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TOWARDS A NEW COHOMOLOGY THEORY FOR STRICT LIE
2-GROUPS

CAMILO ANGULO

ABSTRACT. In this article, we introduce the first degrees of a cochain complex asso-
ciated to a strict Lie 2-group whose cohomology is shown to extend the classical coho-
mology theory of Lie groups. In particular, we show that the second cohomology group
classifies an appropriate type of extensions. We conclude putting forward evidence that
this complex can be extended to arbitrary degrees.

1. Introduction

In [10] it is explained that the nerve of a strict Lie 2-group — regarded as a groupoid —, is
a simplicial group and thus carries a bisimplicial structure. One can prove that the second
cohomology group of the naturally associated double complex thereof classifies extensions
by the unit Lie groupoid R —= R (see Subsection 2.7 below). The novel complex we
present is an extension of this double complex though taking values on a 2-vector space.

This paper sprung from attempting to find a proof of the integrability of strict Lie 2-
algebras to strict Lie 2-groups that still works in infinite dimensions (the finite-dimensional
case was established in [18] using Lie algebra paths). Historically, such a proof for the
integrability of Lie algebras was devised by van Est [20, 8] and was itself used to construct
the first example of a non-integrable Lie algebra [21].

Van Est’s proof is cohomological and can be roughly summarized as follows: Given a
Lie algebra g, one uses its adjoint representation to recast it as an extension of the Lie
subalgebra ad(g) < gl(g) by the center 3(g). There exists a Lie algebra cohomology class
(w] € H?(ad(g),3(g)) that classifies this extension. Since linear Lie algebras are integrable
and one can always pick a 2-connected integration, the van Est Theorem says there is a
unique group cohomology class whose associated extension is a Lie group integrating g.
Implicitly then, the preliminary step to carry out van Est’s strategy is to have cohomology
theories that respectively classify abelian extensions of Lie groups and Lie algebras — or
rather of the global and infinitesimal counterparts —, and more importantly, a van Est
map relating them.
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As opposed to other complexes whose second cohomology classifies extensions (see,
e.g., [5, 16] for the Lie 2-group case — regarding them respectively as crossed modules and
Lie 2-groupoids —, and [17] for the Lie 2-algebra case — regarding them as 2-term L .-
algebras —), the complex in [10] allows for a simple Ansatz for a van Est map candidate.
Indeed, the nerve of the underlying groupoid of the strict Lie 2-algebra of a Lie 2-groupoid
is a simplicial Lie algebra whose dual co-simplicial dg-algebra can be turned into a double
complex. Consequently, there is a natural map from the double complex of the strict Lie
2-group, whose columns are Lie group cochain complexes, to the double complex of its
strict Lie 2-algebra, whose columns are Chevalley-Eilenberg complexes; namely, the one
assembled columnwise by usual van Est maps.

This idea is successfully carried out in [2] to get the sought-after cohomological proof
for the integrability of strict Lie 2-algebras. In the course of doing so, the above sketched
double complex associated to a strict Lie 2-algebra needed to get enlarged to force its
second cohomology to classify extensions by more general 2-vector spaces [1]. The result
is a triple complex of sorts in which two of the differentials commute only up to homotopy.
In the present article, we use this idea as a template to give part of a complex that serves
as the global counterpart to the one in [1].

To explain in more detail, let G be a strict Lie 2-group together with a 2-representation

on a 2-vector space W e V. Assume G is presented as a groupoid and let G, be its
nerve. Additionally, let G < G be the kernel of the source map. Set

CriG,¢) =C(Gl x G", W) (1)
for r # 0, and
C(G,9) == C(G, V), (2)

where C(-, A) is the vector space of A-valued smooth functions that vanish when evaluated
at a tuple which has the identity element in one of its coordinates. One can enhance this
three dimensional lattice of vector spaces to a grid of complexes by recognizing certain
spaces of valued Lie groupoid cochains: those of a Lie group bundle along the r-direction,
those of an action groupoid along the ¢ direction, and those of the product of powers of G
and powers of the unit groupoid G —= G along the p-direction (see Section 3 for details
on the groupoids and the representations).

Thus knit, this grid is not a triple complex because, for constant r, the differentials
in the r-page do not commute. However, the differentials in the page » = 0 do commute
up to isomorphism in V', and those in the successive r-pages do so up to homotopy (see
Proposition 4.11). In so, the non-vanishing terms coming from the r-pages in the square
of the the sum of the differentials can be canceled off by adding the homotopies A to the
total differential. The homotopies, in order, do not commute with the differentials of the
r-pages, but do so themselves respectively (at least in the lowest degrees), up to higher
homotopies Ay andA; o. We ultimately prove:
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1.1. THEOREM. Let G be a Lie 2-group together with a representation on the 2-vector
space w2y, If

Cin(G.0) = D CP(G,9) (3)
ptrgtr=n
and
V= (<17 (00 + 0+ At A+ (1) (0 + Ag1)) (4)

where 61y, 0 and O are, respectively, the differentials of the complezes in the r, q and p
directions, then ¥ squares to zero and there is a complex (Crp (G, ¢), V).

The result in Theorem 1.1 can be improved to get a 6-term complex. We stop at
degree 3 because it is enough to prove the main property we are after: that the second
cohomology group classifies abelian extensions (see Theorem 3.21). We insist that the
main advantage of the complex of Theorem 1.1 is that it is built out of complexes of Lie
groupoids, thereby allowing one to directly get a van Est map candidate by assembling
groupoid van Est maps [8] so as to land in the complex of [1] (see [2]). The drawback,
however, is that it is not clear why the so-called higher homotopies exist in general, or
from where their formula is derived (though we try and relate it back to some underlying
structure, see Remarks 3.3 and 3.12). In each degree, we provide formulas and prove them
to work, but since there is little indication as to why they work, our proofs end up being
long and unenlightening computations.

This paper is organized as follows. In Section 2, we recall some basic facts and convene
notation. We motivate the emergence of the complex and its differential by recalling the
canonical double complex associated to a Lie 2-group whose second cohomology classifies
extensions of a particular type. Then, we recall the definitions of the general linear
Lie 2-group and of a representations, we provide examples and recall some associated
constructions. We conclude the section by proving that the kind of actions induced
by extensions are indeed among this type of representations (see Proposition 2.23). In
Section 3, we carefully define the three dimensional grid and find out the homotopies
together with which we get the (4 x4 x4)-tetrahedral complex of Lie 2-group cochains with
values in a representation, and move on to study its cohomology. We show, in particular,
that the equations that define a 2-cocycle are equivalent to the equations defining an
abstract extension. In Section 4, we prove the general relations that the differentials in
the background grid verify and heal the non-commuting part by introducing the general
formula for the difference maps. We conclude by discussing what is needed to fully extend
the grid to a complex. We include an appendix with the general formula for the higher
difference maps needed to extend the complex of Theorem 1.1 to degree 5 by taking a
(6 x 6 x 6)-tetrahedral slice of the grid of Section 4.

2. Preliminaries

In this section, we establish the notation conventions used throughout. As a motivation,
we recall the complex of [10] and study its cohomology. We also recall the notions of



596 CAMILO ANGULO
general linear Lie 2-group and strict representation.

2.1. REMARK. From here on out, we make no distinction between a strict Lie 2-group and
its associated crossed module. For future reference, we outline the equivalence between
the category of Lie 2-groups and crossed modules of Lie groups at the level of objects (see

6] for details).

2.2. DEFINITION. A strict Lie 2-group s a groupoid object internal to the category of Lie
groups.

We write a generic strict Lie 2-group as

G xyG—"> & #H—%g,

and henceforth refer to it simply as a Lie 2-groups. In order to make clear the difference
between the group operation and the groupoid operation in G, we assume the following
convention:

g1 X g2 g3 > gy,

stand respectively for the group multiplication and the groupoid multiplication whenever
(g1,92) € G* and (g3, 94) € G X G. This notation intends to reflect that we think of the
group multiplication as being “vertical”, whereas the groupoid multiplication as being
“horizontal”.

2.3. DEFINITION. [22] A crossed module of Lie groups is a Lie group homomorphism

G—=H together with a right action of H on G by Lie group automorphisms satisfying

i(g") = k7 ti(g)h,

i(g2)
1

g = 95" 912,

for all g,g91,92 € G and h € H, where we write g" for h acting on g. Following the
convention in the literature, we refer to these equations respectively as equivariance and
Peiffer.

Given a crossed module as in Definition 2.3, the space of arrows of its associated Lie
2-group G is defined to be the semi-direct product Gx H with respect to the H-action,
whose product is explicitly given by

()= ()= (4, 5

for (g1,h1), (g2, ha) € Gx H. Its structural maps are given by

(@)= Q) ()=Ciw) =)
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(o) = (0) = (%) 0
for h e H and ¢,¢' € G.

Conversely, given a Lie 2-group G—=H, let G to be the Lie subgroup kers < G. The
associated crossed module is given by t|yers : G— H together with the right action given
by conjugation by units in the group G

g" :=u(h) " X gXu(h),

for h € H and g € G. We stress that the —1 power stands for the inverse of the group
multiplication X.

Notice that the isomorphism of vector spaces G = Gx H is canonical because the unit
map provides a natural splitting.

2.4. LIE GROUPOID COHOMOLOGY. Let G—=M be a Lie groupoid. There is a simplicial
structure on the nerve of G whose maps are given by

(91, Gp) ifk=0
8k(907"'7gp) = (907-"7gk—lgk7"'7gp> lfo <k Sp (7)
(907”'7.9}2—1) 1fk:p+]-7

for a given element (go,...,g,) € G®+Y_ With these, one builds the complex of Lie

groupoid cochains CP(G) := C*®(G®) whose differential 0 : C*(G) C*t(G) is
defined by the formula
p+1
dp =Y (1), (8)
k=0

for ¢ € CP(G). Note that in the case when M is a point, Eq. (8) is the usual differential
of group cohomology.

Thus defined, (C*(G), 0) is referred to as the groupoid complex of G, and its cohomol-
ogy is called differentiable cohomology of G [8].

2.5. REMARK. Under the isomorphism of Remark 2.1, the space of p-composable arrows

Gp=Gxp...xgG={(1,..., ) € G :s(y) =tly+), 1<j<p}

corresponds to GP x H; again, hereafter, we consider this isomorphism to be fixed and
treat it as an equality, when necessary. For each coordinate 7; of v € G,, there is a
corresponding (g;, hj) € Gx H. The defining relation for G, then reads h; = hj113(g;+1)
(see Eq. (6)), thus making the map v+ (gi,...,gp; hp) an isomorphism with inverse
(915 -+, Gps B) (g1, hi(gp---92); -5 Gp—1, i(gp); Gp, h). Under this isomorphism, we rewrite
the face maps to be

(915, gp3 ) ifk=0
Ok(Gos - gp3 B) = § (90, - Gk—2, Gk Gk—1, Jht15 -, gp3 ) O <k <p 9)
(90 - Gp—1; hi(gp)) if k=p+1.
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2.5.1. REPRESENTATIONS AND COHOMOLOGY WITH VALUES. A left representation of
G —= M is a vector bundle F over M, together with a left action

AZGSXME

E:(g,e)——=Age
along the projection of the vector bundle. Let ¢, : G?) —= M : (gy, ...g,) —=t(g1) be the

map that returns the final target of a p-tuple of composable arrows.

2.6. REMARK. Under the isomorphism of Remark 2.5, in the case where the groupoid is
a strict Lie 2-group, the final target map gets rewritten as

ty: GP x H——H (g1, ...,9p; h) %hi(Hﬁ;é gp_j) = hi(gp...q1)-

Observe that the final target map is a composition of face maps and hence a group
homomorphism.

The complex of Lie groupoid cochains with values in the left representation on F is
defined by sections of the pull-back of £ along the final target map
CP(G; E) =T (t,F)

together with the differential 0 : C*(G; E) — C*T(G; E) whose formula is essentially
(8), though modifying the first term so that all terms lie on the same fibre and the sum
can be performed. More specifically, for ¢ € C?(G; E) and (go, ..., gp) € GPTV,

p+1

(00) (90, - 9p) = Dgo05p(gos - 9p) + > _(—=1)* 0 o(g0, - 9p). (10)

k=1

Similarly, a right representation of G—= M is a vector bundle FE over M, together with
a right action

A:EMXtG

along the projection of the vector bundle for which we use the same notation. Replacing
each instance of the target map by the source map in the preceding discussion, one defines
the complex of Lie groupoid cochains with values in the right representation on F, whose
differential is

E:(e,g)—=Age

p

(09) (9o, - 9p) = > _(=1F0p(go, s 90) + (=P A, 051 0(g0, - gp). (1)
k=0

Both left and right representations can be pulled-back along homomorphisms. If E is
a left (resp. right) representation of G —= M and

H—* -G

N M
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is a Lie groupoid homomorphism, then there is a left (resp. right) action of H —= N on
the pull-back bundle f*E = N x,; E, where h € H acts on e € Egs)) (resp. Epuny)) by
Agmye:

2.7. THE CANONICAL SIMPLICIAL OBJECT. - In this subsection, we recall that, as it is
explained in [10], given a Lie 2-group G —= H, its nerve G, is a simplicial group. For
each p, G, is a Lie subgroup of G” and one can thus consider its nerve. Considering
simultaneously the nerve of all G,’s yields a bisimplicial set G;. In particular, the face
maps of the two simplicial structures always commute with one another; hence, dualizing,
one gets the double complex:

C(H?) —2~C(G%) —2~C(G3) —= - --
§ é 4
C(H?) _'9>(](g2) _‘9>c(g2) ...

0 0 0

C(H) —2+C(G) —2~C(Gy) —= - -

whose columns are complexes of Lie group cochains, and whose gth row is the groupoid
complex of G2 —= HY. The total complex of this double complex is

ar,(6) = 5 cgy,

pta=k

along with d = (—=1)?(0 + 9).

In Section 4.2 we use a generalization of this construction to double Lie groupoids [9].
Recall that a double Lie groupoid is a groupoid object internal to the category of Lie
groupoids. More explicitly, a double Lie groupoid consists of a square

D |4

H M

where each side is a Lie groupoid and the structural maps are smooth functors. The
elements in D can be thought of as being squares whose vertical edges are arrows in V/,
whose horizontal edges are arrows in H and all of whose vertices are points in M. In
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order to recognize the structural maps then, we adopt the following mnemonic device.
We write 3, t, etc. for the structural maps of the top groupoid; |s|, |t], etc. for the left
vertical groupoid; sy, ty, etc. for the right vertical groupoid; and concludingly, the usual
s, t, etc. for the bottom groupoid. Thus, a given element d € D, thought of as a square,

has the following edges
[ J [ J
t(d)| |s(d)
[ ]

<~ 0
Additionally, as we did for Lie 2-groups, we use the shorthand

II()

-~

|s(d)

dlxdg = |m|(d1,d2) d3 D<]d4 = @(dg,d4),

whenever (di,ds) € D Xy D and (ds,dy) € D Xy D to reflect the fact that d; X ds and
dsz <1 dy represent respectively

[t1(d1)

|t1(d3) [t](da)
)

5

o (i —e (ds) 5(ds)=1(da) 5(da)
1) £(d2) s T
@Q<—-—"790
Is|(d2)

With this notation, the fact that the multiplication in either groupoid is a groupoid
homomorphism yields the formula

(dy > dg) X (dg < dy) = (dy Xd3) < (dy X dy),

whenever it makes sense. We call this formula the interchange law.
It is also customary to add the axiom that the double source map

S :=(|s|,5): D—H; x5, V

is a submersion, though it is immaterial for our purposes.

If D is a double Lie groupoid, there are two simplicial structures for D given by its
vertical and its horizontal groupoid structures. The commutativity of the structural maps
of the square diagram representing a double Lie groupoid is but a shadow of the general
interaction between these two simplicial structures. In what follows, let d= (dy,...,d,) €
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d11 d12 dlp

dgl d22 dgp

M,x,(D) be represented by the matrix , where each d,,, € D. In

dy dgp ... d
order to distinguish the vertical and the hogilzontlgl simplicinI structures, we do as before
and write Jj, for the face maps associated to the horizontal groupoid and ¢; for the face
maps associated to the vertical groupoid.
The complexes of groupoid complex of the horizontal and vertical groupoids fit into a
double complex. Although this is an expected relation, we could not find a reference in
the literature.

2.8. PROPOSITION. Given a double Lie groupoid D with our conventions,

CV®)—2 - (D xy D)—2—~C(D2) ——---

C(M) 9 C(H) ¢ - C(H®)—s...

1s a double complex, where
Dy :={d € Myxp(D) : 5(dmn) = Udmns1),  |5|(don) = [t](dmr10);
Hdmn) = 3(dmn-1),  [t[(dmn) = [5|(dm-1n)}-

In the sequel, we refer to this object as the double complex associated to D, and the
cohomology of its total complex (Cy,(D),d),

Chu(D)= € C(Dg)  d=(-1)"(0+3),

pt+q=k
as the double groupoid cohomology of D.

2.8.1. COHOMOLOGY WITH TRIVIAL COEFFICIENTS. We interpret H2,(G) for a Lie 2-
group G as classifying certain type of extensions. Though this observation is barely
remarkable, it does not follow from either [10, 5] because, in the extension, the space of
objects is modified.

A 2-cocycle consists of a pair of functions (F, f) € C(H?) @ C(G) such that:
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1. 0F = 0, i.e., F(hl,hg) + F(ho,hlhg) = F(hohl,hg) + F(ho,hl) for all triples
ho,hl,hz € H .

2. 0f =0, 1e., f(71 %) = f(11)+ f(r2) for all (71,72) € Go. Using the isomorphism
of Remark 2.1, this is equivalent to f(geg1,h) = f(g2, h)+ f(g1, hi(go)) for all h € H
and g1, 90 € G.

3. OF — 5f =0, ie, F(8(70)73(71)) - F<t(’70)7t<71)) = f('Vl) - f(VOX'Yl) + f(’VO) for
all pairs 79,71 € G. Again, under the isomorphism of Remark 2.1, this equation can
be rewritten as

Pl ) = (o) boita) = (1) =7 (40 )47 (). a2

where (g1, h1), (g2, ho) € Gx H.

We point out that making hy = h; = 1 in Eq. (12) yields

() =1 (%) s (%) + Pt o) (13)

Also, putting go = 1, df = 0 implies that f(1,h) =0 for all h € H.
Since 6F = 0, F' induces a (central) extension of H,

IxTI

1 R HxFR-ZsH 1,

where H x 'R is the twisted semi-direct product, whose multiplication is given by the
formula

(ho, o) ©F (h1, A1) := (hohi, Ao + A1 + F(ho, h1)),
where (h(), )\0), (hl, )\1) € HxR.
2.9. LEMMA. Ifd(F, f) =0, then

Yy G H xR : g——(i(9), f(g,1))

(hA) . h

defines a crossed module for the action g =g".

PROOF. 95 is a Lie group homomorphism:

V1(90) O Yr(g1) = (i(90), (90, 1)) O (i(g1), f(g1,1))
(i(90)i(g1), f(g0, 1) + f(g1, 1) + F(i(g0),i(g1)))
= (i(QOQI)v f(gogb 1)) = %‘(9091),
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where the third equality follows from Eq. (13). Due to the independence of the variable
in R, thus defined, the action is still a right action by automorphisms and verifies the
Peiffer identity. As for the equivariance of ¢, on the one hand we have got

bp(g"N) = (i(g"), F(4", 1)),
while on the other,
(h, )" ©r Uys(g) ©F (R, A)

= (L =A=F(h™h) Or (i(9), f(9,1)) OF (h,A)

= (h7li(g),—A = F(h™' k) + f(g,1) + F(h™",i(9))) OF (7, A)

= (h7Yi(9)h, —F(h™",h) + f(g,1) + F(h™",i(g)) + F(h™"i(g), h))

The first entries coincide because i is the structural morphism of a crossed module.
Evaluating ((1,271),(g,1)) and ((g,h™1),(1,h)) in Eq. (12), one gets respectively
flg, )+ F(h7i(g)) = flg.h™"),
and
flg.h™h) — F(h™, h) + F(h™"i(g), h) = f(g",1);

which combined, imply the result.
]

As a consequence Lemma 2.9, there is a short exact sequence of Lie 2-groups that we
write using their associated crossed modules

Idg

1 1 G G 1
Yy i
1 R H xFR H 1

pri

2.10. LEMMA. Let (F, f), (F', f") € Q2.,(G) be a pair of cohomologous 2-cocycles. Then
the induced extensions of Lemma 2.9 are isomorphic.

PROOF. Let ¢ € Q},(G) = C(H) be such that (F, f) — (F',f) = d¢ = (§¢,09¢). In
particular, F' and F” are cohomologous cocycles; thus, the object extensions are isomorphic
via

a: H xR H xR :(h,\) —— (h, A\ + ¢(h)).

We claim that o, together with the identity of G induce the claimed isomorphism between
the extensions. Indeed, using the notation of Lemma 2.9,

a(Pr(g)) = alilg), f(g,1)) = (i(9), f(g,1) + o(i(g)))
= (i(9), (9. 1)) = ¥y (9).
Also, trivially, Idg(g"V) = Idg(g)*"™", thus finishing the proof.




604 CAMILO ANGULO

2.11. REMARK. Lemmas 2.9 and 2.10 should be taken as motivation to look for a complex
whose cohomology classifies extensions starting from the bisimplicial structure naturally
associated with a Lie 2-group. They should be interpreted as the “trivial coefficients” case,
thus prompting us to define a representation of a Lie 2-group in hopes to classify extensions
by more general 2-vector spaces, i.e., on flat abelian Lie 2-groups or, equivalently, on
2-term complexes of vector spaces.

2.12. REPRESENTATIONS OF LIE 2-GROUPS. The General Linear Lie 2-group [19] is the
Lie 2-group which plays the role of space of automorphisms of a 2-vector space. This 2-
group can be traced back at least to Norrie’s thesis [15], where it is called the actor crossed
module of the 2-vector space regarded as an (abelian) 2-group. The domain of the crossed
module of the actor is the space of regular derivations — referred to as the Whitehead group
—, and the codomain is the space of automorphisms of the 2-group. The associated 2-group
via Remark 2.1 can be identified with the category of linear invertible functors and natural
homomorphic transformations, which together with the horizontal composition of natural

transformations yields a 2-group. We recall its structure for reference: Let W vy
be a 2-vector space. Then, the space of objects of its General Linear Lie 2-group is the
subgroup of invertible self functors

GL(¢)o={(F,f) e GLIW) x GL(V) : po F = f o ¢}.

The Whitehead group of W2V is given by
GL(¢p)1 ={A € Hom(V,W): (I +Ap,I + ¢pA) € GL(W) x GL(V)},
endowed with the operation
Ay © Ay = Ay + Ay + A9 A, (14)
for which the identity element is the 0 map, and inverses are given by either
Al = —A(I + ¢A)™ = —(I + Ap) ' A.

We write T instead of —1 to avoid any possible overlap of notation with the actual inverse
of a matrix. The crossed module map

GL(¢) —==GL(0)o.
is given by
AA = (14 A¢p, I+ ¢A)
for A € GL(¢);. This is well defined since by definition it takes values in GL(W)xGL(V'),

and
(I + Ag) = ¢+ ¢Ap = (I + pA)o.
Concluding, the right action of GL(¢)y on GL(¢); is given by

AN — pLAf. (15)



TOWARDS A NEW COHOMOLOGY THEORY FOR STRICT LIE 2-GROUPS 605

2.13. PROPOSITION. [15, 19] Along with the group structure (14) and the action (15),

GL(¢)1 —>—~ GL(¢)o

1 a crossed module of Lie groups.
In the sequel, we write GL(¢) for the crossed module of Proposition 2.13 and its

associated Lie 2-group as well.

2.14. DEFINITION. A strict representation of a Lie 2-group G on W2V isa morphism
of Lie 2-groups

p:G GL(¢). (16)

We remark that, by a morphism of Lie 2-groups, we mean a naive smooth functor
respecting the Lie group structures, as opposed to more general types of morphisms (such
as bibundles of Lie groupoids). We refer shortly to a map (16) as a 2-representation.

A 2-representation taking values in either A—=1 or 1—= A coincides with the modules
of [10, 5] whenever the abelian group A is simply connected. Definition 2.14 is also an
instance of the actions of [15] in the particular case when the 2-group that is being acted on

is abelian and simply connected. By definition, if G——H is the crossed module associated
with G via Remark 2.1, the 2-representation (16) consists of a Lie group homomorphism

po: H

GL(¢)o < GL(W) x GL(V),

at the level of objects, which amounts to two Lie group representations p} : H—=GL(W),
pY: H—= GL(V) fitting in

W—W
@ é
V V,
(P)n
for all h € H, i.e.,
po(h) o &= o py(h). (17)

At the level of arrows,

p: G GL(¢)1 < Hom(V, W),

is a Lie group homomorphism if and only if

p1(9091) = p1(g0) + p1(g1) + p1(g0) © ¢ 0 p1(g1) (18)
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for all go, g1 € G. The compatibility between the rest of the crossed module structures is
encoded in the following relations:

po(i(g)) =T+ dopi(g),  pi(i(g) =1+ pi(g)od (19)

for all g € G, and

p1(g") = po(B) " pr(g)po(R) (20)
forall he H, g € G.

2.15. ExAMPLE. Trivial representations. If (p1, pg) = (0, ), the defining equations for a
2-representation are trivially satisfied.

2.16. ExamPLE. Usual Lie group representations. Letting W = (0), a 2-representation
is ultimately equivalent to a representation of H/i(G) on V. More precisely, the 2-
representation is defined by a single representation of H on V' that vanishes along i(G).
In particular, a Lie group representation defines a 2-representation of a unit Lie 2-group
on a unit 2-vector space.

Analogously, if V' = (0), a 2-representation is ultimately equivalent to a representation
of the orbit space on W.

2.17. REMARK. The class of examples in Example 2.16 are referred to in the literature
(e.g., [12]) as G-modules, though generalized to allow other abelian groups besides vector
spaces.

2.18. EXAMPLE. The adjoint representation: Let g—“>h be the Lie 2-algebra of the Lie
2-group G —-= H, then we have

G GL(u)

H ——= G L(p)o

where (Ady), = ((=)" ", Adj,—1), and (Ad,), = d.(,A) with
N H—G: hi—sg(g~ )"

2.19. REMARK. Example 2.18 appears in [19] and is also the derivative of the canonical
action of [15] which is a generalized conjugation.

Already in [15], it is explained that given a 2-representation p of G on V, one can build
a semi-direct product 2-group G, x V. With the notation conventions of this section, the
crossed module of the semi-direct product is

X

Gp(l)oi X W Hpg XV, (21)



TOWARDS A NEW COHOMOLOGY THEORY FOR STRICT LIE 2-GROUPS 607

together with the right action given by

(g, w)"™) = (g", py(h) " (w + p1(g)v))

for (h,w) € H x V and (g,w) € G x W.
The Lie group of arrows of G, XV,

(G,

pyoi

xW)x (H, xV),

is isomorphic to a semi-direct product of the Lie group G and W &V with respect to the
honest representation that is the content of the following proposition.

2.20. PROPOSITION. Given a 2-representation p : G —= GL(¢), there is a Lie group
representation

p:Gx H

GLWaV): (g,h)— (pé(hé(g)) p(l](fi:(i)(/;;)@)

Proor. Consider the product

(g0, ho)plgr, hy) = (P(l)(hoi(go)) Pé(%)ﬂl(%)) (Pé(hﬂ(gﬁ) P(l)(hl)pl(gl))

0 po(ho) 0 po(h)
_ (ﬂé(hoi(go))pé(hli(gl)) po(hoi(g0))po(h1)p1(g1) +p8(ho)m(go)08(h1))
0 po(ho)pp () ‘

The bottom row agrees with the bottom row of p((go, ko) X (g1,h1)) = p(ge* g1, hohi)
because pJ is a group homomorphism. The first entries of the top row coincide too, put
simply, because the target is a group homomorphism as well:

po(hohni(gy g1)) = po(hohihy i(go)hai(gr)) = po(hoi(go))ps(hri(gr))-

For the remaining entries, we use Eq.’s (18) and (20) to compute

po(hoh1)pi (95" g1) = po(hoha)(p1(g6™) (I + dpr(g1)) + prlgr))

= po(hohn) po(h1) ™ p1(g0) po (P (T + dpi(g1)) + po(hoha)pi(g1)
pol
pol

ho)p1(90)pg(h1) + pg(ho)p1(g0)dpg(h1)pi(g1) + p(ho)pg(ha)pr(gr)
ho)p1(g0)po(h1) + po(ho)(p1(g0)@ + I)ps(hi)p1(gr),

and the result follows from the second relation in Eq. (19).
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2.21. REMARK. Forgetting the Lie group structure,

Go xV——=zHp xV

g H

has the structure of a VB-groupoid (see, e.g., [7]). Thus, there is an associated repre-
sentation up to homotopy [11]. In fact, since all vector bundles are trivial, there is an
obvious splitting of the core sequence

(0) ——=G x W

G, xV gxV (0)

given by
c:gGxV

G; XV : (g, hjv) ———=0(@gn(h,v) = (g,h;0,v),

which verifies o) (h,v) = oap(h,v) = (1,h;0,v) = a(h,v). Here, we use - to refer
to the structural maps of the top groupoid. ¢ defines a canonical representation up to
homotopy (0, AV, AW Q) associated to the 2-representation, where

the quasi-actions of G =2 Gx H on H x V and H x W are respectively
A&,h)(ha U) = tA(U(g,h)(ha U)) = (hZ(g), U)a
Al (hsw) = o (g m (0(h,w))sa(1, by w, 0)(g ™, hi(g); 0,0) = (i(g); py(i(g))'w),
and the curvature form Q € T'(s3(H x V*) @ t3(H x W)) at (g1,92,h) € G* x H = G, is
Qg1.g2.) (V) = (Wgzgl,h)(h? V) =0 (g1 hi(g2) (A@Q,m(hav))*ff(gz,h)(h:v)>540<gzghh)fl = Ohi(g291)-

Since (2 is identically zero, the quasi-actions define actual representations of the Lie 2-
group G on the corresponding vector bundles.

We close this section by proving that splitting an abstract extension of Lie 2-groups
induces a 2-representation in the sense of Definition 2.14.
2.22. DEFINITION. An extension of the Lie 2-group G s H by the 2-vector space
W2V is a Lie 2-group By — E that fits in

1 14 I E, m G 1
¢ € 7
1 14 - E, — H 1,

1.e., where the top and bottom rows are short exact sequences and the squares are maps
of Lie 2-groups.
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2.23. PROPOSITION. Given an extension of the Lie 2-group G—~H by the 2-vector space
W —2~V and a smooth splitting o,

1 /_\
1 w g E — G 1
¢ € i
o0
T~
1 V 3 EO H ]-a
Jo o

there is an induced 2-representation p, : G —= GL(¢) given by

p(R)v = ag(h)vog(h)™! ph(h)w = wro® ™

p1(g)v = a1(g9)’o1(g) ",

forhe HveV,weW and g € G.

The proof of Proposition 2.23 follows easily after using the splitting to write F; and
Ey as semi-direct products. We thus postpone it to the end of the section in order to
introduce the necessary notation.

We regard injective maps as inclusions; in so, ¢ = €|y. Given an extension as in
the statement of Proposition 2.23, one uses the splitting to get the diffeomorphisms
H xV =2 FEyand G x W = E; given respectively by (z,a) —— aoy(z) with in-
verse e —— (m(e), eop(mi(e))™), for k € {0,1}. We recall that one can use these
diffeomorphisms to transfer the group structure, thus getting

(ho, 'Uo) . (hl, ’Ul) = (hohl, Vo + pg(h())’l)l + wO<h0, hl)), (22)

where (ho,vo), (h1,v1) € H x V, pJ is defined as in Proposition 2.23 and wq(hg, hi) =
ao(ho)ao(h1)oo(hoh1)™" € V. This is the usual twisted semi-direct product H, x “0V
from the theory of Lie group extensions. Conversely, the operation defined by Eq. (22)
with wy € C(H? V) is an associative product if and only if wy is a 2-cocycle for the Lie
group cohomology of H with values in p§ (see Eq. (10)).

An identical reasoning implies there is an isomorphism of Lie groups £} = G phoi XMW,
with p{ defined as in Proposition 2.23 and wi(go, g1) = 01(g0)a1(g1)01(gog1) "

We rewrite the rest of the crossed module structure of the extension using these triv-
ializations. The homomorphism e gets rewritten as

GxW——=HxV:(g,w)—(i(x), p(w) + ¢(9)),
where ¢(g) := €(01(g))o0(i(g))~!, and the action of (h,v) € H x V on (g,w) € G x W as
(g, w)™ = (g", po ()™ (w + pa(g)v) + a(hs g)),

where p§ and p; are defined as in Proposition 2.23, and a(h; g) := o1(g)7°™May (g") .
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2.24. REMARK. Notice that, in case one can take the splitting ¢ in Proposition 2.23 to be
a crossed module map, wy, wy, ¢ and « vanish identically and one recovers the semi-direct
product structure (2.19).

PROOF OF PROPOSITION 2.23. We make the necessary computations to prove that pf is
a 2-representation.

o Well-defined: We use the exactness of the sequences to see that the maps land where
they are supposed to. Let he H,v € V, w € W and g € G, then

7o (a0(h)vao(h) ™) = mo(oo(h))mo(v)mo(oo(h)!) = A1h™H =1 = py(h)v €V,

™ (wao(h)*l) _ 7Tl(w)wo(cro(h)_l) _ lh*1 -] — p(l)(h)w cw,

m(01(9)"01(9) ") = m(o1(9))™mi(01(9) ") = g'g™ =1 = pilg)v € W.
These components are smooth and linear. Further, thus defined, pJ(h)o¢ = ¢op(h)
for each h € H. Indeed, let w € W, then

() (6(w)) = oo()e(w)oo(h) T = e(w™ ™) = b(pl()uw).
Thus, for all h € H, po(h) := (p(h), ph(h)) € GL(d)o.
e p{ is a Lie group representation: Let hy, hy € H and v € V, then
po(h1)po(ha)v = ao(h1)oo(he)vag(ha) oo (hn) ™
= wo(h1, ha) (po(hahiz)v)wo (P, o) ™
Since both wy(hy, ha), pS(h1he)v € V| the conjugation is trivial and the claim follows.
e p} is a Lie group representation: Let hy, hy € H and w € W, then
Py ()i (ha)w = w02 o)™
= (po(hhg)w)<otha)
Since wo(h1, he) € V and p§(hihy)w € W, the action is trivial and the claim follows.
e p; is a Lie group homomorphism: Let ¢;,¢92 € G and v € V| then
p1(g1) © pr(g2)v = (p(g1) + p1(g2) + p1(91)Pp1(g2))v
= 01(g1)"01(91) "' 01(92) 71(92) "' p1(g1)€(01(92) 01 (92) ™)

elo Vo -1 —
=01(91)"01(91) "' o1(92) 01(92) o1 (g1) (710021701 2) )0’1(91) !

Using the Peiffer equation, we get

yelororonen ) _ ( 1)1

o1(g1 01(92)"01(g2) ") o1(g1) (01(g2)"o1(g92) ")
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thus yielding,

= oi(qn)" 01(92 Co1(g2) toi(gn)

)
= 01(91)"01(92)" (01(9192)" )_10'1(9192)1)0'1(9192)7101(9192)01(92)7101(91)71
= (wi(g1,92))"(p1(9192)v)w1 (g1, 92) "

Since both wy (g1, 92), p1(g192)v € W, both the action and the conjugation are trivial
and the claim follows.

e pooi=Aop: For g € G, this equation breaks into two components,
po(i(9)) =1+ dopi(g) € GL(V)  and  pyli(g)) =1+ pi(g) o ¢ € GL(W).
Let v € V and w € W, then
(I +dpi(g))v = ve(o1(9)"01(9)™") = e(o1(g))ve(oi(g)) ™
= ¢(9)(Po(i(9))v)p(9) ™" = po(i(9))v,

and
(I + pi(9)9)w = woi(g)™ai(g) ™" = o1 (g)wor(g)~"

= w07) — (i) = piiCg)w.
where the last equality in each sequence follows from ¢(g) € V.

e p; respects the actions: Let g € G, h € H and v € V, then

pr(9) o = pi(h) o1 (9)ph ()0 = (1) (9) 1) ™
- (01 (g)ao(h)al(gh)il)val (Qh)v (01 (Q)Uo(h)) -
= a(h; 9)"(p1(g"v)alh; g) "

Since both a(h;g), p1(g")v € W, both the action and the conjugation are trivial
and the claim follows.

h)

3. The grid, the snapshot complex and its cohomology

In this section, inspired by the triple complex associated to a Lie 2-algebra [1] and by
the concurrence of the double cohomology with the cohomology of [10], we introduce the
grid of complexes of Lie 2-group cochains with values in a 2-representation. We establish
notation and specify all groupoids and representations appearing in the three dimensional
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grid. Since we define the complex in the r-direction to start differently in Oth degree, we
prove that this fits into a complex accordingly. We expose how this grid fails to be a triple
complex. Specifically, we study the square of the total differential degree by degree and
define the difference maps via the commutator of the non-commuting differentials, thus
producing a complex up to degree 3. We study the cohomology of the resulting snapshot
complex and show that its second cohomology classifies abelian extensions.

3.1. THE BACKGROUND GRID. Throughout, let G be a Lie 2-group with associated
crossed module G ——= H and let p be a 2-representation of G on the 2-vector space
(A v Using the notation conventions laid down in Subection 2.12, we think of p as

a triple (p, pg; p1). Also, we take the isomorphisms of Remarks 2.1 and 2.5 to be fixed
and we abuse notation and often treat them as equalities.

3.2. REMARK. In the sequel, we define the grid using a series of groupoids and groupoid
representations that involve taking pull-backs along the final target map (see Remark 2.6).
One could also define an equivalent structure by pulling-back along the “initial source”
map s, : G,—H : (71,...,7) —> (7). There is no economy in working with either one,
one necessarily pays a computational price somewhere.

Let C?%(G, ¢) be defined by Eq.’s (1) and (2). This three dimensional lattice of vector
spaces comes together with a grid of complexes of groupoid cochains (see (10) and (11)).

3.2.1. THE p-DIRECTION. When ¢ = 0, one has got the trivial complexes

(G, ¢) = V—"0000(G, 0) = V

when r = 0, and

050G, 0) = V(G 8) = Ve

6:Idc(gryw>
_—

oG, w)—2=2s @, w) oG, w)—2=2s @, w)
otherwise. When ¢ # 0 and r = 0, the complex
C(H V) ——=C(G" V) —"—=C(G},V) —"—=C(G3,V)
is the cochain complex of the product groupoid

gl—= H1Y

with respect to the trivial representation on the vector bundle H9 x VL g4, For any

other value of r, the complex
C(HIXG", W)—2—C(GIx G, W )—L—C(GIx G, W)—L—C(GIX G, W ) -
is the cochain complex of the product groupoid

gix G"—=HIx G

with respect to the left representation on the trivial bundle HY x G" x W —~ H1 x G,
(s Yas ) - (B s gy fow) 1= (hai(91), .. hgi(gq); £ pb(i(pra(m K . X)) " 'w), (23)
where v, = (gx, hx) € G and fea.
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3.3. REMARK. Observe that for ¢ = 1, the representations defining the complexes in the
p-direction are those of the representation up to homotopy induced by the 2-representation
(see Remark 2.21). Indeed, for r = 0, the representation coincides with AV and for r > 0,
the representation coincides with the pull-back of A" along the projection onto G—=H.

3.4. LEMMA. Eq. (23) defines a representation.

Notice that this lemma is not straightforward, because the projection prg is not in
general a group homomorphism. In order to make cleaner computations, we introduce
the following auxiliary straightforward lemma.

3.5. LEMMA. Let y1,...,7, € G. If v = (gx, hi,) € Gx H, then

ha...hg hs...h hg—1hg h
NE XY= (909" 0% 9, 1 9g b By

PrOOF. By induction on ¢, for ¢ = 2 the formula is nothing but the definition of the
product in G = Gx H. Now, suppose the equation holds for ¢ — 1 elements, then

MNE - XYg =M X XVg-1) X Vg
ho..hg—1 h3..hg— hg—ohg—1 hg—
= (0 g gy 9 Gg1s b hg 1) X (9g, )

ho.hgo1 hs..hg1  hg_shg1 hq_
= (g gy g T 9005 9am1) g, P g1 hy),

and the result follows since the action of H is by automorphisms.
]

PROOF OF LEMMA 3.4. Observe that the first coordinates in the right hand side of
Eq. (23) are given by the target; hence, we just need to focus on the W coordinate.

Units act trivially: Let w € W and 7q,...,7, € G be such that v, = (1,h;) € Gx H
for each k. Then, the W coordinate in the right hand side of Eq. (23) reads

po(i(pra(n X .. X9g)) tw = ph(i(1h2-haihs—ha | ha-thaihaq)) =iy

= po(i(1..1))tw = w.

—

Groupoid multiplication: The arrows (%,...,7{1;(f)’),('yl,...,vq;f) € G4 x G" are

composable if and only if ( f)’ = f and (v, ve) € G for each k, or equivalently, if
Y = (9r, hii(gr)) € Gx H. For such a pair, the groupoid multiplication is given by

/ R . DA Qg - gqgt/z . F
(’71a~--77q7f) (’717"'7%1ﬂf) e (( hl hq af>
The compatibility follows from the formula

(9191)""(9295)""..(94-191)"" 909, =

ha...hq hs...hq hq i(g2)...hqt i(g3)...hqi i
91 gy g0 1 g (g )12 9)hatla) (gl hailes) hailge) | (g! - Yhailoa) g!
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We proceed by induction on ¢. For ¢ = 2,

(9191)" 9295 = 912(91)" 9205 = 9126295 (61)" 9295 = 912 9a(91)"*" % g,
Suppose now that the equation holds for ¢ — 1, then

- 9, .. h o (H‘H h)hq
! i j=k+1""J
[ Trgi) =i = | T](grgi) \ 77 a9,

k=1 k=1

q—1 ) hq
q— .
N (Il(gwww“m) 9494

k=1

q—1 -1 hq q—1 L hq
=< g j) 99y 1( (92)“3:"‘“““9”) 9a94
k=1 k=1

q g q—1 hqi(gq)
= H glljj:kﬂ h; < H(Q;C)H?;i“ hﬂ'(w)) g;,

k=1

which is precisely what we wanted.

3.5.1. THE ¢ DIRECTION. When r = 0, the complex

V— 06, V) ——=C(G: V) —2—= (G2, V)

p’ p’

is the group complex of G, with values in the pull-back of the representation pj) along the
final target map ¢,; when r # 0, the complex

C(G", W)—2C(Gyx G", W)—"—=C(G*x G", W)—"—=C (G x G", W)
is the cochain complex of the (right!) transformation groupoid
G, xG"'—=G"

with respect to the right representation

(91, e G5 W0) = (5 15 eons ) = (077 s g0 p(1,(7)) " u0) (24)

on the trivial vector bundle G" x W -2+ G", where ¢1,...,q, € G, v € Gyandw e W. It

is obvious that Eq. (24) defines a representation, as, on the one hand, is defined explicitly
using the source map of the transformation groupoid and, on the other, it is given fibre-
wise by the pull-back of a representation along a homomorphism.

When writing the groupoid differential, we use the shorthand PG, (7; g)w instead of the
lengthier Eq. (24).
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3.5.2. THE r-DIRECTION. When ¢ = 0, the complex

LC(GQ, W) LC(G?’, W)

v— oG, W)
is the group complex of G with values in the pull-back of the representation p} along the
crossed module homomorphism ¢z, but for the Oth degree; when ¢ # 0, the complex

S

C(G1, V) — (G % G, W) — e (G % G2, W) — (G % G2, W)

is, again except for the Oth degree, the cochain complex of the Lie group bundle
GI x G=—=G"
with respect to the left representation
(s 9703 9) = (V5 o0y Va3 @) 5= (1, w00y g5 P (i (971000 Jaw) (25)

on the trivial vector bundle G x WLGZ, where 71, ...,7, € Gp, g € Gp and w € W.
Eq. (25) clearly defines a representation, as it is given fibre-wise by the pull-back of a
representation along a homomorphism, namely the composition of the crossed module
homomorphism ¢ with the crossed module action. Notice that right and left representa-
tions of a Lie group bundle coincide; hence, though Eq. (25) could be taken as a right
representation, we emphasize that it is a left representation as the formula for the differ-
ential of right and left representations differ (cf. (10) and (11)).
The missing maps ¢’ : V—C(G,W) and ¢’ : C(GZ,V) —=C(G x G, W) are defined
respectively by
(0"v)(g) := p1(g)v, (26)

for v € V and g € G, and by

8wV, Y5 9) = Poltp(11)-tp (7))~ o1 (9)w (Y1, -y V), (27)

forw e C(GLV), 11,7 €Gpand g € G,
The next two lemmas justify how, in spite of the replacements in Oth degree, the
complexes in the r-direction remain complexes.

3.6. LEMMA.

LC(GZ, W),

V— oG W)
where §' is defined by Eq. (26), is a complez.
PRrOOF. We prove that, for v € V', §1y6’v = 0. Let g9, g1 € G, then

81y (0'0) (90, 91) = po(i(90))(0"0)(g1) — (6"v) (g0g1) + (8'v)(g0)
= po(i(90))p1(g1)v — p1(gogr)v + p1(go)v

= (L + p1(g0)@)pr(g1)v — pr(gogr)v + p1(go)v,
which is zero due to Eq. (18).
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3.7. LEMMA.

068 V)—— (g8 x G W)

where &' is defined by Eq. (27), is a complez.

PROOF. We prove that, for w € C(GZ,V), dq)d'w = 0. Let 71, ...,74 € G, and go, 91 € G,
then

C(GIx G*, W),

S0 w( V1, oy Vg5 905 1)

= (Y1, Y03 90) - 0 WY1y s Vg 91) — 0w, ooy Vg G091) + S W( V1, s Vg5 o)

ép(71)~-~tp("fq)))

= p(l)(i(g p(lJ (tp<'71)--'tp('7q))_1p1 (g)w(, - 7(1)‘*‘

— po(tp(11) - tp (7)) " 21 (gog1)w (1, s Yg) + £6(tp (1)L (79)) ™ 1 (g0)w (71, s 7g)

= po(tp(7) - tp(74) " (Pé(i(go))m(m)wm, s Ya) = P1(9091)w (V1 -+ ) + pr(go)w (s ooy vq)>,
which is zero due to Eq.’s (18) and (19).

Consider C},(G,¢) as in (3). For expository purposes, we preliminarily define the
total differential
V= (=1)P(0@) + 0+ (—1)"0), (28)

as though the grid were a triple complex. In the course of the remainder of this section,
we study V? degree by degree and conclude that, despite 0 and ¢ fail to commute, one
can add corrections to (28) in order to have a complex

Ctoot(g7 (b) Y Ctlot(gv ¢> Y Ctzot(g7 (b) Y C?ot(gv (b) (29>

Then, we move on to study the cohomology of (29). We postpone a more general study
of the relations among the differentials in the grid until the next section.

3.8. DEGREE 0. By definition (C},(G,¢), V) is concentrated in nonnegative degrees,
thereby defining a complex in degree 0. Let v € C2,(G, ¢) = C3°(G, ¢) = V and consider
its differential

Vo = (@ﬁ'o, dv,0'v) € CN(G, ) = Cy°(G,¢) & Cy' (G, ¢) & CY(G, 9).
If v is a 0-cocycle, then
Ao =v  and  pilghy =0
for all h € H and all g € G; therefore,
HY(G,0) =V :={v eV : pyn(0,0) = (0,v), Y(g,h) e Gx H=G},

where p is the honest representation of Proposition 2.20.
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3.9. DEGREE 1. A 1-cochain X is a triple (v, Ao, A1) € CL,(G,¢) = VOC(H,V)&C(G,W)
whose differential has six entries. Adopting the convention that (V)27 € CP4(G, ¢),

(VA)? = 0o

(VA)g! = 9Xg — bv (VAP = 62 — 6,
(VA)g" = —0v = —v (VA" =0\ — v = —d'v
Let v € V and put A = Vo. With the exception (V2v)}" and (Vv

(V)\)g’o = 5(1))\1.
)o, all components
1

of V2v vanish by definition. In the next lemma, we prove that (V2v)}"" also vanishes.
3.10. LEMMA.
CH,V)—2 -~ C(H x G,W)
5 5
1% g c(G,w),
commutes.

PROOF. Let v € V and (h;g) € H x G, then

(00'v)(h; g) = (8"0)(g") — pi(h; 9)(8'v)(9) = pr(g")v — py(h) " pr(g)v
= po(h) " p1(9)(pg(h)v — v) = py(h) " p1(g)(6v)(h) = (6"6v)(h; g).

In fact, since for p > 0 the action of G, on G and the right representation pép are
respectively pull-backs along ¢, of the action of H on G and the right representation p};,
the proof of Lemma 3.10 implies the following corollary.

3.11. COROLLARY.
C(G,, V) — C(G, x G, W)

1 4

v C(G, W),

commutes.

(V2v)y", as it is, does not vanish. Let v € G and let (g, h) € Gx H be its image under
the isomorphism of Remark 2.1, then

(V20)g' (7) = (960)(7) = (6v)(h) — (6v)(hi(g))
= po(R) (v — po(i(9))v) = —py(h) (¢ 0 pr(g)v),
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where the last equality is the first part of Eq. (19). Let

A:C(G,0) Cy'(G. ¢)

be defined by

Aw(y) = py(h) o p(w(g)), (30)
forw € C(G,W) and v € G. Here, (g, h) € Gx H is the image of v under the isomorphism
of Remark 2.1.

3.12. REMARK. Observe that A is related to the structural map o of the representation
up to homotopy induced by the 2-representation (see Remark 2.21): w € C(G, W) defines
the bundle map w: H x G—=H x W | w(h;g) = (h;w(g)). Then, correctly interpreted,
Aw = pow.

Adding A to Eq. (28), makes (VZv)y"' = 0 as
(A80)(7) = po(h) 0 6((0'v)(9)) = po(h) (¢ © pr(g)v),

for all v = (g,h) € Gx H = G.
Schematically, the updated differential of the 1-cochain A is

o —_g_if ¥ 5{ \5&5 f_(sxl

where the solid arrows represent the grid differentials and the double arrow represents A.

If (v, X0, \1) € CL,(G,0) is a 1-cocylce, then v = 0, )¢ is a crossed homomorphism
of H into V with respect to pJ, and \; is a crossed homomorphisms of G into W with
respect to pjp o 4. In symbols,

Mo(hoh1) = Ao(ho) + pd(ho)Ao(h1), Vho, h1 € H, (31)
At(g091) = Ai(go) + po(i(90)) A1 (g1), Vg0 91 € G. (32)
Additionally, the following relations hold for every v € G and all (h;g) € H x G:
(0N + AX1)(y) = 0, (0"Ao — 6A1)(h; g) = 0.

If (g,h) € Gx H is the image of v under the isomorphism of Remark 2.1, these relations
are respectively

Mo(h) + po(h) 0 d(Ai(g)) = Ao(hi(g)), (33)
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and
po(h) " p1(9)ha(h) + po(R) ™ Ailg) = Milg"). (34)
Eq. (33) implies that the map

A: G

respects both the source and the target; indeed, when h = 1, it implies the commutativity
of

WV :(g,h)—(ps(h)A1(g), Xo(h))

G— oW
i ¢
H— V.

In fact, A is a functor. Let (y0,71) € G2 and let (go,hi(g1)), (91.h) € Gx H be their
respective images under the isomorphism of Remark 2.1. A(7) and A(y;) are composable
in the 2-vector space; indeed, combining Eq.’s (33) and (17), one gets

Using Eq. (32)
A(v0) A1) = (po(R) (A(g1) + poi(g1)) M (90))
= (po(h)A1(g190), Mo(h)) = A(g1go, ) = Avo > 71),

yielding the claim. Further using Eq. (34), one shows that A is a crossed homomorphism
into W & V with respect to p:

A0 X)) = Agg' g1, hohr) = (p(hoh1) A (95 91); Ao(hoha))
= (po(hoh1) (Mi(g5") + £o(i(gn )M (91)), Aolho) + pg(ho) Ao ()
= (po(ho) (p1(g0)Mo(h1) + Ai(g0) + po(i(g0) 1) A1 (91)) Ao(ho) + po(Bo)do(hn))
= A(70) + Plgosho) A1)

A coboundary Vv, will induce a crossed homomorphism-functor that can also be seen
as Pg,n)(0,v). We could not find a terminology for these in the literature; hence, we
introduce the following definitions by analogy. We use the notation conventions of this
section.

p
o
—~
=
SN—
~—

3.13. DEFINITION. The space of crossed functors of a Lie 2-group G with respect to a

2-representation p on the 2-vector V = W2V is defined to be
CrHom(G,¢) := {A € Homeya(G, V) : Mg, h) = (pg(R)Ai(g), Ao(h))

is a crossed homomorphism with respect to p}.
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The space of principal crossed functors is defined to be
PCrHom(G, ¢) := {\ € CrHom(G, ) : (g, h) = p(gn(0,v) for some v € V}.
With these definitions,

HE(G,¢) = CrHom(G, ¢)/PCrHom(G, ¢).

3.14. DEGREE 2. A 2-cochain & is a 6-tuple (v, ¢, wp, A, @, wy ), where
Wy € C<H2, V)
peC(G,V) a€C(HxG W)
veV A e C(G,W) wy € C(G*W).
The coordinates of the differential Vi are
(V@) =0v=0 (V@)g? = duwo (V&) = dywn

(V@)g” = duwy — d¢p (V)22 = 8wy — da
(Vo) =dv—0p (V) =0a+d\ -0 (VE)y' = dua + dw

A 0
(V)20 = §'v — 9&7 (VD)s" = Bt — Sy

Let A = (v, A, A1) € CL,(G, ). We study V? applied to each coordinate of A\ sepa-
rately:

In Vv, (V20)p° = (V2)y® = 0, because d and ¢ are differentials. Moreover,
(V?0);° = 0 due to Lemma 3.6, and (V?v);" = 0 due to Corollary 3.11. By defini-
tion,  : C1(G, ¢) —C>%(G, ¢) is the identity; hence, (V20)7° = 0 trivially. (V2v)7", as
it is, does not vanish. Let (g1, g2, h) € G* x H = Gy, then

(V20)5" (91, 92, h) = (960 — 600) (91, g2, h) = py(hi(ga))v — v — (pg(hi(g2g1))v — v)

= po(hi(ga)) (v — po(i(gr))v) = —pp(hi(ga)) (¢ © prlgr)v),

where the last equality is the first part of Eq. (19). Let

A CM(G, ¢) (G, ¢)

be defined by
Aw(gr, g2, h) = py(hi(g2)) 0 d(w(91)), (35)

for w € C(G,W) and (g1, 92,h) € G* x H = Gy under the isomorphism of Remark 2.5.
Subtracting A from Eq. (28), makes (V?v)2" = 0 as

—A(=6"0)(g1, g2, h) = pg(hi(g2)) 0 d((8'v)(9)) = p(hi(g2)) (¢ © p1(g1)v),
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for all (g1, g2, h) € Go. All other components vanish from the onset.
In V2, (V2X)0® = (V2Xo)i"' = 0, because & and 9 are differentials. Moreover,
(V2)\0)g’1 = 0 due to Lemma 3.6. Let (hy, he;g) € H*> X G, then

(68'N0) (R, ha; g) = (0'Xo)(ha; g™) — (6'Ao)(h1ha; g) + po(ha) ™ (6" Xo) (ha; g)
= po(h2) " p1(g")Xa(ha) + pg(haha) " pr(g) (= Ao(hah2) + Ao(ha))
= po(hiha) " p1(9) (P9 (h1)Ao(h2) — Xo(hiha) + Ao(h1)) = (6"0X0) (R, ha; g)

and (V2)\))” = 0. This computation can be easily generalized to prove the following:

3.15. LEMMA.

C(GaH, V) —2 = C(Get! x G, W)
) )

C(G, V)

C(GI x G, W),

5/
commutes for all ¢ > 0.

PROOF. Let w € C(G1, V), 7 = (70, oY)t € Qg“ and g € G, then

§'6w(7: 9) = po(tp(70)--tp(79)) " p1(g)0w(7)

J

= Ab{t 004y (10)) " 21(9) (3t 20) e B) + i(—l)%@ﬁ)),
and
06'w(¥; 9) = §'w(bo7; ) + il(—l)j 8w (857 9) + (1) pg, (143 9)6'w(84417; 9)
= po(tp(1) - (7))~ (970w (07)+
+ i (=1 25 (tp(10) - tp (351 X %) -tp (7))~ pr(g)w (8;7)+

1

+ (=1 a1 (7)) ™ 20 (tp(70)--p(Yg-1)) T P1(9)w (Bg417)

q+1

= Ablt()-4,20)) " a(9) (10D (007) + S (~1Pw(o7)).
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Let (v; f) € G x G and let (g, h) € Gx H be the image of v under the isomorphism of
Remark 2.1, then

(08'20) (v £) = po(i(9)) 7 (6" M) (s f) — (8" X0) (hi(9); f)
= po(i(9)) " po(R) "' pr(F)No(R) — po(Ri(9)) ™" pr(f)o(Ri(g))
= po(hi(9)) ™" p1(f) (Mo(h) — Ao(hi(g))) = (8"Oo) (7 f)
and (V2)\)}"' = 0. This computation can be easily generalized to prove the following:

3.16. LEMMA.
C(GI x G, W) —2— (G, x G, W)

6/ 6/
O(gg7 V) 5 C( g-l-lv V),
commutes for all ¢ > 1.
PRrOOF. We adopt the convention that, for v, = (Va0 -+ Vap) € Gps1 and <}gL‘lb> is
ab

the image of v, under the isomorphism of Remark 2.1.
Let w e C(GLV), 7 = (1, .-,7)" € G}, and f € G, then

08w (F; ) = po(i(pra(vio X - X 740))) " 8w (007; f) + Z(—l)jé’w(aﬂ; f)
= po(i(pra(o X - X 740))) ™ 6 (tp(8071) -t (O0vg)) ™ o1 (f)ew(B07)+

p+1

+ Z(—1)j/)é(tp(3m)---tp(aﬂq))*lm(f)w(aﬁ)~

If 7 >0, t,(9;7a) = t(7a0); otherwise, t,(0ova) = s(7Va0). Hence, since s and ¢ are group
homomorphisms,

p+1

06w (T f) = po(t(10)-tp(100) " o1 () D (=1)w(8;7)

J=0

= Phltper (1)t (7))~ 1 ()Ow(T) = 80w (7 ).
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(V2Xo)g?, as it is, does not vanish. Let (y1,7,) € G? and let (gx, hx) € Gx H be the
image of v under the isomorphism of Remark 2.1 for k& € {1,2}, then

(V220)0” (71, 72) = (95X9 — 60X0) (71, 72)
= pg(h1) (Mo(ha) — pO(i(g1))Ao(h2)) = —pg(ha) (¢ © pr(g1)Xo(h2)),

where the last equality is the first part of Eq. (19). Let

A:CM(G,0) Cy*(G. ¢)

be defined by
Aw(y1,72) = p8(h1h2) o p(w(h2; g1)), (36)

for w e C(H x G,W) and (v1,7) € G2 Here, (gx, hx) € Gx H is the image of v, under
the isomorphism of Remark 2.1 for k € {1,2}. Adding A to Eq. (28), makes (V2Xo)y> =0
as a consequence of Eq. (17) and that for all (v;,7,) € G2

(AG'Xo)(71,72) = po(hihs) 0 ¢((8'Xo)(h2; g1)) = pg(haha) o d(pg(h2) ™' p1(g1)Xo(ha)).

All other components vanish from the onset.

In V2)\;, (V2M\)57 = (V2A)7° = (V2\)]? = 0, because §(1), & and § are differentials.
Since by definition,  : C%°(G, ¢) — C(G, @) is zero, (V2X1)y" = 0 trivially. Moreover,
d(1y commutes with d; hence, (sz\l)g’l = 0. Indeed, let (h;g1,92) € H X G?, then

(66w (B 915 92) = (8yAi) (g1 93) — po(R) ™ (B A1) (g1, 92)
= poli(gr) M (g2) — Mi((9192)") + Mi(g1)+
— o) (po(i(91)) A (g2) — Mi(g1g2) + A1)
= po(i(91)) (M(98) — po(R) ™ Aig2)) — (6A1) (B grg2) + (6M1) (h; 9n)
= (01)0A1)(h; 91, 92)-
(V2A), (V2A)e! and (V2\)y7, as they are, do not vanish. Let (7; f) € G x G and let
(g,h) € Gx H be the image of  under the isomorphism of Remark 2.1, then
(VA (3 ) = (00X — 95A — AN (35 f)
= M (f"9) = po(i(9) " M (") = po(hi(9)) ™ pa ()P (h) A1 (g)
= (") = po(i(9) " (M (") + (oo (i (f™) = DAa(9))

where the last equality follows from Eq. (20) combined with the second part of Eq. (19).
Let

A: G, 6) C1'(G. )
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be defined by

Aw(; f) = po(i(g) ' w(f", g) + wlg™", fr9) —wlg™ 9), (37)
for w € C(G*,W) and (v; f) € G x G. Here, (g,h) € Gx H is the image of v under the
isomorphism of Remark 2.1. Adding A to Eq. (28), makes (V2\;);' = 0 as, using the
cocycle equation 5(21)>\1 =0,

(A0 M) (v f) = poi(9))) " (6yA) (F*, 9) + G A) g™ 1g) = GmA) (g™ 9)
= (6 A) (g M) + GA) (g " 9) = G (g7 9)
= po(i(9)) " M (") + po(i(g™" FM)Mg) = M (") = po(i9)) " M(g)

for all (v; f) € G x G.
Let (g1,92,h) € G* x H = G,, then

0
(v2/\1> Y(g1,92,h) = —(0AN, + ADXT (g1, g2, h)
= _A)‘1<g2> h) + A)‘l(glgla h) - A)‘l(gla hz(QQ))

= —Pg(h) © ¢()\1(92) — Ai(g291) + P(]i(i(92))/\1(91))-
Let
Doy : Cy(G,¢) ——C77' (G, ¢)

be defined by

Do 1w(g1, g2, h) = pg(h) 0 p(w(ga, 1)), (38)
for w € C(G*, W) and (g1,90,h) € G* x H = Gy. Adding As; to Eq. (28), makes
(V2A)e! =0 as

(A2101)A1) (91, 92, h) = po(h) © (1 Ai(g2, g1))

for all (g1, g2, h) € G* x H = Gs.

Let (71,72) € G? and let (gx, hx) € Gx H be the image of v, under the isomorphism
of Remark 2.1 for k € {1,2}, then

(V2A1)0” (71, 72) = —(6AA + A6A) (71, 72)

= _pg(hth) © ¢(P(1)(i(9?2))/\1(92) - A1(9?292) + >\1(91f2))

Let
Aip: GG, ) —Cy*(G, 9)

be defined by
Aqpw(v1,72) 1= pY(hihae) 0 p(w(gl?, ga)), (39)
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for w € C(G* W) and (y1,72) € G Here, (g, hx) € Gx H is the image of 7 under the
isomorphism of Remark 2.1 for k € {1,2}. Adding A, to Eq. (28), makes (V2)\;)y* =0
as

(A1260)A1) (71, 72) = p(h1ha) 0 ¢(5yAi(gh?, 91))

for all (y1,72) € G?. The remaining two components vanish from the onset.
Ultimately, the updated differential V is the one appearing in Eq. (4). V squares to
zero in the snapshot complex (29) whose building blocks we represent schematically:

0,3
Co

Fig. (40)

In this diagram, the double arrows and the dashed arrows represent respectively the first
difference maps

A CPIG,¢) —= LG, )
and, for (a,b) € {(1,2),(2,1)}, the second difference maps

Auy: CPI(G, 0) PG, ¢),

which owe the ordinal in their names to the degree difference in the r-direction.
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3.16.1. THE COCYCLE EQUATIONS. The second cohomology group HZ(G, ¢) is in one-
to-one correspondence with the equivalence classes of split extensions of the Lie 2-group

G by the 2-vector space W —2~V. To make this patent, we express an extension in terms
of simpler data — as in the proof of Proposition 2.23 —, and determine the equations these
need to satisfy to build the extension back up.

3.17. PROPOSITION. Let p be a 2-representation of G——=H on W—"-V and (@, wo, a,wy) €
C(G,V)BCH*V)DC(HXG,W)DC(G*,W). Let Egupaw) be the space in the middle
of the sequence

1 Wl G} W —2 G 1
¢ € i
1 Ve——Hyg x“V —r—H 1,
with
e(g,w) = (i(g), p(w) +¢(9)), (41)
and
(g, w) ") = (g", py(R) " (w + p1(g)v) + alhs g)),  for (hov) € Hx V.  (42)
Then,

i) the product on Hyp x =V (cf. Eq. (22)) is associative if and only if wy is a group
cocycle with respect to p;

ii) the product on Gproi X MW s associative if and only if wy is a group cocycle with
respect to py o i;

iii) Eq. (41) defines a Lie group homomorphism if and only if for all g1, g, € G,
Awi(g1,92)) — woli(gr),i(g2)) = po(i(91))2(g2) — Glgrg2) +4(91);  (43)
iv) Eq. (42) defines a right action if for all hy,ha € H and all g € G,
po(hahz) ™ pr(g)wo(n, ha) = py(he) ~talhn; g) — alhuihas g) +alha; g™); (44)
v) Eq. (41) defines an equivariant map if and only if for all (h;g) € H x G

?(9") = po(h™ ") (g) + dlalhs 9)) = py (R~ wo(ilg), 1) +wo(h™",i(g)R) — wo(h_l,(Z%,)
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vi) Peiffer equation holds if and only if for all g1,92 € G,

po(i(92)) " p1(g1)@(g2)+a(i(g2); 91) = po(i(g2)) " wi(g1, g2)+wi(gs ", 9192)—wr (92(14,69;),

and

vii) Eq. (42) defines an action by automorphisms if for all h € H and all g1, g2 € G,
po(h) " wi(g1, 92) — wi(gr, g5) = poli(gr))aullis go2) — a(hi g1g2) + alhigr).  (47)

Therefore, Epwyaw) 15 a Lie 2-group extension if and only if i)-vii) hold.

3.18. REMARK. As a consistency check, we prove that, when applied to the trivial 2-
representation on (0) — R, Proposition 3.17 is equivalent to Lemma 2.9. For this case,
the only non-trivial equations in Proposition 3.17 are

i) dwy =0,
i) —wo(i(g1),i(g2)) = @(g92) — (9192) + ¢(g1), and
i) ¢(g") — @(g) = wol(i(g), k) + wo(h™',i(g)h) — wo(h™", R).

P
Let (F, f) € Q%(G) be a 2-cocycle, wy := F and ¢(g) := f(g,1). Then Eq. i) holds right
away and Eq. ii) coincides with Eq. (13). Eq. iii) follows from evaluating  f —0F = 0 at

<hg—1 ;) :%— f (glh) + f <hg_1) = F(h™' h) — F(h™"(g),h),

1 1 _ 1.
(b 9)r(9) -1 () + 1 [2) = Py - Fo it
Adding these expressions together yields
g g" 1 1; 1
F(4) -1 (%) = et = Futita). m - i)
and, since 0F = 0,

F(h~"i(g),h) + F(h™",i(g)) = F(ig), h) + F(h™", i(g)h),

and the claim follows. Conversely, suppose wy and ¢ verify Eq.’s 1)-iii), and let F' := wy
and f(g,h) :=wo(h,i(g)) + &(g). Naturally, 0 F = 0 holds right away. Using successively
Eq.’s ii) and i),

F((950) = it + Plonan) = b ilagn) + wailan) i) + o) + 902

= wo(hi(g2),i(g1)) + wo(h,i(g2)) + P(g1) + P(g2) = f (hi?;}z)) +f (%2) ;
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hence, 0f = 0. As a consequence of 0f = 0 and Eq. ii),
gh292 A h N
f ( hlth ) = wo(h1h2i(9y?),i(g2)) + P(g2) + wo(hiha,i(g)?)) + @(9)°)

= wo(h1hai(g1?),i(g2)) + @(g2) + wolhiha, i(g72)) + @(g1)+
+wo(i(g1), ha) +wo(hy ', i(g1)he) — wo(hy ', he).

Subtracting this expression from

P8 )+ (00) =entharito) + ole) +walhnito) + o),

one gets
o (148 ) =l am) + (i) = ol (02) — ot (42°) +
— wo(i(g1), ha) — wolhy ', i(g1)ha) + wo(hy ', ha).
Since dwq(h1i(g1), ha,i(g2)) — dwo(h1,i(g1), he) = 0,

wo(ha,i(g2))+wo(h1,1(g1)) —wo(h1i(g1)ha, i(g2)) —wo(i(g1), ha) = wo(h1,i(g1)he)—wo(h1i(g1), hai(ga))
and since (5600(h1h2, h;l, Z(QQ)]Z2> — (Sw()(hl, hg, h;l) = O,
wo(h1,i(g1)ha) — wo(huha,i(g1?)) — wo(hy ' i(g1)ha) = wo(hy, ha) — wo(ha, hy").

Therefore,

5f g1 g2 _ wo(hl, hg)—(ﬂo(h% h;l)_wo(hli(gl), hgi(QQ))‘H«UO(hQ_l, h2) = (%)o g1 g2 :
b hy hy  hy

where the last equality follows from dwo(hy ', ho, hy') = wo(ha, hy') — wo(hy ', hy) = 0.

Next, we consider equivalent extensions £ and F as in

H——-1.

Supposing that the extensions split, one can apply the decomposition of the proof
of Proposition 2.23. Picking a splitting of either extension and composing it with the
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isomorphism yields a splitting for the other. In this manner, the induced 2-representations
of Proposition 2.23 are identical, and we identify both £& and F with a corresponding
(twisted) semi-direct product. We write the functor ¢ in these coordinates as

wk(zva) :( ]?p(zva’)a I‘c/ec(zaa))v

for k € {0,1}. Both 1y and 1 respect inclusions and projections; hence, ¥ (1,a) = (1, a)
and zkap (z,a) = z. Further using that both v’s are group homomorphisms together with
the factorization (z,a) = (1,a) X (z,0),

Ur(z,a) = ¢¥ir((1,a) X (2,0)) = (1, a) X (2, 0)
— (10)R (20} (2. 0) = (2 e T (2.0) + ki),
where py stands for p§ when k& = 0 and for p} o i when k = 1. As a consequence,
Uiz, a) = (2,0 + Ak(2)),

where the maps \g : H—=V and \; : G — W are defined by 1} (z,0) for k = 0 and
k =1 respectively.

3.19. PROPOSITION. Let p be a 2-representation of G- H on W2V and let
(@, wo, av,wr), (@', wp, &' W) be a pair of 4-tuples verifying the equations of Proposition 3.17.
Then the extensions & s wyaw) ANd Er wh ot wh) are isomorphic if and only if there are maps
X € C(H,V) and \y € C(G, W) vemfymg
i) wo — w) = 0. Eaplicitly, for all pairs hy,hy € H,
WO(hQ, hl) — w(l)(ho, hl) = pg(ho))\o(hl) — /\0(h0h1) + Ao(ho)
i) w1 — wy = dA\1. Explicitly, for all pairs go, g1 € G,
wi(g0, 91) — wi(g0, 91) = po(i(g0)) M1 (g1) — Ai(gogn) + Mi(go)-

iii) For all g € G,
@(g9) — &'(9) = ¢(Mi(g)) — Aali(g))- (48)

i) For allh € H and all g € G,

a(h; g) — a'(hi g) = po(R) " (Mi(g) + pr(9)ho(h)) — Alg"). (49)
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PROOF. Items i) and i) are the usual relations identifying isomorphic extensions with
cohomologous cocycles of Lie groups. Define 9y (z,a) := (z,a + \i(2)) for k € {0, 1}.
Then,

1 '
CTchl)oi XMW ——— Gp(l)oi X1
H o x“V H o x“0V
0 0

0

commutes if and only if

(i(9), o(w + Mi(9)) + &'(9)) = (i(g), d(w) + G(g) + Xo(i(9))).
which is equivalent to Eq. (48). On the other hand, the expressions

U1 (g, w)™) =1 (g", po ()~ (w + p1(g)v) + alh; g))

= (9" po(h) " (w + p1(9)v) + a(h; g) + M (g")),

and (hio+20(h))
¢1(97 w)d)O(h’U) = (ga w + )\l(g)) ’ ’
= (9", po(h) ™ (w + Mi(g) + p1(9) (v + Ao(R))) + ' (h; )
coincide if and only if Eq. (49) holds. n

3.20. REMARK. Continuing Remark 3.18, one can also prove that, when appropriately
restricted to the trivial 2-representation on (0) — R, Proposition 3.19 is equivalent to
Lemma 2.10.

If & = (0, p,wo, A\, a,w1) € C2,(G, ¢) is a 2-cocycle, then (V@)?" = 0 implies A = 0.
Furthermore, (V&)g™" = 0 reads
Ag 1wy = dy;

which, evaluated at an arbitrary element (go, g1, h) € G* x H = G, yields

v (glﬁ%) =g (ghl) +o (hz’%c)]l)) = ¢ (po(h)w1 (g1, 90))-

In particular, making gy = 1, one sees that ¢ vanishes identically on the space of units
H. Defining

o0)i=o (), (50)

one is left with a 4-tuple (¢, wp, @, w;) as in the statement of Proposition 3.17. In the
sequel, we show that this 4-tuple verifies the equations of Proposition 3.17 if and only if
V& = 0, and thus defines an extension.
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(V&)y? = dwy = 0; therefore, wy is a 2-cocycle with respect to p.

(V&)Q’O = d(ywr = 0; therefore, w is a 2-cocycle with respect to pf o 4.

Evaluating (V&),” = 0 at (911 gf) € G? yields Eq. (43).

(V@)V? = 0 is exactly Eq. (44).

Evaluate (V&)y® = 0 at

<;{Ci1 ;1l> two(h™' h) —wo(hhi(g), h) + @(g") — ¢ (i{(zl) + ¢(a(h; g)) =0,

" (hll ?) s —wo(h™,i(g)) — po(h) '@ (g) + ¢ <hgl) =0,

and consider their sum

—wo(h™", h) 4+ wo(hti(g), h) + wo(h™i(g)) = @(g") — po(h) " @(g) + pla(h; g)).

Since dwy = 0,

pg(h)_1w0<i(9)) h) + Wo(h_17 Z(g>h) = WO(h_li(g)v h) + WO(h_la i(g));

hence, by substituting, one gets Eq. (45).

Evaluating (V(D)i’l =0at (7;91) € G x G, where vy = <912> € G yields Eq. (46).

(V&)y' = 0 is exactly Eq. (47).

Conversely, let (¢, wo, a,w) be a 4-tuple as in the statement of Proposition 3.17 veri-

fying the equations therein. Define

o (1) = eathito) + 411500 61)

and set @ = (0,p,wp,0,,wi). We proceed to show that & is a 2-cocycle. From the
previous discussion, it suffices to check that (Va)y™", (V@) and (V&@)y” vanish. Indeed,
let (g1, 92,h) € G x H, then from the cocycle equation dwy = 0 and Eq. (43),

wolh,i(g291)) = —po(h)wo(i(g2), i(91)) + wo(hi(ga), i(g1)) + wo(h, i(g2));
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and

o (0 = cathitamon) + Aplous)

= wo(hi(ga),i(g1)) + wo(h,i(ga)) + po(h) [po(i(g2))2(91) + ¢(g2) — d(wilga, 91))]

o (il )+ () = sbim o ofen(am, 0

hence, (V@)2" = 0. Next, let (v; f) € G x G and (g, h) € Gx H the image of v under the
isomorphism of Remark 2.1. Then,

8"o(v; ) = po(hi(9)) " p1(f)e(7) = po(Ri(g)) ™" pr(f) (wo(h,i(g)) + po(h)(g))
= po(hi(9) " o1 (Flwo(hyi(9)) + poli(9)) "' pr(f")(g)-
Using Eq.’s (44) and (46), one gets
8'o(v; f) = poli(9)) " el ) = alhi(g); f) + ali(g); f*)+
— a(i(g), ") + poli(9)) " (", 9) +wilg™, fg) —wilg™" 9);

hence, (V&) = 0. Concludingly, let (y1,72) € G2 and let (gi, hi) € Gx H be the image
of v under the isomorphism of Remark 2.1 for k& € {1,2}. Then,

8¢ (,“Cg ;’Z) = po(hai(gr))e (}’i) — (fgj) +o (gll)
= po(hi(g1)) [wo(hz, i(g2)) + po(ha)P(g2)] +
— (wolhuhs, i(g1292)) + p3(hiha)(912g2)) + wolhu, i(g1)) + po(h1)(g1)
Using successively Eq.’s (43) and (45), one computes
P(91792) = po(i(91°))p(g2) + (91 + woli(9)?), (g2)) — (wi(91”, g2))
= po(i(91?))@(g2) + py(ha) " woli(g1)s ha) +wolhy* i(g1)he) — wolhy ', ho)+

+ p(h2) ' @(g1) — dleulhas g1)) + woli(gy?),i(g2)) — P(wi(gl?, g2))-

Substituting,

dp <zi ZZ) = pd(hiha)o(a(hy; g1) + wi(gh2, g2)) + R(wo)

_ g0 01 do g1
— AO( (ho hl ) + ALZ(JJl (ho h1 ) + R(UJO),
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where
R(wo) = p§(h1i(g1))wo(ha,i(g2)) — wolhiha, i(gr2gs)) + wo(hi,i(g1)) — pb(h1)wo(i(gr), ha)+

— ph(hiha) (wo(hy ' i(g1)ha) — wo(hy ', ha) + woli(g1?),i(g2)))-

We claim that R(wy) = dwq g1 92 , and consequently (V&)i? = 0. Indeed, this claim
hy  hy 0

follows from repeatedly applying the cocycle equation to rewrite R(wp). Using dwy = 0
evaluated at (hy ', i(g1)he,i(g2)) yields

R(wo) = p§(h1i(g1))wo(h2,i(g2)) — wo(hiha, i(g12g2)) + wolhy,i(g1)) — po(ha)wo(i(g1), ha)+
— po(hn)wo(i(g1)ha, i(g2)) — po(hahe) (wolhy ', i(g1)hai(gz)) — wo(hy ', ha)).

Successively, using dwy = 0 evaluated at (hihy, by, i(g1)ha, i(g2)), (hi,i(g1)h2,i(g2)) and
(h1,i(g1), ho) yields

R(wo) = po(hnig1))wolha,i(g2)) — wo(hn, i(g1)hai(g)) — wo(hiha, hy ') + wolha,i(g1))+
— po(h) (wo(i(g1), h2) + wo(i(g1)h2,i(g2))) + po(hnhz)wo(hy s o)
= po(hii(g1))wo(ha, i(g2)) — wolhni(gi)ha, i(g2)) — wollaha, hy ') + wo(ha,i(g1))+
— wo(hn,i(g1)h2) — po(ha)wo(i(gr), ha) + po(hahe)wo(hy s ho)
= po(hi(g1))wo(ha,i(g)) — wolhii(g1)ha,i(ga)) — wolhaha, hy ')+
— wo(h1i(gn), ha) + po(haha)wo(hy ™, ).

Thus, the claim R(wy) = —wo(h1i(g1), hoi(g2))+wo(h1, ha) follows from dwo(h1i(g1), he,i(g2)) =
(SWO(hlhg, h2_1, hg) =0.
Furthermore, if

(@)F = (0, 0%, wk, \E oF Wh), ke {1,2}
are a pair of cohomologous of 2-cocycles, say
(@) = (@) = V(v, Ao, M),
then coordinate-wise one has got
wi — wh =6

<p2—g01:8)\0—5v+A)\1 062—061:5/)\0—(5)\1

0=—-0v=—v 0=—d0"v wi — wi = A
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Explicitly, for v = (¢g,h) e Gx H= G and (h; f) € H x G
(* = ©") (1) = Ao(h) = Ao(hi(g)) + ¢(p5 (M)A (9)) (52)

(02 = ad)(hi ) = ph(B) " pn(F)o(h) — (Ma(F") — pb(B) " Ma(F))- (53)
Eq. (52) evaluated at v = (g, 1) yields Eq. (48) with ¢* defined by Eq. (50), and Eq. (53)
is exactly Eq. (49). Conversely, given two 4-tuples as in the statement of Proposition 3.19

whose difference verifies the equations therein and defining a corresponding pair of ¢©*’s
by Eq. (51),

(¢* = ¢ (1) = wi(h,i(g)) + po(h)¢*(9) — wo(h,i(g)) — po(h)¢' (9)
= 0o(h,i(g)) + po(h)(6(A1(9)) — Ao(i(g)))
= po(h)Ao(i(9)) — Aa(hi(g)) + Ao(h) + S(po(h)A1(9)) — po(h)Ao(i(g))
= 0Ao(7) + AN (7).

Summing this discussion up, we have shown the following:

3.21. THEOREM. H%(G, ¢), the second degree cohomology of the subcomplez of Cii(G, ¢)
that has trivial (g’o)-coordmate for p > 0, is in one-to-one correspondence with split ex-

tensions of the Lie 2-group G by the 2-vector space W2,

3.22. REMARK. Because of the application that we have in mind (see the Introduction),
Theorem 3.21 is stated and proved to classify extensions of G by 2-vector spaces. However,
do notice that the results of this section can be effortlessly extended to more general
abelian 2-groups: Replacing the 2-representation by an action of G on an abelian 2-group
(see [15]), one forms a snapshot complex using the same formulae. The second cohomology
of the complex with values in the abelian 2-group A is seen to classify extensions by A
simply reinterpreting the arguments we presented.

4. Inkling of a larger complex

In this section we study the grid of Section 3. We prove that for either ¢ or p constant,
there is a double complex. More precisely, we prove that 9 and d(;) do commute, yield-
ing a sequence of double complexes that we call the g-pages, and show that ¢ and ()
also commute, thus yielding a sequence of double complexes that we call the p-pages. We
prove that there is a general formula for the difference maps A that measure the difference
between 09 and d0. In fact, using A we show that the two dimensional grid r = 0 com-
mutes up to isomorphism in the 2-vector space (cf. Proposition 4.11), and the successive
r-pages commute up to homotopy (cf. Proposition 4.16). Since 9 and § fail to commute
on the nose, the total differential V of Eq. (28) does not, in general, square to zero. In
Section 3, it is explained how this defect is partially solved by adding the difference maps;
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however, the updated V still fails to square to zero. In a similar fashion, the coordinates
that fail to vanish, do so because the homotopies do not commute with some differentials;
however, they do commute up to new homotopies. Accordingly, we call these homotopies
higher difference maps and note them A,; (cf. Eq.’s (38) and (39)). We provide explicit
formulas for some families of higher difference maps and explain what the grid is lacking
to form a complex.

Ultimately, lacking additional structure such as a product or a more insightful defi-
nition of the higher difference maps, the proofs of the relations we present boil down to
unfortunately long and rather unenlightening computations.

4.1. REMARK. In this section, we collect evidence suggesting there is a full triple complex
analog to that in [1]. Eventually, one could collapse one dimension in the triple complex,
by taking, e.g., the total complex of the p-pages; however, as opposed to the case of [1],
the remaining object is not a double complex because of the higher difference maps A,
with a > 1.

Throughout, let G be a Lie 2-group with associated crossed module G —~ H and

let p be a 2-representation of G on the 2-vector space W N g Using the notation
conventions laid down in Subsection 2.12, we think of p as a triple (p9, pi; p1). Also, we
take the isomorphisms of Remarks 2.1 and 2.5 to be fixed and we abuse notation and
often treat them as equalities. Recall the notation from Section 3: We write
0:CPi(G, ) —=Cr11(G, ¢)
for the differential in the p-direction (cf. 3.2.1),
d: CPUG, ¢) —CPHY(G, ¢)

for the differential in the ¢-direction (cf. 3.5.1), and

5y CP(G, 9) CP (G, )

for the differential in the r-direction (cf. 3.5.2).

4.2. COMMUTING DIFFERENTIALS. In this subsection, we prove that for constant ¢ the
two dimensional grid of maps is a double complex that we call the ¢g-page. Analogously,
for constant p, there is a double complex that we call the p-page.

q¢-PAGES. When ¢ = 0, there is a double complex all of whose columns are equal and the
intertwining maps are either zero or the identity, thus commuting trivially. For ¢ > 0,
there is a double complex as well.
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4.3. PROPOSITION. For each q > 0,

C(H? x G2, W) 2% C(G1 x G2, W) —2=C(GI x G2 W) — - --
d(1) ) 5
CH'x G,W) 240G x G, W) —2=C(GI x G, W) — -

&' 8’ &’

C(H,V) C(Ge, V) —2—=C(G3,V)

18 a double complex.

PRroOF. Each row is a complex and due to Lemma 3.7, so is each column. Moreover, due
to Lemma 3.16, we just need to prove that 9 commutes with d(y)

Let we C(GIx G, V), 7= (71,-7)" € Gl and f = (fo,..., fr) € G"'. Adopting
the convention of Lemma 3.16 for vy, € Gp41,

r+1

— — —

S0 (T; 1) = ps(fer O 0N a3 86 1) + Y (—1)*F0w(F; 8 f)

+

ﬁ
I

p+1

= AL OO0 (b (i(pra (o R B 900))) (@073 o) + D (=1) (D75 6o ) ) +
j=1

+

r+1 p+1

+Z(—l)k<p(l)(i(p7’a(71oX.--X’Yqo)))_lw(ao% )+ (1Y w(07; 6 3)

k=1 1

<.
Il

Now, given that

p0< ( tpt1(71)-- tp+1(7q))> _ p(l) (Z( é(’YlO)---t('YqO))> p0< ( t(v10X.- quo))>

p(l] (Z( hlo...hqoi(prg(’ylozn-X’YqO))))

0

= po(i(pre(r10 X - X740)) " s (i (fo ")) o (i (pre (110 X - X 700))
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one can group terms to get

1

G2 (32 F) = P (pre (o X X)) (A" )w@F: ) 4+ D (~1) i@ b))

1

<
J’_

3

p+1 r+1

D17 (PG 0w @57 00 ) + D (1) w057 86 )

J=1

+

e
Il
—_

If >0, t,(0;%) = t(10) = tps1(76); otherwise, t,(0ov) = t(1) = (o) = hwo. Hence,

ol
810w (F; f) = pb(i(pre (110X Fe0))) " 0yw(O Z 0;7; ) = 06yw(7; f).

p-PAGES. We start by outlining some general facts about actions of Lie groups and rep-
resentations.

4.4. LEMMA. Let X and Y be Lie groups, and let' Y act on the right on X by Lie group
automorphisms. Then

Y xX—2Y

(54)

X *

Y

where the top groupoid is a bundle of Lie groups and the left groupoid is the (right!) action
groupoid for the action of Y on X, i.e,

|s](y; ) = ¥,
forx e X andy €Y, is a double Lie groupoid.

4.5. REMARK. A word on the odd choice of notation: we opted out of calling our groups
G and H, so to avoid any concurrence and to help the reader stray away from believing
that there is a Lie 2-group somewhere in this diagram. There is none. In fact, though the
action of Y on X is by automorphisms, there is no crossed module around.

PROOF OF LEMMA 4.4. Given each of the sides of the square (54) is clearly a Lie groupoid,
to prove that the array (54) is a double Lie groupoid, we show that the horizontal struc-
tural maps are groupoid morphisms. First, the square commutes as all compositions land
in . Both 5 =t are functors: for x € X and 4,1, € Y,

5(Lz) =1 and 35((y1;2)X (y2;2"")) = 5(v1y2: ) = y1ye = 5(y1: )5 (yo; 2¥").
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w is a functor as well: for y € Y,

s|@(y)) = [s|(y;1) =1 =1=w(x) and  [t|(T(y)) = [t|(y; 1) =1 = u(x),

so it is well-defined, and it respects units and the multiplication:

u(l) = (1;1) and @(yiy2) = (n1ye; 1) = (Y13 1) X (y2; 19) = a(y1) X U(y2).

To conclude, (Y X X)s xz (Y xX) =Y xX?—=X? is the right action groupoid for the
diagonal action, we prove that m is a Lie groupoid homomorphism: for x;,z, € X and
yey,

|s|(M(y; 21, 22)) = [s[(y; 2122) = (122)Y = 2 = m(|3‘2(y§371,332))

and
(m(y; w1, 22)) = [t](y; 2122) = 2109 = M|t (y; 21, 22)).
Furthermore, m is also compatible with units and the multiplication, as m(1;xq,x2) =
(1;z122) and ((y1;21) X (y2; #7")) 24 (Y15 22) X (423 23')) equals
(Y192; 1) > (Y1y2; ¥2) = M(Y1y2; 71, T2) = (Y1125 T122)
= (y1;2122) X (y2; (2122)"") = W15 21, T2) XW(y2; 27", 25 ).
]

4.6. EXAMPLE. Let W be a vector space and let X =Y = GL(WW) along with the right
action by conjugation on itself. Then

GL(W) x GL(W) GL(W)

|| |

GL(W) *

is a double Lie groupoid.

4.7. LEMMA. Let X and Y be as in the statement of Lemma 4.4 and let

Y xX

GL(W) xGL(W) : (y; 2) —— (py (y), px (7)) (55)

be a map of double Lie groupoids from the double Lie groupoid of Lemma 4.4 to the one
i Example 4.6. Then, for every pair of integers q,r > 0, there are representations of the
Lie group bundles

Yix X—=VY1 (56)

on Y94 x W —Y1? and of the right transformation groupoids

Y x X' —= X" (57)
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on X" X W — X" that make the grid

/

COY2LW)—2=C(V2x X, W) 2= C(Y2x X2, W) —- -

CY,W)—L (Y x X, W) —2L~CY x X2, W) —= -

W s cxX,wW)—L S O(X2W) ——

whose rows and columns are Lie groupoid cochain complezxes taking values in these repre-
sentations into a double complex.

PROOF. Since (55) is a map of double Lie groupoids, its restrictions to the bottom and
right groupoids give respectively representations py of X and py of Y, both on W. These
are the representations for the group bundle over a point X —= % and for the trivial
transformation groupoid Y x x —= . For each ¢ > 0, the representation of the group
bundle (56) is the pull-back of px along the groupoid homomorphism |s|,. In symbols,
define the representation p% of the group bundle (56) on (sy):W =Y x W —Y by

Px W1, - Y ) = 1815 0x (W15 o, Ygy ) = px(2¥0)

for (y1,..., Y5 ) € Y x X 2 (Y x X)@. Analogously, for each r > 0, the representation
of the transformation groupoid (57) is the pull-back of py along the groupoid homomor-
phisms ¢,. In symbols, define the right representation p}, of the transformation groupoid
(57) on t:W = X" x W — X" by

Py (Y21, zp) = (v o 8) py (Y 21, -, 20) = py (y)

for (y;a1,...,7,) €Y x X" = (Y x X)),
Ify €Y and & = (21,...,2,) € X", we adopt the convention that (Z)¥ := (Y, ..., 2¥).
We proceed to check that, for fixed (g, 7), the spaces of cochains of the groupoids (56)
and (57) with respect to p% and p}, concur. On the one hand,

Y% X)) = {(i, 2153 Gy 2r) € YVIX X) 03550 75) = §5 = Fir = LT, 1) J5

therefore, (Y? x X)) = Y7 x X", where the diffeomorphism is obviously given by
(¢, x1; ...; Y, ) —= (U; o1, ..., ;). On the other hand,

(Y XD = {(y1, T15 .1y, Tg) € (Y xXT) 2 |s|(y;, T) = (F))¥ = Tj1 = [t (yjo1, Tjn) J5
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therefore, (Y x X7)@ = Y4 x X" where the diffeomorphism is naturally given by
(Y1, @5 Yo, (D)5 .5 yg, (Z)¥1 Y1) — (Y1, ..., Y4; T). Since the representations px and py
take values on a trivial vector bundle, the pull-back bundle along any groupoid homomor-
phism remains trivial and its sections are but smooth functions to W; thus,

C"YIx X5YIxW)=CYIx X" W)=CUY xX"; X" x W).

We use the diffeomorphisms of the latter discussion and the face maps d; of the Lie
group Y and 0 of the Lie group X to rewrite the face maps of the groupoids (56) and
(57): For 4 = (yo,...,y,) € Y7 and 7 = (z, ..., x,) € X"

So: (Z)w) if j =0 o
(5;);;)) ) Ot{lerwise and  0,(7; 7) = (¥; 0, 7).

We are left to prove that the generic square
C(Y! x X", W) —2 = C(Y ! x X1 W)

5| 5 (58)
C(Ye x X7, W) (YT x X, W)

5/
commutes. Indeed, let w € C(Y? x X", W) and ¢ and & be as above. Then,

r+1
86w (if; £) = p& (i: w0) 0w (i7; 57) + Y _(—1)Fow(F: 6,%),
k=1
while

q
56/ (7 ¥) = S'eo(duffs () + 3 (~1P8w(3,5: 7) + (~ 1) 5 (93 806117 7).

j=1

We expand further to make the common terms evident:

8'0u(7; 7) = P 0) [ (B (5o + D0 (= LPeo(835: 867) + (=)™ pf (3 048817 867) | +

]:

[y

3
+
—
Q

(1) [wBofs (37)) + D (~1V w057 048) + (—1)" 5 (s G0 (3 175 047

k=1 7j=1
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and
r+1
06"w(§; ) = p (Soif; 2w (80if; 56(2)*) + D (1) w(dod: 6} (F)*)+
k=1
q A r+1
+ D1 | P (055 mo)eo (8577 04F) + D (—1) w65 0,8) | +
j=1 k=1
r4+1
+ (=) oy (g 7) [/&(%Hﬁ; 20)w(8g417; 0T) + Y (=1) w(F4117; 525)] :
k=1

The equality follows from the following identities: Firstly, one obviously has
(0p2)"" = 0 ()"

Secondly,

05 (g3 61T) = py (Y) ™" = P (yg; T)

and
P (T w0) = px (g ™) = px () ¥0) = p (607 ).
Also, for all values 0 < j < ¢,

q+1l/ - 0~--(yj71yj)~~~yq)

Py (i w0) = px(xg™") = px (g = p%(6;4; o).

Finally, as py X px is a double Lie groupoid map

px(a) = px(|s|(y; ) = [s|(py (v), px (@) = py (y) ' px () py (v);
thereby implying,

P (T o) = px () = px (25" 7)¥) = py (yg) ' ox (28" " ) oy (yg),

which is
P (5 20) 95 (93 0 T) = o (s ) (g1 0)
and so, the commutativity of the square (58) follows.
u

We use Lemma 4.7 to help proving that the p-pages are double complexes. For any
given p, the right action of G, on G is by automorphisms, as it is defined by the pull-back
of the action of H along t,, that is, for g € G and v € G,,,

Furthermore, the map

(7 9) ——(pg, (1), pc(9)) == (po(tp(7)): po(i(9)))
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whose components are pull-back representations, verifies the hypothesis of Lemma 4.7.
Indeed, after looking at the compatibility with the whole structure, one sees that it suffices
to prove

pc(|s[(v; 9)) = Isl(pg,(7), Pc(g))-

This follows easily from the equivariance of the crossed module map 1,

pa([s1(7:9)) = po(i(g" M) = po(tp (1) Hi(9)te(7) = pa,(v) " pc(9)pg, (7)-

In fact, the p-pages coincide by definition with the outcome of Lemma 4.7, but for one
caveat; the first column of the p-pages consists of the Oth degrees of the complexes in the
r-direction, which are modified (see Lemmas 3.6 and 3.7).

4.8. PROPOSITION. For each p,

S

C(G2 V) LG x G, W) —2= (G2 x G2 W) —> - --

0 § 0

C(Gy V) — = C(G) x G, W) — e C(Gy % G2 W) —> - -

VoW — (G W) —— -

18 a double complex.

PROOF. Due to Lemmas 3.6 and 3.7, each row is a complex, and clearly so is each column.
Lemma 4.7 implies that, disregarding the first column of squares, we have got a double
complex. In order to finish the proof, one needs to check that the generic square in the
first column commutes. This is precisely the content of Lemma 3.10, Corollary 3.11 and
Lemma 3.15.

4.9. DIFFERENCE MAPS. In contrast with Subsection 4.2, when r is left constant, the
resulting r-page fails to be a double complex. Nonetheless, as it is briefly mentioned at
the beginning of this section, the front page, i.e., the r-page for r = 0 commutes up to
isomorphism in the 2-vector space, and, when r > 0, there is a commutation relation up
to homotopy. In this subsection, we make these comments precise and prove them.
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THE FRONT PAGE. Let w € C(GZ,V) and 7 € Qgﬂ, then 00w(7), d0w(7) € V. Recall

that in the 2-vector space W N V', vi,v9 € V belong to the same orbit if there exists
a w € W such that v = v + ¢(w). When we say that the front page commutes up
to isomorphism, we mean that 00w(¥) and ddw(7) belong to the same orbit of V. The
element in W that realizes the isomorphism, is coherently defined to be the composition
of the map ¢’ from the complex in the r-direction and certain maps that we note A and
refer to as the difference maps.

We start by setting notation and defining the difference maps. Throughout this sub-
section, 7 € G has components

- Y11 M2 - Vip g1 912 -~ YGip hy

o . Y1 Y22 - V2p 921 G2 ... G2p ho
= =" " i I S (59)

e : : : : : : h

Yqr Vg2 -+ Tgp 91 9q2 -+ YGgp g

where the last equality is a notation abuse corresponding to the row-wise isomorphism
Gp = G? x H from Remark 2.5. Here, (gqp, hap) is the image of 4, under the isomorphism
of Remark 2.1 for all values of a and b. We abbreviate dydgy by regarding ¥ as a matrix
and using “minor” notation, i.e.,

Y22 Y23 ... Vg
S 5 Y32 V33 ... )3
Y11 = OoooY = . . .q
Yp2 Y3 -+ pg

The difference maps

A:C(GEx G, W) C(Git,V)

p

are defined by
Aw(F) = po(tp(dom)--tp(Bovg11)) © ¢(W(71,1; 911)),

for w € C(GI x G, W) and 7 € ggi}. Clearly, when ¢ = 0, one drops the 7, ;-entry
(compare with Eq.’s (30), (35) and (36)).

4.10. LEMMA. Let v € C?°(G,¢) =V, then
500 = 8dv + Ad'v € C(Gpr, V). (60)

PROOF. First, we compute the first term on the right hand side of Eq. (60). Let v € G,41
and let (go,...,gp; h) € GPTt x H be its corresponding image under the isomorphism of
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Remark 2.5. Then,

p

(960)(7) = (60)(97) + Y _ (=11 (80)(9y7) + (= 1) (60) (Fp17)

j=1

= po(hi(gp--g1))v — v + Y (=1 (g (hi(gp---g0))0 — v)+

j=1

+ (=1 (oo (hi(gp)i(gp-1---90) )0 — V),

and
(hi(gp...q1))v — v if p is odd

(hi(gp--.91)) (v — p3(i(go))v) otherwise.

dov)(y) = P
On the other hand,

SOoOOoO

(00v) () = {gg(hi(gp...go))v —v if pisodd

otherwise;

hence, either way,

(60w — 06v)(7) = po(hi(gp---g1))(P5(i(g0))v — v)
and the result follows from the first part of Eq. (19).

4.11. PROPOSITION. Let w € C(GE,V), then

50w = Adw + Adw € C(GI V). (61)

p

PROOF. Eq. (61) holds essentially due to the commutativity of d; and 0y for all values of
(7, k), one just need to take care of the representations that appear at (0,0). Let 7 € Qgﬂ ,
then

q+1
00w(T) = pi(tp1(71))0w(d07) + Y (=1)70w(5;7)
j=1
p+1 g+1 p+1
= o0ty (1) D (=) w(Bk07) + Y Y (=1 w(96;7).
k=0 j=1 k=0
On the other hand,
p+1
O0w(T) =y _(=1)*dw(97)
k=0
p+l g+1

= > (D (PO E0dhT) + Y (=1 (807) ).

k=0 j=1
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As stated, the double sums in the above expressions coincide. By definition, (0xY)1 = Ox71-
In accordance with Remark 2.5, this corresponds to (¢11, -, §1k—2, 16G1k—1, G1k+1s - G1p+1, P1),
when 0 < k& < p, and to (g11,---» G1ps hoi(gop+1)), when & = p + 1. Hence, for all
0<k<p+1,

tp((OkV)1) = Mi(gipra---911) = tpri(n)-

Thus, using the first part of Eq. (19), one computes
(00w — 26w)(7) = po(tps1 (11))w(Fi1) = po(tp(Dom1))w(Fr1)

= Pg(hli@lpﬂ---gl?)) Pg(i(gll)) - I]w(:);l,l) = Pg<tp(8071)) 0o ¢<P1 (gll)w(%,l))-

4.12. REMARK. As claimed, Lemma 4.10 and Proposition 4.11 are interpreted as saying
that, if w € C(GZ,V) and 7 € ggﬂ, d0w(7) and Odw(7) lie on the same orbit of V.
Indeed, their difference lies in the image of the difference map A, which, using Eq. (17),

lies in the image of the structural map ¢ of the 2-vector space.

r-PAGES. If w € C(GY x G", W) and (7; f) € GII1 x G, then 50w (7; f), ddw(7; f) € W.
One cannot expect results analogous to Lemma 4.10 and Proposition 4.11, because there
are no orbits in W. We prove instead that the compositions d o9 and 0o ¢ are homotopic
when regarded as maps between r-complexes. In what seems an overlap of notation, we
call the homotopies A and refer to them as difference maps too.

We need to introduce further notation conventions to define the difference maps. Let

—

f=(f1,..., fr) € G", then for any pair of integers 1 < a < b < r, define

ﬁa,b] = (fas Jat1s - Jom1, /) and ﬁa,b) = (fas fat1s s Jo—2, fo—1).

With this shorthand, for » > 1 and 0 < n < r, we define

Con—1,Con : Gril X g G"
by P 7 hi > h
C2n—1(f; 7) = ((f[l,r—n)) 1(9)7 gila ( [r—ng’—?]) ’ fﬁflg> (62>
and 7N g hi(g) 1 (7 h
CQn(f; /7) = ((f[l,r—n)) y g (f[r—n,r—Q}) 3 g) ) (63)

where f = (fi,.s fr-1) € G v € G and (g,h) € Gx H is the image of v under the
isomorphism of Remark 2.1.
Let p > 0 and ¢ = 0, then the difference maps

A C(G, W) C(Gpir x G1, W)
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are defined by

r—1

Aw(y; ) = pa(i(g0) (£ 90) + > (=1 (wlcan-1(f370)) — wlen(Fi 7)),

n=1

for w e C(G" W), f=(f1,.... fro1) € GV and v = (4, sYp) € Gpi1. Here, (g0, ho) €
G'x H is the image of 75 under the isomorphism of Remark 2.1.
When g > 0, the difference maps

A C(GEx G W)

(g§+1 X Gril? W)
are defined by

—

Ba(: F) = pb(i(pra(r X - Brigsn)) ™ [blagis ") T ew(Fas (™ gn)+

r—1

+ Z(—l)nH (W(71,1; 02n71(fq§ ’Yn)) - W(’71,1; CQn(JF; ’Yu)))] )

n=1

for w € C(GI x G", W), feGtandqe GiT) is as in Eq. (59).
Lemma 4.13 and Proposmon 4.14 below justify the choice of notation.

4.13. LEMMA. Let w € CP(G, ¢) = C(G, W), then
(05 — 60)w = (Ad) — I A)w € C(Gpyr X G, W). (64)

PROOF. Let f € G, v € G,1 and (go, ..., gp; h) € GPT' X H its corresponding image under
the isomorphism of Remark 2.5. Then,

50(; f) = {W“’“(”) oty () wl(f) i p s 0dd
0

otherwise
and -
066 £) = pb(i(90) 0w (D0y: ) + (=17 8(0,7: )
= phi(g0)) ™ [w(F@) = ph{y(D0m) ()] +

p+1

# 217 [l 07) = 0 )]

As in the proof of Proposition 4.11, tp(00y) = hi(gp...q1) and, for 0 < j < p+1, ¢,(0;7) =
hi(gp-..90) = tp41(7y); therefore,

(i(g0)) " tw(f#@M) — pl(t, 1 (7)) 'w(f) if pis odd

1
il = { (i(g0)) o7 7) = w( fir10)) otherwise,

%
%
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and, either way,
(95— 80)l1: ) = phlilan)) ™o £ — w(f410).
On the other hand,
§'Dw(v; f) = poltpnn (7)) " i (f) Aw ()
= po(tp(07)i(90)) " 1 ()P3(tp(007)) b (w(90)) = p5(i(90)) " pa (" * 7)) (w(go0))

and
ASyw(v; f) = py(i(g0)) 0w (", go) + Smw(go s F*90) — dyw(gy s 9o)
= pbi(90)) ™ | PHE(F")w(g0) — w(f"g0) +w ()] +
+ | pbilgo)) " w(Fg0) — (g f™g0) +wlg ™)
— | Philg0)) " w(90) — whogo] + (i )]
= pbi(90)) ™" | PHGLF"))w(g0) + w(F) = wlgo) | — w7 )
= pb(i(g0)) ™ [p1 (") (w(g0) + w(f™)] = w( o),

where the last equality follows from the second half of Eq. (19). In so, given that ¢,(0yy) =
ho and t,.1(y) = hoi(go), one computes the difference to be

(Adry — & A)w(v; f) = po(i(go))~"w(fP7)) — w(frrr0)),

and the result follows.

4.14. PROPOSITION. Let w € C(Gl x G, W), then
(06 — 60)w = (Ad) — ' A)w € C(GIT) x G, W). (65)

PROOF. Let 7 € Qzﬁ be as in Eq. (59) and f € G. To ease up notation, we introduce
the shorthand

p"(Fa1) == pp(i(pre(i X .. X vq1))) (66)
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We compute the left hand side of Eq. (65). On the one hand,

pt+1

0w (F; ) = pT ™ (Fa1)6w(0o7; f) + Z 1)76w(0 i f)

j=1

q

= 7 Fur) (s F2O) + 30 (1) (8007 )+

k=1

() bty (Da1)) (041007 ) ) +

p+1 q

# (1) (w(600y7: 70 + 3 (1) w80, )+

j=1 k=1
(1) bt (0731) w0 (Bg11857 ) )

while on the other,

q

50w (T: £) = Bw(So; fr11 ) + S (1RO £) + (— 1) P (tpir (1)) @ (Eg17: f)

k=1

p+1

= p"((007)er)w (Faa; S 00) 4 Y (=1) w0 (9007 fr1 O+

j=1

p+1

+Z (P (7))o (DodiTs ) + D (~1V (D007 1)) +

J=1

p+1

H(=D)" py (a1 (v41)) ™! <pq((5q+1’7)-1)w(305q+1’7; £+ (1) w(0;04417; f))-

Jj=1

We claim that taking the difference yields

(85 - 58)01(7; f) Pq+1(%1) (71,1; ftp(aom) - Pq((fstﬁ)d)w(%,l; ftp“(“))-

This follows from the commutativity of all simplicial maps 0,0; = 0;0, together with the
following identities:

o 1 (Fa1) = p?((6x7)e1) for 1 < k < q. Indeed, for the ranging values of k,

PU((07)e1) = po(i(pre(vi1 X oo X (Ve—1)1 X Ve1) X oo X V(g1101))) " = p7 (Far).
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o T (Fa1) P (tp(O0vg41)) ™t = Po(tps1(Vg+1)) T pU((0g417)e1)- Indeed, using Lemma
3.5, we write

hoi...h h3i...h hgih h _
Pq+1(7 1) = po( (91121 et 92131 (‘”m---g(qqilﬁiﬂ)lgqfq“)lg(qﬂn))
. hot..hqr _hai..h h -1
— P Garin)) P (3 (gl gl gl g )

= P(l)(h(q+1)1i(g(q+1)1>)ilp ((9?121 hqlgglsl o g(hqql1)1gq1))_lpé(h(q+1)1)a
and by definition ¢,(90v4+1) = t(Vg+1)2) = 5(V(g+1)1) = Pg+1)1-
o For 1 <j<qg+1,t,(0;%) = tps1(7)-
Using Lemma 3.5 once more,

Q+1( ('(ghgl hgrnr hathrnt higrnn

. hor.h
“9g-11  Ia Igrn) " polilar )T

Ve )—,00

= P((GoTa)pbilgrs "),
and we rewrite the difference as
(98 = 60)w(; ) = p*((Fo7)er) [bilgnt ") o (Fras f111) = w(Fuas frrriom)].
We turn to compute the right hand side of Eq. (65),
&' Dw (5 f) = po(tps1 ()t (vg41)) " o1 (f)Aw(T)
= po(t(r X o X))~ o1 (F) oo (tp(00m) - tp(07g41)) (@ (F1.15 911))
= po(har-higeni(pre (X - X Yg+11))) ™ o1 (g (har-hgnn) 9w (T 911))
= P (Far) pr (f1 ) (W (T 15 g11))-

Adding all terms, factoring p?*! (1) as before and using the second half of Eq. (19) yields

p

(00 — 00 — 0'A)w(F; f) = p?((007)e1) [W(%,n Jmm(g“))ﬂL

— ph(i(grz ey Nw (Vl,l;fh“)+[pé(z‘(fh“”'h‘q“>1))—I]w(%,l;gn))]

Adding and subtracting pg (i (91121 h(q+1)1))

w113 M g11) and w115 917'),
(00 — 96 — 0" A)w(F; ) =p?((567)e1) [5(1)w<71,1; 911, g11) — Syw (13 g S )+

o hathignynyy— = 11 _ .
Po( (9 () )) 15(1)&)(%,1;Jm ,911) = —A5(1)W(% f)-
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4.15. PROPOSITION. Let r > 1 and w € CPY(G, ¢) = C(G", W), then
(—1)7(60 — B0)w = (Adry — Sy A)w € C(Gpsnr x GT, W), (67)

PrOOF. We compute the left hand side of Eq. (67). Let f = (f1,. fr) € G, v =
(Y05 -+, Vp) € Gpy1 and (go, ho) € Gx H be the image of 7y under the isomorphism of
Remark 2.1. Then,

—

80w (y: f) = {“(( Fyroita0)) — pb(hoi(g0)~w(f) if pis odd

0 otherwise
and »
9w (v; ) = pp(i(go)) " ow(Bo; f) + > (—1)8w(97; f)
pb(i(90) ™" [w((F)™) = pb(ho) ()] +

p+1

+ Z P [w((F ) — ph(hai(go)) " w(F)]
As in the proof of Lemma 4.13, one concludes

9dw(; 3:{%(@( 90))” [ ((F)") = py(ho)~ w( )} if p is odd

— )

po(i(g0))~'w((f)) — w((f h‘”(go) otherwise

and in both cases

(80 = 98)w(y; ) = w((f)"1) = pi(i(g0)) "' ((F)™). (68)
Turning to the left hand side of Eq. (67), on the one hand,

—

w(: £) = po(i(90)) oy ()™, 90) + D (=1)"' T,

where . .
Ty := dayw(can-1(f37)) — dmyw(can(f370)),
and, on the other,

T
-

S Aw(v; ) = ph (") Aw(y; 6o ) + D (—1)FAw(7; 04 f). (69)

k=1

Rearranging Eq. (69),
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where

r

So = P )y i(90)) ™ w((G0f)", g0) + Y (=1)*0(i(g0)) " (56.5)", 90)

k=1

and

S = ph (1)) (W(ean1 (G0 fi70)) — w(can (80 70)) +

+ Z w(cap—1( kf %)) — W(C%(ékﬁ 7()))'

Expanding further the first term of Ad)

pb(i(90)) ™ S ((F), 90) = phi(g0)) (po<< )0 £, g0)+

r—1

+ D (=D @), go) + (1) w67, f2g0) + (=) (7)),

k=1

—

it is made patent that, if € := p{(i(go)) " o1)w((f)"™, go) — So, then
o = (=1)"b(i(90)) ™ (w (O (1)™, Frog0) = (") + (0. 1)™, 30)).

R 2 - hoi(go) —
as ()" = 61(f)'0 and gy fi* = f*" g "
Since one can equivalently write

cara1(fi70) = (90" (6:£)", flog0)  and  en(fi70) = (95" (6 F)", 90),
T, gets expanded as
T, =po(i(90) ™ (@ ((6:1)", £ g0) — w((8,:)", 90)) +
— (w(gg " 11, 60(6-1)", £ g0) — wlgo " 11, 00(5,:F)™, 90)) +

—I—Z M (w(gy ', 0x (0, f)ho fog0) — w(go ™, 00(8. f)" ", 90))+

—

+ (=) (w(gg ", 61 (8 1), (fror fr) 0 g0) — wlgy b, dra (6,F), £1°190)) +
+ (1) (wlgr A5 TT™) — wilge 6 77™)).

651
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On the other hand,

Ser =) T wlgg L 61 (G0, £ g0) — w(gy s 610/, o))+

+ (_1>k (w(go_lv 57‘—1(5kf?)h07 ﬂm%) - w(go_la 57"—1(5kf)h07 90))+

(_1)1”71( (g() ’ r 1( r— 1f) (frflfr)hogo)_w(gil = r—1 F) O,go))

+ (_1)T(w(90_1’ 57“—1(51”]?)h0a ffglgo) — w(gy L b= r F) 0790))5
hence, updating the difference €; := ¢y + (—1)""'T, — (—=1)"S,_; becomes

e =(—1)"" (Pé(i(QO))flw((ﬂho) — w(gy ' 1, 00 (6, F)ko, flogy) +w(gy 1, 00 (6; £k, go)+

<
[\

B
Il

_I_

L) (g 6 (B0 ), F0g0) — (g 6ra ()™, 40)) )

In general, for 2 < n <r,

T =p (i) ™ (@ ((Fizrn) ", g5, (Fir—ntrn) ", f10g0)+

— —

— W((f[2,r7n})h0i(g0)a g()_la ( [rfnJrl,r))hOa gO))+
r— (n+1

+ 5k f[l r— n]) (90)’ g(]_17 (f[r—n—l—l,r))hoa fﬁ0g0)+
k=1

- w(ék(ﬁlf—n])hm(ng 90_17 (ﬁr—n+17r))h07 90)>+
+ (_1)T_n( ((f[lr n) )hm 90)790 f —n> (f[r n+1 7”)) ’ ff090>+
- w((f[l,rfn))hOi(gO)v g()_lffgna (.f_‘[)rfn+1,r))h07 90)) +

+ (-1)Tﬁn+1( ((f[l — ) ot g0)7g0 :bgn.Ha (ﬁr7n+2,r))ho>f;logo)+

— LU((f[l,r—n})hOi(gO)a gO r— n+17 (f[r—n—i—Q,r))hOa gO)) -+
n—2

+ Z(_l)r_m_l—i_k (w((ﬁlm—n])hOi(gO)a g(]_17 5k(ﬁr—n+1,r))hoa ffogo)—l—

k=1

—

_W((f[l,r— )hol(go [r— n—l—lr) 0790))+

Ok(f
+ (_1)T(w<<ﬁ1,r—n])h0i(g0)ag()_la (ﬁr—n—&-lm 1 ) 07( r— lf) )

— W((f[l,rfn})hm(go)a 90_1, ( [rfnJrl,rfl))hOa ffﬂgo))%-

— . —

+<_1)r+1(w(( 1,r—n hol(go)’ aa f[r—n—l-l,?“)) )_ ((f hoi( 90)7 6: f[r—n—i—l,?"))ho))a
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and, for 1 <n <r —2,

S —Po(( potoe) )) ( ((f[QTfn) 90)790 7(f[r n+1r)) OaffogO)_{'

- W((f[wfn])hoi(go)» 961a (f[rfn+1,r))h°> 90))+

r— (nJrl)
+ 5k f[l r—n)| ) OZ(QO)a go—l’ ( [r—n-i—l,r))hoa qulOQO)—'—
k=1
- w(ak(ﬁl,r—n])hOi(gO)7 g()_17 (f[r—n-&-l,r))ho’ gO)) +
r—2
+ > DM@, g5 G firnr)" £ g0)+
k=r—n

((f[lr—n) 0ilgo) gO 7<5kf[r nr)) 790))"‘
+ (_ ) ( ((f[lr n) ) 0i{go) 79(;17 (ﬁr—n,r—l)>hoa (fr—lfr)h090)+

—

— w((f[l,r—n)>h0i(g0)7 0_ ; [r—n,r—l))hovg()>)+

+( ) ( ((f[lr n) 0#(go) 790 )(f[r n,r— 1)h0aff3190)+

—

- w((f[l r—n) )hOi(90)7 (; ) [r—n,r—l))hoag()))‘

Thus, defining inductively €,41 := €, + (—1)" " "(T,_, + S (nt1)),
er—1 =(—1)""pj(i(g0)) "w((F)")+

<p(1)( ( hol(90)>> l(w((ﬁz,r)>h0i(g0)7 90—17 f;logo) _ w(<]E['2,T))hoz'(go)7 90—1’ QO))+

r—2

+ Z<_1)k(w(5k(ﬁ1ﬂ’))h0i(go 790 7f 90) - W((Sk(f )hol 9 79617 gO))+

"’(_1)T_1(W((ﬁl,r—l))hoi(go)a90_ fr 17fh090) _w((f[l )hoi(go)7go fr 1:90)))

Naturally, (Adqy — 6" A)w(7; f) = e,_1 + T1; therefore,

—

(Adw) = &' A)w(r: F) =(=1)* ph(i(g0)) (7)) +
0
(=1 (@O, g5 £logo) — w((8, S g5 go) )

and the result follows.
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4.16. PROPOSITION. Let r > 1 and w € C(G] x G", W), then
(—1)7(60 — 20w = (Ad) — dyA)w € C(GET x G7, W) (70)

PRrROOF. Eq. (70) follows from an argument analog to the one in Proposition 4.15 after
noticing that the left hand side takes the form of Eq. (68) (cf. Eq. (71)). Let 7 € ggill

be as in Eq. (59) and f= (f1, ., fr) € G", then

—

00 (7; f) = Ow(do: (£ )+

q

> (=D 0w(67; f) + (=1 pg(hgrni(gigrin)~ 0w(8g117; f)-

k=1
Assuming the convention of Eq. (66),

p+1

00w (T; ) = p"((007)er)w (Fra: ()1 +Z LY w(@;007; ()0 +

p+1

; Z [0 G0 F) + 3 (- 17wl@,85: 7)) +

=1

.

+

p+1

DT b i) [P (BT Gog: )+ 3 (~1Pw(@50000: )]
1

.
Il

and
— p+1 . —
90w(F; ) = pT (Fa)w(867; f) + Z(—l)]&d(aﬁ; )
j=1
ZPQHWQ)[ Fi1; () +Z w(0k00Y f)+(—1)q+1p(1)(h(q+1)1)_1w(7q+1,1;ﬁ +
pil | o
(1) w000, (Fion )+
=1

— —

+ Y (=D (805 f) + (1) py(higrani(9arnn) w1057 )| -

k=1

Aside from the visible terms in common, using the following identity for y € H and
x,z € G:

po(yi(x) " po(i(2)) ™ = po(i(2)yi(x)) ™" = po(yi(")i(x))) ™" = poli(z"2)) " po(y) ",
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. h21...h h31...h h
applied to y = gy, © = ggrn and 2 = pra(m X X vg1) = i1 Gar Gy 19q1

(cf. Lemma 3.5), the difference becomes

(60 — 98)w(¥; £) = p"((J07)1) (w(m; (Fyriton)y — plii(ghar-tayy =1y, 4 ( f)hn)).
(71)

4.17. HIGHER DIFFERENCE MAPS AND OUTLOOK. Let w € C?%(G, ¢). In Section 3, it is
explained that if the total differential is defined by Eq. (28), V2w is not necessarily zero;
more specifically, in general,

(V2w)PHHatl = 95w — 60w # 0.
We can sum up Subsection 4.9 as saying that, if the total differential is redefined by

V= (-1)?(5(1) YO+ A+ (—1)7"5), (72)

(V2w)Pthatl s ensured to vanish. However, adding the difference maps does not yet

imply that V2w vanishes; indeed, (VZw)?™77! and (V2w)? 17*? need not be zero, as

A does not necessarily commute with neither 0 nor 4. In Subsection 3.14, these non-
vanishing coordinates of V?w are studied in the case p+q+r = 1, and it is explained that
one can ensure again V2w = 0 by adding the second difference maps Aoy and Ay (cf.
Eq.’s (38) and (39)). Thus, redefining the total differential by Eq. (4) forces (V2w)? 34!
and (V2w)? 17" to be zero, but, in general, as with the first difference maps, the V of
Eq. (4) does not yet square to zero in general. Adding higher difference maps creates new
non-vanishing coordinates, which, in turn, can be made to zero by adding further higher
difference maps. Ultimately, if the total differential is defined by

vV = (_1)17(5(1) + Z (—1)(“+1)(T+b+1)Aa,b> (73)
a+b>0
for some
Ayyp: CPUG, ¢) —= CTTE (G, 9)
where we set Ay :=0, Aoy =0, A1 := A and A, g = Agp = 0 whenever a,b > 1, the
following is a rephrasing of the relation V? = 0:
4.18. THEOREM. Let w € CP4(G,$) and V be defined by (73). Then, V?w = 0 if and
only if
ii) for all0 <n<r+1and0<m<n,
S (Ao A = (<) 8 A (T4)
0<i+j<n

where [-, -] stands for the commutator of operators; and
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iii) for all0 <m <r+1,

Z (—1)i(FTH(iH)(jH)Ar+2—m—z‘,m—j o Ai,jw = (—1)T+1Ar+2—m,m o 5(1)60. (75)

0<itj<r42

Here, we assume the convention that A, = 0 whenever a < 0 or b < 0.

As it is briefly mentioned above, in Section 3, the necessary higher difference maps for
the cases p+ g+ < 1 are defined and they are shown to verify the relations of Theorem
4.18; moreover, that (1) squares to zero is established (see Lemmas 3.6 and 3.7), as well
as the relations of Eq. (74) in the cases when n < 2 (see Subsections 3.2.1, 3.5.1, 4.2, 4.9).
Although as of the writing of this paper, we are unable to provide a general formula for
the higher difference maps A, ;, we present evidence that suggests that one can find such
maps ultimately turning (Cy:(G, ¢), V) into a complex. In particular, with the formulas
we include in the appendix, the complex (29) is extended up to degree 5 (see Theorem
4.23 below).

We devote the remainder of this section to define the necessary higher difference maps
to prove that Eq. (75) holds in general for m € {1,r + 1}.

Let

Apy: CPYG, ) CrrarigG, ¢)

be defined by
Ar,lwﬁ) = Pg(tp(8571)~-.tp(867q+1)) © 925(00(86507; g1ry Gir—1, -+ 912, 911)); (76)

for we C(Gl x G",W) and 7 € GIt! as in Eq. (59).

p
4.19. PROPOSITION. Let w € C(GI x G", W), then

(—1)"'A 100+ D0 A, Jw = (—1)""A, 111 00w (77)

PROOF. To prove Eq. (77), one needs to consider two separate cases: ¢ = 0 and ¢ > 0.
For ¢ =0, let v € G, 41 and let (go, ..., gpir; 1) € GPTT1 X H be its image under the
isomorphism of Remark 2.5, then

ptr+1 ‘
0N w(y) = D (1) A 1w(97).
=0
Using Eq. (9), we compute
(Gr1s s Gpirs ) ifo<j<r
8Saj7: (gr,...,gjgj_l,...,ngr,,;h) if r <j < r+p (78)

(Grs ooy Gppr—1; Pi(Gptr))  Hfj=r+p+1,
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thus yielding
0N w(y) = ¢ [pé(hi(gr+p--.gr+1)) (w(gm o 91) = W(Gr, s 925 G1G0) + -t

+ (—1)“101(97«,9%297«71, 91, 90) + (=1)"w(9rgr—1, Gr—2---, 91,90))-1-

r+p

+ Z Y po(hi(grp--9r))w(gr—1, -, G0) +
Jj=r+1

+ (1) 5 (i (Grp)i(Grtp-1---90) )@ (g1, oo, go)] :

Since the terms in the sum have got no dependence on j and are equal to the last
term,

(=116 0b (il Gpr-9r41)) (S (91 s 90) = P4 (i(9:)gr1, s 90)) | iE p i 0ld
(—1)r+1¢(pg(hi<gp+T...gT+l))5 (g, - ,go)> otherwise.

On the other hand,

8Ar,lw('7) =

A 10w(y) = {pO(hZ(gP+T gr)) 0 p(w(gr_1, ..., 90)) if pis odd,

0 otherwise;

thus, in either case,
(00 Angws + (1)1 A 1 0 )(7) = (~1)H (Dry11 0 ) (7). (79)

For ¢ > 1, let 7 € QPHH be as in Eq. (59), then

p+r+1

00 w(F) = Y (—1) A 1w(9;7)

7=0
MO 0)- 55 ) KO0 00T g1, 12)
Ptl)(tp(agaﬂl)‘~tp(86817%1))90(3650(317)% Giri1s o5 913, G12g11) + ot

+( 1)T ! 1( (3@7« 1’71) (8687"717q+1>)w(3650(arfli;);glr+17g1rg1r717'“79127.911)“‘
+ (—1)%0(%@6@%)---tp(agaﬂqﬂ))w(ag(sowﬁ); 91r+191r, 91r—1---5 912, 911)+

p+r+1

3 (1Y bt (B0t (B505701))0 (000 (8;7)0.05 Girs ooy 911) |-

Jj=r+1
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Using Eq. (78) along with hey = hapt12(gab+1) = Pap+ri(Gap+r---Gab+1), One gets

aAr,lw(?) = (—1)T+1¢ p(l)(hlr+1-"h(Q+1)(r+1))(5(1)W(86+160’7; 9ir+1, -~-,911)+

L harpthig iy e
— po(i(grory T IN (G 00T; Grrs e 911)>+

ptr+1

— Z hlr h(Q+1)r>w(8650(8j7);glra -~-7911)]'

j=r+1

Notice that, as opposed to the case ¢ = 0, due to the explicit dependence on j, the terms
in the sum do not cancel one another.
On the other hand,

Am@w(i) = Pg(tpﬂ(3671)-~-75p+1(357q+1)) © cb(@w(@(’jéoi; 91ir, 91r—1, --+, 912, 911))

= pg(hlr--'h(q—‘rl)r) o ¢(p(l)(i(p7ﬂ0(’727‘+1 X...X 7(q+1)(7‘+1))))_1w<86+150/7; Giry ey gll)+

p+1

+ Z(—l)jw(ﬁjﬁg&ﬁ; 9ir; 9ir—1, ---5 912; 911)))3

j=1

thus, by means of 950; = 9,_,0; for j > r + 1 and
hlr---h(qﬂ)r = h1r+1~--h(q+1)(r+1)i(p7”G(71r+1 X...X ’Y(q+1)(r+1)))a
multiplying by the factor of (—1)"*! it follows that
<8Ar,1w + (_1)T+1Ar,1aw)(7) - (_1)T+1p8(hlr+1~-~h(q+1)(r+l)) © ¢<5(1>w(85“507; gir+1, ---,911)>

= (=1)""(Arp1,1 0 Syw)(7),

as desired.

Let

Ay, CPUG,0) Gy (G, )

be defined by

A1, () = p(tp(om) - p(Dovg4r)) 0 & (w(B005T; 912", g3t o gty gn1))s (80)
for w e C(GI x G",W) and 7 € GLI{ as in Eq. (59).
4.20. PROPOSITION. Let w € C(GI x G, W), then

(AL'I’ %) -+ <—1)T+1(5 0] ALT)CL) = <—1)T+1A17T+1 @) 5(1)&) (81)



TOWARDS A NEW COHOMOLOGY THEORY FOR STRICT LIE 2-GROUPS 659

PROOF. Let ¥ € GZ1™ be as in Eq. (59). Then,

q+r+1
0A1,w(T) = Pty (1)) A1,w(807) + > (—1Y Ar,w(6;7)
j=1
. h3i...hry1 hr1)1
= Pg(hnl(gn))d)[Pé(tp(3072)---tp(ao”7q+r+1))w(305 6o7); 9o g )+

T = by
— Po(tp(0o(1 X 72)) -t (O0Vgr11) )w (0005 (517); (917 gor ) e+ L g ™V ginyn )+

T i hij+n i+2)1--R(rt1)1
+Z tp(0071)--tp(00 (V3 X Vj41))- (00 Vgrr41))w (0065 (8;7); -y (9517 gygnyy) a1 PO )4
r+q
+ 3 (=1 06p0(tp(001) - (D0 (35 K 541)) -+t (B Vg 1))w (B (8,7); G170 s Gt )10 Gr1)+
Jj=r+1

+( 1>T+q+1 1( (8071) (80’7q+T))w(8056(5T+q+15;);gilfl...hrla"'798311)1797‘1)

. hotehgry il o, h . B
= Pg(h11~-~h(q+r+1)1)¢[po( (911 e H)l)) (Do +1 31 et --797«1( Jrl)l,g(rJrl)l)TL

- hot...h(, hiy
+Z W(DoO T Sy (gh2 e gl )+
r—+q
+ Y (=1 w(@00(0,7); 917" g s 9r))
j=r+1

+ (=1 g (Agr+1)1) T w (0005 (Or4+4+17); g h”,...,géﬁil)l,grl)]

and
AR | hai.. th hr1
Alﬂ"dw(,}/) - pO(tp(ao’Yl)"'tp(80’7q+7"+1)) o ¢(5w(8050’7, 911 sy g(rfl)la grl))

T =. ey r h T
= po(ha1.-higersan )¢[ (0005719 (gl (g?ril)l)h<r+1)1vgrl( )+
+ Z W(8;00067; i s gty Gr)+

+ (=1 pg (6 (Q0vg4r41)) ' w(Og4180007; 91", --ﬂ?fil)pgm))]
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Since 630; = 00 for j > r + 1 and ¢,(0oVg4r+1) = Pig+rt1)1, it follows that

T = - h h ™ h ™
(6A1, + (1) AL 8)w(F) = po(har--hgrren) © ¢<5(1)w(805 gy T g +1>1>g(r+1)1)>

= (Al,rJrl © 5(1)W)(7),

as desired.
=

4.21. REMARK. Propositions 4.19 and 4.20 are the simplest of relations in Theorem 4.18,
both due to the definition of the higher difference maps involved and to the number of
terms in Eq. (75). Continuing Remark 4.12, these results prove that though the difference
maps do not commute in general with neither 0 nor ¢, they do so up to isomorphism in
the 2-vector space.

Appendix

We devote this appendix to give the rather cumbersome formulas for some families of
higher difference maps and all maps necessary to extend (29) up to degree 5.
We introduce further notation in order to abbreviate the formulas. Associated to
v € qu’ as in Eq. (59) for a,b > 0, define the sub-matrices

i ’_Yﬁ’b = (Vij)1<i<bii<j<a € Gt and
b ”ﬁ’b = (’Yij)b+1§i§q+b;1§jga € Qg.
Also, define || 7 || to be the full product of the coordinates of 7, i.e.,
|7 |l:== 7™ 15q+b Y= (Y11 B4 D Yippa) X oo X (Vgrty1 Do DX V(g b)Y (pta) )

and || 7 [la:= pre([| 7 1)-

FRONT PAGE. Each difference map landing on the front page

Aap: Oty 1(9,0) Gy (G, )

is defined by
Baso(7) = A (s 5 1121 55" 1)) o¢[ > clayw(D05: (3 >)],
OéEIab

for w € C(GL x G~ W) and 7 € ggia Here, I,; is a set of indices, ((«) is a sign and
{cap}act,, is a collection of maps

Gaerfl

a . b
Ca,b . ga
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OTHERWISE. Each difference map landing off the front page

Cp+a,q+b

. Dp,q
Aa,b . CT r+1—(a+b)

with a + b < r + 1 is defined by

—

B (7 1) =ob(i1 75 1)) [ ST B (a8 ) (FrAt) ) +

ﬁeJa b(r)

+ b At B0y -1 > ) (aaab* (Fya, 7b<%,b)>]7

ae[{z,b

for w e C(GI x G", W), ¥ Qq+b and f € G-t Again, J,,(r) is a set of indices,
((B) stands for the sign of the index 5 and {Cgib(/r)}/jejayb(r) is a set of maps

Cgb( ) : Gr—i—l—(a—i—b) % gg G

We limit ourselves to specifying the index set I, the values of ¢, and the signs ¢ ()
by writing them as the formal polynomial p,p, = > ¢,  ((@)cq,. Analogously, we use

the formal polynomial pl(lrg =D 8T, o(r) C(ﬂ)cg’b(r) to indicate J, (), cg’b(r) and ().

P22 (%1 %2) =(9132922: 917" g21) — ((912911)"%2, 922, 921) + (915°, 1%, 922)+
Y21 V22
+ (9152922, 922+ 9172 22) — (9157922 G2 G22)
Using these coordinates to define A, 5 implies
(Ag100—=A1p00—-A0A-00A5+000)w=—Ags051)w (82)

for all w € CYY(G, ¢).

We point out that there is a certain recurrence in py,. Indeed, one can use p; 2, p21
and the coordinates of the first difference map A, ¢y 1(2), ey (2) (cf. Eq.’s (62) and (63))
to recast poo as

paa(?) =( 11 7 llase12(029) = (172 12815, e (607) ) +

- 5(00607 — - . —
o ((eaa () @™, (@807 ) + (1067 s (1 (75 0000) ).

where ¥ € G2 is as in Eq. (59). Using this scheme, one can write more easily the seventeen
terms in ps o and the fifteen terms in p; 3; however, in turn, these are written in part using

ps) and pi?).
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pz%(f (71 m2)) =((g12011) ", "2 912, g11) — ((g12911) ™", 912, g11)+

— (911 912 fh12912) + (911 912, 12) — (911 fhu,gn)-

p%cﬂ(””)):4@%wmrﬁaﬁnmo@n@n—«@%wmrﬁgﬁamo+

(921 ) (9?121) (fhngll)h21) + (921 ) (9?121) ;9?121) (921 7fhm gll)hmagm)-

Inductively, for f = (fi,-- fro1) € G and 7 € Gy as in Eq. (59),

i) = (ﬂm@%ém%ﬁw)+«4r“kmwmxf 7) + (gﬁdVamQr

and for ¥ € G% as in Eq. (59),

r — T RN 2 _ - i
+ (-1 [(ng, (P (F3 7)) 21) + (9211, (f)h (g11>”21,gzl>],

Using these coordinates to define Ay and A; o implies that for all w € CP9(G, ¢),
(Aod+doA)w=(=1)"(81)0 Agy — Doy 061w, (83)

and
(Aod+doA)w=(=1)"(6n) 0 A1z — A1z 00m))w. (84)

Eq.’s (82), (83) and (84) were the missing relations to imply the following result:

4.22. THEOREM. The composition

Ctgot(g7 ¢) Ctg)ot(ga Qb) Ct40t(97 ¢) (85)

15 tdentically zero.

For 4 € G2 as in Eq. (59),
p32(7) =( 11087 Il 22723 ) + (1175 187, e, (607) ) +
- ((esn(3) 7, 11 (@B007) ) + (1 8 Nl b2 (20 (731): 02007) ) +

+ (50(03 NG ))S(aoé(w 62,1(50507)> < | 967 llais P50 (c11 (T5Y); 30507)>
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For 4 € G3 as in Eq. (59),
— — — —' S 5 ol —
P =( 11067 llese1a75) = (13 18T ea(09)) +
) 5(00627 R - - R
+ ((c42(732) ™7, 1120087 ) + (1 607 Il #1215 (752): 60037) ) +

— 5(00607 — . N —
 ((ean ()™, e12(00007) ) + (1067 s 82 (1,1 (T 0000) ),

where, for clarity, ¢;,(77") = (9152922, 917" 921)-

Using these coordinates to define Az, and Ay 3 implies that for all w € CY(G, ¢),

(Ag100+A9200+ A1 0A+A0A; —00Ass+60A31)w=Ags00pw (86)
and

(Agp00+A1300+A100A+A0A5+00A13—60Ass)w=ANg300qw (87)

We conclude defining the necessary higher difference maps to extend (85) to degree 5.

p;ff (f§ (1 m2 M3 )) = <9ﬂl>p§?% (f; (M2 713))) — ((g12911) "5 £, 912, 911 )+

+ ((913912911) ™% f™3g13, 912, 911) — ((913912911) ™", 913, 912, 911)-

11
4 _ 3 h _ i
pg% (fil e |) = <93117 (pﬁ,%(f; (712))) 31) — ((gh3 gz1) ™t fruilorharhar - ghar "oy

31 s
+ (917" 957 951) ™ (F1 1) g5, gan) — (907" 95 931) ", 91", 51" 9o )
Using these coordinates to define As; and A; 3 implies
(D0 Agy —Agg0d)w=(Azy001)—0d 0Az;)w (88)
and
(A1p00 —00A1o)w=(A130001)— 08 oAy 3)w, (89)

for all w € CY4(G, ).
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Finally,

4 — — — — — — —
pE3(f:7) = (1A% NG £ eoa(i®)) = (007 G" S0, e, (00) ) +
- -1 (3 - - 3) (= s(I175% 1)
= (1382 165 P20 00 ) + (160 N, eEGFED) )+
= (1382 1G5 P2 91 80007)) = (1607 D6, (21 (F50)) "™ 922 ) +
(1716501 (£72p22D) ) = (17135 P2a(D) = (9221 g) " 14722, g2, ) +
+ (921 g2 (9F) 71 S 2 01 002) — (920 920 (9172) " 912 g20) +

— (g2 (1771 gatts F1 229192 g0 ) + (937, (913) ™, ga1's G172 g02)

for f € G and 7 = (7” 712) € G2
Y21 V22

Using the latter to define A, implies that for all w € CY%(G, ¢),
(Ag,l 00 — ALQ od—AoA—-0o ALQ + do A2,1)w = (AQ’Q o (5(1) — 5/ o AQQ)CL); (90)
thus, together with Eq.’s (86), (87), (88) and (89), the following holds:

4.23. THEOREM. The composition

Cz?ot(g7 ¢> 4 C;lot<g7 ¢) ¥ Cfot(g7 ¢> (91>

15 1dentically zero.

References

[1] C. Angulo, A new cohomology theory for strict Lie 2-algebras. Commun. Contemp.
Math., Vol. 24, 3 (2022) 2150017.

[2] C. Angulo, A cohomological proof for the integrability of strict Lie 2-algebras. Int. J.
Geom. Methods Mod. Phys., 19(14): No. 2250222, 48, 2022.

[3] J. C. Baez and A. S. Crans, Higher-dimensional algebra VI: Lie 2-algebras. Theory
Appl. Categ., 12 (2004) 492-538.

[4] J. C. Baez and A. Lauda, Higher-dimensional algebra 5: 2-groups. Theory Appl. Categ.,
12 (2004) 423-491.

[5] H.-J. Baues, Non-abelian extensions and homotopies. Non-abelian extensions and ho-
motopies. K-theory, 10 (2) (1996) 107-133.



TOWARDS A NEW COHOMOLOGY THEORY FOR STRICT LIE 2-GROUPS 665

[6] R. Brown and C. B. Spencer, G-groupoids, crossed modules and the fundamental
groupoid of a topological group. Indag. Math. (Proceedings), Vol. 79, 4 (1976) 296
302.

[7] H. Bursztyn, A. Cabrera and M. del Hoyo, Vector bundles over Lie Groupoids and
algebroids. Adv. Math., 290 (2016) 163-207.

[8] M. Crainic, Differentiable and algebroid cohomology, van Est isomorphisms, and char-
acteristic classes. Coment. Math. Helv., Vol. 78, 4 (2003) 681-721.

[9] C. Ehresmann, Catégories structurées. Ann. Ec. Norm. Sup., (3) 80 (1963) 349-426.
[10] G. J. Ellis, Homology of 2-types. J. London Math. Soc., 46 (2) (1992) 1-27.

[11] A. Gracia-Saz and R. Mehta, VB-groupoids and representations theory of Lie
groupoids. J. Symplect. Geom., 15 (3) (2017) 741-783.

[12] M. Ladra and A. R.- Grandjean, Crossed modules and homology. J. Pure Appl.
Algebra, 95 (1994) 41-55.

[13] J.-L. Loday, Spaces with finitely many non-trivial homotopy groups. J. Pure Appl.
Algebra, 24 (1982) 179-202.

[14] K.-H. Neeb, Central extensions of infinite-dimensional Lie groups. Ann. Inst. Fourier,
Grenoble, Vol. 52, 5 (2002) 1365-1442.

[15] K. Norrie, Actions and automorphisms of crossed modules. Bull. Soc. Math. France,
118 (1990), no. 2, 129-146.

[16] C. J. Schommer-Pries, Central extensions of smooth 2-groups and a finite-dimensional
string 2-group. Geom. Topol., Vol. 15, 2 (2011) 609-676.

[17] Y. Sheng and R. Tang, Cohomological characterizations of non-abelian extensions of
strict Lie 2-algebras. J. Geom. Phys., 144 (2019) 294-307.

[18] Y. Sheng and C. Zhu, Integration of Lie 2-algebras and their morphisms. Lett. Math.
Phys., 102 (2) (2012) 223-244.

[19] Y. Sheng and C. Zhu, Integration of semidirect product Lie 2-algebras. Int. J. Geom.
Methods Mod. Phys., Vol. 95 (2012) 1250043.

[20] W. T. van Est, Une application d’'une méthode de Cartan-Leray. Proc. Kon. Ned.
Akad., 58 (1955) 542-544.

[21] W. T. van Est and J. Th. Korthagen, Non-enlargible Lie algebras. Indag. Math., 26
(1964) 15-31.



666 CAMILO ANGULO

[22] J. H. C. Whitehead, Combinatorial homotopy II. Bull. Amer. Math. Soc., 55 (1949)
453-496.

School of Mathematics, Jilin University,
No. 2699 Qianjin Street, Changchun City, Jilin Province, China.
Email: ca.angulo9510@gmail.com

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

SUBSCRIPTION INFORMATION Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

INFORMATION FOR AUTHORS I¥TEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

MANAGING EDITOR. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca
TEXNICAL EDITOR. Michael Barr, McGill University: michael.barr@mcgill.ca

ASSISTANT TEX EDITOR. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin_seal@fastmail.fm

TRANSMITTING EDITORS.

Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr

Julie Bergner, University of Virginia: jeb2md (at) virginia.edu

Richard Blute, Université d’ Ottawa: rblute@uottawa.ca

John Bourke, Masaryk University: bourkej@math.muni.cz

Maria Manuel Clementino, Universidade de Coimbra: mmc@mat.uc.pt

Valeria de Paiva, Topos Institute: valeria.depaiva@gmail.com

Richard Garner, Macquarie University: richard.garner®@mq.edu.au

Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu

Rune Haugseng, Norwegian University of Science and Technology: rune.haugseng@ntnu.no
Dirk Hofmann, Universidade de Aveiro: dirk@ua.pt

Joachim Kock, Universitat Autonoma de Barcelona: Joachim.Kock (at) uab.cat

Stephen Lack, Macquarie University: steve.lack@mq.edu.au

Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk

Sandra Mantovani, Universita degli Studi di Milano: sandra.mantovani@unimi.it

Matias Menni, Conicet and Universidad Nacional de La Plata, Argentina: matias.menni@gmail.com
Giuseppe Metere, Universita degli Studi di Palermo: giuseppe.metere (at) unipa.it
Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

Jiri Rosicky, Masaryk University: rosicky@math.muni.cz

Giuseppe Rosolini, Universita di Genova: rosolini@unige.it

Michael Shulman, University of San Diego: shulman@sandiego.edu

Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-1j.si

James Stasheff, University of North Carolina: jds@math.upenn.edu

Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be
Christina Vasilakopoulou, National Technical University of Athens: cvasilak@math.ntua.gr



	Introduction
	Preliminaries
	The grid, the snapshot complex and its cohomology
	Inkling of a larger complex

