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EXISTENCE OF GROUPOID MODELS FOR DIAGRAMS OF
GROUPOID CORRESPONDENCES

JOANNA KO AND RALF MEYER

Abstract. This article continues the study of diagrams in the bicategory of étale
groupoid correspondences. We prove that any such diagram has a groupoid model and
that the groupoid model is a locally compact étale groupoid if the diagram is locally
compact and proper. A key tool for this is the relative Stone–Čech compactification for
spaces over a locally compact Hausdorff space.

1. Introduction

Many interesting C∗-algebras may be realised as C∗-algebras of étale, locally compact
groupoids. Examples are the C∗-algebras associated to group actions on spaces, (higher-
rank) graphs, and self-similar groups. These examples of C∗-algebras are defined by
some combinatorial or dynamical data. This data is interpreted in [1, 5] as a diagram
in a certain bicategory, whose objects are étale groupoids and whose arrows are called
groupoid correspondences. A groupoid correspondence is a space with commuting actions
of the two groupoids, subject to some conditions. In favourable cases, the C∗-algebra
associated to such a diagram is a groupoid C∗-algebra of a certain étale groupoid built
from the diagram. A candidate for this groupoid is proposed in [5], where it is called the
groupoid model of the diagram.

Here we prove two important results about groupoid models. First, any diagram
of groupoid correspondences has a groupoid model. Secondly, the groupoid model is a
locally compact groupoid provided the diagram is proper and consists of locally compact
groupoid correspondences. The latter is crucial because the groupoid C∗-algebra of an
étale groupoid is only defined if it is locally compact.

By the results in [5], the groupoid model exists if and only if the category of actions
of the diagram on spaces defined in [5] has a terminal object, and then it is unique up
to isomorphism. To show that such a terminal diagram action exists, we prove that the
category of actions is cocomplete and has a coseparating set of objects; this criterion is
also used to prove the Special Adjoint Functor Theorem.

Proving that the groupoid model is locally compact is more challenging. The key
ingredient here is the relative Stone–Čech compactification. This is defined for a space Y
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with a continuous map to a locally compact Hausdorff “base space” B, and produces
another space over B that is proper in the sense that the map to B is proper and its un-
derlying space is Hausdorff. If B is a point, then the relative Stone–Čech compactification
becomes the usual Stone–Čech compactification. An action of a diagram on a space Y
contains a map Y → G0 for a certain space G0, which is locally compact and Hausdorff
if and only if the diagram is locally compact. If the diagram is proper, then the action
on Y extends uniquely to an action on the relative Stone–Čech compactification. Since
the relative Stone–Čech compactification is a Hausdorff space with a proper map to the
locally compact Hausdorff space G0, it is itself a locally compact Hausdorff space. Then
a standard categorical argument shows that the relative Stone–Čech compactification of
a universal action must be homeomorphic to the universal action. This shows that the
universal action lives on a locally compact Hausdorff space that is proper over G0. As a
consequence, this space is compact if G0 is compact.

The main result in this article answers an important, but technical question in the
previous article [5]. Therefore, we assume that the reader has already seen [5] and we
do not attempt to make this article self-contained. In Section 2, we only recall the most
crucial results from [1,5]. In Section 3, we prove that any diagram has a groupoid model
– not necessarily Hausdorff or locally compact. In Section 4, we introduce the relative
Stone–Čech compactification and prove some properties that we are going to need. In
Section 5, we prove that an action of an étale groupoid or of a diagram of proper, locally
compact étale groupoid correspondences extends canonically to the relative Stone–Čech
compactification. In Section 6, we use this to prove that the universal action of such
a diagram lives on a space that is Hausdorff, locally compact, and proper over G0. To
conclude, we discuss two examples. One of them shows that the groupoid model may fail
to be locally compact if the groupoid correspondences in the underlying diagram are not
proper.

2. Preparations

In this section, we briefly recall the definition of the bicategory of groupoid correspon-
dences, diagrams of groupoid correspondences, their actions on spaces, and the universal
action of a diagram. We describe actions of diagrams through slices. More details may
be found in [1, 5].

We describe a topological groupoid G by topological spaces G and G0 ⊆ G of arrows and
objects with continuous range and source maps r, s : G ⇒ G0, a continuous multiplication
map G×s,G0,rG → G, (g, h) 7→ g ·h, such that each object has a unit arrow and each arrow
has an inverse with the usual algebraic properties and the unit map and the inversion are
continuous as well. We tacitly assume all groupoids to be étale, that is, s and r are local
homeomorphisms. This implies that each arrow g ∈ G has an open neighbourhood U ⊆ G
such that s|U and r|U are homeomorphisms onto open subsets of G0. Such an open subset
is called a slice.

2.1. Definition. An (étale) groupoid G is called locally compact if its object space G0



EXISTENCE OF GROUPOID MODELS 451

is Hausdorff and locally compact.

If G is a locally compact groupoid, then its arrow space G is locally compact and
locally Hausdorff, but it need not be Hausdorff. We only know that each slice U ⊆ G is
Hausdorff locally compact because it is homeomorphic to an open subset in G0. As in [5],
we allow groupoids that are not locally compact. We need this for the general existence
result for groupoid models.

2.2. Definition. [5, Definitions 2.7–9] Let H and G be (étale) groupoids. An (étale)
groupoid correspondence from G to H, denoted X : H ← G, is a space X with commuting
actions of H on the left and G on the right, such that the right anchor map s : X → G0
is a local homeomorphism and the right G-action is basic. A correspondence X : H ← G
is proper if the map r∗ : X/G → H0 induced by r is proper. A groupoid correspondence
X : H ← G is locally compact if H and G are locally compact and X/G is Hausdorff.

The “groupoids” and “groupoid correspondences” as defined in [1] are the “locally
compact groupoids” and the “locally compact groupoid correspondences” in the notation
of this article.

2.3. Definition. [1, Definition 7.2] Let X : H ← G be a groupoid correspondence. A
slice of X is an open subset U ⊆ X such that both s : X → G0 and the orbit space
projection p : X ↠ X/G are injective on U . Let S(X ) be the set of all slices of X .

Let X : H ← G be a groupoid correspondence. Then the slices of X form a basis for
the topology of X .

Groupoid correspondences may be composed, and this gives rise to a bicategory Gr
(see [1]). We only need this structure to talk about bicategory homomorphisms into Gr.
Such a homomorphism is described more concretely in [5]:

2.4. Proposition. [5, Proposition 3.1] Let C be a category. A C-shaped diagram of
groupoid correspondences F : C → Gr is given by

(1) groupoids Gx for all objects x of C;

(2) correspondences Xg : Gx ← Gy for all arrows g : x← y in C;

(3) isomorphisms of correspondences µg,h : Xg ◦Gy Xh
∼−→ Xgh for all pairs of composable

arrows g : z ← y, h : y ← x in C;

such that

(2.4.1) Xx for an object x of C is the identity correspondence Gx on Gx;

(2.4.2) µg,y : Xg ◦Gy Gy
∼−→ Xg and µx,g : Gx ◦Gx Xg

∼−→ Xg for an arrow g : x← y in C are
the canonical isomorphisms;
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(2.4.3) for all composable arrows g01 : x0 ← x1, g12 : x1 ← x2, g23 : x2 ← x3 in C, the
following diagram commutes:

(Xg01 ◦Gx1
Xg12) ◦Gx2

Xg23

Xg01 ◦Gx1
(Xg12 ◦Gx2

Xg23)

Xg02 ◦Gx2
Xg23

Xg01 ◦Gx1
Xg13

Xg03
∼= associator

µg01,g12◦Gx2 idXg23

idXg01
◦Gx1µg12,g23

µg02,g23

µg01,g13

(1)

here g02 := g01 ◦ g12, g13 := g12 ◦ g23, and g03 := g01 ◦ g12 ◦ g23.

2.5. Definition. [5, Definition 3.8] Let C be a category. A diagram of groupoid corre-
spondences F : C → Gr described by the data (Gx,Xg, µg,h) is proper if all the groupoid
correspondences Xg are proper. It is locally compact if all the groupoids Gx and the
correspondences Xg are locally compact.

2.6. Definition. [5, Definition 4.5] An F -action on a space Y consists of

• a partition Y =
⊔

x∈C0 Yx into clopen subsets;

• continuous maps r : Yx → G0x;

• open, continuous, surjective maps αg : Xg×s,G0
x,r

Yx → Yx′ for arrows g : x′ ← x in C,
denoted multiplicatively as αg(γ, y) = γ · y;

such that

(2.6.1) r(γ2 · y) = r(γ2) and γ1 · (γ2 · y) = (γ1 · γ2) · y for composable arrows g1, g2 in C,
γ1 ∈ Xg1 , γ2 ∈ Xg2 , and y ∈ Ys(g2) with s(γ1) = r(γ2), s(γ2) = r(y);

(2.6.2) if γ · y = γ′ · y′ for γ, γ′ ∈ Xg, y, y
′ ∈ Ys(g), there is η ∈ Gs(g) with γ′ = γ · η and

y = η · y′.

2.7. Definition. [5, Definition 4.13] An F -action Ω is universal if for any F -action Y ,
there is a unique F -equivariant map Y → Ω.

2.8. Definition. [5, Definition 4.13] A groupoid model for F -actions is an étale group-
oid U with natural bijections between the sets of U -actions and F -actions on Y for all
spaces Y .

It follows from [5, Proposition 5.12] that a diagram has a groupoid model if and only
if it has a universal F -action. By definition, an F -action is universal if and only if it
is terminal in the category of F -actions. Our first goal below will be to prove that any
diagram of groupoid correspondences has a universal F -action and hence also a groupoid
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model. The universal action and the groupoid model of a diagram are unique up to
canonical isomorphism if they exist (see [5, Proposition 4.16]).

A key point in our construction of the universal F -action is an alternative description
of an F -action, which uses partial homeomorphisms associated to slices of the groupoid
correspondences in the diagram.

Let X : H ← G be a groupoid correspondence and let U ,V ⊆ X be slices. Recall that
⟨x, y⟩ for x, y ∈ X with p(x) = p(y) is the unique arrow in G with x · ⟨x, y⟩ = y. The
subset

⟨U ,V⟩ := {⟨x, y⟩ ∈ G : x ∈ U , y ∈ V , p(x) = p(y)}

is a slice in the groupoid G by [1, Lemma 7.7]. Next, let X : H ← G and Y : G ← K be
groupoid correspondences and let U ⊆ X and V ⊆ Y be slices. Then

U · V := {[x, y] ∈ X ◦G Y : x ∈ U , y ∈ V , s(x) = r(y)}

is a slice in the composite groupoid correspondence X ◦G Y by [1, Lemma 7.14].
Let F be a diagram of groupoid correspondences. Let S(F ) be the set of all slices

of the correspondences Xg for all arrows g ∈ C, modulo the relation that we identify the
empty slices of S(Xg) for all g ∈ C. Given composable arrows g, h ∈ C and slices U ⊆ Xg,
V ⊆ Xh, then UV := µg,h(U · V) is a slice in Xgh. If g, h are not composable, then we let
UV be the empty slice ∅. This turns S(F ) into a semigroup with zero element ∅.

2.9. Definition. Let Y be a topological space. A partial homeomorphism of Y is a
homeomorphism between two open subsets of Y . These are composed by the obvious
formula: if f, g are partial homeomorphisms of Y , then fg is the partial homeomorphism
of Y that is defined on y ∈ Y if and only if g(y) and f(g(y)) are defined, and then
(fg)(y) := f(g(y)). If f is a partial homeomorphism of Y , we let f ∗ be its “partial
inverse”, defined on the image of f by f ∗(f(y)) = y for all y in the domain of f .

Let Y with the partition Y =
⊔

x∈C0 Yx be an F -action. Then slices in S(F ) act on Y
by partial homeomorphisms. For an arrow g : x ← x′ in C, a slice U ⊆ Xg acts on Y by
the partial homeomorphism

ϑ(U) : Yx′ ⊇ r−1(s(U))→ Yx

that maps y ∈ Yx′ with r(y) ∈ s(U) to γ · y for the unique γ ∈ U with s(γ) = r(y).
The following lemmas describe F -actions and F -equivariant maps through these partial
homeomorphisms.

2.10. Lemma. [5, Lemma 5.3] Let Y be a space and let r : Y →
⊔

x∈C0 G0x and ϑ : S(F )→
I(Y ) be maps. These come from an F -action on Y if and only if

(2.10.1) ϑ(UV) = ϑ(U)ϑ(V) for all U ,V ∈ S(F );

(2.10.2) ϑ(U1)∗ϑ(U2) = ϑ(⟨U1,U2⟩) for all g ∈ C, U1,U2 ∈ S(Xg);

(2.10.3) the images of ϑ(U) for U ∈ Xg cover Yr(g) := r−1(G0r(g)) for each g ∈ C;
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(2.10.4) r ◦ ϑ(U) = U† ◦ r as partial maps Y → G0 for any U ∈ S(F ).

The corresponding F -action on Y is unique if it exists, and it satisfies

(2.10.5) for U ⊆ G0x open, ϑ(U) is the identity map on r−1(U);

(2.10.6) for any U ∈ S(F ), the domain of ϑ(U) is r−1(s(U)).

2.11. Lemma. [5, Lemma 5.4] Let Y and Y ′ be F -actions. A continuous map φ : Y → Y ′

is F -equivariant if and only if r′ ◦ φ = r and ϑ′(U) ◦ φ = φ ◦ ϑ(U) for all U ∈ S(F ).

3. General existence of a groupoid model

Our next goal is to prove that any diagram of groupoid correspondences has a groupoid
model. By the results of [5] mentioned above, it suffices to show that its category of
actions has a terminal object. Our proof will use the following criterion for this:

3.1. Lemma. Let D be a cocomplete, locally small category. Assume that there is a set
of objects Φ ⊆ D such that for any object x ∈ D0 there is a y ∈ Φ and an arrow x → y.
Then D has a terminal object.

Proof. This is dual to [7, Lemma 4.6.5], which characterises the existence of an initial
object in a complete, locally small category.

3.2. Theorem. Any diagram of groupoid correspondences F : C → Gr has a universal
F -action and a groupoid model.

Proof.By the discussion above, it suffices to prove that the category of F -actions satisfies
the assumptions in Lemma 3.1. We first exhibit the set of objects Φ.

Let Y be any space with an F -action. Equip Y with the canonical action of the inverse
semigroup I(F ). Call an open subset of Y necessary if it is the domain of some element
of I(F ). Let τ ′ be the topology on Y that is generated by the necessary open subsets,
and let Y ′ be Y with the topology τ ′. Let Y ′′ be the quotient of Y ′ by the equivalence
relation where two points y1, y2 are identified if

{U ∈ τ ′ : y1 ∈ U} = {U ∈ τ ′ : y2 ∈ U}

and r(y1) = r(y2) for the canonical continuous map r : Y →
⊔

x∈C0 G0x. The continuous
map r : Y → G0 :=

⊔
x∈C0 G0x descends to a map on Y ′′, which is continuous because

the subsets r−1(U) for open subsets U ⊆ G0x, x ∈ C0 are “necessary” by (2.10.5). The
I(F )-action on Y descends to an I(F )-action on Y ′′ because all the domains of elements
of I(F ) are in τ ′. Then Lemma 2.10 implies that the F -action on Y descends to an
F -action on Y ′′. The quotient map Y ↠ Y ′′ is a continuous F -equivariant map.

Next, we control the cardinality of the set Y ′′. By construction, finite intersections of
necessary open subsets form a basis of the topology τ ′. A point in Y ′′ is determined by
its image in G0 and the set of basic open subsets that contain it. This defines an injective
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map from Y ′′ to the product of G0 and the power set P(Υ) for the set Υ of finite subsets
of I(F ). We may use this injective map to transfer the F -action on Y ′′ to an isomorphic
F -action on a subset of G0 ×P(Υ), equipped with some topology. Let Φ be the set of all
F -actions on subsets of G0×P(Υ), equipped with some topology. This is indeed a set, not
a class. The argument above shows that any F -action admits a continuous F -equivariant
map to an F -action in Φ, as required.

The category of F -actions is clearly locally small. It remains to prove that it is
cocomplete. It suffices to prove that it has all small coproducts and coequalisers (see
[7, Theorem 3.4.12]). Coproducts are easy: if (Yi)i∈I is a set of F -actions, then the
disjoint union

⊔
i∈I Yi with the canonical topology carries a unique F -action for which

the inclusions Yi →
⊔

i∈I Yi are all F -equivariant, and this is a coproduct in the category
of F -actions. Now let Y1 and Y2 be two spaces with F -actions and let f, g : Y1 ⇒ Y2 be
two F -equivariant continuous maps. Equip Y2 with the equivalence relation ∼ that is
generated by f(y) ∼ g(y) for all y ∈ Y1 and let Y be Y2/∼ with the quotient topology.
This is the coequaliser of f, g in the category of topological spaces. We claim that there
is a unique F -action on Y so that the quotient map is F -equivariant. And this F -action
turns Y into a coequaliser of f, g in the category of F -actions. We use Lemma 2.10 to
build the F -action on Y . Since f, g are F -equivariant, the continuous map r : Y2 → G0
equalises f, g. Then r descends to a continuous map r : Y → G0. Let t ∈ I(F ). The
domain of t is closed under ∼ because f, g are I(F )-equivariant, and y1 ∼ y2 implies
ϑ(t)(y1) ∼ ϑ(t)(y2). Therefore, the image of the domain of ϑ(t) in Y is open in the
quotient topology and ϑ(t) descends to a partial homeomorphism of Y . This defines an
action of I(F ) on Y . All conditions in Lemma 2.10 pass from Y2 to Y . We have found
an F -action on Y . Any continuous map h : Y2 → Z with h ◦ f = h ◦ g descends uniquely
to a continuous map h♭ : Y → Z. If h is F -equivariant, then so is h♭ by Lemma 2.11.
Thus Y is a coequaliser of f, g. This finishes the proof that the category of F -actions is
cocomplete. And then the existence of a final object follows.

Theorem 3.2 has the merit that it works for any diagram of groupoid correspondences.
Applications to C∗-algebras, however, need the groupoid model to be locally compact.
Equivalently, the underlying space Ω of the universal action should be locally compact
and Hausdorff. Example 6.6 shows that Ω may fail to be locally compact in rather simple
examples. In the following sections, we are going to prove that Ω is locally compact and
Hausdorff whenever F is a diagram of proper, locally compact groupoid correspondences.
Like the proof of Theorem 3.2, our proof of this statement will not be constructive. The
key tool is a relative form of the Stone–Čech compactification, which we will use to show
that any F -action maps to an F -action on a locally compact Hausdorff space.

4. The relative Stone–Čech compactification

We begin by recalling some well known definitions.
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4.1. Proposition. [3, I.10.1, I.10.3 Proposition 7] Let X and Y be topological spaces.
A map f : X → Y is proper if and only if f × idZ : X × Z → Y × Z is closed for every
topological space Z.

If X is Hausdorff and Y is Hausdorff, locally compact, then f : X → Y is proper if
and only if preimages of compact subsets are compact.

4.2. Definition. [4] Let B be a topological space. A B-space is a topological space Z
with a continuous map r : Z → B, called anchor map. It is called proper if r is a proper
map. Let (Z1, r1) and (Z2, r2) be two B-spaces. A B-map is a continuous map f : Z1 → Z2

such that the following diagram commutes:

Z1 Z2

B

f

r1 r2

Let B-Space be the category of B-spaces, which has B-spaces as its objects and B-maps as
its morphisms, with the usual composition of maps. Let B-Spaceproper ⊆ B-Space be the
full subcategory of those B-spaces (Z, r) where the space Z is Hausdorff and the map r
is proper.

4.3. Remark. If B is Hausdorff, locally compact and (Z, r) is a proper B-space, then Z is
locally compact by Proposition 4.1. This is how we are going to prove that the underlying
space of a universal action is locally compact.

For a topological space X, its Stone–Čech compactification is a compact Hausdorff
space βX with a continuous map ιX : X → βX, such that any continuous map from X
to a compact Hausdorff space factors uniquely through ιX . In other words, the Stone–
Čech compactification β is left adjoint to the inclusion of the full subcategory of compact
Hausdorff spaces into the category of all topological spaces. If B is the one-point space,
then a B-space is just a space, and B-maps are just continuous maps. A proper, Hausdorff
B-space is just a compact Hausdorff space. Thus the Stone–Čech compactification is a
left adjoint for the inclusion B-Spaceproper ⊆ B-Space in the case where B is a point. The

relative Stone–Čech compactification generalises this to all Hausdorff, locally compact
spaces B.

For a topological space X, let Cb(X) be the C∗-algebra of all bounded, continuous
functionsX → C. A continuous map f : X → Y induces a ∗-homomorphism f ∗ : Cb(Y )→
Cb(X), h 7→ h ◦ f . If X is Hausdorff, locally compact, then we let C0(X) ⊆ Cb(X)
be the ideal of all continuous functions X → C that vanish at ∞. If X and Y are
Hausdorff, locally compact spaces and f : X → Y is a continuous map, then the restriction
of f ∗ : Cb(X)→ Cb(Y ) to C0(X) is nondegenerate, that is,

f ∗(C0(X)) · C0(Y ) = C0(Y ).

Conversely, any nondegenerate ∗-homomorphism is of this form for a unique continuous
map f . The range of f ∗ is contained in C0(Y ) if and only if f is proper.
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4.4. Definition. Let B be a locally compact Hausdorff space and let (X, r) be a B-space.
The relative Stone–Čech compactification βBX of X over B is defined as the spectrum of
the C∗-subalgebra

HX := Cb(X) · r∗(C0(B)) ⊆ Cb(X).

We show that the relative Stone–Čech compactification is indeed the reflector (left
adjoint) of the inclusion B-Spaceproper ↪→ B-Space.

In the following, we let B be a locally compact Hausdorff space, (X, r) an object in
B-Space and (X ′, r′) an object in B-Spaceproper. Then X ′ is Hausdorff by the definition
of B-Spaceproper and locally compact by Remark 4.3.

The inclusion i∗ : HX ↪→ Cb(X) is a ∗-homomorphism. For each x ∈ X, denote by evx
the evaluation map at x. Then evx ◦ i∗ : HX → C is a character on HX . It is nonzero
on HX because evx ◦ i∗(1 · r∗(h)) ̸= 0 if h ∈ C0(B) satisfies h(r(x)) ̸= 0. Thus evx ◦ i∗
is a point in the spectrum βBX of HX . This defines a map i : X → βBX. The map i is
continuous because h ◦ i is continuous for all h ∈ HX = C0(βBX).

4.5. Lemma. Let f, g : X ⇒ X ′. If f ̸= g, then f ∗ ̸= g∗ : C0(X
′)→ Cb(X).

Proof. By assumption, there is x ∈ X with f(x) ̸= g(x) in X ′. Since X ′ is Hausdorff
and locally compact, we may separate f(x) and g(x) by relatively compact, open neigh-
bourhoods Uf and Ug. Urysohn’s Lemma gives a continuous function h : Uf → [0, 1] with
h(f(x)) = 1 and h|∂Uf

= 0. Extend h by 0 to a function h̃ on X ′. This belongs to C0(X
′)

because h̃|X\Uf
= 0 and Uf is compact, and h̃(g(x)) = 0. Thus f ∗(h̃) ̸= g∗(h̃).

4.6. Lemma. Let S be a subset of a locally compact Hausdorff space X ′. If the restriction
map from C0(X

′) to Cb(S) is injective, then S is dense in X ′.

Proof. We prove the contrapositive statement. Suppose that S is not dense in X ′.
Then S ̸= X ′. As in the proof of Lemma 4.5, there is a nonzero continuous function
h ∈ C0(X

′\S). Extending h by zero gives a nonzero function in C0(X
′) that vanishes

on S.

4.7. Lemma. The image of X in βBX is dense.

Proof. Lemma 4.6 shows this because i∗ : C0(βBX) ∼= HX → Cb(X) is injective.

4.8. Proposition. Let f : X → X ′ be a morphism in B-Space. Assume X ′ to be a
Hausdorff proper B-space. Then there is a unique continuous map f ′ : βBX → X ′ such
that the following diagram commutes:

X X ′

βBX

f

i ∃!f ′

The map f ′ is automatically proper.
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Proof. Let f ∗ : C0(X
′) → Cb(X) be the dual map of f and let i∗ : HX ↪→ Cb(X)

be the inclusion map. Since r′ is proper, it induces a nondegenerate ∗-homomorphism
(r′)∗ : C0(B)→ C0(X

′). We use this to show that f ∗(C0(X
′)) ⊆ HX :

f ∗(C0(X
′)) = f ∗(r′

∗
(C0(B)) · C0(X

′))

= f ∗(r′
∗
(C0(B))) · f ∗(C0(X

′)) = r∗(C0(B)) · f ∗(C0(X
′)) ⊆ HX .

Let (f ∗)′ be f ∗ viewed as a ∗-homomorphism C0(X
′) → HX . We claim that (f ∗)′ is

nondegenerate. The proof uses that a ∗-homomorphism is nondegenerate if and only if it
maps an approximate unit again to an approximate unit; this well known result goes back
at least to [6, Proposition 3.4]. Let (ei)i∈I be an approximate unit in C0(B). Then r′∗(ei) is
an approximate unit in C0(X

′). Now (f ∗)′(r′∗(ei)) = r∗(ei) = i∗(βBr)
∗(ei). For any φ1 ∈

Cb(X) and φ2 ∈ C0(B), ∥φ1 · r∗(φ2)r
∗(ei)−φ1 · r∗(φ2)∥ ≤ ∥φ1∥ · ∥r∗(φ2ei)− r∗(φ2)∥ → 0,

as r∗ is continuous. Hence r∗(ei) is an approximate unit in HX . We let f ′ : βBX → X ′ be
the dual of (f ∗)′. This is a proper continuous map. Since X ′ is Hausdorff, two continuous
maps to X ′ that are equal on a dense subset are equal everywhere. Therefore, f ′ is unique
by Lemma 4.7.

4.9. Corollary. The anchor map r : X → B extends uniquely to a proper continuous
map βBr : βBX → B, such that the following diagram commutes:

X βBX

B

i

r ∃!βBr

Proof. Since the identity map B → B is proper, B is an object in B-Spaceproper. Now
apply Proposition 4.8 in the case where X ′ = B and f = r : X → B.

4.10. Proposition. In the above setting, the following diagram commutes:

βBX X ′

B

f ′

βBr r′

Proof.We get i∗◦(f ∗)′◦(r′)∗ = i∗◦(βBr)
∗ by construction. Since i∗ is a monomorphism,

this implies (f ∗)′ ◦ (r′)∗ = (βBr)
∗. Then use Lemma 4.5.

4.11. Theorem. βB is a reflector or, equivalently, it is left adjoint to the inclusion
functor I : B-Spaceproper ↪→ B-Space.

Proof. The two propositions above tell us that βB is left adjoint to I.
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4.12. Lemma. Let X be a topological space, and let Y and Z be locally compact Hausdorff
spaces. Let f1 : X → Y be continuous and let f2 : Y → Z be proper and continuous. Then
βY (X, f1) ∼= βZ(X, f2 ◦ f1).
Proof. It suffices to show that Cb(X) · f1∗(C0(Y )) = Cb(X) · (f2f1)∗(C0(Z)). Since f2 is
proper, f ∗

2 : C0(Z)→ C0(Y ) is nondegenerate. In particular, f ∗
1 (f

∗
2 (C0(Z)) ⊆ f ∗

1 (C0(Y )),
giving the inclusion “⊇”. Since f ∗

2 (C0(Z)) · C0(Y ) = C0(Y ), we compute

f ∗
1 (C0(Y )) = f ∗

1 (f
∗
2 (C0(Z) · C0(Y ))) = (f2f1)

∗(C0(Z)) · f ∗
1 (C0(Y ))

and then

Cb(X) · f ∗
1 (C0(Y )) = Cb(X) · (f2f1)∗(C0(Z)) · f ∗

1 (C0(Y )) ⊆ Cb(X) · (f2f1)∗(C0(Z)).

4.13. Lemma. In a commuting diagram of topological spaces and continuous maps

X1 X2

B1 B2,

f

r1 r2

f0

assume B1 and B2 to be locally compact Hausdorff and f0 to be proper. Then there is a
unique continuous map f̃ : βB1X1 → βB2X2 that makes the following diagram commute:

X1 X2

βB1X1 βB2X2

B1 B2

f

i1 i2

f̃

βB1
r1 βB2

r2

f0

Proof. Since f0 is proper, B1 is an object in the category of Hausdorff proper B2-spaces.
Then Theorem 4.11 implies βB2B1

∼= B1 and gives a commuting diagram

X1 X2

βB2X1 βB2X2

B1 B2.

f

i21 i2

βB2
f

βB2
r1 βB2

r2

f0

Lemma 4.12 gives βB1X1 = βB2X1, and this turns the diagram above into what we need.
The map f̃ = βB2f is unique because βB2X2 is Hausdorff and the image of X1 in βB2X1

is dense by Lemma 4.7.
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4.14. Lemma. Given a commuting diagram of continuous maps

X1 X2 X3

B1 B2 B3

f

h

r1

g

r2 r3

h0

f0

g0

with locally compact Hausdorff spaces Bj and proper h0 and g0, the maps constructed in
Lemma 4.13 satisfy f̃ = g̃ ◦ h̃.

Proof. The map g̃ ◦ h̃ also has the properties that uniquely characterise f̃ .

4.15. Lemma. If the map f in Lemma 4.13 is a homeomorphism, then so is f̃ .

Proof. Apply Lemma 4.14 to the compositions f ◦ f−1 and f−1 ◦ f .

The following results will be used in the next section to extend an action of a diagram
to the relative Stone–Čech compactification.

4.16. Lemma. Let I be a set, let Bi for i ∈ I be locally compact Hausdorff spaces, and
let ri : Yi → Bi be topological spaces over Bi. Let B =

⊔
i∈I Bi and Y =

⊔
i∈I Yi with the

induced map r : Y → B. Then βBY ∼=
⊔

i∈I βBi
Yi.

Proof. The map that takes the family (Yi, ri) of spaces over Bi to (Y, r) as a space over B
is an equivalence of categories from the product of categories

∏
i∈I Bi-Space to the category

B-Space. A space over B is Hausdorff and proper if and only if its pieces over Bi are
Hausdorff and proper for all i ∈ I. That is, the isomorphism of categories above identifies
the subcategory B-Spaceproper of Hausdorff and proper B-spaces with the product of the
subcategories Bi-Spaceproper. The product of the reflectors βBi

: Bi-Space→ Bi-Spaceproper
is a reflector

∏
i∈I Bi-Space →

∏
i∈I Bi-Spaceproper. Under the equivalence above, this

becomes the reflector βB. Both reflectors must be naturally isomorphic.

4.17. Lemma. Let V be an open subset of B, and let (Z, r : Z → B) be a locally compact
Hausdorff space over B. Then C0(r

−1(V )) ∼= r∗(C0(V )) · C0(Z).

Proof. Let J := r∗(C0(V )) · C0(Z). This is an ideal in C0(Z). So its spectrum Ĵ is
an open subset of Z. Namely, it consists of those z ∈ Z for which there is f ∈ J with
f(z) ̸= 0. There is always h ∈ C0(Z) with h(z) ̸= 0. Therefore, z ∈ Ĵ if and only if there
is g ∈ C0(V ) with r∗(g)(z) ̸= 0. Since r∗(g)(z) = g(r(z)), such a g exists if and only if
r(z) ∈ V . Thus Ĵ = r−1(V ).
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4.18. Lemma. Let B be a locally compact Hausdorff space and let V ⊆ B be an open
subset. Let (Y, rY ) be a space over B and let (βBY, rβBY ) ∈ B-Space be its relative Stone–
Čech compactification. Then r−1

Y (V ) ⊆ Y is a space over V , so that βV (r
−1
Y (V )) is defined,

and βV (r
−1
Y (V )) ∼= (rβBY )

−1(V ) ⊆ βBY .

Proof.We proceed in terms of their C∗-algebras. By definition of the relative Stone–Čech
compactification, βV (r

−1
Y (V )) is the spectrum of the commutative C∗-algebra Cb(r

−1
Y (V )) ·

r∗Y (C0(V )). By Lemma 4.17, (βG0rY )
−1(V ) is the spectrum of C0(βG0Y )·r∗Y (C0(V )). Since

C0(G0) · C0(V ) = C0(V ), we compute

C0(βG0Y ) · r∗Y (C0(V )) = Cb(Y ) · r∗Y (C0(G0)) · r∗Y (C0(V )) = Cb(Y ) · r∗Y (C0(V )).

Therefore, it suffices to show that Cb(r
−1
Y (V )) · r∗Y (C0(V )) ∼= Cb(Y ) · r∗Y (C0(V )).

Bounded functions on Y restrict to bounded functions on r−1
Y (V ), and this restriction

map is injective on the subalgebra Cb(Y ) ·r∗Y (C0(V )) because functions in this subalgebra
vanish outside r−1

Y (V ). Therefore, there is an inclusion

ϱ : Cb(Y ) · r∗Y (C0(V )) ↪→ Cb(r
−1
Y (V )) · r∗Y (C0(V )).

We must prove that it is surjective. Any element of Cb(r
−1
Y (V )) · r∗Y (C0(V )) is of the form

f ·h with f ∈ Cb(r
−1
Y (V )) and h ∈ r∗Y (C0(V )). The Cohen–Hewitt Factorisation Theorem

gives h1, h2 ∈ r∗Y (C0(V )) with h = h1 · h2. Let φ be the extension of f · h1 : r
−1
Y (V )→ C

by zero. We are going to show that φ is continuous on Y . Since ϱ(φ ·h2) = f ·h, it follows
that ϱ is surjective.

It remains to prove that φ is continuous. The only points where this is unclear are the
boundary points of r−1

Y (V ). Let (yn)n∈N be a net that converges towards such a boundary
point. We claim that φ(yn) converges to 0. This proves the claim. If yn /∈ r−1

Y (V ), then
φ(yn) = 0 by construction. So it is no loss of generality to assume yn ∈ r−1

Y (V ) for all
n ∈ N . Then rY (yn) is a net in V that converges towards∞. Therefore, limh′

1(rY (yn)) =
0 for all h′

1 ∈ C0(V ). This implies limh1(yn) = 0. Since f is bounded, this implies
limφ(yn) = 0.

5. Extending actions to the relative Stone–Čech compactification

The aim of this section is to extend an action of a diagram on a topological space Y with
the anchor map rY : Y → G0 to βG0Y . Actions of étale groupoids are a special case of such
diagram actions, and this special case is a bit easier. Therefore, we first treat only actions
of groupoids. Since our aim is to generalise to diagram actions, we do not complete the
proof in this case, however. We only prove a more technical result about the action of
slices of the groupoid.

Let G be a locally compact étale groupoid acting on a topological space Y with the
anchor map rY : Y → G0. The action of G on Y may be encoded as in Lemma 2.10
by the anchor map rY : Y → G0 and partial homeomorphisms ϑY (U) of Y for all slices
U ∈ S(G) on Y , subject to some conditions. In fact, in this case the conditions simplify
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quite a bit, but we do not go into this here. The anchor map rY extends to a continuous
map βG0rY : βG0Y → G0 by construction. The following lemma describes the canonical
extension of the partial homeomorphisms ϑY (U):

5.1. Proposition. Let U ∈ S(G). The partial homeomorphism ϑY (U) of Y extends
uniquely to a partial homeomorphism

ϑβG0Y (U) : (βG0rY )
−1(s(U)) ∼−→ (βG0rY )

−1(r(U)).

Here “extends” means ϑβG0Y (U) ◦ iY = iY ◦ ϑY (U) for the canonical map iY : Y → βG0Y .

Proof. The anchor map rY : Y → G0 is G-equivariant when we let G act on G0 in the
usual way. The slice U acts both on Y and on G0, where the latter action is the composite
homeomorphism r|U ◦ (s|U)−1 : s(U) ∼−→ U ∼−→ r(U). The naturality of the construction
of ϑ shows that the following diagram commutes:

r−1
Y (s(U)) r−1

Y (r(U))

s(U) r(U)

ϑY (U)

∼=

rY rY

∼=

ϑG0 (U)

Now Lemma 4.13 with B1 = s(U) and B2 = r(U) gives a map

ϑ̃Y (U) : βs(U)(r
−1
Y (s(U)))→ βr(U)(r

−1
Y (r(U))).

It is a homeomorphism by Lemma 4.15. Lemma 4.18 identifies the domain and codomain

of ϑ̃Y (U) with (βG0rY )
−1(s(U)) and (βG0rY )

−1(r(U)) as spaces over s(U) and r(U), respec-
tively. So we get a partial homeomorphism ϑβG0Y (U) of βG0Y that makes the following
diagram commute:

r−1
Y (s(U)) r−1

Y (r(U)) Y

r−1
βG0Y

(s(U)) r−1
βG0Y

(r(U)) βG0Y

s(U) r(U) G0

ϑY (U)

∼=

iY iY

ϑβG0Y (U)

∼=

rβG0Y rβG0Y

∼=

ϑG0 (U)

(2)

In particular, ϑβG0Y (U)◦ iY = iY ◦ϑY (U). The argument above also shows that the image

of r−1
Y (s(U)) in (βG0rY )

−1(r(U)) is dense. Since the space βG0Y is Hausdorff, it follows
that the condition ϑβG0Y (U) ◦ iY = iY ◦ ϑY (U) determines ϑβG0Y (U) uniquely.
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To show that the G-action on Y extends uniquely to a G-action on βG0Y , it would
remain to prove that the partial homeomorphisms ϑβG0Y (U) for slices U ∈ S(G) satisfy
the conditions in Lemma 2.10. We will prove this in the more general case of diagram
actions.

Before we continue to this more general case, we rewrite the diagram (2) in a way
useful for the generalisation to F -actions below. We claim that (2) commutes if and only
if the following diagram commutes, where the dashed arrows are partial homeomorphisms
and the usual arrows are globally defined continuous maps:

Y Y Y

βG0Y βG0Y βG0Y

G0 G0 G0

ϑY (U)

iY

ϑY (U)∗

iY iY
ϑβG0Y (U)

rβG0Y

ϑβG0Y (U)∗

rβG0Y rβG0Y

ϑG0 (U) ϑG0 (U)∗

(3)

A diagram of partial maps commutes if and only if any two parallel partial maps in
the diagram are equal, and this includes an equality of their domains. The domain of
rβG0Y ◦ ϑβG0Y (U) is equal to the domain of ϑG0(U), whereas the domain of ϑG0(U) ◦ rβG0Y

is r−1
βG0Y

(s(U)) because ϑG0(U) has domain s(U). Thus the bottom left square implies that

ϑβG0Y (U) has the domain r−1
βG0Y

(s(U)). Similarly, the bottom right square implies that

ϑβG0Y (U)∗ has the domain r−1
βG0Y

(r(U)). Equivalently, ϑβG0Y (U) has the image r−1
βG0Y

(r(U)).
In the top row, the domain and image of ϑY (U) must be r−1

Y (s(U)) and r−1
Y (r(U)) for the

diagram to commute. In addition, the diagram commutes as a diagram of ordinary maps
when we replace each entry by the domain of the partial maps that start there. This gives
exactly (2). So the diagram (3) encodes both the commutativity of (2) and the domains
and images of the partial maps in that diagram.

Now let C be a category and let (Gx,Xg, µg,h) describe a C-shaped diagram F : C →
Grlc,proper. Hence, each Gx for x ∈ C0 is a locally compact, étale groupoid, each Xg for
g ∈ C(x, x′) is a proper, locally compact, étale groupoid correspondence Xg : Gx′ ← Gx,
and each µg,h for g, h ∈ C with s(g) = r(h) is a homeomorphism µg,h : Xg ◦Gs(g)

Xh
∼−→ Xgh,

subject to the conditions in Proposition 2.4. Let Y be a topological space with an action
of F . The action contains a disjoint union decomposition Y =

⊔
x∈C0 Yx and continuous

maps rx : Yx → G0x, which we assemble into a single continuous map r : Y → G0 with
G0 :=

⊔
x∈C0 G0x. This makes Y a space over Y and allows us to define the Stone–Čech

compactification βG0Y of Y relative to G0. We are going to extend the action of F on Y
to an action on βG0Y .

The key is the description of F -actions in Lemma 2.10. The space βG0Y comes with
a canonical map rβG0Y : βG0Y → G0, which is one piece of data assumed in Lemma 2.10.
We are going to construct partial homeomorphisms ϑβG0Y (U) for all U ∈ S(F ) and then



464 JOANNA KO AND RALF MEYER

check the conditions in Lemma 2.10. Before we start, we notice that, by Lemma 4.16,

βG0Y =
⊔
x∈C0

βG0
x
Yx.

5.2. Lemma. Let x, x′ ∈ C0, g ∈ C(x, x′) and U ∈ S(Xg). There is a commuting diagram

Yx Yx′ Yx

βG0
x
Yx βG0

x′
Yx′ βG0

x
Yx

G0x Xg/Gx G0x

G0x′

ϑY (U)

iYx

ϑY (U)∗

iYx′ iYx
ϑβG0Y (U)

rβG0
x
Yx

ϑβG0Y (U)∗

π

rβG0
x′

Yx′

rβG0
x
Yx

U∗

U†

(U∗)∗

r∗

(4)

where continuous maps are drawn as usual arrows, partial homeomorphisms as dashed
arrows, and one partial map is drawn as a dotted arrow. The partial homeomorphism
ϑβG0Y (U) is uniquely determined by the commutativity of the upper left square.

Proof. We first recall how the arrows U∗ and r∗ in (4) are defined. Since U is a slice,
s|U : U

∼−→ s(U) ⊆ G0x and p|U : U
∼−→ p(U) ⊆ Xg/Gx are homeomorphisms onto open

subsets. This yields the partial homeomomorphism U∗ := p|U ◦ (s|U)−1 : s(U) ∼−→ p(U).
The map r∗ : Xg/Gx → G0x′ in (4) is induced by the anchor map r : Xg → G0x′ . By definition,
U† := r∗ ◦ U∗ : s(U)→ p(U)→ r(U) ⊆ G0x′ , so that the triangle in (4) commutes.

The vertical maps in the first and third column of diagram (4) and the maps iYx′

and rβG0
x′
Yx′

in the second column are part of the construction of the relative Stone–Čech

compactification. Next we construct a map π : βG0
x′
Yx′ → Xg/Gx with r∗ ◦ π = rβG0

x′
Yx′

.

There is a canonical map πY : Yx′
∼−→ Xg ◦Yx → Xg/Gx that maps γ · y for γ ∈ Xg, y ∈ Yx

with s(γ) = rY (y) to the right Gx-orbit of γ; this is well defined because γ · y = γ2 · y2
implies γ2 = γ · η and y2 = η−1 · y for some η ∈ G with r(η) = s(γ). We compute
r∗ ◦ πY = rY : Yx′ → G0x′ because r∗ ◦ πY (γ · y) = r(γ) = rY (γ · y) for all γ ∈ Xg, y ∈ Yx

with s(γ) = rY (y). So πY is a map over G0x′ . By assumption, the space Xg/Gx is Hausdorff
and the map r∗ : Xg/Gx → G0x′ is proper. By Theorem 4.11, πY factors uniquely through
a proper, continuous map π : βG0Y → Xg/Gx over G0x′ . That this is a map over G0x′ means
that r∗ ◦ π = rβG0Y : βG0

x′
Yx′ → G0x′ .

Next we recall the construction of the partial homeomorphism ϑY (U) from Yx to Yx′ .
By construction, ϑY (U) has the domain r−1

Y (s(U)) and is defined by ϑY (U)(y) := γ · y if
y ∈ r−1

Y (s(U)) and γ ∈ U is the unique element with s(γ) = rY (y). As a consequence,
πY (ϑY (U)(y)) = p(γ) = U∗(s(γ)) = U∗(rY (y)). Since the partial maps πY ◦ ϑY (U) and
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U∗ ◦ rY both have the domain r−1
Y (s(U)), we conclude that πY ◦ϑY (U) = U∗ ◦ rY as partial

maps from Yx to Xg/Gx.
Next, we prove the equality of partial maps

(U∗)∗ ◦ πY = rY ◦ ϑY (U)∗. (5)

The domain of (U∗)∗ ◦ πY is π−1
Y (p(U)) because the image of U∗ is p(U), and the domain

of rY ◦ ϑY (U)∗ is the image of ϑY (U). Therefore, we must show that the image of ϑY (U)
is equal to π−1

Y (p(U)) ⊆ Yx′ . It is clear that πY maps the image of ϑY (U) into p(U).
Conversely, let z ∈ π−1

Y (p(U)) ⊆ Yx′ . There are γ ∈ Xg, y ∈ Yx′ with s(γ) = r(y) and
z = γ · y. Then πY (z) := p(γ), and this belongs to p(U) by assumption. Therefore, there
is a unique η ∈ G with s(γ) = r(η) and γ · η ∈ U . Then z = (γη) · (η−1y) = ϑY (U)(η−1y).
So z belongs to the image of ϑY (U). In addition, we get

rY (ϑY (U)∗(z)) = rY (η
−1y) = r(η−1) = s(η) = s(γ · η) = (U∗)∗p(γ) = (U∗)∗πY (z).

This finishes the proof of (5).
As in the proof of Proposition 5.1, we now apply Lemma 4.13 and Lemma 4.15 with

B1 = s(U) and B2 = p(U) to get a unique homeomorphism

ϑ̃Y (U) : βs(U)(r
−1
Y (s(U))) ∼−→ βp(U)(π

−1
Y (p(U)))

with iY ϑY (U) = ϑ̃Y (U)iY on r−1
Y (s(U)) ⊆ Yx. Then Lemma 4.18 identifies the domain

and codomain of ϑ̃Y (U):

βs(U)(r
−1
Y (s(U))) ∼= (βG0rY )

−1(s(U)) ⊆ βG0Yx,

βp(U)(π
−1
Y (p(U))) ∼= π−1(p(U)) ⊆ βXg/GxYx′ .

Lemma 4.18 identifies βXg/GxYx′ with the Stone–Čech compactification of Yx′ relative to G0x′

because r∗ : Xg/Gx → G0x′ is proper. Composing ϑ̃Y (U) with these homeomorphisms gives
a partial homeomorphism ϑβG0Y (U) of βG0Y that makes the diagram (4) commute. It is

unique because the target space is Hausdorff and iY maps r−1
Y (s(U)) to a dense subset of

its domain, where the top left square in (4) determines ϑβG0Y (U).

5.3. Theorem. Let F : C → Grlc,proper be a diagram of proper, locally compact group-
oid correspondences. Let Y be a topological space with an F -action. There is a unique
F -action on βG0Y such that the canonical map iY : Y → βG0Y is F -equivariant.

Proof. The Stone–Čech compactification relative to G0 :=
⊔

x∈C0 G0x is well defined be-
cause

⊔
x∈C0 G0x is locally compact and Hausdorff. There is a canonical map βG0r : βG0Y →

G0. It is the unique map with βG0r ◦ iY = r : Y → G0. Hence this is the only choice for
an anchor map if we want i to be F -equivariant. Lemma 5.2 provides partial homeo-
morphisms ϑβG0Y (U) of βG0Y for all slices U ∈ S(F ). We claim that these satisfy the
conditions in Lemma 2.10.
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We first check (2.10.1). Let U ∈ S(Xg), V ∈ S(Xh) for g ∈ C(x, x′), h ∈ C(x′′, x)
for x, x′, x′′ ∈ C0. The diagram in (4) describes the domain and the codomain of the
maps ϑβG0Y (U) as the preimages of s(U) and p(U), respectively. The domain of the
map ϑβG0Y (U)ϑβG0Y (V) is the set of y ∈ Yx′′ with rβG0Y (y) ∈ s(V) and ϑβG0Y (V)(y) ∈
r−1
βG0Y

(s(U)). Since rβG0Y ◦ϑβG0Y (V) = V∗◦rβG0Y , the second condition on y is equivalent to

V∗(rβG0Y (y)) ∈ s(U). As a consequence, ϑβG0Y (U)ϑβG0Y (V) and ϑβG0Y (UV) have the same
domain. The diagram in (4) also implies ϑβG0Y (U)ϑβG0Y (V)iY = ϑβG0Y (UV)iY . Since the

target space βG0Y of ϑβG0Y (U)ϑβG0Y (V) and ϑβG0Y (UV) is Hausdorff and iY (r
−1
Y (s(UV)))

is dense in the domain r−1
βG0Y

(s(UV)) of our two partial maps, we get ϑβG0Y (U)ϑβG0Y (V) =
ϑβG0Y (UV).

The proof of (2.10.2) is similar, using also the right half of (4). To prove condi-
tion (2.10.3), we use that the range of ϑβG0Y (U) is π−1(p(U)). These open subsets for
slices U of Xg cover βG0Yx′ because the open subsets p(U) ⊆ Xg/Gx for slices U cover Xg/Gx.
Finally, condition (2.10.4) is already contained in (4).

Now Lemma 2.10 shows that the map rβG0Y and the partial homeomorphisms ϑβG0Y (U)
give a unique F -action on βG0Y . By Lemma 2.11, the top part of (4) says that the map iY
is F -equivariant. In addition, since this determines the partial homeomorphisms ϑβG0Y (U)
uniquely, the F -action on βG0Y is unique as asserted.

6. Locally compact groupoid models for proper diagrams

In this subsection, we prove the main result of this article, namely, that the universal
action of a diagram of proper, locally compact groupoid correspondences takes place on
a Hausdorff proper G0-space Ω. Since G0 is Hausdorff, locally compact, it follows that Ω
is Hausdorff, locally compact. The key point is the following proposition:

6.1. Proposition. Let F : C → Grlc,proper be a diagram of proper, locally compact group-
oid correspondences. The full subcategory of F -actions on Hausdorff proper G0-spaces is
a reflective subcategory of the category of all F -actions. The left adjoint to the inclusion
maps an F -action on a space Y to the induced F -action on the Stone–Čech compactifica-
tion of Y relative to G0 :=

⊔
x∈C0 G0x.

Proof. Theorem 4.11 says that the full subcategory of Hausdorff proper G0-spaces is
a reflective subcategory of the category of all G0-spaces, with the relative Stone–Čech
compactification βG0 as the left adjoint functor of the inclusion.

Let Y and Y ′ be topological spaces with an action of F and let φ : Y → Y ′ be an
F -equivariant map. Assume that Y ′ is Hausdorff and that its anchor map r′ : Y ′ →
G0 is proper. By Theorem 5.3, there is a unique F -action on the relative Stone–Čech
compactification βG0Y that makes the inclusion map iY : Y → βG0Y F -equivariant. By
Proposition 4.8, there is a unique G0-map φ̃ : βG0Y → Y ′ with φ̃iY = φ. Any F -equivariant
map is also a G0-map by Lemma 2.11. Therefore, φ̃ is the only map βG0Y → Y ′ with
φ̃iY = φ that has a chance to be F -equivariant. To complete the proof, we must show
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that φ̃ is indeed F -equivariant. We describe an F -action on a space Y as in Lemma 2.10
through a continuous map rY : Y → G0 and partial homeomorphisms ϑY (U) for all slices
U ∈ S(F ), subject to the conditions (2.10.1)–(2.10.4). By Lemma 2.11, it remains to
prove that the partial maps ϑY ′(U) ◦ φ̃ and φ̃ ◦ ϑβG0Y (U) agree for any slice U ∈ S(F ).

We pick U . Then U is a slice in Xg for some x, x′ ∈ C0 and g ∈ C(x, x′).
First, we check that our two partial maps have the same domain. Since φ̃ is a globally

defined map, the domain of φ̃ ◦ ϑβG0Y (U) is the domain of ϑβG0Y (U) and the domain
of ϑY ′(U) ◦ φ̃ is the φ̃-preimage of the domain of ϑY ′(U). The domains of ϑβG0Y (U)
and ϑY ′(U) are r−1

βG0Yx
(s(U)) and r−1

Y ′
x
(s(U)), respectively. Since φ̃ is a G0-map, the domain

of ϑY ′(U) ◦ φ̃ is also equal to the r−1
βG0Yx

(s(U)). This proves the claim that both partial

maps have the same domain.
Since iY and φ are F -equivariant, we know that ϑβG0Y (U) ◦ iY = iY ◦ ϑY (U) and

ϑY ′(U) ◦ φ = φ ◦ ϑY (U). Together with φ̃ ◦ iY = φ, this implies

(ϑY ′(U) ◦ φ̃) ◦ iY = ϑY ′(U) ◦ φ = φ ◦ ϑY (U) = φ̃ ◦ iY ◦ ϑY (U) = (φ̃ ◦ ϑβG0Y (U)) ◦ iY .

These partial maps have domain r−1
Yx
(s(U)). The iY -image of this is dense in r−1

βG0Yx
(s(U))

because of Lemma 4.18 and Lemma 4.7. Since the target Y ′ of ϑY ′(U)◦φ̃ and φ̃◦ϑβG0Y (U)
is Hausdorff and these maps agree on a dense subset, we get ϑY ′(U) ◦ φ̃ = φ̃ ◦ ϑβG0Y (U)
as needed.

6.2. Proposition. [7, Corollary 5.6.6] The inclusion of a reflective full subcategory D ↪→
C creates all limits that C admits. As a consequence, if a diagram in D has a limit in C,
then it also has a limit in D, which is isomorphic to the limit in C.

6.3. Theorem. Let F : C → Grlc,proper be a diagram of proper, locally compact groupoid
correspondences. Then the universal F -action takes place on a space Ω that is Hausdorff,
locally compact and proper over G0 :=

⊔
x∈C0 G0x. The groupoid model of F is a locally

compact groupoid.

Proof. We give two proofs. First, a universal F -action is the same as a terminal object
in the category of F -actions, and this is an example of a limit, namely, of the empty
diagram. Theorem 3.2 says that a terminal object exists in the category of all F -actions.
Proposition 6.1 and Proposition 6.2 imply that this terminal object is isomorphic to an
object in the subcategory of Hausdorff proper G-spaces. Actually, our subcategory is
closed under isomorphism, and so the terminal object belongs to it. Then its underlying
space is locally compact by Remark 4.3.

The second proof is more explicit. Let Ω be the universal F -action. The relative
Stone–Čech compactification comes with a canonical F -equivariant map ι : Ω ↪→ βG0Ω;
here we use the canonical F -action on βG0Ω. Since Ω is universal, there is a canonical map
βG0Ω → Ω as well. The composite map Ω → βG0Ω → Ω is the identity map because Ω
is terminal. The composite map βG0Ω→ Ω→ βG0Ω and the identity map have the same
composite with ι. Since the range of ι is dense by Lemma 4.7 and βG0Ω is Hausdorff, it
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follows that the composite map βG0Ω → Ω → βG0Ω is equal to the identity map as well.
So Ω ∼= βG0Ω, and this means that Ω is Hausdorff and proper over G0.

6.4. Corollary. Let F : C → Grlc,proper be a diagram of proper, locally compact groupoid
correspondences. Assume that C0 is finite and that each object space G0x in the diagram
is compact. Then the universal F -action takes place on a compact Hausdorff space. The
groupoid model of F is a locally compact groupoid with compact object space.

Proof. Our extra assumptions compared to Theorem 6.3 say that G0 is compact. Then
Hausdorff spaces that are proper over G0 are compact.

6.5. Example. The (m,n)-dynamical systems of Ara, Exel and Katsura [2] are described
in [5, Section 4.4] as actions of a certain diagram of proper groupoid correspondences.
The diagram is an equaliser diagram of the form G ⇒ G, where G is the one-arrow one-
object groupoid. A proper groupoid correspondence G → G is just a finite set, and it
is determined up to isomorphism by its cardinality. We get (m,n)-dynamical systems
when we pick the two sets to have cardinality m and n, respectively. Corollary 6.4
applies to this diagram and shows that its universal action takes place on a compact
Hausdorff space. Ara, Exel and Katsura describe in [2, Theorem 3.8] an (m,n)-dynamical
system that is universal among (m,n)-dynamical systems on compact Hausdorff spaces.
Corollary 6.4 shows that it remains universal if we allow (m,n)-dynamical systems on
arbitrary topological spaces.

6.6. Example. Let C = (N,+) be the category with a single object and morphisms
the nonnegative integers. A diagram F : C → Gr is determined by a single groupoid
correspondence X : G ← G for an étale groupoid G (see [5, Section 3.4]). Let G be the
trivial groupoid with one arrow and one object. Then X is just a discrete set because
the source map X → G0 is a local homeomorphism. The groupoid model of the resulting
diagram is a special case of the self-similar groups treated in [5, Section 9.2], in the case
when the group is trivial. It is shown there that the universal action takes place on
the space Ω :=

∏
n∈NX . If X is finite, then Ω is compact by Tychonoff’s Theorem. In

contrast, if X is infinite, then Ω is not even locally compact. This example shows that we
need a diagram of proper correspondences for the groupoid model to be locally compact.
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Jiri Rosický, Masaryk University: rosicky@math.muni.cz
Giuseppe Rosolini, Università di Genova: rosolini@unige.it
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