] → h∗Y are defined via the universal property of pullbacks,
meaning we by definition have f = jf ′ and g = jg′. Now, by assumption h∗p is minimal
and so f ′ = g′, which implies that f = g and so, by Lemma A.4, p : Y → X is minimal
as well.

We now proceed to generalize the first major property of minimal fibrations, as proven
in [GJ09, Lemma 10.4].

A.6. Proposition. Let p : Y → X and q : Z → X be two minimal Reedy fibrations,
and f : Y → Z a level-wise equivalence over X. Then f is an isomorphism.

Proof.We proceed by Reedy induction. Let r have degree 0. Then Yr → Xr×MrXMrY ∼=
Xr and Zr → Xr×MrX MrZ ∼= Xr are minimal fibrations and so, by [GJ09, Lemma 10.4],
fr : Yr → Zr is an isomorphism. Moving on to the induction step, let us assume for all
objects r in R with degree less than n, the map fr is an isomorphism. Now, let r have
degree n, then we have the following commutative diagram

Yr Zr

MrY ×MrX Xr MrZ ×MrX Xr

fr

≃

∼=

.

The two vertical morphisms are minimal Kan fibrations by assumption. Moreover, by
definition of the matching object as a limit of lower degree objects and the induction
assumption, the bottom map is an isomorphism. Hence, again by [GJ09, Lemma 10.4],
fr is an isomorphism.

We now want to generalize the factorization into a trivial fibration followed by a min-
imal fibration, which necessitates proving the analogue of [GJ09, Lemma 10.2]. However,
this actually does not hold in all Reedy categories.
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A.7. Example. Let [1] = {0 → 1} be the Reedy category with deg(0) = 1, deg(1) = 0,
[1]− = [1], and [1]+ having only identity maps. Then for a given functor X : [1]op → Set,
L1X = X[0] and M1X = ∗, meaning the comparison map L1X → M1X is generally not
injective.

We hence restrict our attention to a class of better behaved Reedy categories, known
as elegant Reedy categories and introduced by Bergner–Rezk [BR13, Definition 3.5]. A
Reedy category R is elegant if the category R− has pushouts that are preserved by the
inclusion into R and also into Fun(Rop, Set) via the Yoneda embedding. This condition
has the following technical implication.

A.8. Lemma. Let R be an elegant Reedy category. Let r1 ←− r →− r2 be a cospan in R

with pushout r3. Then the following is a pushout diagram in Fun(Rop, Set)

∂F [r] F [r1]

F [r2] F [r3]

p1

p2 q1

q2

.

Proof. Let n = deg(r)− 1 (note we must have deg r > 0). By Remark A.1, the functor
skntrn preserves colimits. We hence have a pushout diagram

skntrnF [r] skntrnF [r1]

skntrnF [r2] skntrnF [r3]

skntrnp1

skntrnp2 skntrnq1

skntrnq2

.

It now follows from Remark A.1 that skntrnF [ri] = F [ri] for i = 1, 2, 3 and skntrnF [r] =
∂F [r], giving us the desired pushout.

While it might appear that the elegance condition restricts the applicability of the
results, it does hold in all relevant cases, as the following example demonstrates.

A.9. Example. Let n, k ≥ 0, then the category �
k × Θn is an elegant Reedy category

[Hir03, Proposition 15.1.6], [BR13, Corollary 4.5]. Here Θn denotes Joyal’s Θn-category,
relevant for the study of (∞, n)-categories [Rez10a]. More generally, elegant Reedy cat-
egories include all Eilenberg-Zilber Reedy categories [BR13, Proposition 4.1], and so it
generalizes the work in [Cis14].

We can now prove the analogues of [GJ09, Lemma 10.2] for elegant Reedy categories.

A.10. Lemma. Let R be an elegant Reedy category and X : Rop → Set a functor. Then
for all r in R, LrX →MrX is an injection. More explicitly, for two degenerate r-simplices
x, y, ∂x = ∂y implies x = y.
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Proof. Let us first unwind the statement. By [BR13, Proposition 3.7] an element x in
LrX corresponds to a degenerate element in Xr, which is represented by a morphism

x : F [r]→− F [r1]
x′
−→ X,. So, we need to prove that for two given morphisms x : F [r]→−

F [r1]
x′
−→ X, y : F [r]→− F [r2]

y′−→ X, ∂x = ∂y implies x = y.
By Lemma A.8, we have F [r1

∐
r r2]

∼= F [r1]
∐

∂F [r] F [r2] and so the equality ∂x =

∂y induces a map x′ + y′ : F [r1]
∐

∂F [r] F [r2] ∼= F [r1
∐

r r2] → X. Now, the bijection

F [r1]
∐

F [r] F [r2] ∼= F [r1
∐

r r2] gives us a map x′ + y′ : F [r1]
∐

F [r] F [r2] → X, which

by definition of pushouts implies that the two morphisms x : F [r] →− F [r1]
x′
−→ X and

y : F [r]→− F [r2]
y′−→ X are equal.

With this lemma at hand, we can now proceed to the main result (i.e. the analogue
to [GJ09, Proposition 10.3]): the construction of the desired unique factorization.

A.11. Theorem. Let R be an elegant Reedy category. Then every Reedy fibration p :

Y → X admits a factorization p : Y
≃
↠Min(Y )

min
↠ X into a trivial fibration followed by

a minimal Reedy fibration, which is unique up to isomorphism.

Proof. We first show p : Y → X restricts to a minimal Reedy fibrationMin(Y ) → X,
such that the inclusion admits a deformation retract, then show that the retract is a
trivial fibration and finally prove uniqueness.

Deformation Retract: First, we construct a retract diagram Min(Y )
j
↪→ Y

q→
Min(Y ) over X, along with a homotopy h : Y × ∆[1] → Y from idY to jq, such that
Min(p) = pj : Min(Y ) → X is a minimal Reedy fibration. We will proceed by Reedy
induction and construct Min(Y )(n) as an object in Fun((Rop × �

op)≤n, Set) inductively,
adjusting the argument in [GJ09, Proposition 10.3]. More concretely for every n ∈ N we
show the following:

1. There is a retract diagramMin(Y )(n)
j(n)

−−→ trnY
q(n)

−−→Min(Y )(n) over trnX, appropri-
ately extending the analogous retract diagram for n− 1.

2. There is a homotopy h(n) : ∆[1]× skntrnY → Y from the counit (cn)Y : skntrnY → Y
to (cn)Y ◦ sknj(n) ◦ sknq(n), appropriately extending the homotopy h(n−1), such that
h(n) restricted to Min(Y )(n) is constant, meaning it is equal to (cn)Y ◦ sknj(n) ◦ π1 :
Min(Y )(n) ×∆[1]→ Y .

3. Any two p ◦ (cn)Y ◦ sknj(n)-equivalent (r, k)-simplices (in the sense of Definition A.3)
in sknMin(Y )(n) are equal.

Assuming we have constructed this data for all n, our desired retract follows from taking
the following colimit in Fun(Rop, sSet)

Min(Y )
j
↪→ Y

q→Min(Y ) = colim
n→∞

(sknMin(Y )(n)
sknj(n)

−−−−→ skntrnY
sknq(n)

−−−−→ sknMin(Y )(n)),
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where we are using (Remark A.1). Similarly, we have the homotopy h = colim
n→∞

(h(n) :

∆[1] × skntrnY → Y ), which is a homotopy from colim
n→∞

(cn)Y = idY to colim
n→∞

(cn)Y ◦
sknj

(n) ◦ sknq(n) = jq. In addition to that,Min(p) :Min(Y ) → X is a Reedy fibration,
as it is a retract of the Reedy fibration p, and so it is a minimal Reedy fibration, by
Lemma A.4, as any two pj-equivalent simplices are equal, by the third condition above.

Let us now move on to constructingMin(Y )(n) with the desired properties via Reedy
induction. We start with the base case. By definition of Reedy categories, (Rop×�op)≤0 is a
discrete category. Moreover, by [Hir03, Proposition 15.1.6], deg(r, k) = deg(r)+deg(k) =
0 if and only if deg(r) = deg(k) = 0, which is equivalent to deg(r) = 0 and k = 0.

Hence (Rop × �
op)≤0

∼=
∐

r∈R≤0
(r, 0). Define Min(Y )

(0)
r0 as a choice of representative of

each p-equivalence class in Yr0. The inclusion comes with an evident map q(0) : tr0Yr0 →
Min(Y )

(0)
r0 sending each element to the representative of its equivalence class. Now, by

assumption every element in Yr0 is homotopic to an element inMin(Y )
(0)
r0 and so we can

readily define a map h(0) : ∆[1]×sk0tr0Y → Y , where we pick identity paths if the element

in sk0tr0Yr0 lies inMin(Y )
(0)
r0 . Finally, if deg(r, k) = 0, then any two p ◦ (c0)Y ◦ sk0j(0)-

equivalent (r, k)-simplices in sk0Min(Y )
(0)
rk are equal by construction, and for all other

objects (r, k) in R× �, all (r, k)-simplices in sk0Min(Y )(0) are degenerate and hence any

two p ◦ (c0)Y ◦ sk0j(0)-equivalent (r, k)-simplices in sk0Min(Y )
(0)
rk are equal by Lemma

A.10.
Now, assuming we have definedMin(Y )(n) with the desired properties, we now move

on to define Min(Y )(n+1), proving the induction step. First, for every object (r, k) in

R×� with deg(r, k) < n+1 we defineMin(Y )
(n+1)
rk =Min(Y )

(n)
rk . Next, for every object

(r, k) in R× � with deg(r, k) = n+ 1 we defineMin(Y )
(n+1)
rk = Drk ∪ (Rrk ∩Mrk) ⊆ Yrk,

where Drk, Rrk and Mrk are characterized as follows:

• Drk is defined as the set of all degenerate elements in Yrk that lie in the image of
the inclusion

LrksknMin(Y )(n) LrkY Yrk
Lrk((cn)Y ◦sknj(n))

.

• Rrk is a set of one representative from each p-equivalence class in Yrk not equivalent
to any degenerate element.

• Mrk consists of all elements in Yrk whose image under the projection Yrk → MrkY
lands inside the image of the inclusion

MrksknMin(Y )(n) MrkY
Mrk((cn)Y ◦sknj(n))

.

The first and last condition guarantee that we have a factorization LrkMin(Y )(n+1) →
Min(Y )

(n+1)
rk →MrkMin(Y )(n+1), which, by [Hir03, Theorem 15.2.1], is the necessary and
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sufficient condition for trn+1Y to restrict to a sub-functorMin(Y )(n+1) : ((R×�)≤n+1)
op →

Set and we denote this natural inclusion by j(n+1) :Min(Y )(n+1) → trn+1Y .
We now proceed to define the retract of j(n+1), denoted q(n+1) : trn+1Y →Min(Y )(n+1).

If x is an (r, k)-simplex with deg(r, k) < n + 1, we define q(n+1)(x) = q(n)(x), hence let
us assume (r, k) in R × � with deg(r, k) = n + 1 and x ∈ trn+1Yrk. If x is p-equivalent
to a degenerate element, then the value of q(n+1)(x) needs to be degenerate and is hence
already determined by q(n). So it suffices to consider the case where x is not p-equivalent
to a non-degenerate (r, k)-simplex. In order to able to define q(n+1)(x), we first define the
two morphisms hx, gx : F [r, k]×∆[1]→ Y .

If x lies in the image of (j(n+1))rk, then we define hx, gx : F [r, k] × ∆[1] → Y as the
constant map gx = hx = x ◦ π1. If not, then we define hx : F [r, k]×∆[1]→ Y as a lift to
the following commutative diagram

∂F [r, k]×∆[1]
∐

∂F [r,k]

F [r, k]× {0} Y

F [r, k]×∆[1] X

h(n)◦∂x+x

≃
p

px◦π1

hx .

By induction assumption h(n) is a homotopy from (cn)Y to (cn)Y ◦ skn(j(n)) ◦ skn(q(n)),
which means that h(n) restricted to ∂F [r, k]× {1} takes value in the image of skn(j

(n)) :
sknMin(Y )(n) ↪→ Y . Hence, as hx is defined as a lift of h(n), hx restricted to ∂F [r, k]×{1}
also takes value in sknMin(Y )(n) ↪→ Y . However, Min(Y )

(n+1)
rk consists by definition of

a unique representative from each p-equivalence class in Yrk whose boundary lands in
sknMin(Y )(n). Hence, there exists a unique element inMin(Y )

(n+1)
rk that is p-equivalent

to hx(F [r, k] × {1}) : F [r, k] → Y , which we denote by q(n+1)(x), and there exists a
morphism gx : F [r, k] × ∆[1] → Y witnessing the p-equivalence, meaning making the
following diagram commute:

∂F [r, k]×∆[1] ∂F [r, k]

F [r, k] F [r, k]×∆[1] Y

F [r, k] X

∂hx(F [r,k]×{1})
{0}

{1}

hx(F [r,k]×{1})

q(n+1)(x)

gx

p

.

Our choice of element q(n+1)(x) induces a morphism q(n+1) : trn+1Y →Min(Y )(n+1), that
in fact gives us a retract diagram, as for every element in the image of j(n+1), we defined
hx, gx to be constant.

Next, we construct the desired homotopy h(n+1) : ∆[1] × skn+1trn+1Y → Y from the
counit (cn+1)Y : skn+1trn+1Y → Y to (cn+1)Y ◦ skn+1j

(n+1) ◦ skn+1q
(n+1), appropriately

extending the homotopy h(n), such that h(n+1) restricted to Min(Y )(n+1) is constant,
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meaning it is equal to (cn+1)Y ◦ skn+1j
(n+1) ◦ π1 :Min(Y )(n+1) ×∆[1]→ Y . We consider

three separate cases.
For a given object (r, k) in R× � and (r, k)-simplex x, if deg(r, k) < n+ 1, we define

h
(n+1)
x = h

(n)
x : F [r, k]×∆[1]→ Y . Next, if deg(r, k) = n+ 1 and the (r, k)-simplex x lies

in the image of sk(n+1)j
(n+1)
rk , then we define h

(n+1)
x : F [r, k] ×∆[1] → Y as the constant

path, i.e. the composition x ◦ π1 : F [r, k] × ∆[1] → F [r, k] → Y . Finally, let us assume
deg(r, k) = n+ 1 and x is an (r, k)-simplex in skn+1trn+1Y that does not lie in the image

of sk(n+1)j
(n+1)
rk . Then we construct h

(n+1)
x : F [r, k]×∆[1]→ Y in two steps.

Let θx be given as a lift to the following commutative diagram

∂F [r, k]×∆[2]
∐

∂F [r,k]×Λ[2]1

F [r, k]× Λ[2]1 Y

F [r, k]×∆[2] X

(s1hx+(hx+gx))

≃
p

px◦π1

θx .

Then, we define h
(n+1)
x : F [r, k]×∆[1]→ Y as θx ◦ (idF [r,k]×d1), completing our definition

of the morphism h(n+1) : ∆[1] × skn+1trn+1Y → Y . We hence only need to confirm it
satisfies the desired conditions.

By construction h(n+1) is compatible with h(n). Moreover, if x is in the image of
sk(n+1)j(n+1), then by construction the homotopy is constant, meaning h(n+1) is constant
when restricted to the image of sk(n+1)j(n+1). Also, by definition h

(n+1)
x restricted to ∂x is

given by hx, which by construction is equal to h
(n)
∂x . Finally, we have in fact constructed

a homotopy from x to (cn+1)Y ◦ skn+1(j
(n+1)) ◦ skn+1(q

(n+1))(x). Indeed, this is evident
for all simplices in the image of sk(n+1)j(n+1) as it is the constant homotopy. For all
other cases, for (r, k)-simplices with deg(r, k) < n + 1 this follows from the induction
assumption and for (r, k)-simplices x with deg(r, k) = n + 1, we have a homotopy from
hx(F [r, k]× {0}) = x to gx(F [r, k]× {1}) = q(n+1)(x).

Finally, if deg(r, k) ≤ n + 1, then any two p ◦ (cn+1)Y ◦ skn+1j
(n+1)-equivalent (r, k)-

simplices in skn+1Min(Y )
(n+1)
rk are equal by construction, and for all other objects (r, k)

in R × �, all (r, k)-simplices in skn+1Min(Y )(n+1) are degenerate and hence any two p ◦
(cn+1)Y ◦skn+1j

(n+1)-equivalent (r, k)-simplices in skn+1Min(Y )
(n+1)
rk are equal by Lemma

A.10.
Trivial Fibration: Next, we show that the map q : Y →Min(Y ) is a trivial Reedy

fibration. We will follow the argument in the original proof of Quillen [Qui68]. We need
to prove that the following commutative diagram admits a lift

∂F [r, n] Y

F [r, n] Min(Y )

a

i q

b

.
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First, we observe that the deformation retract h : Y × ∆[1] → Y restricts along a :
∂F [r, n] → Y to a map ha : ∂F [r, n] × ∆[1] → Y , which is a homotopy from a to
jqa = jbi. Now, we have the following commutative diagram

∂F [r, n] ∂F [r, n]×∆[1]
∐

∂F [r,n]

F [r, n] Y Min(Y )

F [r, n] F [r, n]×∆[1] X

i

id×{0}

a

≃i×id +
i×{1}

id×{1}

ha+jb q

p

Min(p)

id×{0}
Min(p)bπ1

ℓ

The map i × id +i×{1} id × {1} is a Reedy equivalence and so there exists a map ℓ :
F [r, n] × ∆[1] → Y , such that ℓk = ha + jb and pℓ = Min(p)bπ1. By construction
ℓ(id× {0})i = a and so we only need to prove that qℓ(id× {0}) = b.

The map qℓ : F [r, n] × ∆[1] → Min(Y ) is a homotopy from qℓ(id × {0}) to qjb = b
relative to their boundary that is trivial in X, meaning it gives us aMin(p)-equivalence
in the sense of Definition A.3. By minimality of Min(p) and Proposition A.6 we get
qℓ(id× {0}) = b and hence q is a trivial fibration.

Uniqueness: Finally, we show the factorization is unique. Let us assume we have a

second factorization Y
q′−→M

p′−→ X. The map q′j is a composition of equivalences and we
have

p′q′j = pj =Min(p)qj =Min(p),

which implies that q′j : Min(Y ) → M is an equivalence between two minimal Reedy
fibrations over X. Hence, by Proposition A.6, q′j is an isomorphism and we are done.
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