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DISTRIBUTIVE IDEMPOTENTS IN AN ORDER-ENRICHED
CATEGORY

CHRISTOPHER TOWNSEND

Abstract. We introduce distributive maps between lattices and consider the categor-
ical assumption that distributive idempotents split. We explore this assumption in the
context of a categorical axiomatization of the category of locales. The assumption is
shown to be stable under groupoids (this includes slice stability) and we further show
that it implies that triquotient surjections are effective descent morphisms. This result
follows even without assuming that the underlying (axiomatized) category of locales has
coequalizers.

1. Introduction

Marta Bunge showed for any étale complete localic groupoid G that the topos of G-
equivariant sheaves, BG, classifies principal G-bundles, [B90]. In that paper she also
says that some negative results about BG, ‘... suggest that toposes are not the right
kind of structures to consider when dealing with G-bundles for a general G’. The author
in previous work ([T05], [T10], [T12], [T17]) has attempted to axiomatise a category of
spaces, thinking about the category of locales as the canonical example. What has been
important is to find axioms that are closed under the formation of the category of G-
objects; that is, if C is a category of spaces then so too must be [G, C] for any (or as many
as possible) groupoids G internal to C. This is important because there are examples
(e.g. locally connected groups) where BG is trivial but [G, C] is not. Anything we can
do axiomatically can then be lifted to this broader context, providing evidence that this
context, i.e. these ‘categories of spaces’, are perhaps the right kind of structure that
Bunge was after.

In broad terms a category of spaces C is an order-enriched category that has a Sierpiński
object S that classifies closed and open subobjects and for which double exponentiation
SS( )

is defined. Double exponentiation determines a double power monad on the category
of spaces and from this the upper and lower power monads can be constructed. However
for any reasonable theory to emerge1 we require that the upper and lower power monads
are coKZ and KZ respectively. This is not true without adding it in as an additional
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assumption; indeed two additional assumptions are needed, order dual to one another.
The main aim of this paper is to resolve this by introducing a single axiom that covers
both.

We do this by defining the notion of a distributive endomorphism on a lattice A; this
is a map δ : A - A such that ∀a, b, c ∈ A,

δ(δa ∧ δ(δb ∨ δc)) = δ(δ(δa ∧ δb) ∨ δ(δa ∧ δc)).

If the endomorphism is idempotent and splits, then the condition is equivalent to requiring
the splitting to be a distributive lattice. It is quite a simple lattice theoretic notion and
we explore a number of examples below.

We will apply this notion axiomatically to C by saying that certain distributive idem-
potents split; from this it follows easily that the upper and lower power monads are coKZ
and KZ respectively (as we need for a reasonable theory to emerge). The technical work
of the paper is then about checking that the new axiom is closed under the formation of
G-objects. We also go a bit further and use the new axiom to verify, (i) that surjections
naturally defined via the double power monad are of effective descent; and, (ii) that for
reasonable groupoids in G, [G, C] has a well behaved connected components adjunction.
This last is analogous to checking that BG has a unique geometric morphism back to
Set. These two results are new axiomatically and could not be obtained using previous
assumptions; crucially, whilst both results are all about constructing certain coequaliz-
ers, they are obtained without assuming that our category of spaces has coequalizers in
general.

The paper is structured as follows. In the next section we provide technical prequisites.
Whilst some of the initial material and examples consist of straightforward lattice and
locale theory, most of the work is fairly technical. So unfortunately the technical demands
on the reader are quite high, though we have attempted to marshal the material as
clearly as possible. The next section then re-introduces distributive endomorphism in
the context of an order enriched category, proving some basic results about them and
providing plenty of examples. Next we write out the categorical axioms for a category of
spaces, recall some known results that follow from them and repeat in technical detail the
aims of the paper. The remainder of the paper is essentially about meeting those aims:
proving axiomatic stability, showing that certain surjections are of effective descent and
that certain connected components exist.

2. Prerequisites

The reader will need to be comfortable with categorical terms and familiar with the
theory of locales, in particular the terms frame, suplattice, preframe and directed complete
partial order (dcpo); see, e.g. Part C of [J02]. Our general context will be a cartesian
order-enriched category C. So, for example, for any objects X, Y and Z of C, ( , ) :
C(Z,X)×C(Z, Y ) - C(Z,X×Y ) is an order isomorphism (and not just a bijection). We
will be interested in order-internal lattices in C, by which we mean that finite joins(meets)
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are required to be left(right) adjoint to finite diagonals (where ‘finite’ includes the nullary
case). We will sometimes use point set notation to argue about diagrams in categories. A

reflexive pair of arrows is a pair of arrows A
f-

g
- B together with a common section (i.e.

a map s : B - A such that fs = gs = IdB). A morphism f : X - Y is of effective
descent or is an effective descent morphism if the pullback functor f ∗ : C/Y - C/X is
monadic. Note that f ∗ reflects isomorphisms if f is a pullback stable regular epimorphism.
So, for a pullback stable regular epimorphism, to prove that it is of effective descent you
just need to check there is a pullback stable coequalizer for any pair of morphisms (over
Y ) that is f ∗-split (this is by application of Beck’s theorem).

Adjunctions that satisfy Frobenius reciprocity (Frobenius adjunctions) will also play
a role in what follows. Any adjunction between two categories, with the left adjoint going
from left to right, can be sliced at any object of the codomain and an adjunction is stably
Frobenius if it is Frobenius at each such slice. Any pullback adjunction Σf ⊣ f ∗ is stably

Frobenius. Given an internal groupoid G = (G1

d0-

d1
- G0,m : G1 ×G0 G1

- G1, s :

G0
- G1, i : G1

- G1) there is always a functor G∗ : C - [G, C] whose codomain
is the category of G-objects; G∗ takes X to XG0 (i.e. π1 : G0 × X - G0) equipped
with the trivial G-action. The functor G∗ does not always have a left adjoint (connected
components cannot in general be formed) but it will do if for every G-object (Xp, a :
G1×G0X - X) the coequalizer of π2, a exists. If the coequalizer exists and the resulting
coequalizer diagram is pullback stable then the connected components adjunction ΣG ⊣ G∗

is stably Frobenius. Note that for any morphism f : X - Y we use the notation Xf

when considering f as an object of the slice category C/Y . Also, we use the notation
ΣY ⊣ Y ∗ : C/Y -

� C for the pullback adjunction of ! : Y - 1 and XY for Y ∗X (i.e.
for π1 : Y ×X - Y ).

Moving on now to locale theory, we recall the definition of weak triquotient assignment:

2.1. Definition. Given a locale map f : X - Y a weak triquotient assignment on f
is a dcpo homomorphism f# : OX - OY satisfying ∀a ∈ OX, ∀b ∈ OY

f#(a ∨ f ∗b) ≤ f#(a) ∨ b
f#(a) ∧ b ≤ f#(a ∧ f ∗b)

A locale map f is open (proper) if and only if f ∗ has a left(right) adjoint that is a
weak triquotient assignment on f . In this way, weak triquotient assignements can be used
to think about how both open and proper maps behave in a manner that covers both
classes. A weak triquotient assignment f# is a triquotient assignment if further f#(0) = 0
and f#(1) = 1; note that this condition is equivalent to f#f

∗ = IdOY and so any f
with a triquotient assignment is necessarily an epimorphism in Loc. A morphism with a
triquotient assigment is a triquotient surjection.
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2.2. Remark. If ψ : Z - X is an isomorphism and f# a (weak) triquotient on
f : X - Y then f#(ψ

−1)∗ is a (weak) triquotient assignment on fψ. This follows
because (ψ−1)∗ is a lattice homomorphism.

Finally we clarify how dcpo homomorphisms between frames correspond to natural
transformations. It is with this correspondence that localic definitions and results can be
placed in a categorical context. For any locale X we write SX for the presheaf Loc( ×
X, S) : Locop - Set. We use this notation even if X is not exponentiable in Loc
(however, note that SX is the exponential ySyX in [Locop,Set] where y is the Yoneda
embedding).

2.3. Theorem. Naturally in locales X and Y there is an order isomorphism between the
poset of dcpo homomorphisms OX - OY and natural transformations SX - SY .
Under this isomorphism a frame homomorphism f ∗ : OX - OY corresponds to Sf ,
i.e. the exponential in [Locop,Set]

Proof. [VT04].

We use Loc
op

for the full subcategory of [Locop,Set] consisting of presheaves of the
form SX . By the Theorem Loc

op
is equivalent to the category of frames with dcpo

homomorphisms between them.

3. Distributive idempotents

We start by writing out more formally some of the material covered in the Introduction.

3.1. Proposition. Let C be an order-enriched category with finite products.

(i) If δ : A - A is an idempotent in C, with a splitting A
q- Fix(δ) i- A (i.e.

iq = δ and qi = IdFix(δ)), then Fix(δ) inherits any order-internal lattice structure from
A.

(ii) If δ : A - A and γ : B - B are two idempotents with A and B order-internal
lattices, then any lattice homomorphism f : A - B that commutes with δ and γ (that
is, γf = fδ) induces a lattice homomorphism Fix(f) : Fix(δ) - Fix(γ).

(iii) If A is an order-internal lattice and δ : A - A a split idempotent, then Fix(δ)
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is an order-internal distributive lattice if and only if the diagram

A× A× A
(δπ1,δπ2,δπ1,δπ3)- A× A× A× A

A× A

(π1,∨A(δπ2, δπ3))

?
A× A

δ ∧A × δ∧A

?

A× A

δ × δ

? δ∧A - A

δ∨A

?

commutes.
(iv) The diagram in (iii) commutes if and only if the same diagram, but with joins

and meets interchanged, commutes.

Proof. (i) Verify that 1
0A- A

q- Fix(δ), where 0A is the bottom of A, is left
adjoint to ! : Fix(δ) - 1; this defines the nullary join of Fix(δ). Binary join is

Fix(δ)× Fix(δ)
i×i- A× A

∨A- A
q- Fix(δ). To check that this join is compatible

with the order we calculate

∨Fix(δ)∆Fix(δ) = q ∨A (i× i)∆Fix(δ)

= q ∨A ∆Ai

⊑ qi = IdFix(δ)

and similarly IdFix(δ)×Fix(δ) ⊑ ∆Fix(δ)∨Fix(δ) so that ∨Fix(δ) ⊣ ∆Fix(δ).
The definitions and calculations are essentially the same for nullary and binary meet.
(ii) Follows easily from the explicit descriptions just given of finitary join and meet

operations on the fixed objects of the idempotents. The induced map Fix(f) is given by
qγfiδ.

(iii) As δ(δ( ) ∧A δ( )) factors as A × A
q×q- Fix(δ) × Fix(δ)

∧Fix(δ)- Fix(δ)
i- A

(and similarly for join) this is a routine diagram chase exploiting the fact that q × q × q
is an epimorphism (split by i× i× i).

(iv) A lattice is distributive if and only if meet distributes over join, if and only if
join distributes over meet. So if the diagram in (iii) commutes, Fix(δ) is distributive,
so the same reasoning used in (iii) can be applied, but this time using the fact that join
distributes over meet in Fix(δ) to prove that the interchanged diagram commutes.

3.2. Definition. A morphism δ : A - A on an order-internal lattice is said to be
distributive if the diagram in part (iii) of the Proposition commutes.
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If idempotents split, part (iii) of the Proposition shows that distributive idempotents
always give rise to order-internal distributive lattices, and part (iv) shows that the prop-
erty of being distributive is stable under reversal of the order enrichment on C. (Whilst
we have defined distributive for any endomorphism, I have not been able to think of any
interesting examples which are not idempotent.)

3.3. Example. Trivially the identity map on a lattice A is distributive if and only if A
is a distributive lattice.

3.4. Example. For any lattice A, every element x ∈ A gives rise to a distributive idem-
potent a 7→ x (i.e. the constant map to x). The fixed point distributive lattice that arises
in this way is the trivial (singleton) distributive lattice. Therefore the injection of the
splitting of a distributive idempotent will not necessarily preserve top or bottom.

3.5. Example. The projection of the splitting of any order preserving idempotent will
necessarily preserve top and bottom. To see that binary meet and join is not preserved
by the projection in general, consider the power set of {a, b}, with an idempotent sending
{a} to {b} and all other subsets fixed. The image of the join (meet) of {a} and {b} is
{a, b} ({}), but the join (meet) of the image of {a} and the image of {b} is {b}.

3.6. Example. For a non-distributive example consider theM3 lattice (i.e. {0 ≤ x, y, z ≤
1}). Similarly to the power set of {a, b}, we can project onto {0 ≤ z ≤ 1} and obtain
the 3 element chain (a distributive lattice) as the set of fixed points; therefore the induced
idempotent is distributive.

3.7. Example. If δ : A - A is an idempotent join semilattice homomorphism then it is
clear that δ is distributive if A is distributive. This essentially covers the reasoning needed
to show that the fixed points of an idempotent suplattice homomorphism on a frame form
a frame. Similarly idempotent meet semilattice homomorphisms are distributive if A is
distributive and this shows that the fixed points of any idempotent preframe homomorphism
on a frame form a frame.

3.8. Example. Any morphism δ : A - A with δa ∧ δb = δ(δa ∧ δb) and δ(δa ∨ δb) =
δa ∨ δb is distributive if A is distributive; this follows by an obvious substitution into
the equation used to define distributive morphism. This example covers the idempotents
that arise from semi-triquotient maps introduced in [M22]. I.e. this example includes the
idempotents q∗q0, where q

∗ is an injective frame homomorphism split by a dcpo homomor-
phism q0. This provides examples where the idempotent is neither necessarily a meet or a
join semilattice homomorphism; specifically, Example 3.5.

3.9. Example.We say that an idempotent δ : A - A is a weak triquotient if δa∧δb ≤
δ(a∧ δb) and δ(a∨ δb) ≤ δa∨ δb. If A is distributive then any weak triquotient idempotent
is distributive as the defining conditions are stronger than the previous example. Moreover
the injection of the splitting of a weak trquotient idempotent δ must preserve binary joins
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and meets. To see this for binary joins, recall that join in Fix(δ) is given by q(i( )∨A i( ));
then we have that

i(c1 ∨ c2) = i(q(i(c1) ∨ i(c2)))
= δ(i(c1) ∨ i(c2))
= δ(i(c1) ∨ δ(i(c2)))
≤ δ(i(c1)) ∨ δ(i(c2))
= i(c1) ∨ i(c2).

An order dual argument shows that i preserves binary meets. Any weak triquotient assig-
ment p# on a locale map p : X - Y gives rise to two weak triquotient idempotents:
p∗p# and p#p

∗.

3.10. Example. Next, δ : A - A is a triquotient idempotent if it is a weak triquotient
idempotent, δ(0) = 0 and δ(1) = 1. Because the surjection of any splitting of an idempo-
tent necessarily preserves top and bottom, the injection of the splitting of any idempotent
δ must preserve top and bottom if δ(0) = 0 and δ(1) = 1. This observation, combined with
the previous example, shows that the injection of the splitting of a triquotient idmpotent
must be a lattice homomorphism (i.e. preserves all finitary joins and meets). Triquotient
idempotents are introduced in [M22]. Any triquotient assignment p# on a locale map
p : X - Y gives rise to a triquotient idempotent: p∗p#; its fixed set is OY . In the
other direction notice that any triquotient idempotent δ : OX - OX that is also a dcpo
homomorphism splits as p∗p# where p# is a triquotient assignment on p.

3.11. Example. Not all dcpo splittings of frame injections are triquotient assigments, so
this provides examples that satisfy Example 3.8 but are not triquotient; Example 3.5 can
again be used. Certainly weak triquotient idempotents can arise from weak triquotients
p# on locale maps p that are not necessarily surjections; any constant map is a weak
triquotient for p, and this will not be a surjection (unless the codomain, and therefore
domain, of p is trivial). This provides examples of weak triquotient idempotents that are
not triquotient idempotents. The example using the constant map gives a trivial fixed
points frame, but the images of any open or proper map provide a plentiful supply of
non-trivial examples; e.g. any open or closed sublocale.

3.12. Example. If δ : OX - OX is a distributive idempotent dcpo homomorphism
then Fix(δ) is a frame. From Proposition 3.1 (iii) Fix(δ) is a distributive lattice and it
is a dcpo as δ is a dcpo homomorphism. So it is complete and we just need to check that
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meet distributes over directed join to conclude that it is a frame. This is straightforward:

a ∧Fix(δ)
∨↑
Fix(δ) S = q(ia ∧OX i

∨↑
Fix(δ) S)

= q(ia ∧OX
∨↑

OX{is|s ∈ S})
= q(

∨↑
OX{ia ∧OX is|s ∈ S})

=
∨↑
Fix(δ){q(ia ∧OX is)|s ∈ S})

=
∨↑
Fix(δ){a ∧Fix(δ) s)|s ∈ S}).

Notice that this also implies that distributive idempotents split in Loc
op

(use Theorem
2.3).

4. Categorical context

We now clarify our categorical context:
Axiom 1. C is an order-enriched cartesian category with finite coproducts.
Axiom 2. For any morphism f : X - Y the functor f ∗ : C/Y - C/X preserves

finite coproducts.
Axiom 3. (Sierpiński object) C has an order-internal distributive lattice S such that

for any object X the pullback i∗ : C(X, S) - Sub(X) is an injection for both i = 0S
and i = 1S.

Axiom 4. Any natural transformation α : SX - SY which is also a lattice homo-
morphism is of the form Sf for some unique f : Y - X.

Axiom 5. (Double coverage axiom) For any equalizer diagram E
e- X

f-

g
- Y in

C the diagram

SX × SX × SY
⊓(Id×⊔)(Id×Id×Sf )-

⊓(Id×⊔)(Id×Id×Sg)
- SX Se- SE

is a coequalizer in Cop.
Axiom 6. (Double power axiom) For any object X of C the exponential ySSX in

[Cop,Set] exists and is representable.
Axiom 7. Distributive idempotents split in Cop.

Axioms 1-6 are true when C = Loc; see [T10] for all but Axiom 4, which is clear from
Theorem 2.3. Further:

(a) They are stable under the reversal of order enrichment. This is trivial for all of
them but Axiom 5, and clear for Axiom 5 by exploiting the distributivity assumption on
S.

(b) They are slice stable (Theorem 3.3 of [T10] and Proposition 3.1.3 of [T12] for
Axiom 4). The Sierpiński object needed for Axiom 3 in C/X is SX .

(c) They are stable under the formation of the category of G-objects; see the last
section of [T17].
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4.1. Definition. A category C is a category of spaces if it satisfies Axioms 1-7.

Example 3.12 shows how Axiom 7 is satisfied when C = Loc. Therefore:

4.2. Proposition. Loc is a category of spaces.

Given Example 3.7, Axiom 7 implies the Axiom 6 used in [T05] to provide a categorical
account of the Hofmann-Mislove theorem. It is this connection that supports the general
claim made in the Introduction that a reasonable ‘locale-like’ theory can emerge with
Axiom 7.

5. Categorical change of base and pullback stability

We now need to include some comments about how change of base works axiomatically
and how maps with triquotient assignments, now defined axiomatically, pullback. The
technical results that we recall here only exploit Axioms 1-6 and will be key for the rest
of the paper. They are all known aspsects of locale theory, so this Section is nothing more
than writing out some known locale theory results, but now for categories of spaces.

5.1. Axiomatic change of base. To start, recall Lemma 3.1 of [T10] which shows how
change of base extends to natural transformations; that is, for any morphism f : X - Y
of C, the pullback adjunction Σf ⊣ f ∗ extends to f# ⊣ f∗ : C/X

op
⇄ C/Y

op
. Recall from

the proof of Lemma 3.1 in [T10] that the units and counits of f# ⊣ f∗ are determined by
the counits and units of Σf ⊣ f ∗ respectively via η̄ = SϵY and ϵ̄ = SηX . In fact ϵ̄ is always
a regular epimorphism:

5.2. Lemma. Let C be a category satisfying Axioms 1-6.

(i) If E
e- X

f-

g
- Y is an equalizer in C and the pair f, g are coreflexive then

SY
Sf-

Sg
- SX Se- SE

is a reflexive coequalizer in Cop.
(ii) Let Zp be an object of C/X.

SX
∗ΣXX

∗ΣXZp
X

S
ηX∗ΣXZp
X -

S
X∗ΣXηZp
X

- SX
∗ΣXZp

X

S
ηZp
X- SEX

is a reflexive coequalizer in C/X
op
.



DISTRIBUTIVE IDEMPOTENTS 287

Proof. (i) Let s : Y - X be a common section of f and g. The pair of arrows displayed

in Axiom 5 then factors through the pair Sf , Sg via SX × SX × SY Ss×Ss×SId- SY × SY ×
SY ⊓(Id×⊔)- SY . To see this note that Sf is a lattice homomorphism for any f (so Axiom
4 is really an ‘if and only if’). Therefore (i) follows from Axiom 5.

(ii) In C/X there is a coreflexive equalizer diagram

Zp
ηZp−−→ X∗ΣXZp

ηX∗ΣXZp-

X∗ΣXηZp

- X∗ΣXX
∗ΣXZp;

the common section is X∗ϵΣXZp . To see this a little bit more explicitly notice that ηZp

is Z
(p,IdZ)- X × Z; so ηX∗ΣXZp is ∆X × IdZ : X × Z - X ×X × Z and X∗ΣXηZp is

IdX × (p, IdZ) : X ×Z - X ×X ×Z (and X∗ϵΣXZp is π13 : X ×X ×X - X ×Z).
So (ii) follows from (i) carried out in C/X.

Beck-Chevalley also works at the level of categories:

5.3. Lemma. If

X ×Y Z
π2 - Z

X

π1

? f
- Y

p

?

is a pullback diagram in C then (π1)∗π
#
2 = f#p∗; that is,

C/X ×Y Z
op

�
(π2)

#

C/Z
op

C/X
op

(π1)∗

?

�
f#

C/Y
op

p∗

?

commutes.

Proof. This follows from the definition of the extended change of base adjunction given
in Lemma 3.1 of [T10]. It is easiest to change base and see that all is required is a check
of the case Y = 1.

5.4. Pullback stability of triquotients. It should now be clear how to define
(weak) triquotient assignments on maps in C given their definition relative to the category
of locales and the fact that dcpo homomorphisms between frames can be represented as
natural transformations (Theorem 2.3). Being a triquotient assignment and the property
of being distributive are preserved by change of base in both directions:



288 CHRISTOPHER TOWNSEND

5.5. Lemma. For any morphism f : X - Y in a category C satisfying Axioms 1-6, both
of the functors f# and f∗ preserve distributive idempotents and triquotient assignments.

Proof. Recall Lemma 3.2 of [T10], which shows that the extended adjunction f# ⊣ f∗
preserves meets and joins in both directions. From this the lemma is clear as the definition
of a distributive morphism and triquotient assignment is only in terms of meets and joins.

The following final proposition for this Section recalls how triquotients assignments
interact with change of base and from this the usual ‘Beck-Chevalley for pullback squares’
result follows axiomatically:

5.6. Proposition. Let C be a category satisfying Axioms 1-6.
(a) For any morphism p : Z - Y of C there is an order isomorphism between

triquotient assignments p# : SZ - SY on p and triquotient assignments SZpY - SY
on !Zp : Zp - 1. We use the notation αp# : SZpY - SY for the unique natural
transformation corresponding to p# under this order isomorphism. Then: (i) αp#SηZpY =

p̃# (where (̃ ) denotes adjoint transpose accros Y # ⊣ Y∗); and, (ii) p# = Y∗(α
p#).

(b) If p# is a (weak) triquotient assignment on p : Z - Y then for any f : X - Y
there is a unique (weak) triquotient assignment (π1)# on π1 : X ×Y Z - X such that
(π1)#Sπ2 = Sfp#. Explicitly, (π1)# = X∗f

#(αp#).

Proof. (a) See the main result (Theorem 5.5) of [T10]. It shows that natural transfor-

mations SYfX - SX are in order isomorphism with weak triquotient assignments on f
with the relationship (i) holding; (ii) follows from (i) by naturalness of the adjunction.

Now any natural transformation SYfX - SX is a weak triquotient assignment on !Yf

(see Lemma 4.3 of [T10]). So (a) follows by checking that property of preserving 0 and 1
is unchanged under the order order isomorphism. This is clear from the construction of
the isomorphism (or see Corollary 24 of [T04] for more detail).

(b) See Proposition 6.1 [T10].

6. Restatement of technical aims

The remaining aim of the paper is to show that the categorical assumption that distribu-
tive idempotents split in Cop

(i) is slice stable,
(ii) is groupoid stable; i.e. true of [G, C] if true of C, for any internal groupoid G,
(iii) implies triquotient surjections are effective descent morphisms; and,
(iv) implies that [G, C] has a stably Frobenius connected components adjunction, pro-

vided !G : G - 1 is a triquotient surjection relative to [G, C].

6.1. Remark. The importance of (iii) and (iv) is that these can be shown without as-
suming C has coequalizers. Indeed we can’t assume all coequalizers exist if we want (ii)
to be true for an axiomatic approach to locale theory. This is because coequalizers would
need to be pullback stable to lift to [G, C], and coequalizers in Loc are not pullback stable.
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6.2. Remark. The condition ‘!G is a triquotient surjection’ in (iv) is quite natural: it
captures the notion of bounded geometric morphism in topos theory and is a condition un-
der which an axiomatic theory of bounded geometric morphism works, see [T18]. Further,
as we will show below, the condition is true for all open (and proper) localic groupoids;
i.e. the usual cases of interest are covered.

6.3. Remark. It is trivial that Axiom 7 is stable under reversal of the order enrichment
(see Proposition 3.1 (iv)). Therefore the property of being a category of spaces is stable
under reversal of the order enrichment. The importance of reversing the order enriche-
ment is that discrete objects are mapped to compact Hausdorff objects and vice versa. Any
axiomatic result about discrete objects therefore has a compact Hausdorff dual.

In short, the categorical assumption ‘distributive idempotents split in Cop’, does the
job of allowing us to develop locale theory via categorical axioms and neatly replaces the
requirement for two order-dual axioms deployed in [T05] to prove various aspects of locale
theory axiomatically.

7. Slice stability

7.1. Proposition. Let X be an object of a category of spaces C. Then C/X is a category
of spaces.

Proof. We have already commented that Axioms 1-6 are slice stable so we only need to
prove that if Axioms 1-7 are true in C then Axiom 7 is true in C/X.

Say we are given a distributive idempotent δ : SZpX - SZpX where Zp is an object of
C/X. By Lemma 5.2 (ii) there is a reflexive coequalizer diagram

SX
∗ΣXX

∗ΣXZp
X

S
ηX∗ΣXZp
X -

S
X∗ΣXηZp
X

- SX
XΣXZp

X

S
ηZp
X- SEX

with SX
∗ϵΣXZp

X the common section of the reflexive pair. As X# ⊣ X∗ extends ΣX ⊣ X∗

(contravariantly) this reflexive pair can be rewritten in terms of the unit and counit of
the extended adjunction:

X#X∗X
#X∗(S

Zp
X )

ϵ̄
X#X∗S

Zp
X-

X#X∗ϵ̄
S
Zp
X-

�
X#η̄

X∗S
Zp
X

X#X∗(S
Zp
X ) (*)

Then by naturality of X# ⊣ X∗ we see that each of the morphisms of (*) commutes with
the idempotents X#X∗(δ) and X#X∗X

#X∗(δ). Now if δ is a distributive idempotent
then so is X∗(δ) (Lemma 5.5) which splits (via SZδ say) by assumption that Axiom 7 is
true in C. Splittings are preserved by all functors, so both X#X∗(δ) and X

#X∗X
#X∗(δ)

split and so by part (ii) of Proposition 3.1 we know that the three lattice homomorphisms
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of (*) give rise to three lattice homomorphisms between the splittings. Axiom 4 in C/X
then tells us that these three lattice homomorphisms can be written Sa1X , Sa2X and SsX where

s splits a1 and a2; let E
e- X∗Zδ be the equalizer of a1, a2. It follows by Lemma 5.2

(i) that in C/X
op

there is a coequalizer:

X#X∗X
#Fix(X∗(δ))

Sa1X-

Sa2X
- X#Fix(X∗(δ))

SeX- SEX .

It then follows that SEX is the required splitting of δ as both SeX and SηZpX are coequalizers.
That they are both coequalizers allows the splitting morphisms of δ to be defined, as the
reflexive pairs of both SeX and SηZpX commute with the splitting morphisms of X#X∗(δ)
and X#X∗X

#X∗(δ). In other words, written out as a diagram we have:

S(X×X×Z)π1
X

-- S(X×Z)π1
X

SηZpX - SZpX

S(X×X×Zδ)π1
X

?
-- S(X×Zδ)π1

X

?
SeX - SEX

?

S(X×X×Z)π1
X

?
-- S(X×Z)π1

X

?
SηZpX - SZpX

?

where the rows are all coequalizers in C/X
op
. The middle and left hand side vertical

arrows are splittings of X#X∗(δ) and X#X∗X
#X∗(δ) respectively. As they commute

with the pairs of arrows that define the coequalizers, the right hand vertical arrows can
be added and form a splitting for δ as required.

8. Groupoid stability

8.1. Proposition. If G = (d0, d1 : G1
-- G0, ...) is a groupoid internal to a category

of spaces C then [G, C] is a category of spaces.

Proof. We have commented already how this is covered for Axioms 1-6 in [T17]. The
key insight, covered in [T17], is that for any two G-objects (Xf , a), (Yg, b), natural trans-

formations ∆ : S(Xf ,a)

G
- S(Yg ,b)

G are in natural order isomorphism with those natural
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transformations δ : SXfG0
- SYgG0

such that

SXfG0

δ
- SYgG0

SG1×G0
X

G0

SaG0

?
(d1)∗d

#
0 δ- SG1×G0

Y

G0

SbG0

?

commutes. From the construction of the order isomorphism it is clear that if ∆ :

S(Zp,a)
G

- S(Zp,a)
G is a distributive idempotent then so is the corresponding δ : SZpG0

- SZpG0
.

But then we can form the following diagram

SZpG0

qδ - SZδG0

iδ - GZp
G0

SG1×G0
Zp

G0

SaG0

?
(d1)∗d

#
0 qδ- SG1×G0

Zδ
G0

SāG0

?
(d1)∗d

#
0 iδ- GG1×G0

Zp
G0

SaG0

?

by application of the previous proposition, where indeed the middle down arrow is de-
termined by a morphism ā : G1 ×G0 Zδ - Zδ of C/G0 by application of part (ii) of
Proposition 3.1 and Axiom 4. It can then be checked that (Zδ, ā) is a G-object using the
fact that (Zp, a) is a G-object.

9. Triquotient surjections are of effective descent

In this section we complete aim (iii) from above, assuming a category of spaces C. We
start by providing a particular criteria for when a fork in C is a coequalizer.

9.1. Lemma. Say in Cop we have a split equalizer diagram

SQ
Sq-�
q#

SY
Sf-
Sg-�
α

SX

with αSg = IdSY and q# a triquotient assignment on q. Then X
f-

g
- Y

q- Q is a

coequalizer diagram in C.

Proof. Certainly qf = qg as Sqf = SfSq = SgSq = Sqg (apply the uniqueness part of
Axiom 4). So to prove that q is the coequalizer of f and g we need to show that for
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any l with lf = lg we have that q#Sl is a lattice homomorphism, since then by Axiom 4
q#Sl = Sh for a unique morphism h of C. But,

q#Sl(b1 ∨ b2) = q#(Slb1 ∨ Slb2)
= q#(Slb1 ∨ αSgSlb2)
= q#(Slb1 ∨ αSfSlb2)
= q#(Slb1 ∨ Sqq#Slb2)
≤ q#Slb1 ∨ q#Slb2

with the last line using the fact that q# is a triquotient idempotent. A symmetric argument
shows that q#Sl preserves binary meets. Certainly top and bottom are preserved as q#
preserves top and bottom. Therefore q#Sl is a lattice homomorphism as required.

The next Proposition is really the key technical insight of the paper as it shows how
splitting distributive idempotents allows us to form the pullback stable coequalizers that
we need.

9.2. Proposition. (a) If f, g : X -- Y is a pair of morphisms in C and g# a triquo-
tient assignment on g such that Sfg#Sf = Sgg#Sf , then the pair f , g has a coequalizer,
q : Y - Q.

(b) Any triquotient surjection p : Z - Y is a pullback stable coequalizer.

(c) Given f , g and g# as in (a), then the coequalizer diagram X
f-

g
- Y

q- Q

pullback stable.

Proof. (a) Let δ = g#Sf , then by exploiting Sfg#Sf = Sgg#Sf and the fact that g# is
a triquotient assignment on g, we see that δ : SY - SY is a triquotient idempotent

which therefore is split (recall Example 3.10). Say the splitting is SY γ-- SQ ⊂
ϵ- SY .

Further recall from Example 3.10 that we know (i) ϵ is a lattice homomorphism and so
must therefore be of the form Sq for some unique morphism q : Y - Q of C (Axiom 5);
and, (ii) γ = q# a triquotient assignment on q. But then

SQ
Sq-�
q#

SY
Sf-
Sg-�
g#

SX

is a split equalizer diagram and we can apply the previous Lemma (Lemma 9.1).
(b) The pullback stability aspect is clear as the property of being a triquotient sur-

jection is pullback stable (see (b) of Proposition 5.6). So we just have to check that p is
a coequalizer. Let (π1)# be the unique triquotient assignment on π1 : Z ×Y Z - Z
such that (π1)#Sπ2 = Spp# where p# is a triquotient assignment witnessing that p is a
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triquotient surjection. Then

Sπ2(π1)#Sπ2 = Sπ2Spp#
= Sπ1Spp#
= Sπ1(π1)#Sπ2

and so by (a) the kernel pair π1, π2 : Z ×Y Z
-- Z of p has a coequalizer; it is given by

the splitting of the idempotent (π1)#Sπ2 , which we know to be Spp#.
(c) Following the notation of Proposition 5.6 (a) consider the diagram

SQ
S!
Yq
Q-�
α
q#

SYqQ

SfQ-
SgQ-

�
q∗(α

g# )

SXqgQ

in C/Q
op
. We know that αq# is a triquotient assignment on !Yq (Proposition 5.6 (a)) so

to complete the proof we in fact just need to check that the diagram is a split equalizer.
Since then for any k : K - Q we only need to note that the diagram (and the property
that αq# is a triquotient assigment) is preserved by K∗k

# and so gives rise to a coequalizer
by Lemma 9.1.

That the diagram is a split equalizer follows by recalling that the counit of Q# ⊣ Q∗ at

SYqQ is SηYqQ : SYQQ
S(q,IdY )

Q - SYqQ , where this last is an epimorphism. For example SηYqQ Q#(g#) =

q∗(α
g#)SηXqgQ is true because under the adjunction Q# ⊣ Q∗ it is equivalent to checking

g# = Q∗(q∗(α
g#)) which is true as Q∗q∗ = Y∗ (recall again part (a) of Proposition 5.6 to

see that q# = Y∗(α
g#) by construction of αg#). To see that S!Yq

Q αq# = q∗(α
g#)SfQ check

that S!Yq
Q αq#SηYqQ = q∗(α

g#)SfQS
ηYq
Q , which amounts to checking that

SYQQ
q̃#- SQ

S!
Yq
Q- SYqQ (I)

is equal to

SYQQ
S
f×IdQ
Q - SXQQ

Q#(g#)
- SYQQ

S
ηYq
Q- SYqQ (II)

as SfQS
ηYq
Q = SηXqgQ Sf×IdQQ . The adjoint transpose of (I) acrossQ# ⊣ Q∗ is SY

q#- SQ Sq- SY .

Because Sf×IdQQ = Q#(Sf ) the adjoint transpose of (II) is SY Sf- SX
g#- SY which is

equal to the adjoint transpose of (I) by definition of q.

The following is originally due to Plewe [P97] for locales; what is new here is that we
are able to avoid an assumption that the ambient category C has coequalizers.

9.3. Theorem. Any triquotient surjection p : Z - Y is of effective descent.
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Proof. First it is clear by change of base that we can assume Y = 1 and we know that p∗

reflects isomorphisms by Proposition 9.2 (b). So we just have to create a pullback stable

coequalizer diagram for any pair A
a1-

a2
- B that is p∗-split.

By considering the three pullback squares

A× Z
a1 × IdZ-

a2 × IdZ
- B × Z

π2 - Z

A

πA1

? a1 -

a2
- B

πB1

?
- 1

?

we see by the uniqueness of weak triquotient assignments on pullback squares that there
is a unique triquotient assignment (πA1 )# on πA1 such that (πA1 )#Sa1×IdZ = Sa1(πB1 )#
and (πA1 )#Sa2×IdZ = Sa2(πB1 )# where (πB1 )# is the unique triquotient assignment on πB1
that satisfies Beck-Chevalley for the right hand pullback square (i.e. (πB1 )#Sπ2 = S!Bp#
where p# is the triquotient assignment that exists by assumption that p is a triquotient
surjection). The map (πA1 )# works for both as it is also the unique triquotient assignment
satisfying Beck-Chevalley for the composite pullback (which is the same for each left hand
square).

Now as a1, a2 is p∗-split we have a split coequalizer A × Z
a1×IdZ-

a2×IdZ
- B × Z

q- Q. So

we have a split equalizer diagram:

SQ
Sq-�
Sr

SB×Z
Sa1×IdZ-
Sa2×IdZ-�

Sj

SA×Z

where Sj is the splitting of Sa1×IdZ .
Let γ = (πB1 )#SjSπ

A
1 . Then,

γ(d ∨ Sa1c) = (πB1 )#SjSπ
A
1 (d ∨ Sa1c)

= (πB1 )#(SjSπ
A
1 d ∨ SjSπA1 Sa1c)

= (πB1 )#(SjSπ
A
1 d ∨ SjSa1×IdZSπB1 c)

= (πB1 )#(SjSπ
A
1 d ∨ SπB1 c)

≤ (πB1 )#(SjSπ
A
1 d) ∨ c

= γ(d) ∨ c

and, by an order dual argument, γ(d)∧ c ≤ γ(d∧Sa1c). Therefore γ is a weak triquotient
assignment on a1; but it is actually, further, a triquotient assignment since (πB1 )# preserves
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top and bottom (as it is a triquotient assignment). Finally

Sa2γSa2 = Sa2(πB1 )#SjSπ
A
1 Sa2

= Sa2(πB1 )#SjSa2×IdZSπ
B
1

= Sa2(πB1 )#SqSrSπ
B
1

= (πA1 )#Sa2×IdZSqSrSπ
B
1

= (πA1 )#Sa1×IdZSqSrSπ
B
1

= Sa1(πB1 )#SqSrSπ
B
1

= Sa1γSa2

where the last step is a reversal of the first three steps. It follows that a1, a2 have a
pullback stable coequalizer by Proposition 9.2.

10. Connected component adjunctions

Given an internal groupoid G, G itself is an object of [G, C]; the underlying object is (G1)d1
and the structure map Σd1d

∗
0(G1)d1 - (G1)d1 is the groupoid multiplication m(f, g) =

fg. For example, if G is a group G then this object is G with group multiplication as
the action. Or, if G is X -- X so that [G, C] is the slice C/X, then this object is the
terminal object XIdX .

In this section we prove that provided the unique map G - 1 is a triquotient
surjection in [G, C], then [G, C] has a stably Frobenius connected components adjunction.
This is important information as without an assumption that C has coequalizers we can’t
assume that a connected components functor exists.

Let us first motivate the condition that G - 1 is a triquotient surjection:

10.1. Proposition. If G is open, G - 1 is a triquotient surjection.

Recall that G is open if d0 : G1
- G0 (equivalently d1) is an open map. Because d0

has a section (the unit map s : G0
- G1), if G is open, we in fact know that d0 is an

open surjection. (In detail: as ∃d0 ⊣ Sd0 , we have that Sd0∃d0Sd0 = Sd0 ; but Sd0 is a monic
split by Ss, so ∃d0Sd0 = Id.)

Note that by order duality the proposition also allows the same conclusion for proper
groupoids, though we do not explore that aspect in this paper.

Proof. A morphism f : X - Y is an open surjection if and only if S!
Xf

Y : SY - SXfY
has a left adjoint ∃Xf : SXfY - SY that preserves top. This can be seen by exploiting
the main result (Proposition 5.4) of [T10]; more details are covered in Section 7 of [T04].

So if G is open we know that there exists ∃(G1)d1
: S(G1)d1

G0
- SG0 , left adjoint to S!

(G1)d1

G0
,

that preserves top. By naturality of the counit of the extended adjunction (d1)∗ ⊣ d#1 the
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diagram

S(G1)d1
G0

∃(G1)d1 - SG0

SΣd1d
∗
1(G1)d1

G0

Sπ2G0

?
(d1)∗d

#
1 (∃(G1)d1

)
- SΣd1d

∗
11

G0

Sd1G0

?

(*)

commutes. But we have a groupoid, so there is an isomorphism ψ : d∗0((G1)d1) - d∗1((G1)d1)

given by (f, g) 7→ (f, fg) (the inverse is (k, h) 7→ (k, k−1h)), for which Sψ
−1

G0
SmG0

= Sπ2G0
.

Now, to conclude that !G is a triquotient surjection we just have to check that

S(G1)d1
G0

∃(G1)d1 - SG0

SΣd1d
∗
0(G1)d1

G0

SmG0

?
(d1)∗d

#
0 (∃(G1)d1

)
- SΣd1d

∗
01

G0

Sd1G0

?

commutes because then ∃(G1)d1
corresponds to a morphism of [G, C]

op
which preserves top

and is left adjoint to S!G
G . But

SΣd1d
∗
01

G0

S
Σd1

d∗0(!
(G1)d1 )

G0 - SΣd1d
∗
0(G1)d1

G0

Sψ
−1

G0- SΣd1d
∗
1(G1)d1

G0

is equal to Sπ1G0
= SΣd1d

∗
1(!

(G1)d1 )

G0
. To see this note that Σd1d

∗
0(!

(G1)d1 ) is just π1 : G1 ×G0

G1
- G1 (as !(G1)d1 : G1

- G0 is just d1 : G1
- G0) and ψ

−1(k, h) = (k, k−1h).
They therefore both have the same left adjoint and since the extended change of base

functors preserve adjoints (and of course SψG0
⊣ Sψ

−1

G0
) we have that [(d1)∗d

#
0 (∃(G1)d1

)]SψG0
=

(d1)∗d
#
1 (∃(G1)d1

). Therefore

[(d1)∗d
#
0 (∃(G1)d1

)]SmG0
= [(d1)∗d

#
0 (∃(G1)d1

)]SψG0
Sψ

−1

G0
SmG0

= [(d1)∗d
#
1 (∃(G1)d1

)]Sψ
−1

G0
SmG0

= [(d1)∗d
#
1 (∃(G1)d1

)]Sπ2G0

= Sd1G0
∃(G1)d1

(by (*) )

as required.
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10.2. Proposition. If G - 1 is a triquotient surjection in [G, C], then [G, C] has a
stably Frobenius connected components adjunction.

Proof. There is a triquotient assignment on G - 1 and so, via the description of
natural transformations relative to [G, C], recalled in the proof of Proposition 8.1, we

know that there is a triquotient assignment !G# : S(G1)d1
G0

- SG0 such that

S(G1)d1
G0

!G# - SG0

SΣd1d
∗
0(G1)d1

G0

SmG0

?
(d1)∗d

#
0 (!

G
#)- S(G1)d1

G0

Sd1G0

?

commutes. However this is equivalent to

S(G1)d0
G0

!G
op

# - SG0

SΣd0d
∗
1(G1)d0

G0

SmG0

?
(d0)∗d

#
1 (!

Gop
# )

- S(G1)d0
G0

Sd0G0

?

(+)

commuting where !G
op

# is the map : S(G1)d0
G0

SiG0- S(G1)d1
G0

!G#- SG0 (i is the groupoid inverse).
To see this consider ψ = i in Remark 2.2, applied in C/G0.

Define (d0)# : SG1 - SG0 to be (G0)∗(!
Gop
# ); it is a triquotient assignment on d0 :

G1
- G0 (see (a) of Proposition 5.6; so !G

op

# = α(d0)# using the notation of that
proposition).

Now let (Xp, a) be a G-object. Apply X∗p
# to (+). Then I claim that we obtain a

commuting square

SG1×G0
X (π2)# - SX

SG1×G0
G1×G0

X

Sm×IdX

? (π23)#- SG1×G0
X

Sπ2

?

where (π2)# is the unique triquotient assignment for Beck-Chevalley of the right hand
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pullback square of

G1 ×G0 G1 ×G0 X
IdG1 × a

- G1 ×G0 X
π1 - G1

G1 ×G0 X

π23

? a
- X

π2

? p
- G0

d0

?

(*)

and (π23)# is the unique triquotient for Beck-Chevalley of the left hand pullback square.
That is we have (π2)#Sπ1 = Sp(d0)# and (π23)#SId×a = Sa(π2)#.

To prove this claim firstly recall that (π2)# = X∗p
#(α(d0)#) from (b) of Proposition

5.6 so (π2)# = X∗p
#(!G

op

# ). To complete proof of the claim we calculate:

X∗p
#(d0)∗d

#
1 (!

Gop
# ) = X∗(π2)∗π

#
1 d

#
1 (!

Gop
# ) by Lemma 5.3

= X∗(π2)∗a
#p#(!G

op

# ) as pa = d1π1 by def. of G-object

= (G1 ×G0 X)∗(pa)
#(α(d0)#)

= (π23)#

where the last line is by uniqueness of triquotients satisfying Beck-Chevalley for the outer
rectangle in (*).

But then

Sa(π2)#Sa = (π23)#SIdG1
×aSa

= (π23)#Sm×IdXSa (def. of G-object)

= Sπ2(π2)#Sa

and so we can apply Proposition 9.2 to complete the proof. (It has been commented in
Section 2 that to construct a stably Frobenius connected components adjunction we just
need to construct a coequalizer for the pair π2, a : G1 ×G0 X

-- X and check that the
resulting coequalizer diagram is pullback stable.)

10.3. Remark. The above analysis provides an answer to an intuitive question. As is
well known and effectively recalled above, both proper and open localic groupoids have
connected component adjunctions. As triquotient surjection appears to be the natural
common generalisation of both proper surjection and open surjection, we might be tempted
to define a ‘triquotient’ localic groupoid to be one for which d0 is a triquotient surjection. A
hope might then be that we can prove that triquotient groupoids have connected component
adjunctions, covering the proper and open cases in one go. The trouble is that d0 is a split
surjection and therefore is always a triquotient surjection, so this doesn’t work (we don’t
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have a connected component adjunction for every localic groupoid). The intuitively correct
generalisation here seems to be to consider triquotient surjections relative to the category
of G-objects rather than the base category. Indeed this appears to be key to understanding
how to isolate the correct notion of bounded morphism between categories of spaces (see
[T18]).

11. Dedication

I knew Marta mostly through her work, though we did correspond on our joint interest
in understanding what the correct notion of ‘upper power topos’ should be. It is fair
to say that we had different ideas on this topic, but I was chuffed that there was at
least someone thinking about the problem. I spent time understanding her work on
fundamental groupoids/Galois theory for toposes; I would have loved to have finally been
able to say ‘got it’. My guess is that when we finally get a good account it will reference
back to her work. I also found occassions where if only I had taken the time to study her
work more carefully I would have understood that quite a bit of my thinking was already
known, particularly around stack completions. I am saddened that she is gone, but am
certain that she will live on through her work.
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