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ON THE METRICAL AND QUANTALIC VERSIONS OF THE
∗-AUTONOMOUS CATEGORY OF SUP-LATTICES

WALTER THOLEN

In memory of Marta Bunge

Abstract. In 1984, Joyal and Tierney presented the category Sup of complete lattices
and their suprema-preserving maps as a ∗-autonomous category in the sense of Barr.
Work on this paper was motivated by the question whether the Joyal-Tierney proof
may be extended to a metrical context, so that the order of the lattice gets replaced
by a generalized metric in the sense of Lawvere. The affirmative answer we give relies
crucially on working with not necessarily symmetric metrics. It applies not only to small
separated and cocomplete categories enriched in the Boolean quantale 2 (reproducing
Sup), or in the Lawvere quantale [0,∞] (producing the category we were looking for),
but in any commutative and unital quantale V. Benefitting from previous work by
Stubbe, Hofmann, and others, with rather explicit constructions of its tensor product
and the internal hom we give an alternative proof that the resulting category V-Sup
is ∗-autonomous, a result first established by Eklund, Gutiérrez Garćıa, Höhle, and
Kortelainen in 2018 from a predominantly order-theoretic perspective.

1. Introduction

Ever since the pioneering work [Joyal, Tierney 1984] appeared, many authors utilized
and extended the remarkable properties of the category Sup of complete lattices and
their suprema-preserving maps, often in generalized contexts—already Joyal and Tierney
worked in an elementary topos. We mention here in particular the article [Stubbe 2007]
which showed that many aspects of the Joyal-Tierney work hold in a quantaloidic setting.
In this paper we work in the more restrictive context of a commutative and unital quantale,
with the primary goal of establishing a metrical counterpart of the category Sup as ∗-
autonomous in the sense of [Barr 1979], being guided by enriched category theory but
staying accessible to readers with knowledge of only basic category theory.

As sup-lattices are precisely the small, separated and (co)complete categories X en-
riched in the Boolean quantale 2, it is not surprising that we will simply replace 2 by the
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quantale [0,∞] of [Lawvere 1973] (ordered by the natural ≥), so that the order of the
lattice X is induced by a (necessarily) non-symmetric metric on X (unless X is trivial).
Cocompleteness, i.e., the existence of all weighted colimits in X, may then be described
by a tensorial action of [0,∞] on X. This gives us a hands-on description of the de-
sired category. It enables us to mimic the Joyal-Tierney proof that Sup is ∗-autonomous
and show that [0,∞], ordered by the natural ≤ (!), serves as a dualizing object in that
category; see Theorem 2.4.

Following to a large extent the Joyal-Tierney template, the proof of Theorem 2.4 is
actually carried out in the generality of a commutative and unital quantale V , rather
than just [0,∞], eventually leading us to a proof of Theorem 7.4. In there we confirm
that the category V-Sup of small, separated and cocomplete categories enriched in V and
their cocontinuous V-functors, after being presented equivalently as the category SupV of
cocontinuous V-acts in Sup, is ∗-autonomous. This result was first established in [Eklund,
Gutierrez Garcia, Hoehle, Kortelainen 2018] who, in their Theorem 3.1.30, first proved
that SupV (denoted by Mod(V) by them, a notation we avoid in order not to run into a
terminological or notational clash with [Lawvere 1973, Hofmann, Seal, Tholen 2014]) is
∗-autonomous, before identifying this category as isomorphic to V-Sup (in Section 3.3 of
their book).

But the main difference between the two proofs certainly does not lie in the order
of presentation, and not even in our emphasis of the categorical, rather than the order-
theoretic, perspective which leads us naturally to the metric application. Rather, it lies
in the fact that the approach in [Eklund, Gutierrez Garcia, Hoehle, Kortelainen 2018]
uses the symmetric monoidal-closed structure of Sup, rather than generalizing it directly
to the V-context as we do in this paper. A key ingredient of our argumentation is the
observation that the elegant Joyal-Tierney presentation of quotients in Sup “works” also
in V-Sup and thereby allows for a quite direct construction of the tensor product via a
universal bi-morphism, rather than via its internal hom and its dualizing object as done
in [Eklund, Gutierrez Garcia, Hoehle, Kortelainen 2018]. Indeed, the relevant Proposition
6.2 on quotients in this paper is a straight generalization of Proposition 3 in [Joyal, Tierney
1984].

Not to rely on standard texts on enriched category theory, such as [Kelly 1982, Borceux
1994, Stubbe 2005, Stubbe 2006], whose generality is not needed here, for the convenience
of some readers we recall in Sections 3 and 4 the elements of the much slimmer quantale-
enriched category theory as used in this paper; some of these elements may also be found
in [Akhvlediani, Clementino, Tholen 2010, Hofmann, Seal, Tholen 2014, Hofmann, Nora
2018], and the literature mentioned in there. Other readers are referred to these two
sections just for clarification of notation or terminology.

The equivalent presentation of the objects and morphisms of V-Sup in terms of an
equationally defined action of the quantale V is given in Section 5, where we follow and
extend the presentation of V-categories with finitary weighted colimits as in [Hofmann,
Nora 2018], along with a brief discussion of the monadicity of V-Sup (Theorem 5.5). In
Section 6 we prove that V-Sup becomes symmetric monoidal with a box-tensor product
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classifying its bi-morphisms. Its closedness is shown in Section 7, followed by the proof
that V-Sup is ∗-autonomous.

The approach presented in this paper was first sketched in the conference talk [Tholen
2022]. We leave it for future work to determine to which extent the results may hold for
categories of relational algebras [Barr 1970], of T -categories [Burroni 1971], or of monad-
quantale-enriched categories as presented in [Hofmann 2007, Hofmann, Seal, Tholen 2014].
The paper [Bunge 1974] offers an early and very deep analysis of the abstract structures
underlying the categories studied by Barr and Burroni. We dedicate this paper to the
memory of Marta Bunge, for her long-term leadership in the development of category
theory.

Acknowledgement. I thank the anonymous referee for pointing me to a significant
contribution in the literature that I had missed in the first version of the paper.

2. Inf-complete metric acts

In this paper, a metric on a set X is a function d : X×X → [0,∞] satisfying the conditions
(d(x, y) = 0 = d(y, x) ⇐⇒ x = y) and d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
Hence, our metric spaces differ from the ordinary notion of [Fréchet 1906] insofar as d may
assume the value ∞ and, more importantly, as d may fail to be symmetric. Whenever
convenient, we adopt the convention of writing X(x, y) instead of d(x, y). A non-expansive
(or 1-Lipschitz) map f : X → Y of metric spaces satisfies Y (fx, fy) ≤ X(x, y) for all
x, y ∈ X. These are the objects and morphisms of the category

Metsep.

It is a full reflective subcategory of Lawvere’s category Met whose objects are not neces-
sarily separated, i.e., they may fail the “=⇒”-part of our first condition for a metric.

2.1. Definition. An inf-complete metric act is a complete lattice (X,≤) that comes
with an action + : [0,∞]×X −→ X of the ordered monoid ([0,∞],≤,+, 0) on X which
preserves infima in each variable separately; hence, the action satisfies the following con-
ditions for all x, xi (i ∈ I) in X and u, v, ui (i ∈ I) in [0,∞]:

(Act1) 0 + x = x;

(Act2) u+ (v + x) = (u+ v) + x;

(Inf1) (infi ui) + x = infi(ui + x);

(Inf2) u+ infi xi = infi(u+ xi).

A morphism f : X → Y of inf-complete metric acts must preserve all infima and the
action (i.e., be +-equivariant). This defines the category

ICMetA .
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A bi-morphism g : X × Y −→ Z of inf-complete metric acts is a mere set map which is
a morphism in each variable separately.

Every inf-metric act X becomes a metric space with

X(x, y) = inf{u ∈ [0,∞] | x ≤ u+ y}.

This describes the object assignment of a forgetful functor ICMetA→ Metsep. It leaves us
with the question of what additional structure, or property, may be needed to make a given
metric space an inf-complete metric act, such that its induced metric is the given one and,
in fact, such that the resulting codomain modification of the forgetful functor becomes an
isomorphism of categories. In the more general quantalic context, this question will be
answered in the following sections.

2.2. Examples.

1. The complete lattice [0,∞] with its natural order becomes an inf-complete metric
act when we take the monoid operation + as the action of [0,∞] on itself. The
induced (non-symmetric) metric d on [0,∞] is given by d(v, w) = max{v − w, 0}.

2. For every metric space X we make the set

PX = {φ : X → [0,∞] | ∀x, y ∈ X : φy ≤ φx+X(x, y)}

an inf-complete act by defining the order and action pointwise in [0,∞]:

φ ≤ ψ ⇐⇒ ∀x ∈ X : φx ≤ ψx and (u+ φ)x = u+ φx.

The induced metric on PX is the usual (non-symmetrized) sup-metric inherited from
[0,∞], that is: PX(φ, ψ) = supx∈X d(φx, ψx). The functions in PX are precisely
the non-expansive maps X → [0,∞]. Such function φ may also be thought of as
an isometric extension of the metric of X to the set X ∪ {∗} with a new point ∗,
whereby φ gives the distances from ∗ to the points in X, with the understanding
that the reverse distances are always ∞.

x
X(x,y)

��∗

φx

Vl

??

φy
// y

3. For every inf-complete metric act X, the action + : [0,∞]×X → X is a bi-morphism
of inf-complete metric acts.
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2.3. Definition. For every inf-complete metric act X we call the subobject

X? := ICMetA(X, [0,∞])

of PX, given by all ICMetA-morphisms X → [0,∞], the dual act of X.

The justification for this terminology rests with the following theorem, the proof of
which will be carried out in the more general quantalic context afterwards, eventually
leading us to the overarching Theorem 7.4.

2.4. Theorem. The object assignment X 7−→ X? extends to a dual equivalence of cate-
gories and, thus, makes ICMetA a self-dual category. In fact, with the tensor product that
classifies its bi-morphisms, the category ICMetA becomes symmetric monoidal-closed and
even ∗-autonomous, such that [0,∞] serves as a dualizing object.

3. Quantale-enriched categories, functors, and distributors

In this section we summarize our notations and some basic properties and known results
for quantale-enriched categories as used and needed in the following sections.

3.1. Quantales. A (commutative and unital) quantale V = (V ,≤,⊗, k) is simultane-
ously a complete lattice (V ,≤) and a commutative monoid (V ,⊗, k), such that ⊗ dis-
tributes over arbitrary suprema in V , always denoted by

∨
. In particular, V has a bottom

element, ⊥ =
∨
∅, and a top element > =

∧
∅. For the ⊗-neutral element k we allow

k < > (as well as k = ⊥, in which case, however, V is trivial: ⊥ = >).
For every v ∈ V , the (by distributivity)

∨
-preserving map −⊗ v : V → V has a right

adjoint [v,−] in the lattice V , whose values [v, w] are characterized by

u ≤ [v, w] ⇐⇒ u⊗ v ≤ w

for all u ∈ V . In other words, considered as a small, thin (i.e., arrows are given by
order), and symmetric monoidal category, V is closed. Alternatively, V is an internal
commutative monoid in the symmetric monoidal-closed category Sup.

Our guiding examples of quantales are the Boolean quantale 2 = ({⊥,>},⇒,&,>) and
the Lawvere quantale [0,∞]+ = ([0,∞],≥,+, 0), where ≥ is the inversion of the natural
order ≤ of the reals; to avoid confusion with the quantalic notation

∨
,
∧

, we continue to
use respectively inf, sup (as in Section 2) whenever referring to the natural order of the
reals. The internal hom in [0,∞]+ is computed as [v, w] = max{w − v, 0}; hence, with d
as in Examples 2.2, [v, w] = d(w, v).

3.2. V-relations. A V-relation r : X −7−→ Y of sets X, Y is a map r : X × Y → V .

Its composite s · r with s : Y −7−→ Z is given by (s · r)(x, z) =
∨
y∈Y r(x, y) ⊗ s(y, z).

With the pointwise order of its hom-sets inherited from V , we have the 2-category V-Rel ,
equipped with the involution r 7→ r◦ with r◦(y, x) = r(x, y). Every set map f : X → Y
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gives the V-relation f◦ : X −7−→ Y , with f◦(x, y) = k if fx = y and ⊥ otherwise, as well as

f ◦ := (f◦)
◦ : Y −7−→ X. One has the adjunction f◦ a f ◦, and 1◦X = (1X)◦ serves as the

identity morphism on X in V-Rel.
The order on the hom-sets of V-Rel is complete, and the composition of V-relations

(as an extension of ⊗ in V) distributes over arbitrary joins in V-Rel, these being formed
pointwise. Consequently, V-Rel is Sup-enriched, i.e., a quantaloid. Since, of course, the
composition is generally not commutative, for V-relations r : X −7−→ Y and s : Y −7−→ Z

we must distinguish between the right adjoints [r,−] and ]s,−[ of the monotone maps

− · r : V-Rel(Y, Z) −→ V-Rel(X,Z) and s · − : V-Rel(X, Y ) −→ V-Rel(X,Z)

respectively. One calls [r, t] : Y −7−→ Z the extension of t : X −◦−→ Z along r, and

]s, t[: X −7−→ Y the lifting of t along s:

Z Y +
s // Z

X +
r
//

×t
≥

>>

Y

+[r,t]

OO

X

+]s,t[

OO

×
t

≤
>>

By definition, these V-relations are respectively determined by the equivalences

s ≤ [r, t]⇐⇒ s · r ≤ t and s · r ≤ t⇐⇒ r ≤ ]s, t[.

For their pointwise computation in terms of the internal hom of V one has the formulae

[r, t](y, z) =
∧
x∈X

[r(x, y), t(x, z)], ]s, t[(x, y) =
∧
z∈Z

[s(y, z), t(x, z)].

3.3. V-categories and V-functors. From now on, V = (V ,≤,⊗, k) will always be a

quantale. A (small) V-category is a set X with a V-relation d : X −◦−→ X that is reflexive

(1◦X ≤ d) and transitive (d · d ≤ d). Writing X(x, y) for d(x, y), this means

k ≤ X(x, x) and X(x, y)⊗X(y, z) ≤ X(x, z),

for all x, y, z ∈ X. A V-functor f : X → Y is a map satisfying d ≤ f ◦ · e · f◦ (where e is
the structure of Y ); that is, for all x, y ∈ X one has

X(x, y) ≤ Y (fx, fy).

This defines the category V-Cat. It contains the important object V , with V(v, w) = [v, w].
Every V-category X has an induced (pre)order, defined by (x ≤ y ⇐⇒ k ≤ X(x, y)).

The induced order of the V-category V coincides with its given lattice order. V-functors
become monotone maps w.r.t. the induced orders. The hom-set V-Cat(X, Y ) inherits
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its pointwise order from Y (so that f ≤ g ⇐⇒ ∀x ∈ X : fx ≤ gx), making V-Cat a
2-category and producing the induced-order 2-functors

V-Cat −→ Ord and V-Catsep → Pos ;

here V-Catsep is the full subcategory of V-Cat, containing the separated V-categories whose
induced order makes them posets. Ord=2-Cat is the category of (pre)ordered sets and
monotone maps, and Pos = 2-Catsep is its full subcategory of posets. Note also: Met =
[0,∞]+-Cat.

The dual X
op

of a V-category X, given by X
op

(x, y) = X(y, x), defines the isomor-
phism (−)

op
: V-Catco → V-Cat of 2-categories; it is covariant on the identically mapped

morphisms, but contravariant on 2-cells, since (f ≤ f ′ ⇐⇒ f
op ≥ (f ′)

op
).

An adjunction of V-functors f a g : Y → X in V-Cat is already determined by
the adjunction of the induced monotone maps, that is, by the conditions fg ≤ 1Y and
1X ≤ gf , in which case one has Y (fx, y) = X(x, gy) for all x ∈ X, y ∈ Y . This latter
condition is actually strong enough to force the V-functoriality of the maps f and g,
without any further assumption on them. But note that one may have adjoint monotone
maps between V-categories which fail to be V-functors, i.e., their adjunction in Ord does
not guarantee the adjunction in V-Cat.

The tensor product X ⊗ Y of V-categories X, Y rests on the set X × Y , structured by

(X ⊗ Y )((x, y), (x′, y′)) = X(x, x′)⊗ Y (y, y′)

for all x, x′ ∈ X, y, y′ ∈ Y . Together with the tensor-neutral object E = {∗} with
E(∗, ∗) = k, it makes V-Cat symmetric monoidal, even closed: the internal hom [X, Y ] is
given by the set V-Cat(X, Y ), structured by

[X, Y ](f, g) =
∧
x∈X

Y (fx, gx)

for all V-functors f, g : X → Y . Therefore, [X, [Y, Z]] ∼= [X⊗Y, Z] ∼= [Y, [X,Z]], naturally
in all variables. We note that, whilst [X, Y ] is separated when Y is so, X ⊗ Y generally
fails to be separated even when both X and Y are separated.

3.4. V-distributors. For V-categories X, Y , a V-distributor ρ : X −◦−→ Y is a V-relation

ρ : X −7−→ Y satisfying e · ρ · d ≤ ρ, where d, e denote the structures of X, Y , respectively;

equivalently,
X(x′, x)⊗ ρ(x, y)⊗ Y (y, y′) ≤ ρ(x′, y′)

for all x, x′ ∈ X, y, y′ ∈ Y , or: ρ : X
op ⊗ Y → V is a V-functor.

Every V-functor f : X → Y gives the V-distributors f∗ := e · f◦ : X −◦−→ Y and

f ∗ := f ◦ · e : Y −◦−→ X; in particular, one has 1∗X : X −◦−→ X, coinciding with the structure

d of X. Identifying elements of X with V-functors E → X and elements of V with
V-distributors E −◦−→ E, one has the useful formula y∗ · x∗ = X(x, y) for all x, y ∈ X.
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V-distributors are closed under V-relational composition. Inheriting also the order
from V-Rel, the V-categories and their V-distributors form the 2-category V-Dist, in which
1∗X serves as the identity morphism of X. One has the identity-on-objects 2-functors

V-Catco
(−)∗ // V-Dist V-Catop .

(−)∗oo

For every V-functor f : X → Y there is the adjunction f∗ a f ∗ in V-Dist, and for a
V-functor g : Y → X one has f a g in V-Cat if, and only if, f∗ = g∗. The V-functor f is
called fully faithful if f ∗ · f∗ = 1∗X .

Since every hom-set V-Dist(X, Y ) = [X
op ⊗ Y,V ] is a V-category, V-Dist becomes

enriched in V-Cat. We note that the tensor product of V-Cat may be used to make V-Dist
symmetric monoidal, such that the functors (−)∗ and (−)∗ become homomorphisms of
monoidal categories.

Most importantly, V-Dist is closed under the formation of suprema and infima in the
hom-sets of V-Rel, as well as under the formation of extensions and liftings. Hence, for
V-distributors ρ, σ, τ as shown in the diagram below, the V-relational extension [ρ, τ ] and
the lifting ]σ, τ [ are V-distributors and get respectively characterized by the equivalences

σ ≤ [ρ, τ ]⇐⇒ σ · ρ ≤ τ and σ · ρ ≤ t⇐⇒ ρ ≤ ]σ, τ [ ,

in the case of [ρ, τ ] to be universally quantified over σ, and for ]σ, τ [ over ρ.

Z Y ◦σ // Z

X ◦
ρ
//

◦τ
≥

>>

Y

◦| [ρ,τ ]

OO

X

◦|]σ,τ [

OO

◦
τ

≤
>>

4. Presheaves, weighted colimits, and cocompletion

We continue our rapid tour through quantale-enriched category theory to the extent
needed in the following section. For detailed proofs, the reader may consult, for example,
[Stubbe 2005, Hofmann, Seal, Tholen 2014, Hofmann, Nora 2018], and the references
given in there.

4.1. The V-presheaf adjunction. In what follows, we identify X with E ⊗ X and
X ⊗ E, for every V-category X. One then has the V-categories

PVX := V-Dist(X,E) = [X
op

,V ] and P]VX := V-Distco(E, X) = [X,V ]
op

.

of V-presheaves and V-copresheaves on X, respectively. Of course, PV(X
op

) = (P]VX)
op
.

Every x ∈ X gives the representable V-(co)presheaves

yXx := x∗ = X(−, x) = X
op → V and y]Xx := x∗ = X(x,−) : X → V .

This defines the fully faithful Yoneda V-functors

yX : X −→ PVX and y]X : X −→ P]VX .

These are the respective units at X of the V-Cat-enriched (co)presheaf adjunctions
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V-Distop

PV = V-Dist(−,E)
11⊥ V-Cat

(−)∗
qq

and V-Distco

P]
V = V-Distco(E,−)

11⊥ V-Cat
(−)∗

qq
.

the first of which is based on the natural isomorphism

V-Dist(X, Y ) = [X
op ⊗ Y,V ] ∼= [Y, [X

op

,V ]] = V-Cat(Y,PVX).

4.2. The V-presheaf monad. The V-(co)presheaf adjunctions give us 2-monads on
V-Cat, briefly denoted by P and P]. Their crucial property is their lax idempotency
which, for P , means Py ≤ yP , i.e., PV(y∗X) ≤ yPVX : PVX −→ PVPVX, for every
V-category X. Consequently, for X to carry a P-pseudo-algebra structure c : PX → X,
it suffices that c be a pseudo-retraction of yX or, equivalently, to satisfy c a yX in V-Cat.
Such c is unique up to order-equivalence, and its existence is therefore a property of X,
which we call P-cocompleteness. In the dual case we say that X is P]-complete.

The hands-on characterization of these properties reads as follows: X is P-cocomplete
if, and only if, for every ω ∈ PVX there is some chosen element c(ω) ∈ X with c(ω)∗ '
[ω, 1∗X ]. Then c becomes automatically a V-functor PX → X. Dually, X is P]-complete if,
and only if, for every υ ∈ P]VX there is some chosen element d(υ) ∈ X with d(υ)∗ ' ]υ, 1∗X [.
In pointwise terms, this means that, respectively, one has for all x ∈ X the formulae

X(c(ω), x) =
∧
z∈X

[ωz,X(z, x)] and X(x, d(υ)) =
∧
z∈X

[υz,X(x, z)]

X E ◦υ // X

X ◦
ω
//

◦
1∗X

≥

>>

E

◦| c(ω)∗=[ω,1∗X ]

OO

X

◦|d(υ)∗=]υ,1∗X [

OO

◦
1∗X

≤
>>

4.3. Weighted colimits and cocompletion. For V-categories X,Z,W , let h : Z →
X be a V-functor and ω : Z −◦−→ W, υ : W −◦−→ Z be V-distributors. A colimit of h

weighted by ω is a V-functor q : W → X such that q∗ = [ω, h∗]. Dually, a limit of h
weighted by υ is a V-functor p : W → X such that p∗ = ]υ, h∗[. The respective formulae
are (x ∈ X, t ∈ W ):

X(qt, x) =
∧
z∈Z

[ω(z, t), X(hz, x)] and X(x, pt) =
∧
z∈Z

[υ(t, z), X(x, hz)];

one then writes
q ' colimωh and p ' limυh.

X W ◦υ // Z

Z ◦
ω
//

◦
h∗

≥

>>

W

◦| q∗=[ω,h∗]

OO

X

◦|p∗= ]υ,h∗[

OO

◦
h∗

≤
>>
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The duality of the notions of colimit and limit formally reads as (colimωh)
op ' limω◦(h

op
).

A V-functor f : X → Y preserves the colimit q ' colimωh if fq ' colimω(fh); dually
for limits. The V-functor f is (co)continuous if it preserves all existing weighted (co)limits.
The V-category X is cocomplete if, for all h, ω as above, there is a chosen colimit of h
weighted by ω. Dually, X is complete if, for all h, υ as above, there is a chosen limit of h
weighted by υ. With the formulae

colimωh ' colimω·h∗1X and limυh ' limh∗·υ1X ,

one shows that cocompleteness equivalently means P-cocompleteness, and that complete-
ness means P]-completeness. Moreover, cocontinuity of a V-functor f : X → Y of
cocomplete V-categories translates to f being a pseudo-homomorphism of the respective
P-pseudo-algebras; likewise for continuity. Briefly: the category

V-Catcolim

of cocomplete V-categories and their cocontinuous V-functors is equivalent to the category
of P-pseudo-algebras and their pseudo-homomorphisms. Identified as the free P-pseudo-
algebras, all V-presheaf-categories (in particular V = PE) are cocomplete, and one has:

Cocompletion Theorem: Up to order-equivalence, every V-functor f : X → Y into a
cocomplete V-category Y factors through yX , by a cocontinuous V-functor f̃ : PVX → Y
that is unique up to order-equivalence.

X
yX //

f

'

''

PVX
f̃
��
Y

As one readily shows, for every ω ∈ PVX one has ω ' colimωyX . Therefore, the cocon-
tinuous V-functor f̃ evaluates at ω according to

f̃(ω) ' colimωf.

Dually, working with P] rather than P , one obtains a completion theorem for V-categories.
The qualifier “up to order equivalence” is not needed when Y is separated.

4.4. Tensors and conical suprema. For a V-category X and all x ∈ X, u ∈ V , one
defines the tensor u�x and the cotensor u t x to exist in X if the respective colimit and
limit

u� x ' colimux and u t x ' lim ux,

exists in X; this means: if, for all y ∈ X, one respectively has

X(u� x, y) = [u,X(x, y)] and X(y, u t x) = [u,X(y, x)].
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X E ◦u // E

E ◦
u
//

◦
x∗

≥

??

E

◦| (u�x)∗=[u,x∗]

OO

X

◦|(utx)∗= ]u,x∗[

OO

◦
x∗

≤
??

X is (co)tensored if all (co)tensors exist in X. Equivalently, X is tensored if the V functor
X(x,−) : X → V has a left adjoint for all x ∈ X, and X is cotensored if X

op
is tensored.

For every V-category X, the presheaf category PVX is not only tensored, but also
cotensored, with the tensor u � φ and the cotensor u t φ for u ∈ V , φ ∈ PVX given for
all x ∈ X by

(u� φ)x = u⊗ (φx) and (u t φ)x = [u, φx],

By duality, also P]X is tensored and cotensored.
For x, y, xi(i ∈ I) in a V-category X, the element x is a conical supremum of (xi)i∈I ,

and y is a conical infimum of (xi)i∈I if, respectively,

X(x, z) =
∧
i∈I

X(xi, z) and X(z, y) =
∧
i∈I

X(z, xi)

for all z ∈ X; equivalently: if x is a supremum of (xi)i∈I in X w.r.t. its induced order
and the Yoneda V-functor y]X : X −→ P]VX = [X,V ]

op
preserves this supremum, and

dually, if y is an infimum of (xi)i∈I in the induced order of X and the Yoneda V-functor
yX : X → PVX = [X

op
,V ] preserves the infimum.

These are particular types of weighted (co)limits: let ω :=
∨
i x
∗
i in PVX and υ :=∧

i(xi)∗ in P]VX = [X,V ]
op

. Then, using O to signal that a supremum or infimum in the
induced order is conical, we have∨

i∈I

O
xi ' colimω1∗X and

∧
i∈I

O
xi ' limυ1∗X ,

with the term on either side of the '-sign existing when the term on the other side exists.

X E ◦υ // X

X ◦
ω
//

◦
1∗X

≥

>>

E

◦| (
∨O

i xi)∗=[ω,1∗X ]

OO

X

◦|(
∧O

i xi)
∗= ]υ,1∗X [

OO

◦
1∗X

≤
>>

X is order-complete if every family in X has a chosen supremum or, equivalently, an
infimum, with respect to its induced order. X is conically cocomplete (conically complete)
if every family in X has a chosen conical supremum (conical infimum, respectively) in X.

Tensors and conical suprema are the building blocks to obtain arbitrary weighted
colimits; dually for weighted limits: for a V-functor h : Z → X and V-distributors
ω : Z −◦−→ W,υ : W −◦−→ Z, one respectively has, when X is tensored or cotensored,

(colimωh)t '
∨
z∈Z

Oω(z, t)� hz and (limυh)t '
∧
z∈Z

Oυ(t, z) t hz,
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with the colimit (limit) existing precisely when the conical supremum (infimum, respec-
tively) exist for all t ∈ W . Consequently, a V-functor f : X → Y of a tensored category
X is cocontinuous if, and only if, f preserves tensors and conical suprema; likewise in the
dual situation.

4.5. Completeness Theorem. Let us first record the easily established Adjoint Func-
tor Theorem: For a complete V-category Y , a V-functor g : Y → X admits a left adjoint
V-functor f a g if, and only if, g is continuous. When X is cocomplete and x ∈ X, one
may apply the theorem to g := X(−, x) : X

op → V to show the implication (ii)=⇒(iv) of
the following equivalent statements characterizing (co)completeness of a V-category X:

(i) X is P-cocomplete;

(ii) X is cocomplete;

(iii) X is tensored and conically cocomplete;

(iv) X is tensored, cotensored, and order-complete;

(v) X is cotensored and conically complete;

(vi) X is complete;

(vii) X is P]-complete.

We note that, whilst each, completeness and order-completeness, are self-dual prop-
erties of a V-category, in general neither conical completeness nor being tensored are
self-dual properties.

5. Equational presentation of separated cocomplete V-categories

The rules of the following proposition for tensorial action and suprema are well-known
to hold (and to be easily proved) in every separated cocomplete V-category. Actually,
separation is not essential if one is willing to trade the strict equality for order-equivalence.
But for simplicity of the presentation, we restrict ourselves to considering only separated
V-categories in the rest of the paper.
V = (V ,≤,⊗, k) continues to be a (commutative and unital) quantale.

5.1. Proposition. In a separated cocomplete V-category X equipped with its induced
partial order, the following identities hold for all u, v, ui ∈ V (i ∈ I) and x, xi ∈ X, (i ∈ I):

(Act1) k� x = x;

(Act2) u� (v � x) = (u⊗ v)� x;

(Sup1) (
∨
i∈I ui)� x =

∨
i∈I(ui � x);

(Sup2) u� (
∨
i∈I xi) =

∨
i∈I(u� xi).
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Proof. For example, to validate (Sup2), since suprema in a cocomplete V-category are
conical, we just need to note that, for all y ∈ X, one has

X(
∨
i∈I

u� xi, y)=
∧
i∈I

X(u� xi, y)=
∧
i∈I

[u,X(xi, y)]=[u,
∧
i∈I

X(xi, y)]=[u,X(
∨
i∈I

xi, y)].

The point of the above proposition is that there is a converse proposition, as follows:

5.2. Proposition. Let the complete lattice X be endowed with an action ∗ : V×X → X
satisfying (Act1,2) and (Sup1,2), with � replaced by ∗. Then there is a unique V-category
structure on X which makes X separated and cocomplete as such, with tensors given by
∗, and with its induced partial order coinciding with the originally given lattice order.

Proof. Since we want the V-category structure on X to make X tensored, with the tensor
action given by ∗, one necessarily needs to have X(u ∗ x, y) = [u,X(x, y)] for all x, y ∈ X
and u ∈ V . Hence, X(x,−) must necessarily be the uniquely determined right adjoint of
the (by (Sup1)) monotone map −∗x : V → X; explicitly, X(x, y) =

∨
{u ∈ V | u∗x ≤ y},

for all x, y ∈ X.
For the existence of the structure, we note that (Sup1) actually makes − ∗ x a sup-

map, so we have its right adjoint X(x,−), for all x ∈ X, and in particular the inequality
X(x, y) ∗ x ≤ y (representing the counit of the adjunction (− ∗ x) a X(x,−) at y). We
show that X(-,-) makes X indeed a V-category. Clearly, k ≤ X(x, x) holds by (Act1),
and with (Act2) and (Sup2) we see

(X(y, z)⊗X(x, y)) ∗ x = X(y, z) ∗ (X(x, y) ∗ x) ≤ X(y, z) ∗ y ≤ z.

This implies the desired inequality X(x, y)⊗X(y, z) ≤ X(x, z), for all x, y, z ∈ X. Since
trivially (k ≤ X(x, y) ⇐⇒ x = k ∗ x ≤ y), the induced order of the V-category X just
defined is precisely the given order of X, so that the V-category X is in particular order-
complete. Also, trivially, X is tensored via ∗, by the definition of its V-category structure.
Finally, (Sup2) guarantees that the given suprema of the lattice X are conical in its V-
category structure, making the latter (co)complete, by the Completeness Theorem.

The two propositions compel us to consider the 2-category

SupV

whose objects are complete lattices X, provided with an action ∗ : V ×X → X satisfying
(Act1,2) and (Sup1,2), with � replaced by ∗. Its morphisms are suprema-preserving and
∗-equivariant maps f : X → Y ; that is, f satisfies the conditions f(u ∗ x) = u ∗ fx and
f(
∨
i xi) =

∨
i fxi. The 2-cells are given by the pointwise order of sup-maps.

The propositions compare the objects of SupV with those of the 2-category

V-Sup := V-Catcolim,sep ,

which are separated, cocomplete V-categories. Its morphisms are cocontinuous V-functors,
with 2-cells given by their pointwise order. The two propositions above validate the object-
part of the following (no longer surprising) claim.
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5.3. Theorem. The object assignment O : V-Sup→ SupV , defined by taking the induced
order and the tensorial action, extends to morphisms and becomes an isomorphism of
2-categories.

Proof. We just need to make sure that morphisms stay morphisms when mapped identi-
cally in either direction. That is certainly the case for the direction of O. Conversely, for
f : X → Y in SupV , using consecutively the unit of the adjunction (− ∗ fx) a Y (fx,−)
at X(x, x′), the ∗-equivariance of f , and the counit of the adjunction (− ∗ x) a X(x,−)
at x′ in conjunction with the monotonicity of Y (fx, f−), we obtain for all x, x′ ∈ X the
desired inequality

X(x, x′) ≤ Y (fx,X(x, x′) ∗ fx)

= Y (fx, f(X(x, x′) ∗ x))

≤ Y (fx, fx′) .

This makes f a V-functor for the V-category structures on X and Y as constructed. As a
∗-equivariant sup-map, it preserves tensors and conical suprema and is thus cocontinuous.

5.4. Examples. (1) For V = 2 the Boolean quantale, V-Sup ∼= SupV is just the category
Sup. There is, of course, another isomorphic description of Sup, in the guise of the
category Inf of complete lattices and infima-preserving maps, thanks to the isomorphism
Sup −→ Inf, X 7−→ X

op
. For any quantale V , this isomorphism gives us the isomorphism

SupV ∼= InfV
op

,

where the objects of InfV
op

are described like those of SupV , except that
∨

in (Sup1,2)

needs to be replaced by
∧

; the morphisms in InfV
op

are, of course, infima-preserving
equivariant maps.

(2) For V = [0,∞]+ the Lawvere quantale, Vop
takes us back to [0,∞] with its natural

order. Hence, the category InfV
op

is precisely the category ICMetA of Section 2. It is thus
isomorphic to [0,∞]+-Sup.

With our general quantale V , we have the following commutative diagram where all
unnamed functors are forgetful:

V-Sup O
∼=

//

��

SupV

��
V-Catsep

$$

Sup

{{
Pos

��
Set
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5.5. Theorem. In the diagram above, the upper two isomorphic categories are monadic
over any other category of the diagram.

Proof. The presheaf monad P of V-Cat can be restricted to the full subcategory V-Catsep.
It follows from 4.3 that the category of Eilenberg-Moore algebras of the restricted monad
is isomorphic to V-Sup, which is therefore monadic over V-Catsep. With the [Duskin 1969]
version of the Beck monadicity criterion, one can show that V-Sup is even monadic over
both, Pos and Set; a proof is contained in the thesis [Martinelli 2021]. For V = 2, this gives
the well known fact that Sup is monadic over both, Pos and Set, qua the down-set and
power-set monads, respectively. Consequently, since we already know that SupV ∼= V-Sup
is monadic over Pos and Set, with a cancellation theorem for right adjointness (see [Dubuc
1968]) and the Beck criterion, one may conclude that SupV is monadic over Sup – which
is hardly surprising since we defined the category in terms of Sup-based operations and
equations.

6. The box-tensor product classifying the bi-morphisms of V-Sup

The goal of this section is to classify the bi-morphisms of the category V-Sup. For objects
X, Y, Z ∈ V-Sup, these are the set maps f : X × Y → Z such that, for all x ∈ X and
y ∈ Y , the maps f(−, y) : X → Z and f(x,−) : Y → Z are morphisms in V-Sup. By the
Lemma below, such maps are necessarily V-functors X ⊗ Y → Z. Hence, denoting the
set of all these bi-morphisms by BiMor(X,Y;Z), we search for an object X � Y such that
one has a natural bijective correspondence

BiMor(X,Y;Z) ∼= V-Sup(X � Y, Z) .

This entails finding a universal bi-morphism X ⊗ Y → X � Y , and the roadmap to
that end is clear (see [Banaschewski, Nelson 1976]): form the free cocomplete V-category
PV(X ⊗ Y ) and find the least congruence on it which forces the universal map, i.e., the
Yoneda V-functor y = yX⊗Y , once composed with the canonical projection r onto the
quotient object, to become a bi-morphism

X ⊗ Y y // PV(X ⊗ Y ) r // X � Y .

The challenge is to describe the quotient V-category in such a way that proving its cocom-
pleteness becomes manageable. Fortunately, this challenge can be overcome by a straight
generalization of the method used by [Joyal, Tierney 1984] in case V = 2, as we show in
the Proposition below.

6.1. Lemma. For V-categories X, Y, Z, let the set map f : X × Y → Z be such that the
maps f(x,−) and f(−, y) are V-functors, for all x ∈ X, y ∈ Y . Then f : X ⊗ Y → Z is
a V-functor.
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Proof. By hypothesis, for x, x′ ∈ X, y, y′ ∈ Y , one has X(x, x′) ≤ Z(f(x, y), f(x′, y))
and Y (y, y′) ≤ Z(f(x′, y), f(x′, y′)). This gives

(X ⊗ Y )((x, y), (x′, y′)) = X(x, x′)⊗ Y (y, y′)

≤ Z(f(x, y), f(x′, y))⊗ Z(f(x′, y), f(x′, y′))

≤ Z(f(x, y), f(x′, y′)).

6.2. Proposition. Let R ⊆ P×P be any relation on a separated (co)complete V-category
P , and let the set

Q = {y ∈ P | ∀(z1, z2) ∈ R (P (z1, y) = P (z2, y))}

be considered as a full V-subcategory of P . Then:

(1) Q is (co)complete;

(2) there is a surjective morphism r : P → Q in V-Sup whose kernel relation contains
R; moreover,

(3) any morphism r′ : P → Q′ in V-Sup whose kernel relation contains R factors
(uniquely) through r, by a morphism h : Q→ Q′ in V-Sup.

Proof. (1) For all y ∈ Q, (z1, z2) ∈ Q and u ∈ V one has

P (z1, u t y) = [u, P (z1, y)] = [u, P (z2, y)] = P (z2, u t y).

This shows thatQ is closed under cotensors in P ; likewise for conical infima. Consequently,
Q is closed under all weighted limits in P and, hence, (co)complete.

(2) Being continuous, the fully faithful inclusion V-functor i : Q ↪→ P has a left
adjoint, r : P → Q, exhibiting Q as a full reflective V-subcategory of P , satisfying the
strict identity ri = 1Q, by separation in P . By adjunction, we have Q(rx, y) = P (x, y)
for all x ∈ P, y ∈ Q, and, in the induced order of P , we have the pointwise description of
r by rx =

∧O{y ∈ Q | x ≤ y}. Consequently, for all (z1, z2) ∈ R one obtains

rz1 =
∧
{y ∈ Q | k ≤ P (z1, y)} =

∧
{y ∈ Q | k ≤ P (z2, y)} = rz2.

(3) For r′ : P → Q′ in V-Sup with r′z1 = r′z2 for all (z1, z2) ∈ R we have the right
adjoint j : Q′ → P of r′, satisfying P (x, jy′) = Q′(r′x, y′) for all x ∈ P and y′ ∈ Q′.
Consequently, with

P (z1, jy
′) = Q′(r′z1, y

′) = Q′(r′z2, y
′) = P (z2, jy

′)

holding for all (z1, z2) ∈ R, we see that the continuous V-functor j takes values in Q, and
we obtain the left adjoint h : Q → Q′ of the restriction of j. Moreover, the left adjoints
commute as hr = r′, since their respective right adjoints commute trivially.
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Following the general strategy sketched above, given X, Y ∈ V-Sup, we consider P :=
PV(X ⊗Y ) and, writing z1Rz2 for (z1, z2) ∈ R, we let R ⊆ P ×P be the relation defined
by

y(u� x, y) R u� y(x, y) R y(x, u� y),

y(
∨
i∈I

xi, y) R
∨
i∈I

y(xi, y), y(x,
∨
i∈I

yi) R
∨
i∈I

y(x, yi),

for all u ∈ V , x, xi ∈ X, y, yi ∈ Y, i ∈ I, with any set I. Then Proposition 6.2 gives us the
V-Sup-object X � Y := Q and its morphism r : P → Q satisfying the properties (1-3).
With tX,Y := r y, these properties let us conclude instantaneously:

6.3. Theorem. Given X, Y ∈ V-Sup, the map tX,Y : X ⊗ Y → X � Y is a universal
bi-morphism into a V-Sup-object: every bi-morphism f : X ⊗Y → Z with Z ∈ V-Sup has
the form f = f tX,Y , with a unique V-Sup-morphism f : X � Y → Z.

Proof. Since Z is separated and (co)complete, the bi-morphism f factors uniquely
through the free P-algebra PV(X ⊗ Y ), as f = f̃y with a V-Sup-morphism f̃ (see 4.3)
which, in turn, factors uniquely as f̃ = fr.

X ⊗ Y y //

f

,,

PV(X ⊗ Y ) r //

f̃

))

X � Y

f
��
Z

6.4. Corollary. The box-tensor product as defined above makes V-Sup a symmetric
monoidal category.

Proof. It is obvious that the box-tensor product in V-Sup inherits its natural associa-
tivity and commutativity isomorphisms, as well as the coherence conditions, from the
corresponding morphisms and conditions of the tensor product of V-Cat, qua universality
of its definition, as indicated by the following diagram:

X ⊗ Y yX⊗Y //

cX,Y ∼=
��

PV(X ⊗ Y )
rX,Y //

PV (c∗X,Y )∼=
��

X � Y

cX,Y∼=
��

Y ⊗X yY⊗X // PV(Y ⊗X)
rY,X // Y �X

The �-neutrality of the V-category V = PVE is witnessed by the natural isomorphism
`X : V � X → X that is the mate of the bi-morphism V ⊗ X → X, (u, x) 7→ u � x.
Indeed, showing that this V-functor is universal amongst all bi-morphisms V ⊗ X → Z
into V-Sup-objects Z is a routine exercise, by Proposition 5.1.
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7. Finishing the proof that the category V-Sup is ∗-autonomous

Our first task is to show that the symmetric monoidal structure of V-Sup (Corollary 6.4)
is closed. For that, we note that Theorem 6.3 gives us, for any Z ∈ V-Sup, a natural
bijection

V-Cat(E, Z) ∼= V-Sup(PVE, Z) .

Hence, if Z is supposed to serve as the internal hom of the given objects X, Y ∈ V-Sup, the
�-neutrality of PVE in V-Sup forces the underlying set of Z to be (within isomorphism)
V-Sup(X, Y ). Consequently, we set

[[X, Y ]] := V-Sup(X, Y )

and consider it as a V-subcategory of the V-category [X, Y ] of all V-functors X → Y .

7.1. Proposition. For all X, Y ∈ V-Sup, the V-category [[X, Y ]] is separated and cocom-
plete and, in fact, serves as the internal hom of X and Y in the symmetric monoidal-closed
category (V-Sup,�,V).

Proof. The V-category [[X, Y ]] inherits separation from [X, Y ]. For its cocompleteness,
defining tensors and conical suprema pointwise by

(u� f)x = u� fx and (
∨
i∈I

O
fi)x =

∨
i∈I

O
fix

for u ∈ V , f, fi ∈ [[X, Y ]] (i ∈ I) and all x ∈ X, one routinely shows that u � f and∨
i∈I fi are well-defined (i.e., preserve tensors and conical suprema) and actually do the

job indicated by their names. For example, the computation

[[X, Y ]](u� f, g) =
∧
x∈X

Y (u� fx, gx) =
∧
x∈X

[u, Y (fx, gx)]

= [u,
∧
x∈X

Y (fx, gx)] = [u, [[X, Y ]](f, g)]

for all g ∈ [[X, Y ]] confirms that u� f is indeed the tensor of u and f in [[X, Y ]].
In order to show that [[X, Y ]] serves as the internal hom in V-Sup, for all Z ∈ V-Sup,

we now sketch how to establish a natural V-Cat-isomorphism

[[Z �X, Y ]] ∼= [[Z, [[X, Y ]]]] (1)

Considering BiMor(Z,X;Y ) as a V-subcategory of [Z ⊗ X, Y ], by Theorem 6.3 one has
the natural isomorphism [[Z �X, Y ]]→ BiMor(Z,X;Y ) which actually lives in V-Cat. It
then remains to be shown that the natural isomorphism [Z⊗X, Y ]→ [Z, [X, Y ]] in V-Cat
can be restricted as indicated by the diagram
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[Z ⊗X, Y ]
∼= // [Z, [X, Y ]]

[[Z �X, Y ]]
∼= // BiMor(Z,X;Y )

OO

OO

∼= // [[Z, [[X, Y ]]]]
OO

OO

This, however, is now a routine exercise, as one may use tensors and conical suprema
of cocontinuous V-functors, all defined pointwise, to guarantee well-definedness of the
restricted isomorphism.

7.2. Corollary. For all X ∈ V-Sup and Z ∈ V-Cat, one has a natural isomorphism
[Z,X] ∼= [[PVZ,X]] in V-Cat. For Z = E, it gives the natural isomorphism

X ∼= [[V , X]]. (2)

Explicitly, it follows from 4.3 that the canonical isomorphism X → [[V , X]] assigns to
x ∈ X the V-functor −� x : V → X; its inverse map evaluates φ ∈ [[V , X]] at k.

The next essential ingredient to establishing the category V-Sup as ∗-autonomous is
its easily seen self-duality, as follows.

7.3. Proposition. There is an isomorphism of categories V-Supop −→ V-Sup which
assigns to a cocontinuous V-functor f : X → Y the V-functor (f •)

op
: Y

op → X
op

, where
f a f • in V-Cat.

Proof. By the Adjoint Functor Theorem, the cocontinuous V-functor f has a right
adjoint f •. Hence, as a left adjoint of f

op
: X

op → Y
op

, the V-functor (f •)
op

is a morphism
of V-Sup.

The Proposition gives us the natural isomorphism

[[X, Y ]] ∼= [[Y
op

, X
op

]]. (3)

Replacing X in (2) by X
op

and then applying (3), one obtains the natural isomorphism

X
op ∼= [[X,Vop

]], (4)

which turns out to send x ∈ X to X(−, x) : X → Vop
.

As we confirm next, since (X
op

)
op

= X, and likewise for morphisms, the isomorphism
(4) exhibits the V-category Vop

as a global dualizing object in V-Sup. This fact, in conjunc-
tion with Proposition 7.1, makes the category V-Sup a ∗-autonomous category in the sense
of [Barr 1979], a result first proved by [Eklund, Gutierrez Garcia, Hoehle, Kortelainen
2018], with a different proof (see the Introduction).

7.4. Theorem. [Duality Theorem] The functor [[−,Vop
]] : V-Supop → V-Sup is an equiv-

alence of categories, with pseudo-inverse [[−,Vop
]]op, so that

X ∼= [[[[X,Vop

]],Vop

]],

naturally for all X ∈ V-Sup. The category V-Sup is ∗-autonomous.
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Proof. We must confirm that, for f : X → Y in V-Sup, under the natural isomorphism
(4) the map (f •)

op
: Y

op → X
op

corresponds to precomposition by f , i.e., that the
following diagram commutes:

X
op ∼= // [[X,Vop

]]

Y
op ∼= //

(f•)
op

OO

[[Y,Vop
]]

−f

OO

But the commutativity is just a consequence of the adjunction X(x, f •y) = Y (fx, y).

7.5. Remarks. (1) For the Lawvere quantale V = [0,∞]+, the Duality Theorem takes
the form of Theorem 2.4 when we take into account Examples 5.4.

(2) The dualizing natural isomorphism δX : X → [[[[X,Vop
]],Vop

]] is, up to �-symmetry,
simply the transpose of the adjunction counit εX , determined by the commutative diagram

[[[[X,Vop
]],Vop

]]� [[X,Vop
]]

ε
[[X,Vop ]] // Vop

X � [[X,Vop
]]

δX�1[[X,Vop ]]

OO

∼= // [[X,Vop
]]�X

εX

OO

As consequences of (1-4), we mention three further natural isomorphisms, the first
of which was used to define the (box-)tensor product qua its internal hom by [Eklund,
Gutierrez Garcia, Hoehle, Kortelainen 2018]. The second formula says that, in principle,
one could also introduce the internal hom qua the box tensor product, and the third one
is often used in characterizing a symmetric monoidal-closed category with a fully faithful
dualization functor as ∗-autonomous.

7.6. Corollary. For all X, Y, Z ∈ V-Sup, one has natural isomorphisms

(X � Y )
op ∼= [[X, Y

op

]] and [[X, Y ]]
op ∼= X � Y

op

,

[[X � Y, Z
op

]] ∼= [[X, (Y � Z)
op

]].

Proof. In light of (Y
op

)
op

= Y , the first isomorphism is a replica of the second isomor-
phism, which follows from

[[X, Y ]] ∼= [[Y
op

, X
op

]] (3)

∼= [[Y
op

, [[X,Vop

]]]] (4)

∼= [[Y
op

�X,Vop

]] (1)

∼= (Y
op

�X)
op

(4)

∼= (X � Y
op

)
op

.

The third isomorphism follows from the first in conjunction with the isomorphism (1).
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