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ON COHERENT SYSTEMS OF SUBOBJECTS
WITH APPLICATION TO TORSION THEORIES

FRANCIS BORCEUX AND MARIA MANUEL CLEMENTINO
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Abstract. In a coherent category, the posets of subobjects have very strong prop-
erties. We emphasize the validity of these properties, in general categories, for well-
behaved classes of subobjects. As an example of application, we investigate the problem
of the various torsion theories which can be universally associated with a pretorsion one.

1. Introduction

A coherent category (see [14]) has in particular distributive lattices of subobjects whose
operations are preserved by pullbacks. In this paper, we want to draw attention to the case
of arbitrary categories in which there exist distributive lattices of particular subobjects –
we call them distinguished – whose operations are preserved by pullbacks. We call this a
coherent system of subobjects. A well-known example is that of complemented subobjects
in a lextensive category. But there are many other examples of interest.

In the case of small categories, we call a subcategory S of A saturated when an arrow
of A lies in S as soon as its domain or its codomain is in S. The saturated subcategories
constitute a distributive lattice whose operations are preserved by pullbacks. This result
generalizes to the case of internal categories in an arbitrary coherent category C, yielding
an interesting bunch of examples of coherent systems of subobjects. This particularizes
further to preordered objects in a coherent category.

We apply these considerations to the study of the stable category associated with
a pretorsion theory. A pretorsion theory (see [12]) in a category C consists of giving
two classes of objects, respectively called the torsion objects and the torsion free objects,
together with adequate axioms. The objects which are both torsion and torsion free are
called trivial. When all trivial objects are zero objects, the pretorsion theory is called a
torsion theory. The problem of the stable category associated with a torsion theory is that
of constructing naturally a torsion theory from a given pretorsion theory (see [5]).
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Of course, to construct a torsion theory from a pretorsion one, one must identify all
trivial objects to a zero object. In [10, 5], this is done with the extra requirement that
the canonical stable functor preserves disjoint unions; in particular, if T is trivial, A is
identified with S in the stable category. In our paper, we consider the more flexible
requirement that when A = S ∪ T is the union of two distinguished subobjects with T
trivial, then T is identified with 0 and A is identified with S.

We prove a general theorem on the existence and the universality of the stable category,
which applies in particular to the case of preordered objects in an exact coherent category
(see [10, 3]), and to the case of internal categories in a Grothendieck topos (see [6]). But
the flexibility of our approach allows also choosing only trivial subobjects (i.e. only 0 and
the object itself) as distinguished subobjects. In that case, our theorem yields the torsion
theory universally associated with the given pretorsion theory. And, under a very mild
assumption, we prove that the stable category can then be obtained as the category of
fractions which inverts all morphisms 0 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A, with A a trivial object.

2. Coherent systems of subobjects

The structure that we want to promote in this paper is the following one1.

2.1. Definition. Let C be a category with a strict initial object 0. By a coherent system
of subobjects in C is meant, for each object C ∈ C, the choice of a class of so-called
distinguished subobjects of C, in such a way that:

(CS1) 0 and A are distinguished in A;

(CS2) the union of two distinguished subobjects exists and is distinguished;

(CS3) the pullback of a distinguished subobject along an arbitrary morphism exists and
is distinguished;

(CS4) pulling back distinguished subobjects preserves their union;

(CS5) given two monomorphisms

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq C

if A is distinguished in B and B is distinguished in C, then A is distinguished in C.

A coherent system of subobjects is called effective when moreover (see [2])

(CS6) the union of distinguished objects is effective, that is, given two distinguished sub-
objects S and T of A, the following pullback is also a pushout:

1Since this cannot hurt in this paper, we choose to use freely the common abuse of language which
does not distinguish subobjects and monomorphisms.
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S ∩ T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq S
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq S ∪ T

Let us recall that, given a strict initial object 0, every morphism with domain 0 is a
monomorphism. Indeed if there exists a morphism X qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 0, that morphism is necessarily
unique since it must be an isomorphism, with the unique morphism 0 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X as inverse.

2.2. Proposition. Let C be a category with a strict initial object, provided with a coherent
system of subobjects. The following properties hold:

(CS7) the intersection of two distinguished subobjects exists and is distinguished;

(CS8) given three distinguished subobjects R, S, T of A

R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T );

(CS9) if S is a distinguished subobject of A, S is distinguished in every subobject S ⊆
T ⊆ A.

Proof. The case of the intersection follows from (CS3) and (CS5). The distributivity
law is a special instance of (CS4). The last assertion is obtained via (CS3) when pulling
back S ⊆ A along T ⊆ A. □

We shall also meet the following related notion, which is reminiscent of the notion of
extremal epimorphism:

2.3. Definition. Let C be a category with a strict initial object, provided with a coherent
system of subobjects. An epimorphism f : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B is called distinguished when it does not
factor through any proper distinguished subobject of B.

2.4. Proposition. Let C be a category with a strict initial object, provided with a coherent
system of subobjects. An epimorphism is distinguished if and only if it is left orthogonal
to every distinguished monomorphism.

Proof. The classical proof for extremal versus strong epimorphism applies as such. □

2.5. Proposition. Let C be a category with a strict initial object, provided with a coherent
system of subobjects.

1. Distinguished epimorphisms are stable under composition.

2. If gf is a distinguished epimorphism, so is g.

Proof. Once more the standard proof for extremal epimorphisms applies as such. □
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2.6. Examples. Here is a first list of rather immediate examples of coherent systems of
subobjects; all of them are effective.

1. All subobjects in a coherent category.

2. The complemented subobjects in a lextensive category (see [7]).

3. The open (respectively closed, clopen) subspaces in the category of topological spaces.

4. Only 0 and the object itself in a category with a strict initial object. We call this
the indiscrete coherent system of subobjects.

Proof. The first example follows from Proposition 1.4.3 in [14]. In the lextensive case,
given two complemented subobjects S, T of A, their union is the disjoint coproduct

(S ∩ ∁T )⨿ (S ∩ T )⨿ (∁S ∩ T ).

The rest is obvious. □

Despite its triviality, the last of these examples will play a significant role in Section 7.
But we want to focus now on the following example, which suggested to us the notion of
coherent system of subobjects.

2.7. Example. A sub-preordered set (S,≤) of (A,≤) with the induced preorder is called
open (see [10]) when

a ≤ b and b ∈ S =⇒ a ∈ S
and closed when

a ≤ b and a ∈ S =⇒ b ∈ S.
Clopen means, as usual, open and closed. The open (respectively closed, clopen) sub-
preordered sets in the sense of [10] constitute effective coherent systems of subobjects.

Proof. The proof of having effective coherent systems of subobjects is a special case of
our next example. Indeed, a preordered set is a small category with at most one arrow
between every two objects. □

We generalize now the notions of open, closed and clopen subobjects to the case of
subcategories. To avoid any ambiguity of terminology in the closed case, we prefer to use
left saturated, right saturated and saturated instead of open, closed and clopen.

2.8. Example. A subcategory S ⊆ C is left saturated when

f : A→ B and B ∈ S =⇒ f ∈ S

and right saturated when

f : A→ B and A ∈ S =⇒ f ∈ S.

S is saturated in C when it is both left and right saturated. Left saturated, right saturated
and saturated subcategories constitute effective coherent systems of subobjects in Cat.
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Proof. Only the case of the union requires a comment. To construct the union of two
subcategories S and T of C, one considers first the graph constructed on the set theoretical
union of both sets of objects, and the set theoretical union of both sets of arrows. One
adds further all the possible composites in C of finite chains of consecutive arrows in this
last union. When both S and T are left saturated, the last arrow of a chain is thus in
S or in T , and therefore by left saturation, so do all the arrows of the chain and thus
also their composite. Analogously for right saturation, starting with the first arrow of the
chain. Thus the set of arrows of S ∪T is the set theoretical union of the sets of arrows of
S and T . Since Set is coherent with effective unions, this forces at once all the properties
for having effective coherent systems of subobjects. □

In particular, trivially:

2.9. Proposition. Any left saturated, right saturated or saturated subcategory S ⊆ C is
full, thus generated by a class of objects. □

In all three cases, this implies that when a composite gf is in S, then both f and g
are in S. In the saturated case, if one of the two arrows is in S, so is their composite and
thus S is a completely prime ideal.

We shall use the notation

A2
m qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A1

d0 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqnqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
d1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

A0

to indicate an internal category A. The internal category is an internal preordered object
when the pair (d0, d1) turns A1 in a subobject of A0 × A0.

2.10. Definition. In a category C with finite limits, a left saturated internal subcategory
S ⊆ A is one which satisfies the axiom

If
[
f ∈ A1 ∧ d1(f) ∈ S0

]
then

[
f ∈ S1

]
in the Cartesian internal logic of C. The right saturated case is obtained when using
instead d0.

Let us recall that Cartesian logic or finite limit logic is the internal logic of finitely
complete categories. Given an internal subcategory S of A, the left saturated notion of
Example 2.7 (which is a Cartesian notion; see [14]) translates as the existence of a (unique)
factorization δ1 in the following pullback diagram

A1 ×A0 S0
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq S0pppppppppppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

δ1

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
p.b.

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

S1
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A1

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
d1

A0
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An analogous conclusion holds, using instead d0 and a corresponding factorization δ0, in
the right saturated case.

In the situation of Definition 2.10, one could of course be tempted to define a saturated
internal subcategory as one which is both left and right saturated. But in the case of a
coherent category C (see [14]), thus in particular in a topos, it sounds more sensible to
define:

2.11. Definition. In a coherent category C, a saturated internal subcategory S ⊆ A is
one which satisfies the axiom

If
[
f ∈ A1 ∧

(
d0(f) ∈ S0 ∨ d1(f) ∈ S0

)]
then

[
f ∈ S1

]
in the internal coherent logic of C.

This can be translated as the existence of a (unique) factorization δ in the following
diagram

A′
1

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq (S0 × A0) ∪ (A0 × S0)pppppppppppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

δ

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
p.b.

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

S1
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A1

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
(d0, d1)

A0 × A0

For example in the topos of sheaves on a locale L, this means that if f ∈ A1(u) while u ∈ L
is covered by all the levels v ≤ u where the domain or the codomain of the restriction of
f is in S0(v), then f ∈ S1(u).

2.12. Lemma. When C is a coherent category, given an internal subcategory S ⊆ A, S is
saturated in A if and only if it is both left and right saturated.

Proof. With the notation of Definitions 2.10 and 2.11, compose (d0, d1) with both pro-
jections of the product. This yields first

p−1
1 (S0) = S0 × A0, p−1

2 (S0) = A0 × S0.

By axiom (CS4) this implies

A′
1 = (A1 ×A0 S1) ∪ (S1 ×A0 A1).

Since S1
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A1 is a monomorphism, the existence of δ implies that of δ0 and δ1. The

converse holds because C has effective unions (see Proposition 1.4.3 in [14]). □

2.13. Example. Let C be a coherent category. Left saturated, right saturated and sat-
urated internal subcategories yield coherent systems of subobjects in Cat(C). Restricting
one’s attention to internal preordered objects, one obtains corresponding coherent systems
of subobjects in the category of preordered objects in C.
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Proof. Given two saturated (respectively, left saturated, right saturated) internal sub-
categories S, T of A, let us first observe that their union as internal subcategories admits
S1 ∪ T1 in C as object of arrows, and of course S0 ∪ T0 as object of objects. Indeed the
pullback defining the object of composable pairs of morphisms in S1 ∪ T1

(S1 ∪ T1)×A0 (S1 ∪ T1)

can be split in four pieces by coherence of C. The two pieces S1 ×A0 S1 and T1 ×A0 T1
yield composites lying respectively in S1 and T1 by the category axioms. The other two
pieces S1×A0 T1 and T1×A0 S1 yield composites lying in S1 ∪ T1 in the saturated case, or
already in S1 or T1 in the left or right saturated case. The rest follows at once from the
coherence of the category C. □

It is immediate that, in Cat, every saturated subcategory S is complemented: its com-
plement is the full subcategory generated by those objects which are not connected by a
chain of arrows to any object of S. This is not the case for left or right saturated subcat-
egories: here is an example of a right saturated subcategory which is not complemented.

{A→ B} qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq {A→ B ← C}

In an arbitrary category with finite limits, even in a topos, it is no longer the case that
saturated subcategories are complemented. For example in the topos of sheaves on the
Sierpinski space, consider the following preordered sheaf, where the restriction applies ai
on a and bi on b:

{a1 < b1, a2 < b2} qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq {a < b}
The two subsheaves

{ai < bi} qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq {a < b}
are saturated (or clopen) in the sense of Example 2.13, but are not complemented. Their
union is of course the whole sheaf. This shows that our notion of saturated (clopen)
sub-preordered object differs from that in [3], where complementarity of the subobject is
required. Of course, both notions coincide in the Set case.

3. Variations on torsion theories

Let us recall that an ideal Z in a category C is a class of arrows such that, for every arrow
f ∈ Z, one has fu ∈ Z and vf ∈ Z, for all arrows u, v composable with f (see [9]).
When C has a zero object, the zero morphisms constitute an ideal.

Given an ideal Z in a category C, an arrow k is the Z-kernel of an arrow f when fk ∈ Z
and, if fm ∈ Z for some arrow m, then m factors uniquely through k. The uniqueness
condition forces k to be a monomorphism. When Z is the ideal of zero morphisms, we
recapture the usual notion of kernel. There is of course a dual notion of Z-cokernel. A
pair of composable morphisms

K k qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A
q qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Q
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is a short Z-exact sequence when k is the Z-kernel of q and q is the Z-cokernel of k.
The following definition was introduced in [10] and then thoroughly investigated in

[12]:

3.1. Definition. A pretorsion theory in a category C consists of a pair (T ,F) of classes
of objects, both of them closed under isomorphisms, whose elements are called the torsion
and the torsion-free objects of the pretorsion theory, respectively. The objects in T ∩ F
are called trivial, and the ideal Z of trivial morphisms is that of those arrows factoring
through a trivial object.
These data must satisfy the following two axioms:

(PT1) every arrow f : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B with A ∈ T and B ∈ F is trivial;

(PT2) for every object A ∈ C, there exists a short Z-exact sequence

τ(A) εA qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A
ηA qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ϕ(A)

with τ(A) ∈ T and ϕ(A) ∈ F .

When the trivial objects are zero objects, the pretorsion theory is called a torsion theory.2

A torsion functor is a functor, between two categories provided with a pretorsion theory,
which respects torsion objects, torsion free objects and the canonical Z-exact sequences of
axiom (PT2).

3.2. Proposition. In the conditions of Definition 3.1, the objects τ(A) and ϕ(A) are
defined uniquely up to an isomorphism. This extends to functors τ and ϕ which present
respectively the full subcategory of torsion objects as a coreflective subcategory of C, and
the full subcategory of torsion free objects as a reflective subcategory of C.

Proof. See [12]. □

It is trivial to observe that τ and ϕ extend as functors, which turn respectively the full
subcategories of torsion/torsion free objects in a coreflective/reflective full subcategory of
C (see [12]).

3.3. Example. One gets a pretorsion theory on the category of preordered sets when
choosing (see [10])

• the equivalence relations as torsion objects;

• the partial orders as torsion free objects.

These two notions are Cartesian ones (see [14]), thus make sense in every category with
finite limits. They yield a pretorsion theory in every Barr exact category (see [1, 3, 11]).

2The terminology pretorsion is thus somehow unfortunate, since the axioms are the same as for a
torsion theory, but with respect to a more flexible choice of ideal.
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Proof. Given a preordered set (A,R) and writing R◦ for the opposite relation, τ(A,R) =
(A,R ∩ R◦) while ϕ(A,R) is the quotient of A by the equivalence relation R ∩ R◦, this
quotient being provided with the image-preorder of R. □

3.4. Example. One gets a pretorsion theory on the category of small categories when
choosing (see [6])

• the groupoids as torsion objects (every arrow is an isomorphism);

• the skeletal categories as torsion free objects (every isomorphism is an automor-
phism).

These two notions are Cartesian ones (see [14]), thus make sense in every category with
finite limits. They yield a pretorsion theory in every Grothendieck topos.

Proof. Given a small category C, τ(C) is the groupoid of isomorphisms of C while ϕ(C)
is the quotient of C which identifies the domain and the codomain of every isomorphism
(see [6]). □

More examples of pretorsion theories can be found in [12, 15].
The notion of stable category for a pretorsion theory has been introduced in [10] and

further investigated in [3, 4, 5]. The question is, given a category X provided with a
pretorsion theory, to construct “in the best possible way” a category Y provided with
a torsion theory, and a morphism of pretorsion theories from X to Y . The first way to
interpret “in the best possible way” is to look for the universal solution to the problem:
this is what we do in Section 7. The idea is of course to identify all the trivial objects to
0 . . . and check when this yields a solution to the problem.

But one can be interested in a more involved problem. For example, when an object
A can be written as a union A = S ∪ T of two subobjects, with T a trivial object, one
could want A to be identified with S in the stable category . . . since T will be identified
with 0. This yields of course a different universal problem, in which some compatibility
with the union of subobjects is requested. In [10, 3, 5], a universal solution of that type is
produced in the special case where S and T are complemented subobjects and the union
is a disjoint one.

In this paper, we shall give evidence that complemented subobjects do not play any
canonical role: a stable category compatible with the union of distinguished subobjects
can be constructed with respect to an arbitrary coherent system of subobjects, provided
it is sufficiently compatible with the pretorsion theory.

4. The compatibility conditions

The various constructions of a stable category as in [10, 3, 4] underline clearly which
properties are essential to get the expected result. In this section, we focus on these
properties and show that they hold in our main cases of interest. We freely use the
notation of Section 3, without recalling it.
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4.1. Definition. Let C be a category with a strict initial object, provided with both a
pretorsion theory and a coherent system of subobjects. These data are called compatible
when the following conditions are satisfied.

(CC1) The class of trivial objects is closed under distinguished subobjects.

(CC2) Given a morphism f : S ∪ T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B, with S, T two distinguished subobjects of A,
f is trivial as soon as its restrictions on S and T are trivial.

(CC3) The functor ϕ preserves distinguished subobjects.

(CC4) Given a pullback square

P qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqv
S

u

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

s

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqηA ϕ(A)

with s a distinguished monomorphism, v is a distinguished epimorphism.

(CC5) Let s be a distinguished monomorphism such that ϕ(s) is an isomorphism; then
s is an isomorphism.

Let us infer some consequences of such a situation.

4.2. Proposition. In the conditions of Definition 4.1, the initial object is trivial.

Proof. Trivial objects exist by axiom (PT2) for a pretorsion theory. We conclude by
axiom (CS1) for a coherent system of subobjects, and the compatibility condition (CC1).

□

4.3. Proposition. In the conditions of Definition 4.1, if sf is trivial with s : S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A a
distinguished subobject, then f is trivial.

Proof. The composite sf factors as gh through a trivial object D. Therefore f factors
through the distinguished subobject g−1(S) of D, which is trivial by condition (CC1). □

The cancellation property in 4.3 is thus equivalent to condition (CC1) in 4.1.

4.4. Proposition. In the conditions of Definition 4.1, the class of torsion free objects
is closed under distinguished subobjects.
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Proof. Consider the following diagram, where A is torsion free and S is distinguished in
A.

τ(S) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
εS

S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ηS ϕ(S)

τS

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

s

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ϕ(s)

τ(A) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq εA A ηA ϕ(A)

The composite sεS = ϕ(s)ηSεS is trivial, thus εS is trivial because s is a distinguished
subobject. Therefore ηS is an isomorphism by Lemma 2.4 in [12]. □

4.5. Proposition. In the conditions of Definition 4.1, the morphisms ηA : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ϕ(A)
are distinguished epimorphisms.

Proof. Simply choose s = idϕ(A) in condition (CC4). □

4.6. Proposition. In the conditions of Definition 4.1, given the pullback diagram of
condition (CC4), one has S ∼= ϕ(P ) and v ∼= ηP .

Proof. Consider the following diagram, where S is isomorphic to ϕ(S) by Proposition 4.4

ϕ(P )

�
�
�

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ηP ϕ(v)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

P qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqv S ∼= ϕ(S)

�


qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ϕ(u)

u

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

s

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqηA ϕ(A)

By condition (CC3), ϕ(s) and ϕ(u) are distinguished subobjects. By Proposition 2.2, ϕ(v)
is a distinguished subobject as well. By condition (CC4), v is a distinguished epimor-
phism factoring through the distinguished subobject ϕ(v), thus ϕ(v) is an isomorphism.
Therefore ϕ(P ) ∼= ϕ(S) and v ∼= ηP . □

4.7. Proposition. In the conditions of Definition 4.1, consider the following diagram

τ(S) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
εS

S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ηS ϕ(S)

τ(s)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

s

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ϕ(s)

τ(A) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
εA

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ηA ϕ(A)
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where the two rows are canonical Z-exact sequences and s is a distinguished monomor-
phism. Then τ(s) and ϕ(s) are distinguished monomorphisms and both squares are pull-
backs.

Proof. Let us begin with the right hand square. We know already, by condition (CC3),
that ϕ(s) is a distinguished monomorphism. We consider the pullback (P, u, v) of ϕ(s)
along ηA and the corresponding factorization w.

S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ηS ϕ(S)

@
@
@

@@

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

w

�
�

�
�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

v

s

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

P

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ϕ(s)

�
�

�
��

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

u

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqηA ϕ(A)

Thus u is a distinguished subobject by (CS3) and w as well, by Proposition 2.2. By
Proposition 4.6, ϕ(P ) ∼= ϕ(S) and v ∼= ηP . But this implies that ϕ(w) is isomorphic to
the identity on ϕ(S). By condition (CC5), w is an isomorphism and the outer square is
a pullback.

For the left hand square, if su = εAv, composing with ηA yields a trivial morphism
ηAεAv = ϕ(s)ηSu. Since ϕ(s) is a distinguished subobject, it follows from Proposition 4.3
that ηSu is trivial. Thus u factors uniquely through εS. That factorization is also a
factorization of v through τ(s), because εA is a monomorphism. Thus the left hand
square is a pullback. And since s is a distinguished subobject, so is τ(s) by axiom (CS3).

□

4.8. Corollary. In the conditions of Definition 4.1, the functor τ preserves distin-
guished subobjects. □

4.9. Corollary. In the conditions of Definition 4.1, the class of torsion objects is closed
under distinguished subobjects.

Proof. In the diagram of Proposition 4.7, if A is a torsion object, εA is an isomorphism
and thus by pullback, εS as well. □

4.10. Corollary. In the conditions of Definition 4.1, the functor τ preserves the union
and the intersection of distinguished subobjects.

Proof. Considering again the diagram of Proposition 4.7, τ acts by pullbacks along εA
at the level of distinguished subobjects of A. One concludes by axiom (CS4). □
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4.11. Corollary. In the conditions of Definition 4.1, the functor ϕ preserves the union
and the intersection of distinguished subobjects.

Proof. Let R and S be two distinguished subobjects of A. By condition (CC3), ϕ(S)
and ϕ(R) are distinguished subobjects of ϕA, thus also their union ϕ(S)∪ϕ(R), by axiom
(CS2). By Proposition 4.7, the inverse images of ϕ(S) and ϕ(R) along ηA are S and R.
Thus by axiom (CS4), the inverse image of ϕ(A)∪ϕ(B) along ηA is S∪R. By Proposition
4.6, ϕ(S ∪R) ∼= ϕ(S) ∪ ϕ(R). An analogous argument holds for the intersection. □

4.12. Proposition. In the conditions of Definition 4.1, consider the following diagram

X qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqk
S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

p
Y

x

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

s

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

y

τ(A) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
εA

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ηA ϕ(A)

where the bottom row is a canonical Z-exact sequence, the two squares are pullbacks, and
y is a distinguished monomorphism (thus also x and s). Then the upper row is a canonical
Z-exact sequence as well.

Proof. By Proposition 4.6, we have at once p ∼= ηS. By Proposition 4.7, the pullback of
s along εA is τ(S). Thus up to isomorphism, X ∼= τ(S) and x ∼= εS. □

4.13. Example. Let C be a category with a strict initial object. Any pretorsion theory
on C where the initial object is trivial is compatible with the indiscrete coherent system of
subobjects (see 2.6).

Proof. Trivial because 0 is strict initial. □

4.14. Example. If C is a lextensive category, a pretorsion theory on C and the coherent
system of complemented subobjects (see Example 2.6) are compatible provided that the
class of trivial objects is closed under complemented subobjects and binary coproducts.

Proof. The assumptions take care of conditions (CC1) and (CC2). Lemma 4 in [5]
implies our Propositions 4.6, 4.7 and 4.12, from which conditions (CC3), (CC4) and
(CC5). □

4.15. Example. In the category of preordered objects in an exact coherent category, the
(equivalence/partial order) pretorsion theory (see Example 3.3) and the coherent system
of saturated subobjects are compatible.
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Proof. When useful, we use the more convenient notation A = (A,R) for a preordered
object, and S = (S,RS) for a subobject of (A,R) provided with the induced preorder. We
use freely the internal logic of the ambient coherent category C.

(CC1) holds because 0 is strict initial.
(CC2) A morphism f : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B is trivial when it factors through (B,∆B). From which

the result, since by saturation, the preorder relation of S ∪ T is the union of the preorder
relations of S and T .

(CC3) Consider s : (S,RS) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq (A,R) saturated. First, ϕ(s) is a monomorphism. Two
elements x, y of ϕ(S,RS) identified by ϕ(s) correspond to two elements x, y in S ⊆ A
such that the pair (x, y) lies in R ∩R◦ (see Example 3.3). But since (S,RS) is saturated
in (A,R), (S,R◦

S) is saturated in (A,R◦) and the pair (x, y) lies in RS ∩R◦
S. This implies

x = y. Thus ϕ(s) is a monomorphism, which we shall write as an inclusion.
Next, choose (x, y) ∈ ηA(R) in ϕ(A,R) and assume that x ∈ ϕ(S,RS) or y ∈ ϕ(S,RS).

This means the existence of elements x, y in A, mapped respectively to x and y, with
thus (x, y) ∈ R and one of the two elements x, y in S. By saturation, both elements x, y
are in S and thus both elements x, y are in ϕ(S).

(CC4) Consider the following pullback diagram, with S saturated in ϕ(A,R). We know
already that P is saturated in A. There is no restriction in writing these distinguished
monomorphisms as canonical inclusions.

T

�
�
�

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

h

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

t

P qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
g

S

p

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

s

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqηA ϕ(A)

Suppose that g factors as th through a saturated subobject T . Given an element x ∈ S,
there is an element y ∈ A such that ηA(y) = x, thus y lies in the pullback P and
g(y) = x. This means that x = t

(
h(y)

)
, so that the morphism of preordered objects t is

an isomorphism in the ambient category C. Since moreover T is saturated in S, t is an
isomorphism of preordered objects, and so, g is a distinguished epimorphism.

(CC5) Let again s : (S,RS) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq (A,R) be a saturated subobject, which we write as a
canonical inclusion. If ϕ(s) is an isomorphism, for every a ∈ A, there exists a′ ∈ S such
that ηA(a) = ηS(a

′). This means that the pair (a, a′) is in R ∩R◦ with a′ ∈ S. Since S is
saturated in A, a ∈ S and s is an isomorphism. □

4.16. Example. In the category of internal categories in a Grothendieck topos E, the
(groupoid/ skeletal) pretorsion theory and the coherent system of saturated internal sub-
categories are compatible.
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Proof. Let us first write down the proof in Cat.
(CC1) A trivial category is one with only automorphisms. A saturated subcategory

has only automorphisms as well, because it is full.
(CC2) A functor F : S ∪ T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B is trivial when it factors through the subcategory of

automorphisms of B. Unions of saturated subcategories are computed as in Set at both
the level of objects and the level of arrows (see 2.8, from which the result).

In [6], it is proved that ϕ(A) is constructed from A as the quotient which identifies
isomorphic objects. An arrow a qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq b in ϕ(A), as for every quotient in Cat, is represented
by a finite chain of arrows in A, which become composable in the quotient. But in this
specific case, it is proved in [6] that a unique “reduced” representation exists: a chain
which does not contain any identity arrow nor any consecutive pair of arrows which are
composable in A, and where thus – by definition of the quotient – the codomain of each
arrow of the chain is isomorphic to the domain of the next one, while the domain of the
first arrow is isomorphic to a and the codomain of the last arrow is isomorphic to b. The
identities in ϕ(A) are represented by the empty sequences.

(CC3) Consider a saturated subcategory S : S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A. First, two objects of S identified
in ϕ(A) are isomorphic inA, thus also in S by saturation. This proves that ϕ(S) is injective
on the objects. Next, if two arrows in reduced form in ϕ(S) are identified in ϕ(A), they
are equal by uniqueness of the reduced form. Thus ϕ(S) is a monomorphism. Moreover
given an arrow of ϕ(A) expressed in reduced form, if one of the objects involved in the
chain is in S, by saturation, so are all the objects and all the arrows of the chain. Thus
ϕ(S) is saturated in ϕ(A).

(CC4) We refer to the same diagram as for proving condition (CC4) in Example 4.15,
using for clarity calligraphic letters and upper case letters to indicate respectively the
corresponding categories and functors. The subcategory S is thus saturated in ϕ(A) and
by (CS3), its pullback P is saturated in A. Let us view S and P as inclusions of full
subcategories. Since ηA is surjective on objects, an object x ∈ S is equal in ϕ(A) to an
object of the form ηA(y), with thus y an object of A. But then y lies in the pullback
P and g(y) = x. We get further x = t

(
h(y)

)
and t is surjective, thus bijective, on the

objects. But t is also full by saturation, thus is an isomorphism.
(CC5) Let S : S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A be a saturated subcategory such that ϕ(S) is an isomorphism.

Write S as a canonical inclusion. For every object a ∈ A, there is thus an object a′ ∈ S
such that ϕ(a) and ϕ(a′) are isomorphic in ϕ(A). By saturation of S in A, this forces
a ∈ S. Thus S and A have the same objects and S is full in A, as a saturated subcategory.
Therefore S = A.

Let us now switch to the case of a Grothendieck topos. In a topos of presheaves, the
(groupoid/skeletal) pretorsion theory has canonical Z-exact sequences computed point-
wise as in Set. But being a monomorphism, a saturated subcategory, a pullback, a
groupoid, a skeletal category are notions expressed in terms of finite limits and unions.
Since limits and colimits (thus unions) are computed pointwise in a topos of presheaves,
we get the expected result in every topos of presheaves, just because it holds pointwise in
Set.
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Again the canonical Z-exact sequences for the (groupoid/skeletal) pretorsion theory
in a topos of sheaves are obtained by constructing these sequences in the corresponding
topos of presheaves, and applying the associated sheaf functor. Since this last functor
preserves finite limits and colimits (and thus unions), we conclude the proof in the case
of every Grothendieck topos. □

5. The stable category

To avoid repeating it each time, let us put:

Blanket assumption for this whole section
Let E be a category with a strict initial object, provided with a pretorsion theory and a
coherent system of distinguished subobjects which are compatible.

First, let us construct the category of distinguished partial morphisms of E , which we
shall denote as DisPar(E).

• the objects are those of E ;

• a morphism from A to B is a triple (S0, S1, f) where

– S0 and S1 are distinguished subobjects of A;

– S0 ∪ S1 = A;

– f : S1
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B is a morphism in E ;

– f restricted to S0 ∩ S1 is a trivial morphism.

• the composition law is made via a pullback:

S ′
1

�
�

��

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

@
@

@@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

f ′

S1 p.b. T1
�

�
��

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

@
@
@@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

f
�

�
��

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

@
@

@@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

g

A B C

(T0, T1, g) ◦ (S0, S1, f) = (S0 ∪ S ′
0, S

′
1, gf

′)

with S ′
0 = f−1(T0) and S

′
1 = f−1(T1).

Checking the category axioms is just routine computation.
There is a canonical inclusion functor ι : E qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq DisPar(E), which is the identity on

objects and maps an arrow f : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B on (0, A, f).
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The partial morphisms should be thought as morphisms defined only on S1, but that
will be extended by zero on S0 in the stable category, in order to become defined on the
whole of A.

Next we construct the stable category, denoted by Stab(E). For this, we declare
equivalent two parallel morphisms in DisPar(E)

(S0, S1, f), (T0, T1, g) : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B

when there exists a so-called “congruence” diagram

U0 ∩ S1
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq S1

�
�
�

��

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

@
@
@

@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

f

U1
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A B

@
@
@

@@

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq �
�
�

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

g

U0 ∩ T1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq T1

(Congruence diagram)

with the properties:

• U0 and U1 are distinguished subobjects of A;

• U0 ∪ U1 = A;

• U1 is contained in both S1 and T1 (thus both triangles on the left commute);

• f and g coincide on U1;

• the restriction of f to U0 ∩ S1 is trivial;

• the restriction of g to U0 ∩ T1 is trivial.

It is lengthy, but routine computation, to observe that this yields a congruence in the
sense of Ehresmann (see [9]) on DisPar(E). The stable category Stab(E) is the quotient
of DisPar(E) by that congruence. We write π : DisPar(E) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Stab(E) for the quotient
functor and σ : E qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Stab(E) for the composite πι. For objects and morphisms in E , we
shall generally write A and f in Stab(E) instead of σ(A) and σ(f)

Let us now prove the various properties of a stable category, as announced at the end
of Section 3.

5.1. Proposition. The categories DisPar(E) and Stab(E) admit 0 as a zero object.
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Proof. Writing 0A : 0 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A for the unique morphism in E , the two partial distinguished
morphisms

(A,0, id0) : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 0, (0,0, 0A) : 0 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A

are the only possible ones in DisPar(E), since 0 is strict initial. Thus 0 is a zero object in
DisPar(E) and in Stab(E) as well. □

5.2. Corollary.The zero morphism from A to B in Stab(E) is represented by (A,0, 0B).
□

5.3. Lemma. A morphism (S0, S1, f) : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B in DisPar(E) is mapped on a zero mor-
phism by the quotient functor π if and only if f is trivial.

Proof. Consider a congruence diagram as above, expressing the possible equivalence of
(S0, S1, f) and (A,0, 0B). Again since 0 is strict initial in E , we must have U1 = 0 and
thus U0 = A, which forces at once the result. □

5.4. Corollary.A morphism f : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B in E is mapped on a zero morphism in Stab(E)
if and only if it is trivial. □

5.5. Proposition. An object A ∈ E is mapped on a zero object in Stab(E) if and only if
it is trivial.

Proof. Expressing that the two partial morphisms in Proposition 5.1 yield inverse iso-
morphisms in Stab(E) reduces, by Lemma 5.3, to the identity on A being trivial. But if
the identity on A factors through a trivial object X, A is a retract of X and therefore is
trivial (see Corollary 2.8 in[12]). □

5.6. Theorem. In Stab(E), choosing as torsion and torsion free objects the same objects
as in E, one gets a torsion theory on Stab(E) which turns the functor σ : E qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Stab(E) in
a torsion functor.

Proof. Consider a morphism A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B in Stab(E), represented by (S0, S1, f) in DisPar(E).
If A is torsion and B is torsion free, then S1 is torsion by Corollary 4.9 and thus f is
trivial by axiom (PT1) in E (see Definition 3.1). By Lemma 5.3, axiom (PT1) holds in
Stab(E).

The core of the proof is about axiom (PT2). We fix an object A ∈ E and must prove
that the image by the functor σ of its canonical Z-exact sequence in E

τ(A) εA qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A
ηA qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq ϕ(A)

is an exact sequence in Stab(E).
First, the kernel part. Consider a morphism from X to A in Stab(E) represented by a

morphism (S0, S1, x) in DisPar(E) and whose composite with ηA is zero. That composite
is represented by (S0, S1, ηAx); by Lemma 5.3, saying that it is zero means that ηAx is
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trivial. Therefore x factors uniquely in E as x = εAy. It follows at once that (S0, S1, y)
yields a factorization of (S0, S1, x) through εA in Stab(E).

To prove the uniqueness, consider another factorization (T0, T1, z). Write U0, U1 for the
two distinguished subobjects in a congruence diagram exhibiting the equivalence between
(S0, S1, εAy) and (T0, T1, εAz). Since εAy and εAz coincide on U1, so do y and z because
εA is a monomorphism. The rest follows easily from Lemma 4.3.

To prove the cokernel part, let us choose in Stab(E) a morphism from A to X, rep-
resented by (S0, S1, x) in DisPar(E), and whose composite with εA is zero. We consider
then the situation

τ(A) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
εA

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ηA ϕ(A)

τ(s)

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

s

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ϕ(s)

τ(S1) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
εS1 S1

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ηS1 ϕ(S1)

@
@

@
@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

x

ppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

y

X

where, by Proposition 4.7, both squares are pullbacks and the vertical arrows are distin-
guished subobjects. In particular,

(S0, S1, x) ◦ εA =
(
ε−1
A (S0), τ(S1), xεS1

)
.

Since this composite is zero, xεS1 is trivial, by Lemma 5.3. This implies the existence
of a unique factorization y of x through ηS1 . Then

(
ϕ(S0), ϕ(S1), y

)
yields the expected

factorization of (S0, S1, x) through ηA in Stab(E).
It remains to prove the uniqueness of the factorization. Let thus (U0, U1, z) be another

factorization of (S0, S1, x) through ηA in Stab(E). Consider the following diagram

V ′
1 = τ(V1) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

εV1 V1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ηV1 ϕ(V1) = U1

τ(v1)
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
���

���
���

��

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

wV
1

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

v1 ϕ(v1)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

@
@
@

@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

z

W1 τ(A) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
εA

A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ηA ϕ(A) X

τ(s1)

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

HHH
HHH

HHH
HH

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

wS
1

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

s1 ϕ(s1)

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq �
�
�

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

y

τ(S1) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq εS1
S1

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqηS1
ϕ(S1)
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where V1 and V ′
1 are obtained from U1 by pullbacks. By Proposition 4.12, the upper line

is a Z-exact sequence, allowing as in Proposition 4.7 to rewrite it in terms of V1, and the
vertical morphisms in terms of v1. The equalities

(V0, V1, zηV1) = (U0, U1, z) ◦ ηA = (S0, S1, x)

=
(
ϕ(S0), ϕ(S1), y

)
◦ ηA =

(
S0, S1, yηS1)

mean the existence of a congruence diagram built from a distinguished covering A =
W0 ∪W1 of A.

We know by Corollary 4.11 that ϕ(A) = ϕ(W0) ∪ ϕ(W1) and we shall now prove that
this covering allows constructing a congruence diagram proving the expected uniqueness
of the factorization. Consider first the canonical Z-exact sequence of W1.

τ(W1) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
εW1 W1

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ηW1 ϕ(W1)

@
@

@
@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

ηV1 ◦ wV
1

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

αV

ϕ(V1)

The composite V1w
V
1 εW1 is trivial by axiom (PT1), from which the factorization αV . The

same argument can be repeated with S1 and wS
1 , yielding αS such that αSηW1 = ηS1w

S
1 .

Then
zαV ηW1 = zηV1w

V
1 = yηS1w

S
1 = yαSηW1 .

Since ηW1 is an isomorphism, this implies zαV = yαS. This is the first condition for a
congruence diagram based on ϕ(W0) ∪ ϕ(W1).

It remains to check the triviality of z and y when restricted to ϕ(W0). For this, having
in mind Corollaries 4.8, 4.10 and 4.11, we consider the diagram

τ(W0) ∩ τ(W1) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
εW0∩W1

W0 ∩W1
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

ηW0∩W1

ϕ(W0) ∩ ϕ(W1) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ϕ(i)

ϕ(W1)

@
@

@
@
@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

β

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

δ

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

y

Z qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqγ X

where i is the inclusion of W0 ∩W1 in W1. From the congruence diagram built on the
covering A = W0 ∪W1, we know that yϕ(i)ηW0∩W1 is trivial. Thus this morphism factors
as γβ through some trivial object D. But then β, and thus βεW0∩W1 are trivial. This
implies that β factors via a unique morphism δ through ηW0∩W1 . Since ηW0∩W1 is an
epimorphism, the various commutativities imply γδ = yϕ(i). Thus yϕ(i) factors through
the trivial object D and is trivial. The case of z is perfectly analogous. □

All the results of this section apply thus to Examples 4.13, 4.14, 4.15 and 4.16.
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6. The universal property

Again we put:

Blanket assumption for this whole section
Let E be a category with a strict initial object, provided with a pretorsion theory and a
coherent system of distinguished subobjects which are compatible.

Let us begin with the motivating property that we emphasized in our discussion on
stable categories at the end of Section 3.

6.1. Proposition. Consider an object A in E which is the union A = S ∪ T of two
distinguished subobjects. When T is trivial, A and S become isomorphic in Stab(E).

Proof. Write s : S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A for the canonical inclusion. The two distinguished partial mor-
phisms (T, S, s) from A to S and (0, S, idS) from S to A exhibit the isomorphism in
Stab(E). □

This property somehow suggests the following definition.

6.2. Definition. Let X be a category with a zero object. A commutative square ca = db
is called a zero-pushout

• qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqa •

b

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

c

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

• qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqd •

A
A
A
A
A
A
A
A
A
A
Aqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

f
H
HHH

HHH
HHHHqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

g

p p p p p p p p p p p p p p p p p p p p p p pqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
h

•

when given arrows f , g, with fa = gb, there exists a unique morphism h such that hc = f
and hd = g, provided that at least one of the two morphisms f , g is zero.

6.3. Proposition. Given two distinguished subobjects S, T of A in E, the functor
σ : E qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Stab(E) transforms the square

S ∩ T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq s′
S

t′
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

s

T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
t S ∪ T
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in a zero-pushout.

Let us make clear that we do not assume that the square in the statement is a pushout;
our coherent system of subobjects needs not be effective.

Proof. Let us consider the following diagram, where the plain arrows are in E and the
dotted arrows in Stab(E).

U1 ∩ T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq α
S ∩ T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq t′

T

β

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

s′
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

t

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

U1
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

u1
S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq s

S ∪ T

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

0
PPPPPPPPPPPPPPPPPqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

f

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
(U0, U1, f)

B

In Stab(E), we assume thus (U0, U1, f) ◦ s′ = 0 ◦ t′. By Lemma 5.3, fβ is trivial, thus f is
trivial on U1∩T . But by definition of the arrows in DisPar(E), f is also trivial on U1∩U0.
By condition (CC2), f is thus trivial on

(U1 ∩ T ) ∪ (U1 ∩ U0) = U1 ∩ (T ∪ U0).

Since U1 ∪ (T ∪ U0) = S ∪ T , this proves that we have a morphism in Stab(E)

(T ∪ U0, U1, f) : S ∪ T p p p p p p p p p p p p p pqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B

and it follows at once that this is the expected factorization.
It remains to prove the uniqueness of that factorization. Let (V0, V1, g) be another

factorization, with thus in particular V0∪V1 = S∪T . On one hand the equality (V0, V1, g)◦
s = (U0, U1, f) implies the existence of a distinguished covering S = W0 ∪ W1 and a
corresponding congruence diagram

W0 ∩ U1 W1 W0 ∩ S ∩ V1
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

�
���

���
����

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

�
�

�
��

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

@
@

@
@@

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

HH
HHH

HHH
HHH

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

U1 = S ∩ U1 U1 V1 qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq S ∩ V1
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

@
@
@
@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

f
�

�
�

�
�qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

g

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

S qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq S ∩ T B S ∩ T qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq T



ON COHERENT SYSTEMS OF SUBOBJECTS AND TORSION THEORIES 271

By this congruence diagram, f and g coincide on W1, while f is trivial on W0 ∩U1 and g
is trivial on W0 ∩ S ∩ V1. On the other hand the equality (V0, V1, g) ◦ y = 0 means that g
is trivial on T ∩ V1. And we know already that f is trivial on T ∩ U1. Observe now that

S ∪ T = W0 ∪W1 ∪ T = W1 ∪ (W0 ∪ T )

is a covering of S ∪ T , while f and g coincide already on W1. To conclude the proof, it
remains to see that f and g are trivial when restricted respectively to (W0 ∪ T ) ∩ U1 and
(W0 ∪ T ) ∩ V1. We have

(W0 ∪ T ) ∩ U1 = (W0 ∩ U1) ∪ (T ∩ U1)

and we know already that f is trivial on both pieces of this union; condition (CC2) yields
the conclusion for f . In the same way

(W0 ∪ T ) ∩ V1 = (W0 ∩ V1) ∪ (T ∩ V1)

and we know already that g is trivial on T ∩ V1 and W0 ∩ S ∩ V1. This takes already
care of the term T ∩ V1; for the other term, simply split it in two parts and apply again
condition (CC2)

W0 ∩ V1 = (W0 ∩ V1) ∩ (S ∪ T ) = (W0 ∩ V1 ∩ S) ∪ (W0 ∩ V1 ∩ T ).

The morphism g is already known to be trivial on each part. □

6.4. Theorem.The functor σ : E qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq Stab(E) is universal among the functors F : E qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X
where

1. X is provided with a torsion theory;

2. F is a torsion functor;

3. given two distinguished subobjects S, T of A in E, F transforms the square

S ∩ T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq S
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

T qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq S ∪ T

in a zero-pushout.



272 FRANCIS BORCEUX AND MARIA MANUEL CLEMENTINO

Proof. Call G : Stab(E) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X the expected unique factorization of F through σ. Since
σ is the identity on objects, we must put G(A) = F (A) for every object A ∈ E . In the
same way for every arrow f ∈ E , the factorization requirement imposes G

(
σ(f)

)
= F (f).

Next consider a morphism from A to B in Stab(E), which is represented by (S0, S1, f)
in DisPar(E). We have in particular the following left hand diagram in E , with S0∪S1 = A.

S0 ∩ S1
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

s′1 S1 F (S0 ∩ S1) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
F (s′1)F (S1)

s′0

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

s1

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

F (s′0)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

F (s1)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

S0
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq s0 A

A
A
A
A
A
A
A
A
A
A
Aqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

f F (S0) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
F (s0)

F (A)

A
A
A
A
A
A
A
A
A
A
Aqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

F (f)
H

HHH
HHH

HHHHqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

0

p p p p p p p p p p p p p p p p p p p p p p pqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
φ

B F (B)

yielding the corresponding right hand diagram in X , with the square a zero-pushout. By
definition of a morphism in DisPar(E), fs′1 is trivial, thus F (f)F (s′1) = 0 because F is a
torsion functor. By the zero-pushout property, we get a unique factorization φ which we
choose as G(S0, S1, f).

We must of course verify that this definition is independent of the choice of the dis-
tinguished partial morphism representing the morphism in Stab(E). Using analogous
notation, let the partial morphism (T0, T1, g) be equivalent to (U0, U1, f) in DisPar(E) and
call ψ the corresponding factorization from F (A) to F (B). We have thus a congruence
diagram with U0 ∪ U1 = A

U0 ∩ S1
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq S1

�
�
�

��

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

uS1

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

@
@
@

@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

f

U1
qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

u1
A B

@
@

@
@@

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

uT1

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq �
�
�

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

g

U0 ∩ T1 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq T1

Still with analogous notation, we consider further the following diagram
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F (U0 ∩ U1) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
F (u′1) F (U1)

F (u′0)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

F (u1)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

F (U0) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
F (u0)

F (U0 ∪ U1)

A
A
A
A
A
A
A
A
A
A
A
A
AAqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

F (fuS1 ) = F (guT1 )
HHH

HHH
HHH

HHH
HHqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

0

p p p p p p p p p p p p p p p p p p p p p p p p p p p p qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
θ

F (B)

yielding the unique factorization θ through the zero-pushout. But U0 ∪ U1 = A so that θ
is a morphism from F (A) to F (B). Let us prove that both morphisms φ = G(U0, U1, f)
and ψ = G(T0, T1, g) are equal to θ. Of course it suffices to do the job for one of them:
we do it for φ.

We have first
φF (u1) = φF (s1)F (u

S
1 ) = F (f)F (uS1 ).

To prove that φ ◦ F (u0) = 0, observe that

U0 = U0 ∩ A = U0 ∩ (S0 ∪ S1) = (U0 ∩ S0) ∪ (U0 ∩ S1).

Using the zero-pushout in X constructed from these last two distinguished subobjects in
E , it suffices to prove that φ◦F (u0) is zero on F (U0∩S0) and F (U0∩S1). In the first case
it is because φ is already zero at the level F (S0) and in the second case, because F (f) is
zero at the level F (U0 ∩ S1).

Checking the functoriality of G is just routine verification. Its uniqueness is attested
by that of φ at the beginning of the proof. And by definition of the torsion theory on
Stab(E) and assumption on F , G is a torsion functor. □

All the results of this section apply again to Examples 4.13, 4.14, 4.15 and 4.16.

7. The associated torsion theory

In this section, we want to focus on the torsion theory universally associated with a pre-
torsion theory, without any further requirement of compatibility with unions, coproducts,
or whatever.

7.1. Theorem. Let E be a category provided with a pretorsion theory and a strict initial
object. Suppose that the initial object is trivial. There exists a category provided with a
torsion theory, universally associated with those data.
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Proof. The universal solution is the stable category corresponding to the choice of the
indiscrete coherent system of subobjects (see Example 4.13). Indeed, given two distin-
guished subobjects of A, the only possible bicartesian squares as in Theorem 6.4 are

0 0 A A 0 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A

0 0 A A 0 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A

and these are trivially sent to actual pushouts by every torsion functor. □

7.2. Corollary. In the conditions of Theorem 7.1, the universal stable category Stab(E)
admits the following description:

• the objects are those of E;

• the arrows A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B in Stab(E) are the non-trivial arrows from A to B in E, together
with a formally added arrow 0AB.

The composition in Stab(E) of two non-trivial morphisms of E is their composition in
E when this composite is non-trivial, and the corresponding zero morphism otherwise.
Composing whatever arrow with a zero arrow is the corresponding zero arrow.

Proof. The morphisms from A to B in DisPar(E) are

• (0, A, f) for every morphism f : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B;

• (A,0, 0B);

• (A,A, f) for every trivial morphism f : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B.

By Lemma 5.3, all cases where f is trivial are identified with (A,0, 0B) in Stab(E). And
when f , g are non-trivial, the only possible choice for U0 in a congruence diagram is
U0 = 0, thus U1 = A, which yields f = g. The conclusion follows at once, when putting
0AB = σ(A,0, B) □

7.3. Proposition. Consider a category E provided with a torsion theory, a strict initial
object and a terminal object. Suppose that the initial and the terminal object are both
trivial. The stable category Stab(E) of Theorem 7.1 is then the category of fractions
E [Σ−1], where Σ is the class of morphisms 0 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A, with A trivial. Equivalently, Σ can be
chosen as just the singleton {0 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1}.
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Proof. When A is trivial, 0A : 0 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq A becomes an isomorphism in Stab(E), by Proposi-
tion 5.5. This is in particular the case for the unique morphism ξ : 0 qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq 1.

Choose now a functor F : E qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq X which transforms the morphism ξ in an isomor-
phism.

E qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqσ Stab(E)
@

@
@
@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

F

ppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

G

X

We must prove the existence of a unique factorization G. Since σ is bijective on objects,
we must put G(A) = F (A) for every object A. And of course by functoriality, we must
put F (ξ−1) = F (ξ)−1.

Let us use the description of Stab(E) as in Corollary 7.2, writing 1A for the unique
morphism from A to 1 in E . If f is a non trivial morphism in E , we must again put
G(f) = F (f). And when it goes about the zero morphism 0AB in Stab(E), we have the
situation

A p p p p p p p p p p p p p pqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
0AB

B F (A) p p p p p p p p p p p p qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
F (0AB)

F (B)

σ(1A)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

σ(0B) F (1A)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

F (0B)

1 p p p p p p p p p p p p p pqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
ξ−1 0 F (1) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

F (ξ)−1
F (0)

where the left hand square is commutative in Stab(E). We are thus forced to define

G(0AB) = F (0B) ◦ F (ξ)−1 ◦ F (1A).

This shows in particular that F (u) = F (0B) ◦ F (ξ)−1 ◦ F (1A) for every trivial morphism
u : A qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq B.

Checking the functoriality ofG is then routine. For example consider the most involved
case: two non trivial morphisms f , g in E whose composite is trivial. We have thus a
factorization fg = uv through a trivial object D, yielding the following situation in X

F (A) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
F (f)

F (B)

@
@
@
@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

F (1A)

�
�
�

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

F (0B)

F (u)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

F (1) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
F (ξ)−1

F (0)

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

F (g)

�
�
�
�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqF (1D)
��

���
���

���qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
F (0D)

@
@
@

@
@qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

F (0C)

F (D) qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq
F (v)

F (C)
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Since f and g are non trivial, we have

G(σ(g)) ◦G(σ(f)) = F (g) ◦ F (f) = F (gf) = F (vu) = F (v) ◦ F (u).

Since D is trivial, so are u and v and thus we know already that

F (u) = F (0B) ◦ F (ξ)−1 ◦ F (1A), F (v) = F (0C) ◦ F (ξ)−1 ◦ F (1B).

The composite of these two morphisms reduces to F (0C) ◦F (ξ)−1 ◦F (1A) since 1B ◦ 0B =
id0. But this is precisely G(0AC), that is G(σ(gf)) since gf is trivial. □
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