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GEOMETRIC MORPHISMS BETWEEN TOPOSES OF MONOID
ACTIONS: FACTORIZATION SYSTEMS

JENS HEMELAER AND MORGAN ROGERS

Abstract. Let M, N be monoids, and PSh(M), PSh(N) their respective categories
of right actions on sets. In this paper, we systematically investigate correspondences
between properties of geometric morphisms PSh(M) → PSh(N) and properties of the
semigroup homomorphisms M → N or flat-left-N -right-M -sets inducing them. More
specifically, we consider properties of geometric morphisms featuring in factorization
systems, namely: surjections, inclusions, localic morphisms, hyperconnected morphisms,
terminal-connected morphisms, étale morphisms, pure morphisms and complete spreads.
We end with an application of topos-theoretic Galois theory to the special case of toposes
of the form PSh(M).
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1. Introduction

This article is part of an ongoing project in which we study toposes of presheaves PSh(M)
with M a monoid, and the geometric morphisms between these toposes. A topos of this
form appeared in the construction of the Arithmetic Site of Connes and Consani [CC14], in
the special case where M is the monoid of nonzero natural numbers under multiplication.
Variations on the Arithmetic Site, with different choices of monoid M , were considered
in [Sag20], [Hem19] and [LB]. Further, if we think of a commutative monoid M as dual
to an “affine F1-scheme”, as in [Man95], then PSh(M) can be seen as a category of
quasi-coherent modules on such an F1-scheme, see [Pir19].

In semigroup theory, studying the topos PSh(M) can give a helpful alternative point
of view: in [HR21b] it was demonstrated that various known facts from semigroup theory
have natural topos-theoretic interpretations. In [HR21c] a problem in semigroup theory
was solved by the present authors with the help of topos-theoretic language; conversely, in
[HR21a] a geometric morphism between toposes of this form provided a counterexample
to an open question in topos theory.

In [HR21b], we restricted our attention to the study of the global section geometric
morphism PSh(M) → Set. This time, we will look at more general geometric mor-
phisms PSh(M) → PSh(N), with M and N monoids. In [Roga] the second named
author presented a 2-categorical equivalence between a 2-category of discrete monoids
and a 2-category whose objects are their (presheaf) toposes of right actions, whereby
essential geometric morphisms between the toposes correspond to semigroup homomor-
phisms between the monoids; the global sections morphism of PSh(M) corresponds to the
unique semigroup homomorphism M → 1, for example. As explained in [HR21b], general
geometric morphisms PSh(M) → PSh(N) correspond to sets equipped with a flat left
N -action and a compatible rightM -action. In this paper, we refer to these as [N,M)-sets;
see Definition 2.2.2. A natural next step in studying toposes of discrete monoid actions
is an investigation of how properties of geometric morphisms descend to properties of the
corresponding semigroup homomorphisms or [N,M)-sets. Since properties of geometric
morphisms are far too varied to examine exhaustively in a single article, we focus here on
factorization systems.

The first factorization systems that we will consider are the (surjection, inclusion)
factorization and the (hyperconnected, localic) factorization. These are the two most well-
known factorization systems for geometric morphisms. For essential geometric morphisms
between presheaf toposes, an explicit construction for these two factorizations is given in
[Joh02, §A4.2 and §A4.6]. If we apply this to the special case of an essential geometric
morphism f : PSh(M) → PSh(N) induced by a semigroup homomorphism ϕ :M → N ,
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then we get a factorization

M M/∼ eNe N

PSh(M) PSh(M/∼) PSh(eNe) PSh(N)

π ψ ι

hyperconnected localic surj. inclusion

where the hyperconnected part is induced by the projection of M onto its image M/∼ =
ϕ(M), the localic surjection part is induced by the inclusion of M/∼ in eNe (with e =
ϕ(1)), and the inclusion part is induced by the semigroup inclusion eNe ⊆ N . The localic
part is the composition of the localic surjection part and the inclusion part, while the
surjection part is the composition of the hyperconnected part and the localic surjection
part. For a general geometric morphism f : PSh(M) → PSh(N) given by a [N,M)-set A,
we can also consider the (surjection, inclusion) factorization PSh(M) → E → PSh(N),
but in this case the intermediate topos is not necessarily a topos of monoid actions, or
even a presheaf topos. However, we can still give concrete characterizations of when f is
surjective, localic or hyperconnected, in terms of the [N,M)-set A.

Another factorization system that we will discuss is the (terminal-connected, étale)
factorization, which exists for all essential geometric morphisms, see [Car, §4.7]. For an
essential geometric morphism f : PSh(M) → PSh(N), induced by a semigroup homo-
morphism ϕ :M → N , it follows from the definition that the intermediate topos is again
a presheaf topos. We describe the factorization as explicitly as possible, which leads to a
characterization of when f is terminal-connected (resp. étale) in terms of the semigroup
homomorphism ϕ. For a more general geometric morphism f : PSh(M) → PSh(N),
induced by a [N,M)-set A, we again give a characterization of terminal-connectedness (in
the sense of Osmond [Osm21, Definition 5.3.3]). Because étale geometric morphisms are
always essential, they do not have to be considered separately here. However, note that
the (terminal-connected, étale) factorization does not always exist for general geometric
morphisms.

A last factorization that we will consider is the (pure, complete spread) factorization, as
studied extensively by Bunge and Funk, see [BF96], [BF98] and [BF06]. This factorization
exists whenever the domain topos is locally connected, and it is conceptually dual to the
(terminal-connected, étale) factorization mentioned above. For an essential geometric
morphism f : PSh(M) → PSh(N) induced by a semigroup homomorphism ϕ :M → N ,
the factorization is dual in a literal sense: the geometric morphism induced by ϕ is pure
(resp. a complete spread) if and only if the geometric morphism induced by ϕop :Mop →
Nop is terminal-connected (resp. étale). For a general geometric morphism f : PSh(M) →
PSh(N) given by a [N,M)-set A, we give a characterization of when f is pure. In our
setting, f can only be a complete spread if it is essential, so only a study of general pure
geometric morphisms is needed here.

It follows from the work of Bunge and Funk [BF98, Corollary 7.9] that the intersection
of étale geometric morphisms and complete spreads is (over connected presheaf toposes,
including our case of interest) given by the locally constant étale morphisms. These
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are employed in a topos-theoretic version of Galois theory. As an application of our
investigation, we recover the result that the Galois groupoid for a topos of the form
PSh(M) is a group, and is exactly the groupification of M .

Overview. In Section 2, we recall how semigroup homomorphisms and biactions of
monoids induce geometric morphisms, as well as some basic categorical constructions
which we shall need later. We tackle the (surjection, inclusion) and (hyperconnected,
localic) factorization systems in Section 3, the (terminal-connected, étale) factorization
system in Section 4 and finally the (pure, complete spread) factorization in Section 5. Each
of these sections begin with some background on the types of morphism involved, followed
by an investigation of the factorization system for essential geometric morphisms coming
from semigroup homomorphisms. The latter part of each section contains an attempt to
characterize the biactions producing geometric morphisms in the various classes.

In Section 6, we investigate the relationship between the latter two factorization sys-
tems, in particular giving examples illustrating the various possible relationships between
étale morphisms and complete spreads. We apply this in Section 7 to streamline the
application in the Galois theory of our toposes of discrete monoid actions.

Throughout, the reader may assume that M and N denote monoids.

Acknowledgements. While preparing this article, we were strongly influenced by the
texts of Marta Bunge and Jonathon Funk. It was a joy spending time trying to understand
the deep ideas expressed in their work. We are therefore grateful that the resulting article
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project.

We would like to thank the organisers of Toposes Online, where some of the results in
this article were presented.

Finally, we would also like to thank the anonymous referee for pointing out mistakes
and typos, and for providing many suggestions that helped to make the paper more
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2. Background

2.1. Essential Geometric Morphisms. Let E and F be Grothendieck toposes. Recall
that a geometric morphism f : F → E is by definition an adjunction

F E ,
f∗

⊥
f∗
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with f∗, the direct image functor, right adjoint to f ∗, the inverse image functor, where the
latter is required to preserve finite limits. We follow the convention that a 2-morphism or
geometric transformation f ⇒ g between geometric morphisms f, g : F → E is a natural
transformation f ∗ ⇒ g∗.

A geometric morphism is said to be essential if f ∗ has a left adjoint, denoted f!:

F E .

f!

f∗

⊥

⊥
f∗

By the Special Adjoint Functor Theorem, a geometric morphism (f ∗ ⊣ f∗) is essential
precisely if f ∗ preserves not just finite limits but all small limits. Recall that a functor
F : C → D between small categories C and D induces an essential geometric morphism
f : PSh(C) → PSh(D) whose inverse image functor is precomposition with F op, so that
f∗ and f! are given by right and left Kan extensions along F op, respectively. Conversely,
any essential geometric morphism between presheaf toposes is (up to natural isomor-
phism) induced by some functor F in this way, which is recovered by restricting f! to the
representable presheaves.

From Theorem 6.5 of [Roga], we have an equivalence between the 2-category of
monoids, semigroup homomorphisms and ‘conjugations’ (monoid elements which com-
mute appropriately with homomorphisms), and the 2-category of the corresponding pre-
sheaf toposes, essential geometric morphisms and natural transformations, up to reversing
the direction of the conjugations. These presheaf toposes have a great deal more structure
than the monoids from which they are constructed, and as such this equivalence gives us
access to a variety of approaches for examining the subtler properties of monoids and
their right actions. We recall from [HR21b] that, given a monoid M , its topos PSh(M)
of actions is equipped with a canonical point and a global sections morphism:

Set PSh(M) Set,

−×M

HomSet(M,−)

⊥

⊥
U

C

Γ

⊥

⊥
∆ (1)

where the functors not explicitly specified are:

• the forgetful functor U sending a right M -set to its underlying set;

• the global sections functor Γ sending an M -set A to its set

FixM(A) = HomPSh(M)(1, A)

of fixed points under the action of M ;
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• the constant sheaf functor ∆ sending a set B to the same set with trivial M -action;

• the connected components functor C sending an M -set A to its set of components
under the action of M (that is, to its quotient under the equivalence relation gen-
erated by a ∼ a ·m for a ∈ A, m ∈M).

It should also be noted that for a set X, the M -action on HomSet(M,X) by m ∈ M
sends f to (n 7→ f(mn)), while the M action on X ×M is by right multiplication on the
M -component.

These geometric morphisms correspond under the equivalence to the canonical monoid
homomorphisms 1 → M and M → 1. More generally, an arbitrary monoid homomor-
phism ϕ gets sent to the essential geometric morphism whose inverse image is restriction
of the action along ϕ. The geometric morphism corresponding to an arbitrary semigroup
homomorphism is a little more complicated, and can be most concisely described in terms
of a [N,M) set and a (M,N)-set; see Lemma 2.2.4 below.

2.2. General Geometric Morphisms. In previous work [HR21b, Propositions 1.5
and 1.8], we discussed how more generally a geometric morphism f : PSh(M) → PSh(N)
can be understood as a tensor–hom adjunction. We recall those results here.

2.2.1. Definition. If X is a set equipped with a left N-action and a rightM-action, then
we say that the left N-action and right M-action are compatible if (n ·x) ·m = n · (x ·m)
for all n ∈ N , x ∈ X and m ∈ M . Sets with a compatible left N-action and right
M-action will be called (N,M)-sets.1 As homomorphisms between these, we of course
consider functions commuting with both actions.

For a right N -set X and a left N -set A, recall that we define the tensor product
X⊗NA to be the quotient of X×A by the equivalence relation ∼, generated by (x·n, a) ∼
(x, n ·a) for x ∈ X, a ∈ A and n ∈ N . A left N -set A is then said to be flat if the functor

−⊗N A : [Nop,Set] → Set

X 7→ X ⊗N A

preserves finite limits, which is equivalent (see e.g. [MLM94, VII.6, Theorem 3]) to the
conditions that

1. A is non-empty;

2. for elements b, b′ ∈ A there exists a ∈ A and n, n′ ∈ N with n · a = b and n′ · a = b′;
and

3. whenever c ∈ A and n, n′ ∈ N with n · c = n′ · c, there exists d ∈ A, p ∈ N with
p · d = c and np = n′p.

1We read this as ‘left-N -right-M -set’.
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2.2.2. Definition. We say a (N,M)-set A is flat, or a [N,M)-set, if it is flat as a left
N-set. The category of [N,M)-sets forms a full subcategory of the category of (N,M)-sets.

As shown below, the category of geometric morphisms f : PSh(M) → PSh(N) is
equivalent to the category of [N,M)-sets. More generally, a (Lawvere) distribution
f : F → E between toposes is any adjoint pair f ∗ ⊣ f∗, where f

∗ does not necessarily
preserve finite limits (see [Law] or [BF96]). A morphism f ⇒ g between distributions
f, g : F → E is still a natural transformation f ∗ ⇒ g∗. We mention the following special
case of Diaconescu’s Theorem:

2.2.3. Theorem. There is an equivalence between the category of geometric morphisms
PSh(M) → PSh(N) and the category of [N,M)-sets. More generally, there is an equiv-
alence between the category of distributions PSh(M) → PSh(N) and the category of
(N,M)-sets.

Proof.At the level of objects, the equivalences send an adjunction f ∗ ⊣ f∗ to the (N,M)-
set f ∗(N), which has a rightM -action by virtue of being an object of PSh(M), and a left
N action coming from the images of the endomorphisms of N as an object of PSh(N),
which consist of left multiplication by elements of N . Conversely, a (N,M)-set A is sent
to the tensor-hom adjunction (−⊗N A) ⊣ HomM(A,−); see [HR21b, Proposition 1.5].

Given two adjunctions f ∗ ⊣ f∗ and g∗ ⊣ g∗, a natural transformation f ∗ ⇒ g∗ is
determined by its component f ∗(N) → g∗(N), which is automatically a right-M -set
homomorphism; it is also a left-N -set homomorphism by naturality with respect to the
endomorphisms of N . Conversely, a (N,M)-set homomorphism A→ B induces a natural
transformation −⊗NA→ −⊗NB by composition on the second component; commutation
with the respective actions ensures that this is well-defined and an M -set homomorphism
at each object X.

Finally, the geometric morphisms f are precisely the distributions such that f ∗ pre-
serves finite limits, so correspond under this equivalence to the full subcategory of [N,M)-
sets, as required.

Thus we have an algebraic characterization of arbitrary geometric morphisms between
toposes of discrete monoid actions, as well as an alternative perspective on the extra ad-
junction (f! ⊣ f ∗) in an essential geometric morphism f . Explicitly, by direct calculation:

2.2.4. Lemma. Let f : PSh(M) → PSh(N) be an essential geometric morphism induced
by a semigroup homomorphism ϕ :M → N . Then the [N,M)-set corresponding to (f ∗ ⊣
f∗) is the left ideal Nϕ(1) equipped with left N-action by multiplication and rightM-action
by multiplication after applying ϕ. In particular, when ϕ is a monoid homomorphism, the
[N,M)-set is simply N equipped with the respective actions.

Meanwhile, the (M,N)-set corresponding to the extra adjunction (f! ⊣ f ∗) is the right
ideal ϕ(1)N of N , similarly equipped with respective multiplication actions but with the
handedness reversed.

The correspondence from Theorem 2.2.3 is well-behaved with respect to composition
of geometric morphisms.
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2.2.5. Lemma. Suppose g : PSh(M) → PSh(L) and f : PSh(L) → PSh(N) are
induced by the [L,M)-set B and the [N,L)-set A respectively. Then f ◦ g is induced by
A⊗L B (up to isomorphism). This result extends to all distributions.

Proof. This is immediate from the fact that g∗f ∗(X) ≃ (X ⊗N A)⊗L B and the tensor
product is associative up to isomorphism.

2.3. Categories of Elements and Slice Toposes. Let C be a small category and
let X : Cop → Set be a presheaf on C. Recall that the category of elements of X is the
category

∫
C X having

• as objects, pairs (C, a), where C is an object of C and a ∈ X(C);

• as morphisms (C, a) → (D, b) the morphisms f : C → D such that b · f = a;

• composition given by composition in C.
We shall also need the dual construction: viewing a functor Y : C → Set as a contravariant
functor defined on Cop, we define

∫ C
Y :=

(∫
Cop Y

)op
.

When C = M is a monoid, a presheaf on M is precisely a right M -set. Since there
is only one object, we simplify the description of categories of elements by dropping the
indexing over the objects. If M is commutative, then

∫
M
M agrees with the category

C(M) appearing in [CC21, §4.1].
Categories of elements are useful for studying slice toposes. Recall that for any cate-

gory E and object X in E , the slice category E/X is the category with,

• as objects the morphisms f : E → X in E with codomain X;

• as morphisms from f : E → X to f ′ : E ′ → X the morphisms g : E → E ′ such that
f ′ ◦ g = f ;

• composition given by composition of morphisms in E .
For a topos E and an object X in E , the slice category E/X is again a topos, inheriting all
of the required properties from E (this fact is sometimes called the fundamental theorem
of topos theory). We shall refer to a topos of the form E/X for a generic object X as a
slice of E . The relation between categories of elements above and slice toposes can be
described as follows:

2.3.1. Proposition. Consider a small category C and a presheaf X on C. Then there
is an equivalence of categories

PSh(C)/X ≃ PSh

(∫
C
X

)
.

Proof. In one direction, an object g : Y → X on the left hand side is sent to the presheaf
ĝ on

∫
C X sending (C, x) to g(C)−1({x}) ⊆ Y (C). In the opposite direction, a presheaf

G on
∫
C X is sent to the object G̃ : Y → X, where Y (C) =

∐
x∈X(C)G(C, x) and G̃ sends

the elements in each G(C, x) to x. We leave the remaining details to the reader; this
features as Exercise III.8 in [MLM94].
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2.4. Idempotent Completion.

2.4.1. Definition. Recall that a category C is idempotent complete (also known as
Cauchy complete or Karoubi complete) if every idempotent splits, in the sense that given
any idempotent e : C → C in C, there exist morphisms r : C → D and s : D → C with
r ◦ s = idD and s ◦ r = e, which are automatically unique up to unique isomorphism with
D.

We can construct the idempotent completion of any (small) category. The category
of presheaves on the resulting category is equivalent to the category of presheaves on the
original category; conversely, an idempotent complete category can be recovered up to
equivalence from its category of presheaves as the subcategory of indecomposable pro-
jective objects [sga72, Exercice 7.6(c,e)]. Hence there is a unique idempotent complete
category up to equivalence representing any presheaf category.

We recall the following from [Roga, Section 2]:

2.4.2. Lemma. The idempotent completion M̌ of a monoid M is given by the category
with,

• as objects the idempotents of M (the object corresponding to an idempotent e ∈ M
is denoted by e);

• as morphisms e→ d the elements m ∈M such that me = m = dm;

• identity morphism on an object e given by the corresponding element e;

• composition given by multiplication in M .

As the name suggests, this category is idempotent complete, and is the unique idempotent
complete category up to equivalence such that PSh(M) ≃ PSh(M̌).

2.4.3. Remark. Any semigroup homomorphism ϕ :M → N induces a functor ϕ̌ : M̌ →
Ň mapping e to ϕ(e) and m : e → d to ϕ(m) : ϕ(e) → ϕ(d), and this in turn induces
the essential geometric morphism PSh(M) → PSh(N) corresponding to ϕ under the
2-equivalence mentioned at the start of Section 2.1.

Extending Proposition 2.3.1, we have the following result.

2.4.4. Corollary. Suppose that C is a small idempotent-complete category and X is a
presheaf on it. Then

∫
C X is idempotent complete. It follows that this is (up to equivalence)

the unique idempotent complete category with

PSh(C)/X ≃ PSh

(∫
C
X

)
.

Proof. Let (C, a) be an object in
∫
C X and suppose that there is an idempotent morphism

e : (C, a) → (C, a) indexed by a morphism e ∈ C. Then e must itself be an idempotent in
C. Consider the splitting e = sr of e in C; let D be the domain of s. Since a · e = a, we
have r : (C, a) → (D, a · r) and s : (D, a · r) → (C, a) in

∫
C X. This defines the desired

splitting of the original idempotent.
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We can also use the idempotent completion to characterize toposes of discrete monoid
actions amongst presheaf toposes.

2.4.5. Lemma. Let C be a small category. Then there is a monoidM such that PSh(C) ≃
PSh(M) if and only if there is an object C in C such that every other object in C is a
retract of C. In this case, we can take M = EndC(C).

Proof. If C is an object such that every other object is a retract of C, then con-
sider the full subcategory of C on the single object C, which we can identify with the
monoid EndC(C). The idempotent completions of EndC(C) and C agree, so PSh(C) ≃
PSh(EndC(C)).

Conversely, suppose that PSh(C) ≃ PSh(M) for some monoid M . Then there is an
object C ′ in the idempotent completion Č of C such that every other object is a retract
of C ′. Because C ′ lies in the idempotent completion, it is itself a retract of an object C
in C. The statement of the lemma then follows from transitivity of retracts.

3. The (surjection, inclusion) and (hyperconnected, localic) factorizations

There are a number of standard factorization systems for geometric morphisms, some
applicable to all morphisms, others only to particular classes. While we describe a variety
of them here, we focus on the cases which do not take us outside the realm of presheaf
toposes, and especially on refinements of these which keep us in the realm of toposes
of discrete monoid actions. We begin with factorization systems for essential geometric
morphisms, and use these to factorize more general geometric morphisms later.

3.0.1. Definition. Recall that a geometric morphism f : F → E is:

• a surjection if f ∗ is faithful;

• an inclusion if f∗ is full and faithful;

• hyperconnected if f ∗ is full and faithful and has image closed under subquotients
(quotients of subobjects);

• localic if every object in F is a subquotient of an object of the form f ∗(X) for some
X in E.

There are equivalent characterizations of these classes of geometric morphism which we
shall employ at various points.

The two factorization systems for geometric morphisms that are most well-known are
the (surjection, inclusion) factorization, and the (hyperconnected, localic) factorization.
That is, every geometric morphism canonically factors as a surjection followed by an
inclusion, or as a hyperconnected morphism followed by a localic morphism, uniquely up
to compatible equivalence of the intermediate topos. Moreover, these factorizations are
compatible in the sense illustrated in (2) below.
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3.1. The essential case. Conveniently, both of these factorizations restrict in a canon-
ical way to the class of essential geometric morphisms between presheaf toposes.

3.1.1. Lemma. Suppose f : PSh(C) → PSh(D) is an essential geometric morphism
induced by a functor F : C → D. Then,

• f is surjective ⇔ F is essentially surjective up to retracts;

• f is an inclusion ⇔ F is full and faithful;

• f is hyperconnected ⇔ F is full and essentially surjective up to retracts;

• f is localic ⇔ F is faithful.

Here “essentially surjective up to retracts” means that for every D in D there is some C
in C such that D is a retract of F (C).

In particular, since we can factor any functor F between idempotent-complete small
categories as a functor which is essentially surjective up to retracts followed by one which
is full and faithful, we obtain a canonical representation of the (surjection, inclusion)
factorization of f , and the intermediate topos is a presheaf topos. The analogue is true
for the (hyperconnected, localic) factorization of f .

Proof. See Johnstone, [Joh02, Examples A4.2.7(b), A4.2.12(b), A4.6.2(c) and A4.6.9];
the case of monoid homomorphisms is even explicitly discussed after Example A4.6.9
there. To sketch a short proof, one can verify directly that the given conditions are
sufficient; conversely, since the stated factorizations of F must give factorizations of f
which we know to be unique up to equivalence of the intermediate topos (or equivalently
up to equivalence of the intermediate idempotent-complete category) and since the given
conditions are invariant under equivalence, they must also be necessary.

Let ϕ : M → N be a semigroup homomorphism between monoids M and N (so the
identity need not be preserved). Applying Lemma 3.1.1 to the functor ϕ̌ : M̌ → Ň
from Remark 2.4.3 and the corresponding essential geometric morphism f : PSh(M) →
PSh(N), we deduce the following corollaries for essential geometric morphisms between
toposes of discrete monoid actions.

3.1.2. Corollary. The (surjection, inclusion) factorization of f is canonically
represented by the factorization of ϕ : M → N as a monoid homomorphism followed by
an inclusion of semigroups of the form ι : eNe ↪→ N , where e = ϕ(1) is the idempotent of
N which is the image of the identity element of M .

M eNe N

PSh(M) PSh(eNe) PSh(N)

ψ ι

surjection inclusion

In particular, essential geometric morphisms induced by monoid homomorphisms are al-
ways surjective. Conversely, given an essential surjection, the inclusion part of its (surjec-
tion, inclusion) factorization must be an equivalence. That is, the inclusion ι : eNe→ N
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of the image of the corresponding semigroup homomorphism induces an equivalence of
toposes. We may therefore assume, up to replacing the monoid presenting the codomain
topos with a Morita-equivalent one, that an essential surjection is induced by a monoid
homomorphism, rather than a mere semigroup homomorphism.

3.1.3. Corollary. The (hyperconnected, localic) factorization of f corresponds
to the (quotient, injection) factorization of ϕ, which factors ϕ : M → N through the
quotient monoid homomorphism π :M →M/∼, where m ∼ n if and only if ϕ(m) = ϕ(n).
Diagrammatically:

M M/∼ N

PSh(M) PSh(M/∼) PSh(N)

π ψ

hyperconnected localic

These two factorization systems are compatible: we can factorize any semigroup ho-
momorphism ϕ and the corresponding essential geometric morphism f into three parts.
We factorize ϕ into a quotient map π : M → M/∼, followed by an injective monoid
homomorphism ψ :M/∼ → eNe, followed by an inclusion ι : eNe→ N , where e = ϕ(1).
The induced geometric morphisms give a factorization as follows:

M M/∼ eNe N

PSh(M) PSh(M/∼) PSh(eNe) PSh(N)

π ψ ι

hyperconnected localic surj. inclusion

(2)

In this situation, the surjective part is the composition of the hyperconnected and localic
surjection parts, and the localic part is the composition of the localic surjection and
inclusion parts. It will often be helpful to consider the three parts of this (hyperconnected,
localic surjection, inclusion) factorization separately.

3.2. The general case. Unfortunately, the latter part of Lemma 3.1.1 is not true for
a geometric morphism that is not essential: the intermediate topos in the (surjection,
inclusion) or (hyperconnected, localic) factorization of a typical geometric morphism g :
PSh(M) → PSh(N) is not a presheaf topos, let alone a topos of discrete monoid actions2.
Nonetheless, we can identify conditions on [N,M)-sets which produce morphisms in these
classes.

3.2.1. Proposition. Let f : PSh(M) → PSh(N) be the geometric morphism corre-
sponding to the [N,M)-set A. Then f is localic if and only if M is a retract of some
subobject of A, as a right M-set.

2On the other hand, it was recently shown by the second author that the (hyperconnected, localic)
factorization does have a presentation in terms of actions of topological monoids, [Rogb].
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Proof. By definition, f being localic requires that every object X of PSh(M) be a
subquotient of one of the form f ∗(Y ). By pulling back along (the image under f ∗ of) the
cover of Y by a disjoint union of copies of N , we conclude that f is localic if and only
if for every object X in PSh(M) there is a subobject C ⊆

⊔
i∈I A and an epimorphism

C → X. In the special case where X = M , we get a surjection p : C ↠ M , which
splits since M is projective. Letting A′ be the connected component of C containing the
section, we conclude that A′ must be a subobject of just one of the copies of A, and hence
by restricting p to A′, we conclude that M is a subquotient of A, as required. Conversely,
if A has a subobject A′ of which M is a retract, then each object X in PSh(M) admits
a surjection

⊔
i∈I A

′ ↠
⊔
i∈IM ↠ X. Since

⊔
i∈I A

′ is a subobject of
⊔
i∈I A, this shows

that f is localic.

We shall extend this proposition to a necessary and sufficient condition for the direct
image f∗ to be faithful in Scholium 5.2.5, but fullness of f∗ is challenging in general. We
shall at least see a sufficient condition for f to be an inclusion in Corollary 5.2.6.

We can characterize surjections in terms of an algebraic condition, albeit a not very
enlightening one.

3.2.2. Lemma. Let f : PSh(M) → PSh(N) be the geometric morphism corresponding
to the [N,M)-set A. Then f is a surjection if and only if for all N-sets X and elements
x, y ∈ X, if we have x⊗ a = y ⊗ a in X ⊗N A for all a ∈ A, then x = y.

Proof. Composing with the canonical essential surjective point of PSh(M), we see that
f is a surjection if and only if the composite point Set → PSh(N) is. The stated
condition is a translation of the requirement that the unit of this point is a monomorphism.
The statement then follows from the classical result that the unit of an adjunction is a
monomorphism if and only if the left adjoint is faithful.

Finding necessary and sufficient conditions for f ∗ to be full is difficult, but fortunately
we have other ways to characterize hyperconnected morphisms.

3.2.3. Proposition. Let f : PSh(M) → PSh(N) be the geometric morphism corre-
sponding to the [N,M)-set A. Then f is hyperconnected if and only if the condition of
Lemma 3.2.2 is satisfied and every sub-M-set of A is of the form I ⊗N A for some right
ideal I ⊆ N .

Proof. If f is hyperconnected, then f is certainly a surjection. Moreover, since f ∗ is
full and faithful and closed under subobjects, every monomorphism A′ ↪→ A must be of
the form f ∗(g) for some right N -set homomorphism g : X → N . But f ∗ preserves epi-
morphisms and monomorphisms, which means that if we take the epi-mono factorization
of g, the epimorphic part must be sent to an isomorphism by f ∗, so the monomorphic
part induces the same subobject. The conclusion follows, since sub-right-N -sets of N are
precisely right ideals.

Conversely, given the conditions on A, we know from Lemma 3.2.2 that f is a sur-
jection; we shall show that f ∗ is closed under subobjects. Indeed, given a right N -set
X, consider the image under f ∗ of a cover of X by copies of N , which simplifies to
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k∈K A↠ f ∗(X). Given a subobject Z of f ∗(X) in PSh(M), we can pull back the cover

to obtain a cover of Z of the form
∐

k∈K Ik ⊗N A ↠ Z (taking advantage of the fact
that subobjects of coproducts are coproducts of subobjects). This lifts to a morphism∐

k∈K Ik ↪→
∐

k∈K N ↠ X; applying f ∗ to the epi-mono factorization of this compos-
ite produces the desired presentation of Z. Being faithful and closed under subobjects
means that, for each object A of PSh(N), f ∗ induces an equivalence of subobject lattices
Sub(A) ∼= Sub(f ∗(A)), which is one of the equivalent characterizations of hyperconnected
morphisms (see [Joh02, Proposition A4.6.6(vi)]).

4. The (terminal-connected, étale) factorization

Recall that a geometric morphism is locally connected if its inverse image functor is
locally cartesian closed (preserves dependent products); any locally connected morphism
is essential. There is a well-known (connected and locally connected, étale) factorization
system for locally connected morphisms, constructed for a given morphism f by slicing
the codomain topos over the object f!(1); see [Joh02, Lemma C3.3.5]. This factorization
system extends with an identical construction to essential geometric morphisms, as ob-
served by Caramello in [Car, §4.7]. Recent work of Osmond [Osm21, Theorem 5.4.10]
demonstrates how this can be extended to a factorization system for arbitrary geometric
morphisms, after replacing étale geometric morphisms by more general pro-étale geometric
morphisms.

We begin from the following definitions, which appear as [Osm21, Definitions 5.2.3
and 5.3.3], respectively.

4.0.1. Definition. A geometric morphism f : F → E is said to be étale if F is equiva-
lent to E/X for some object X, and f factors as the equivalence followed by the canonical
geometric morphism E/X → E; we refer to the latter as the étale geometric morphism
corresponding to X.

On the other hand, a geometric morphism f : F → E is said to be terminal-
connected if there is a bijection HomF(1, f

∗(X)) ∼= HomE(1, X), natural in X.

A geometric morphism into Set is terminal-connected if and only if it is connected,
meaning that its inverse image functor is full and faithful. Indeed, it is clear that con-
nected morphisms are always terminal-connected morphisms (since inverse image functors
preserve the terminal object); conversely, for p : E → Set the global sections morphism,
we have

HomE(p
∗(X), p∗(Y )) ∼=

∏
x∈X

HomE(1, p
∗(Y )) ∼=

∏
x∈X

HomSet(1, Y ) ∼= HomSet(X, Y ),

naturally in X and Y , whence p∗ is full and faithful. Terminal-connectedness was pre-
viously defined only for the class of essential geometric morphisms. Indeed, for such
morphisms we can recover the definition stated in [Car, §4.7] by adjointness, as Osmond
observes in [Osm21].
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4.0.2. Lemma. [Osm21, Proposition 5.3.4] An essential geometric morphism f : F → E
is terminal-connected if and only if f! preserves the terminal object.

Meanwhile, the following result from [Joh02] suggests that we should think of étale
geometric morphisms over a topos E as corresponding to discrete internal locales (rather
than merely as objects of the topos).

4.0.3. Lemma. [Joh02, Lemma C3.5.4] A geometric morphism is étale if and only if
it is localic and atomic, meaning that its inverse image functor is logical (preserves
exponential objects and the subobject classifier); note that Johnstone calls étale geometric
morphisms local homeomorphisms.

4.1. The essential case. Given an essential geometric morphism f : F → E , there is
a factorization

F E/f!(1) E ,g h

where both factors are essential, g is terminal-connected and h is the local homeomor-
phism corresponding to f!(1). This (terminal-connected, étale) factorization, is
again unique up to compatible equivalence of the intermediate topos, see [Car, Proposi-
tion 4.62], so we may refer to g as the terminal-connected part of f and to h as the étale
part of f .

4.1.1. Proposition. Let f : PSh(C) → PSh(D) be an essential geometric morphism
induced by a functor F : C → D. Then F has a factorization C → B → D into a final
functor followed by a discrete fibration (unique up to equivalence). Further, the induced
factorization

PSh(C) → PSh(B) → PSh(D)

coincides with the (terminal-connected, étale) factorization of f .

Proof. In [SW73] it is shown that each functor can be factorized as an initial functor
followed by a discrete opfibration. By dualizing we get a factorization of a functor into
a final functor followed by a discrete fibration. To show that the induced factorization
coincides with the (terminal-connected, étale) factorization, we write out the factorization
explicitly below.

Using the notations from Subsection 2.3, we may consider the factorization:

C
∫
D f!(1) D,

C (F (C), x · Ft) F (C)

C ′ (F (C ′), x) F (C ′)

t F t F t

(3)

where
∫
D f!(1) is the category of elements of the object f!(1) in PSh(D), the right-

hand functor is the forgetful functor and x ∈ f!(1)(F (C
′)) corresponds to the morphism
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y(F (C ′)) ∼= f!(C
′)

f!(!)−−→ f!(1). We omit the proof of the respective properties and unique-
ness, although we refer the reader to the original reference for the dual factorization of a
functor into an initial functor followed by a discrete opfibration in [SW73]; we shall use
this dual factorization in the next section.

To see that this produces a (terminal-connected, étale) factorization of f , we employ
Proposition 2.3.1 to observe that the right-hand factor is étale, since the extra left ad-
joint of the geometric morphism induced by the projection functor is identified under the
equivalence with the forgetful functor from the slice topos. Meanwhile, the geometric
morphism induced by the left-hand factor has left adjoint sending a presheaf X on C to
the object f!(X → 1) of PSh(D)/f!(1), whence it is terminal-connected by Lemma 4.0.2.

Now suppose f : PSh(M) → PSh(N) is an essential geometric morphism induced by
a semigroup homomorphism ϕ :M → N , and let e := ϕ(1). Equivalently, f is induced by
the functor ϕ′ :M → Ň sending the unique object of M to the object e of Ň and sending
m ∈ M to the endomorphism of e indexed by ϕ(m) (we use the notation of Lemma
2.4.2). We now apply Proposition 4.1.1 to ϕ′. We see that PSh(N)/f!(1) is the category
of presheaves on the category of elements

∫
Ň
f!(1), and moreover the terminal-connected

part of f is the geometric morphism induced by the functor M →
∫
Ň
f!(1) such that:

• the unique object of M is sent to the object (e, ∗ ⊗ e) of
∫
Ň
f!(1), where ∗ ⊗ e ∈

1⊗M eN ∼= f!(1), and

• the morphism corresponding to m ∈ M is sent to the endomorphism of (e, ∗ ⊗ e)
indexed by ϕ(m).

Denote the monoid of endomorphisms of (e, ∗⊗ e) in
∫
Ň
f!(1) by D. More explicitly, since

morphisms in this category are indexed by morphisms in Ň , we can identify D with the
following subsemigroup of N :

D = {n ∈ N : ene = n and ∗ ⊗en = ∗ ⊗ e in 1⊗M eN} ⊆ eNe. (4)

It will also be useful for us to consider the object (1, 1 ⊗ e) of
∫
Ň
f!(1); letting E be the

monoid of endomorphisms of (1, 1⊗ e), we can identify E with a submonoid of N :

E = {n ∈ N : ∗ ⊗ en = ∗ ⊗ e in 1⊗M eN}. (5)

In particular, D = eEe. Further, we have a diagram of semigroup homomorphisms,

M D eNe

E N

ψ

ι

τ

, (6)

where the horizontal maps are monoid homomorphisms, the vertical maps are inclusions
of subsemigroups which reduce to identities when ϕ is a monoid homomorphism, and both
paths M → N compose to give ϕ.
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We will see in Proposition 4.1.6 and Proposition 4.1.7 that the terminal-connected part
of f factors through both PSh(D) and PSh(E), in such a way that each of the factors is
again terminal-connected, see also diagram (10). First, we give a different interpretation
of D and E in terms of right-factorability.

4.1.2. Definition. Recall from [HR21b, Definition 2.9] that a non-empty subset S of a
monoid M is called right-factorable if whenever x ∈ S and y ∈ M with xy ∈ S, then
y ∈ S; such a subset automatically contains the identity. Further, for an arbitrary subset
T , we defined ⟨T ⟩⟩M ⊆M to be the smallest right-factorable submonoid of M containing
T . We say that ⟨T ⟩⟩M is the submonoid of M right-factorably generated by T .

4.1.3. Lemma. In 1 ⊗M eN , we have ∗ ⊗ en = ∗ ⊗ e if and only if n ∈ ⟨ϕ(M)⟩⟩N .
With the notation established above, we find that E = ⟨ϕ(M)⟩⟩N , and similarly that
D = ⟨ϕ(M)⟩⟩eNe.

Proof. By definition of equality in 1⊗M eN , for n ∈ N we have ∗⊗e = ∗⊗en if and only
if 1 ∼M n, where ∼M is the right congruence generated by the basic relations 1 ∼ ϕ(m)
for all m ∈ M . But by [HR21b, Lemma 2.13], we have ⟨ϕ(M)⟩⟩N = {n ∈ N : 1 ∼M n}.
In other words, E = ⟨ϕ(M)⟩⟩N . To show the analogous result for D, note that eNe is
a retract of eN (as left M -sets). The functor 1 ⊗M − preserves retracts, in particular
1⊗M eNe ⊆ 1⊗M eN . So for n ∈ eNe the equation ∗ ⊗ en = ∗ ⊗ e holds in 1⊗M eN if
and only if it holds in 1 ⊗M eNe. The proof that D = ⟨ϕ(M)⟩⟩eNe is now analogous to
the above proof that E = ⟨ϕ(M)⟩⟩N .

So the diagram (6) can be written more explicitly as

M ⟨ϕ(M)⟩⟩eNe eNe

⟨ϕ(M)⟩⟩N N

ψ

ι

τ

. (7)

It turns out that f is terminal-connected if and only if the inclusion τ in (7) is the
identity.

4.1.4. Corollary. An essential geometric morphism f : PSh(M) → PSh(N) in-
duced by a semigroup homomorphism ϕ : M → N is terminal-connected if and only if
⟨ϕ(M)⟩⟩N = N .

Proof. Let e = ϕ(1). Then f!(1) = 1⊗M eN , whence f is terminal-connected if and only
if 1⊗M eN ≃ 1, which is to say that ∗ ⊗ e = ∗ ⊗ en for all n ∈ N . By Lemma 4.1.3, this
is equivalent to ⟨ϕ(M)⟩⟩N = N .
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4.1.5. Example.

1. Let Z be the group of integers under addition and let N ⊆ Z be the submonoid of
natural numbers. For each n ∈ N, we have that n + (−n) = 0, and as a result −n
is contained in the right-factorable submonoid generated by N, and hence ⟨N⟩⟩Z =
Z. It follows that the induced essential localic surjection PSh(N) → PSh(Z) is
terminal-connected.

2. More generally, let G be a group and let N ⊆ G be a submonoid such that G =
{a−1b : a, b ∈ N}; for example, if R is a valuation ring in a field K then we
may take N = R− {0} and G = K∗ to be the respective multiplicative monoids of
non-zero elements. Then for every a, b ∈ N we have a(a−1b) = b, and this shows
that ⟨N⟩⟩G = G. So the induced geometric morphism PSh(N) → PSh(G) is
terminal-connected.

3. Consider any ring R as a monoid with its multiplication operation, and consider
the subsemigroup {0} ⊆ R. Because 0 · r = 0 for all r ∈ R, we have that the
right-factorable submonoid generated by {0} is equal to R itself. It follows that
the induced essential geometric morphism Set ≃ PSh({0}) → PSh(R) is terminal-
connected.

4. Let N be a commutative idempotent monoid. We denote the multiplication in N
by ∧, and in this way we can view N as a meet-semilattice. Let M ⊆ N be a
subsemigroup, i.e. a subset closed under ∧. We can compute that ⟨M⟩⟩N is then
the upwards closure of M . So PSh(M) → PSh(N) is terminal-connected if and
only if the upwards closure of M ⊆ N is all of N .

4.1.6. Proposition. Given a semigroup homomorphism ϕ :M → N , let

f : PSh(M) → PSh(N)

be the induced essential geometric morphism. Then the terminal-connected part of f has
(surjection, inclusion) factorization given by

PSh(M) PSh(⟨ϕ(M)⟩⟩eNe) PSh(N)/f!(1),
k j

(8)

where k is the essential surjection induced by the factor

ψ :M → ⟨ϕ(M)⟩⟩eNe
of ϕ from (7), and j is the essential inclusion induced by the inclusion of the monoid
⟨ϕ(M)⟩⟩eNe as a full subcategory of

∫
Ň
f!(1) on the single object (e, ∗⊗ e). Moreover, both

k and j are terminal-connected.

Proof. That this is a canonical representation of the (surjection, inclusion) factorization
follows from Lemma 3.1.1, so we only need to verify the last claim. We can deduce from
Lemma 4.1.3 that D can be identified with ⟨ψ(M)⟩⟩eNe, whence k is terminal-connected
by Corollary 4.1.4. To see that j is terminal-connected, observe that j!(1) ∼= j!k!(1) ∼= 1
since both k and j ◦ k are terminal-connected.
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4.1.7. Proposition. With the same set-up as Proposition 4.1.6, the geometric inclusion
j in (8) further factors as,

PSh(⟨ϕ(M)⟩⟩eNe) PSh(⟨ϕ(M)⟩⟩N) PSh(N)/f!(1),
j1 j2

(9)

where j1 is the essential inclusion induced by the inclusion of semigroups

ι : ⟨ϕ(M)⟩⟩eNe → ⟨ϕ(M)⟩⟩N

from (7), and j2 is the essential inclusion induced by the inclusion of ⟨ϕ(M)⟩⟩N as a
full subcategory of

∫
Ň
f!(1) on the object (1, 1 ⊗ e). Again, both j1 and j2 are terminal-

connected.

Proof. Replacing all of the monoids with their idempotent completions and extend-
ing semigroup homomorphisms to functors accordingly, the fact that these geometric
morphisms are inclusions is another application of Lemma 3.1.1. Because, ⟨ϕ(M)⟩⟩eNe
contains ϕ(M), we have that ⟨ϕ(M)⟩⟩eNe right-factorably generates ⟨ϕ(M)⟩⟩N , so using
Corollary 4.1.4 we see that j1 is terminal-connected. That j2 is terminal-connected follows
just as for j in the proof of Proposition 4.1.6.

In summary, the geometric morphism f : PSh(M) → PSh(N) induced by a semigroup
morphism ϕ :M → N , with ϕ(1) = e, factors as

PSh(M) PSh(⟨ϕ(M)⟩⟩eNe)

PSh(⟨ϕ(M)⟩⟩N) PSh(N)/f!(1)

PSh(N),

tc surj.

tc incl.

tc incl.

étale

(10)

where ‘tc’ is short-hand for terminal-connected. If ϕ(1) = 1, then this reduces to

PSh(M) PSh(⟨ϕ(M)⟩⟩N) PSh(N)/f!(1) PSh(N).
tc surj. tc incl. étale (11)

4.1.8. Remark. Note that since f is induced by a semigroup homomorphism, f!(1) =
1⊗M ϕ(1)N is an inhabited set, so the map f!(1) → 1 is an epimorphism, which implies
that the induced geometric morphism PSh(N)/f!(1) → PSh(N) is always a surjection.
Indeed, since PSh(N) is hyperconnected, all of its non-initial objects are well-supported,
so an étale morphism from any non-degenerate topos will be a surjection.

We now consider conditions under which the morphism f : PSh(M) → PSh(N)
we have been considering is étale. By orthogonality, if f is étale, then the terminal-
connected factor PSh(M) → PSh(N)/f!(1) must be an equivalence, and by the above
remark, f must be a surjection. Since the (surjection, inclusion) factorization of f is
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given by PSh(M) → PSh(eNe) → PSh(N), with e = ϕ(1), it follows that f is étale if
and only if the inclusion part PSh(eNe) → PSh(N) is an equivalence and the surjection
part PSh(M) → PSh(eNe) is étale. So we may without loss of generality restrict our
attention to the case where ϕ is a monoid homomorphism.

4.1.9. Proposition. Let f : PSh(M) → PSh(N) be a geometric morphism induced
by a monoid homomorphism ϕ : M → N . Then the terminal-connected surjection part
in the factorization (11) is an equivalence if and only if ϕ is injective and ϕ(M) is a
right-factorable submonoid of N .

Proof. The terminal-connected surjection part in (11) is induced by the monoid ho-
momorphism M → ⟨ϕ(M)⟩⟩N . So we get an equivalence if and only if this monoid
homomorphism is a bijection.

To understand when the terminal-connected inclusion part of f is an equivalence, we
need the following definition.

4.1.10. Definition. Given a monoid N , we write N⋉ for the submonoid of right-
invertible elements. That is,

N⋉ := {u ∈ N : ∃v ∈ N, uv = 1}.

Dually, we write N⋊ for the submonoid of left-invertible elements, so

N⋊ := {v ∈ N | ∃u ∈ N, uv = 1}.

4.1.11. Proposition. Let f : PSh(M) → PSh(N) be a geometric morphism induced
by a monoid homomorphism ϕ : M → N . Then the terminal-connected inclusion part in
the factorization (11) is an equivalence if and only if for all n ∈ N there is some u ∈ N⋉

such that nu ∈ ⟨ϕ(M)⟩⟩N .

Proof. The terminal-connected inclusion part PSh(⟨ϕ(M)⟩⟩N) → PSh(N)/f!(1) is an
essential inclusion induced by the functor ⟨ϕ(M)⟩⟩N →

∫
N
f!(1) (note that we don’t need

to take the category of elements over the idempotent completion because ϕ is a monoid
homomorphism). It is enough to show that this geometric morphism is surjective as well,
which by Lemma 3.1.1 is the case if and only if the functor ⟨ϕ(M)⟩⟩N →

∫
N
f!(1) is

essentially surjective up to retracts. In other words, we need that every element ∗ ⊗ n ∈
f!(1) is a retract of ∗⊗1 in the category of elements

∫
N
f!(1). Equivalently, for each n ∈ N

there are u, v ∈ N such that uv = 1 and ∗ ⊗ nu = ∗ ⊗ 1. By the proof of Lemma 4.1.3,
∗ ⊗ nu = ∗ ⊗ 1 if and only if nu ∈ ⟨ϕ(M)⟩⟩N .

Combining the two propositions above, we obtain a characterization of étale geometric
morphisms induced by monoid homomorphisms.
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4.1.12. Theorem. Let f be an essential geometric morphism induced by a monoid ho-
momorphism ϕ :M → N . Then the following are equivalent:

1. f is étale;

2. ϕ is injective, ϕ(M) ⊆ N is right-factorable and for any n ∈ N there is some u ∈ N⋉

such that nu ∈ ϕ(M).

More generally, if ϕ is merely a semigroup homomorphism, then f is étale if and only
if the monoid homomorphism part of ϕ satisfies the conditions above, and the inclusion
eNe ⊆ N induces an equivalence, where e = ϕ(1).

Further, we remark that étale geometric morphisms are locally connected, so in partic-
ular they are always essential [Joh02, C3.3]. As a result, every étale geometric morphism
f : PSh(M) → PSh(N) is induced by some semigroup homomorphism ϕ : M → N .
We already mentioned in Remark 4.1.8 that f is necessarily surjective. So by Corollary
3.1.2, we can even assume that ϕ is a monoid homomorphism, after replacing N by a
Morita-equivalent monoid.

4.1.13. Corollary. Let f : PSh(M) → PSh(N) be an étale geometric morphism. If
N⋉ = {1}, then f is an equivalence.

Proof. Since f is étale, it is essential. So up to equivalence, it is induced by some
semigroup homomorphism ϕ :M → N . If ϕ(1) = e, then the inclusion eNe ⊆ N induces
an equivalence. Because N⋉ = {1}, this implies e = 1, see [Kna72, Corollary 6.2(3)]. So
ϕ is a monoid homomorphism. Applying Theorem 4.1.12, for all n ∈ N , there is u ∈ N⋉

such that nu ∈ ϕ(M). Because N⋉ = {1}, this means that ϕ is bijective, so f is an
equivalence.

4.1.14. Example.

1. For H ⊆ G an inclusion of groups, we have that the induced geometric morphism
PSh(H) → PSh(G) is étale.

2. Consider the monoid Zns
p of nonzero p-adic integers under multiplication. Each p-

adic integer can be written as upk for k ∈ {0, 1, 2, . . . } and u ∈ Zp an invertible
element. Further, if x is a nonzero p-adic integer, then xpk = pl implies x = pl−k.
From this it follows that the inclusion N → Zns

p , k 7→ pk induces an étale geometric
morphism PSh(N) → PSh(Zns

p ), where N is the monoid of natural numbers under
addition.

4.2. The general case. Since all étale morphisms are essential, there is limited benefit
to considering étale geometric morphisms induced by [N,M)-sets, any such being neces-
sarily isomorphic to one induced by a semigroup homomorphism ϕ via Lemma 2.2.4. We
leave it to the reader to translate the conditions of Theorem 4.1.12 into properties of that
[M,N)-set. It remains to consider more general (i.e. non-essential) terminal-connected
morphisms.
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By definition, a geometric morphism f : PSh(M) → PSh(N) induced by an [N,M)-
set A is terminal-connected if and only if HomN(1, X) ∼= HomM(1, X ⊗N A), naturally in
X. Translating this into algebra, this is equivalent to requiring that for every right N -set
X, the M -fixed points of X ⊗N A are all of the form x⊗ a, for x an N -fixed point of X.
Indeed, consider the mapping

HomN(1, X) → HomM(1, X ⊗N A)

x 7→ x⊗ a.

This is independent of the choice of a ∈ A, since x ⊗ a = x ⊗ (n · a) for all n ∈ N and
A is connected as a left N -set since it is filtered; x ⊗ a is an M -fixed point by a similar
argument. Also, if x, y are distinct N -fixed points of X, then we have a monomorphism
(x, y) : 1 + 1 ↪→ X which is preserved by − ⊗N A due to flatness, whence we have a
monomomorphism (x ⊗ a, y ⊗ a) ↪→ X ⊗N A and the mapping above is injective. So
terminal-connectedness reduces to the requirement of surjectivity of this mapping.

Recall that a right M -set is called principal (or cyclic) if it is generated by a single
element, or equivalently if it can be presented as a quotient of M (as a right M -set).
Observe that, while HomN(1,−) does not preserve arbitrary colimits, it does preserve the
expression of an N -set as a colimit of the principal sub-N -sets generated by its elements.
As such, we can reduce the condition to the special case of principal N -sets, to conclude:

4.2.1. Lemma. A geometric morphism f : PSh(M) → PSh(N) induced by an [N,M)-
set A is terminal-connected if and only if for every principal N-set X, the M-fixed points
of X ⊗N A are all of the form x⊗ a, for x an N-fixed point of X.

4.2.2. Example. Consider the geometric morphism f : PSh(Z) → PSh(N) given by the
[N,Z)-set Z, with N and Z both seen as monoids under addition. For integers a ≥ 0 and
b ≥ 1, we write Na,b for the quotient of N (as a right N-set) by the congruence generated
by a ∼ a+b. The elements of Na,b can be written as {0, 1, . . . , a+b−1} and the generator
1 ∈ N acts by sending each x to x + 1 for x ≤ a + b − 2 and by sending a + b − 1 to
a. Every principal N-set is either isomorphic to N or to some Na,b. One can compute
N⊗N Z ∼= Z and Na,b ⊗N Z ∼= Z/bZ. So for a principal right N-set X, either both X and
X ⊗N Z have no fixed points, or they both have precisely one fixed point. It follows that
f is terminal-connected.

4.2.3. Remark.Recently, Osmond in [Osm21] demonstrated that the (terminal-connected,
étale) factorization can be generalized to arbitrary geometric morphisms (between Groth-
endieck toposes) as the (terminal-connected, pro-étale) factorization. From [Osm21, Def-
inition 5.4.6], a geometric morphism f : F → E is pro-étale if it can be expressed as a
cofiltered bilimit of étale morphisms over E. It might therefore be interesting to investigate
this factorization system and its application to the special case of geometric morphisms
between toposes of discrete monoid actions, but we leave this to future work.
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5. The (pure, complete spread) factorization

In this section, we discuss the (pure, complete spread) factorization, sometimes called
the comprehensive factorization. We shall see that this factorization system is dual in a
concrete sense to the (terminal-connected, étale) factorization system of the last section;
see Proposition 5.1.1, for example.

We first recall the definition of pure geometric morphisms.

5.0.1. Definition. A geometric morphism f : F → E is said to be dominant if the
canonical map 0 → f∗(0) is an isomorphism.

A geometric morphism f : F → E is pure if the natural map 1 ⊔ 1 → f∗(1 ⊔ 1) is an
isomorphism. Equivalently, f is pure if and only if f∗ preserves finite coproducts [Joh02,
C3.4.12(i)], so in particular any pure geometric morphism is dominant.

5.0.2. Remark. Bunge and Funk’s definition of pure geometric morphism in [BF96] and
[BF98] is different (aside from the fact that we take as fixed base topos S = Set): there a
geometric morphism is called pure if the natural map 1⊔1 → f∗(1⊔1) is an epimorphism,
and pure dense if it is an isomorphism. In Definition 5.0.1, we follow the convention
originally used by Johnstone [Joh82], which was later also followed by Bunge and Funk in
[BF06]. We recommend all of these references to a reader interested in a deeper treatment
of these properties.

5.0.3. Lemma. All geometric morphisms f : PSh(M) → PSh(N) are dominant.

Proof. Suppose f is induced by the [N,M)-set A. Then f∗(0) = HomM(A, 0) = 0 since
A (being flat as a left-N -set) is non-empty.

5.0.4. Definition. An object X of a topos is called connected if it has exactly two (dis-
tinct) complemented subobjects, the initial subobject 0 and X itself, or equivalently (since
coproducts are stable under pullback in a topos) if Hom(X,−) preserves finite coproducts.

In a locally connected Grothendieck topos, every object is a coproduct of connected
objects, and the latter can be identified as the objects whose image under the extra left
adjoint of the global sections geometric morphism is terminal (see [Joh02, Lemma C3.3.6]).
The following lemma is a special case of [BF96, Proposition 2.7], in the setting of locally
connected Grothendieck toposes over the base topos S = Set. We give a simplified proof
in this special case.

5.0.5. Lemma. Suppose f : F → E is a geometric morphism (between Grothendieck
toposes) and both F and E are locally connected. Then the following are equivalent:

1. f is a pure geometric morphism;

2. f ∗ preserves connected objects;

3. The unit of f is an isomorphism at objects of the form p∗(S), where p is the global
sections geometric morphism of E.

4. f∗ preserves small coproducts.
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Proof. Let q, p be the global sections morphisms of F , E respectively.
(1) ⇒ (2) Suppose f is pure (so f∗ preserves finite coproducts) and let X be a con-

nected object of E . Given a decomposition f ∗(X) = A⊔B, we have HomF(f
∗(X), f ∗(X)) ∼=

HomE(X, f∗(A⊔B)) ∼= HomE(X, f∗(A))⊔HomE(X, f∗(B)) ∼= HomF(f
∗(X), A)⊔HomE(f

∗(X), B).
Chasing the isomorphisms involved, this means that the identity on f ∗(X) must factor
through the inclusion of A or B into f ∗(X), meaning that one of the components must
be all of f ∗(X). We can similarly check that f∗ preserving 0 implies that f ∗(X) ̸∼= 0, so
f ∗(X) is connected, as required.

(2) ⇒ (3) Preservation of connected objects means that q!f
∗ ∼= p!, since all of these

functors preserve the expression of objects of E as coproducts of connected objects. In
particular, their adjoints are isomorphic, which is to say that p∗ ∼= f∗q

∗ = f∗f
∗p∗ (and

more specifically this forces the desired unit morphisms to be isomorphisms).
(3) ⇒ (4) Given a set S indexing a family of objects {Xs | s ∈ S} of objects of F ,

observe that their coproduct is determined by the collection of pullbacks,

Xs 1

∐
s∈S Xs q∗(S);

⌟
s

because coproducts are stable under pullback in a topos. Applying f∗, which preserves
these pullbacks, we see that we have:

f∗(Xs) 1

f∗(
∐

s∈S Xs) f∗q
∗(S),

⌟
s

and so given that f∗q
∗(S) ∼= p∗(S) (compatibly with the inclusions of the elements 1 →

p∗(S)) this expresses f∗(
∐

s∈S Xs) as the coproduct of the objects f∗(Xs), as required.
(4) ⇒ (1) Immediate from the definition of pure morphisms.

It follows from the proof above that to check that f is pure, it is enough to check that
f ∗(X) is connected, for each X in a generating family for E .

Connected geometric morphisms are pure, cf. [Joh02, Lemma C3.4.14]. Moreover, a
locally connected geometric morphism to Set is pure if and only if it is connected (if and
only if the terminal object is connected).

5.0.6. Example. If X is a topological space, then the unique geometric morphism
Sh(X) → Set is pure if and only if it is connected, which is the case if and only if
X is connected as a topological space. More generally, let X and Y be locally connected
topological spaces and let ϕ : Y → X be a continuous map. Then by Lemma 5.0.5 the
induced geometric morphism f : Sh(Y ) → Sh(X) is pure if and only if the inverse image
of any connected open set is connected, since ϕ−1 can be identified with the restriction
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of f ∗ to the subterminal objects, and any connected object of Sh(X) can be expressed
as a (connected) colimit of connected subterminal objects. In particular, consider an in-
clusion {x} ⊆ X and let p : Set → Sh(X) be the induced geometric morphism. If X
is locally connected, then p is pure if and only if x is contained in any connected open
subset U ⊆ X. This is the case if and only if x is contained in any open subset, i.e. if and
only if x is a dense point.

For example, consider the spectrum Spec(Z). Each nonempty open subset contains the
generic point x = (0), so it cannot be written as a disjoint union of two smaller nonempty
open subsets. This shows that every nonempty open subset of Spec(Z) is connected, in
particular Spec(Z) is locally connected. For the same reason, U∩{x} is a singleton for each
connected open subset, so the geometric morphism induced by {x} ⊆ Spec(Z) is pure.
Note that the geometric morphism induced by {x} ⊆ Spec(Z) is not surjective, since its
inverse image functor identifies all of the non-initial subterminal objects; in particular it
is not connected.

We now recall the definition of spreads, based on [BF96, Definition 1.1] and the equiv-
alent conditions of their Proposition 1.5. Note that in [BF96, Proposition 1.5] the authors
work over a general base topos and mention definable subobjects, which are those which
can be presented as pullbacks of subobjects coming from the base topos; when the base
topos is Boolean (such as Set for Grothendieck toposes in this paper), definable subobjects
coincide with complemented subobjects thanks to stability of coproduct decompositions
under pullback, which simplifies the definition.

5.0.7. Definition. Let f : F → E be a geometric morphism, and let S be a generating
family of E. Then f is a spread if for every object F in F , there is a complemented
subobject C ⊆

⊔
i∈I f

∗(Xi), with each Xi ∈ S, such that there is an epimorphism C → F .
This definition does not depend on the choice of generating family S.

To see that the definition of spread does not depend on the choice of generating family,
suppose we have an inclusion S ′ ⊆ S of generating families for E . Let C ⊆

⊔
i∈I f

∗(Xi)
be a complemented subobject, with each Xi ∈ S. Then we can find for each i ∈ I an
epimorphism

⊔
j∈I(i)Xij → Xi for some set I(i) and Xij ∈ S ′ for all j ∈ I(i). Pulling

back C along the epimorphism ⊔
i∈I
j∈I(i)

f ∗(Xij) →
⊔
i∈I

f ∗(Xi)

gives a complemented subobject C ′ ⊆
⊔
i∈I, j∈I(i) f

∗(Xij), together with an epimorphism
C ′ → C. Any epimorphism C → F will then extend to an epimorphism C ′ → F .
Thus, given any pair of generating families, we can take their union and conclude via two
applications of this argument that the definitions involving the respective families agree.

5.0.8. Proposition. Let f : F → E be a geometric morphism. Then f is a spread if
and only if for every object F in F there is a complemented subobject C ⊆ f ∗(X), for
some X in E, and an epimorphism C → F . In particular, every spread is localic.
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Proof. We do not assume that the generating family is small in the discussion above.
In particular, taking S to be the class of all objects in E , we obtain the hypothesised
characterization of spreads. This result appears in [BF06, Corollary 3.1.8].

5.0.9. Example. Let X be a topological space. Then the unique geometric morphism
Sh(X) → Set is a spread if and only if X has a basis of clopen subsets (i.e. if and only
if X is zero-dimensional). Indeed, since the terminal object is a generator in Set, we
require (following Definition 5.0.7) that every object of Sh(X) admits an epimorphism
from a disjoint union of complemented subterminal objects, which in particular means
that X must have a basis of clopens, and conversely every object in Sh(X) is a quotient
of a coproduct of (subterminals corresponding to) opens in a base.

As a special case of spreads, we also include the following definition:

5.0.10. Definition. We say a geometric morphism f : F → E is an injection if its
direct image f∗ is faithful. Equivalently, f is an injection if and only if every object of F
is a quotient of one in the image of f ∗, whence by Proposition 5.0.8 every injection is a
spread.

We can prove the equivalence of the two definitions as follows. A general fact from
category theory is that f∗ is faithful if and only if the counit of the adjunction f ∗f∗X → X
is an epimorphism. So if f∗ is faithful, then X is a quotient of f ∗f∗X. Conversely, if X is
a quotient of f ∗Y for some Y in E , then the quotient map f ∗Y → X factorizes through
the counit f ∗f∗X → X, so the counit is an epimorphism.

In particular, inclusions are injections, so a fortiori inclusions are spreads.
We now discuss the notion of completeness for geometric morphisms with locally con-

nected domain. Again, the definition we give below is simplified by the fact that we are
working with Grothendieck toposes over Set. For the more general definition, we refer to
[BF06] [BF96].

We first follow [BF96, p. 19], keeping to their notation as much as possible. Consider
a Grothendieck topos F with site of definition (D, J), and write i : F → PSh(D) for its
inclusion into the topos of presheaves. Let χ : Set → F be a distribution (defined after
Definition 2.2.2, above), let

C =

∫ D
χ∗ ◦ i∗ ◦ y

with y the Yoneda embedding, and let U : C → D be the induced discrete opfibration.
The functor U induces an essential geometric morphism u : PSh(C) → PSh(D).

Still following [BF96, p. 19], we define Dχ via the following pullback diagram,

Dχ PSh(C)

F PSh(D)

π

χ′ u

i

;
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here π is an inclusion because i is. We may present Dχ as the topos of sheaves on
the site (C, Jχ), with Jχ the pullback topology of J along χ. We call this topology
the amalgamation topology, following [BF06, §2.3]; its covering sieves will be called
amalgamation covering sieves. Let (D, c) be an object of C, so D is an object in D
and c ∈ χ∗(i∗y(D)). Then a sieve S on (D, c) is an amalgamation covering sieve if and
only if there is a J-covering sieve R on D such that for every a′ : D′ → D in R and
each element c′ ∈ χ∗(i∗y(D′)) with a′ · c = c′, we have that the corresponding morphism
a′ : (D′, c′) → (D, c) is contained in S, using the abbreviation a′ · c = χ∗(i∗y(a′))(c).

Now let φ : E → F be a geometric morphism, with E locally connected. Then we can
define the distribution Λφ whose left adjoint functor is,

Λ∗
φ = e! ◦ φ∗ : F −→ Set

with e : E → Set the global sections geometric morphism; see [BF96, p. 20].
Bunge and Funk showed that for each topos F , the constructions Λ(−) and D(−) are

functorial, and form an adjunction Λ(−) ⊣ D(−) between geometric morphisms with locally
connected domain and fixed codomain F , and distributions on F [BF96, Proposition 2.11].
In particular, in our situation above, there is a natural geometric morphism η : E → DΛφ

over F , the unit of the adjunction. So we arrive at a commutative diagram of the form

E

Dχ PSh(C)

F PSh(D)

ν

η

φ

π

χ′ u

i

(12)

with χ = Λφ. Bunge and Funk then prove that η is pure [BF96, Theorem 2.15] and that
χ′ is a spread [BF96, Proposition 2.10]. The factorization of φ = χ′ ◦ η is called the
comprehensive factorization in [BF06].

5.0.11. Definition. For a geometric morphism φ : E → F with E locally connected, we
say that φ is complete if the geometric morphism η in the diagram (12) is a surjection.
A spread that is complete will be called a complete spread.

We can now recall the main result regarding the comprehensive factorization:

5.0.12. Theorem. [BF96, Theorem 2.15], [BF06, Theorem 2.4.8] For any geometric
morphism φ : E → F with locally connected domain, the comprehensive factorization
φ = χ′ ◦ η in (12) is a factorization into a pure geometric morphism η followed by a
complete spread χ′.

This factorization is unique, in the sense that for any other factorization of φ in a pure
part p : E → G followed a complete spread g : G → F there is an equivalence ξ : G → Dχ

such that p ∼= ξ−1 ◦ η and g ∼= χ′ ◦ ξ.
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We shall refer to the comprehensive factorization as the (pure, complete spread)
factorization. The uniqueness part of Theorem 5.0.12 implies in particular that the
geometric morphisms η and χ′ in (12) are independent of the choice of site for F .

5.0.13. Remark. The concept of completeness for geometric morphisms is due to Bunge
and Funk. It was first introduced only for spreads with locally connected domain by Bunge
and Funk in [BF96]; they later generalized the notion to arbitrary geometric morphisms
with locally connected domain in [BF06]. Their original definition of completeness is
different from the one we gave in Definition 5.0.11, but they show in [BF06, Theorem
3.5.3] that the property is equivalent. The notion of complete spreads in topos theory was
inspired by complete spreads in topology, as introduced by Fox [Fox57].

In this paper, complete spreads will always have locally connected domain. This implies
that the identity geometric morphism F → F does not qualify as a complete spread if F is
not locally connected. A perhaps counterintuitive consequence of this is that it is possible
for a geometric morphism φ : E → F to be both pure and a complete spread, without being
an equivalence; Bunge and Funk give an example, see [BF96, Example 2.8].

A wider definition of complete spreads (including all identity morphisms) appears in
[BF07]; by Proposition 2.2 there, that definition coincides with the one here for geometric
morphisms with locally connected domain. For this wider definition of complete spreads,
the uniqueness part of Theorem 5.0.12 is no longer valid; however, in this setting there is
a unique factorization into a hyperpure part followed by a complete spread, see [BF07].

It is also worth noting that the quoted results from [BF96], [BF06] and [BF07] are
formulated for Grothendieck toposes over an arbitrary elementary base topos S; we have
restricted here to Grothendieck toposes over Set.

It will be helpful to have a closer look at the diagram (12). To simplify the notation,
we will identify objects D in D with their image in F via i∗ ◦ y. The category

C =

∫ D
e! ◦ φ∗ ◦ i∗ ◦ y (13)

then has as objects the pairs (D, c) with D in D and c ↪→ φ∗(D) a connected component,
and as morphisms (D, c) → (D′, c′) the maps a : D → D′ such that the image of c along
φ∗(a) is contained in c′.

There is a concrete description of the geometric morphism ν : E → PSh(C) in the
proof of [BF96, Proposition 2.11]. It is completely determined by the associated flat
functor

ν∗ ◦ y : C → E , (14)

and in this case ν∗ ◦y sends an object (D, c) in C to the connected component c ⊆ φ∗(D)
in E . A morphism (D, c) → (D′, c′) determined by a map a : D → D′ is sent to the
morphism φ∗(a)|c : c→ c′ in E .

We are now ready to discuss an equivalent, explicit formulation of the notion of com-
pleteness. Consider again the geometric morphisms (12). We defined φ to be complete
if η is surjective. Since π is always an inclusion, φ is complete if and only if ν = π ◦ η
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is a (surjection, inclusion) factorization. By the construction of the (surjection, inclu-
sion) factorization [MLM94, Chapter VII, §4], this is in turn equivalent to the state-
ment that the amalgamated topology Jχ has as covering sieves on (D, c) precisely the
sieves that become jointly epimorphic after applying ν∗ ◦ y, or in other words, the sieves
S = {ai : (Di, ci) → (D, c)}i∈I such that the morphisms φ∗(ai)|ci : ci → c are jointly
epimorphic.

5.0.14. Definition. We keep the notation as above. Let S = {ai : (Di, ci) → (D, c)}i∈I
be a sieve on (D, c) in the category C. Then we say that S is a φ-covering sieve if the
associated family {φ∗(ai)|ci : ci → c}i∈I is jointly epimorphic in E.

As discussed above, the φ-covering sieves are precisely the covering sieves determining
the image of the geometric morphism ν : E → PSh(C). Because this image is contained in
Dχ, the topology determining Dχ, the amalgamated topology, must be weaker. In other
words, every amalgamated covering sieve is a φ-covering sieve. On the other hand, by the
discussion above:

5.0.15. Proposition. The geometric morphism φ is complete if and only if every φ-
covering sieve is an amalgamation covering sieve.

To provide some intuition regarding complete geometric morphisms, we include an
example and a result for the special case of maps between topological spaces.

5.0.16. Example. Consider the inclusion W ⊆ R2, with W the unit circle minus the
point (1, 0) (these spaces are locally connected), and let φ : E → F be the induced
geometric morphism, with E = Sh(W ) and F = Sh(R2). We look at the comprehensive
factorization as discussed above, using the same notation. Note that φ is an inclusion, in
particular a spread. We will show that it is not complete, using Proposition 5.0.15. We
take a base for the topology on R2 consisting of the open balls with radius at most 1/2.
These open balls and the inclusions between them form the site (D, J). The category C as
in (12) then has as objects the pairs (U, c), where U is an open ball of radius at most 1/2
and c ⊆ W ∩U is a connected component and a morphism (V, c′) → (U, c) is an inclusion
V ⊆ U such that c′ ⊆ c. Take a pair (U, c) with U containing (1, 0) and an open set
V ⊆ U such that V ∩W = c and (1, 0) /∈ V . Then the sieve generated by (V, c) → (U, c)
is an φ-covering sieve. However, it is not an amalgamation covering sieve, because any
amalgamation covering sieve must contain a pair (U ′, c′) with (1, 0) ∈ U ′ ⊆ U and c′ ⊆ c.

5.0.17. Proposition. Let Y be a topological space and X ⊆ Y a subspace, with X
locally connected. If each connected component X ′ of X is closed in Y , then the geometric
morphism induced by X ⊆ Y is complete. The converse holds if we assume that all points
of Y are closed.

Proof.We keep using the same notations as in our discussion above of the comprehensive
factorization. Let φ : E → F the geometric inclusion induced by the inclusion X ⊆ Y ,
with E = Sh(X) and F = Sh(Y ). As site (D, J) for F , we take the canonical site of open
subsets of Y . The category C as in (12) then has as objects the pairs (U, c) with U ⊆ Y
open and c ⊆ U ∩X a connected component.
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Suppose that every connected component of X is closed in Y . We show that φ is
complete using Proposition 5.0.15. Let S = {(Ui, ci) → (U, c)}i∈I be an φ-covering sieve.
We claim that it is an amalgamation covering sieve as well. For each x ∈ c, take a pair
(Ui, ci) in S with x ∈ ci. Since ci is open in X ∩ Ui, we can take an open subset Vx ⊆ Ui
such that Vx∩X = ci. Note that (Vx, ci) is still contained in S. Now consider the covering
sieve R on U generated by the inclusions Vx → U for x ∈ c and the inclusion U − c→ U
(to show that c is closed in U , use that c is clopen in X ′∩U for some connected component
X ′ of X, and that in turn X ′ ∩U is closed in U). The pullback of R to (U, c) is the sieve
generated by the inclusions (Vx, Vx ∩X) → (U, c), and this pullback sieve is contained in
S. So S is indeed an amalgamation covering sieve.

Conversely, suppose that the induced geometric morphism φ is complete. Take a
connected component X ′ of X and an element y ∈ X ′ −X ′, with X ′ the closure of X ′ in
Y . Because y is closed in Y and y /∈ X ′, we can consider the φ-covering sieve S generated
by (Y − {y}, X ′) → (Y,X ′). We claim that this is not an amalgamation covering sieve,
which gives a contradiction. To see this, take an arbitrary covering sieve R on Y . Then
R contains an inclusion V → Y with y ∈ V . Because y ∈ X ′, we see that V ∩X ′ ̸= ∅.
So if S contains the pullback of R, then S must contain a morphism (V, c′) → (Y,X ′) for
some connected component c′ ⊆ V ∩X ′, which leads to a contradiction. As a result, S is
not an amalgamation covering sieve.

5.0.18. Remark. Let φ : E → F be a geometric morphism, with E locally connected.
The comprehensive factorization of φ can be used to construct a (pure surjection, spread)
factorization as follows. Let φ = χ′ ◦ η be the comprehensive factorization, and take the
(surjection, inclusion) factorization η = j ◦ p of η. Then both j and p are again pure
[BF06, Proposition 2.2.8] and since j is an inclusion, it is in particular a spread. In this
way, we get a (pure surjection, spread) factorization

E G F .p χ′◦j

It turns out that the middle topos G in this factorization is locally connected, and that
any (pure surjection, spread) factorization, with the middle topos locally connected, is
equivalent to this one, see [BF06, Theorem 5.12].

In particular, if a spread with locally connected domain is pure, then its pure surjection
part is trivial, so it is an inclusion. Conversely, inclusions are spreads, so a geometric
morphism with locally connected domain is a pure spread if and only if it is a pure inclu-
sion.

5.0.19. Remark.We would be remiss not to also mention the (pure, entire) factorization
described by Johnstone in [Joh02, C3.4]. A geometric morphism is entire if it is localic
and the corresponding internal locale is compact and zero-dimensional. For comparison,
under the wider definition of complete spreads referenced in Remark 5.0.13, any entire
geometric morphism is a complete spread, but not conversely.

The (pure, entire) factorization of a morphism f : F → E is obtained by taking
the intermediate topos to be the topos of internal sheaves on (the zero-dimensional locale
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dual to) the subframe of f∗(ΩF) generated by f∗(2F). This is typically different from the
factorizations we consider here. For example, for an infinite set X viewed as a discrete
space, the geometric morphism Sh(X) → Set is a complete spread, but its (pure, entire)
factorization has sheaves on the Stone-Čech compactification of X as the intermediate
topos. The reason we do not extensively consider this factorization system in this paper is
exactly the reason illustrated by that example: the intermediate topos in this factorization
is rarely a presheaf topos, even for an essential geometric morphism between presheaf
toposes. We leave deeper consideration of entire morphisms to future work.

5.1. The essential case. The following proposition is the dual of Proposition 4.1.1.

5.1.1. Proposition. Let f : PSh(C) → PSh(D) be an essential geometric morphism
induced by a functor F : C → D. Then F has a factorization as an initial functor followed
by a discrete opfibration, namely

C →
∫ D

g!(1) → D,

where g : PSh(Cop) → PSh(Dop) is the essential geometric morphism induced by F op.
This is the unique such factorization up to equivalence of the intermediate category. Fur-
ther, the induced factorization of f coincides with the (pure, complete spread) factorization
of f .

Proof. The unique factorization of a functor into an initial functor followed by a dis-
crete opfibration is due to Street and Walters [SW73]. Explicitly, we can obtain this
factorization by applying the factorization from Proposition 4.1.1 to

F op : Cop → Dop

and then dualizing; recall that a functor is final if and only if its opposite functor is
initial, and similarly a functor is a discrete fibration if and only if its opposite is a discrete
opfibration. Recall also that we also defined the dual category of elements appearing in this
factorization in Section 2.3. That this induces the (pure, complete spread) factorization
at the level of geometric morphisms is given as Example 2.16(2) in [BF96].

Given this construction, we can immediately dualize the results of Section 4 to get
the corresponding results for the (pure, complete spread) factorization of a geometric
morphism f : PSh(M) → PSh(N) induced by a semigroup homomorphism ϕ :M → N .
We first introduce the dual of Definition 4.1.2.

5.1.2. Definition. A non-empty subset S of a monoid M is called left-factorable if
whenever x ∈ M and y ∈ S with xy ∈ S, then x ∈ S. For an arbitrary subset T , we
define ⟨⟨T ⟩M ⊆ M to be the smallest left-factorable submonoid of M containing T , and
call this the submonoid of M left-factorably generated by T .
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For a geometric morphism f : PSh(M) → PSh(N) induced by a semigroup homo-
morphism ϕ :M → N , we constructed in Section 4 a factorization

PSh(M) PSh(⟨ϕ(M)⟩⟩eNe)

PSh(⟨ϕ(M)⟩⟩N) PSh(
∫
N
1⊗M eN)

PSh(N).

tc surj.

tc incl.

tc incl.

étale

If we apply this factorization to ϕop : Mop → Nop and then take opposites, then we
get the factorization

PSh(M) PSh(⟨⟨ϕ(M)⟩eNe)

PSh(⟨⟨ϕ(M)⟩N) PSh(
∫ N

eN ⊗M 1)

PSh(N).

pure surj.

pure incl.

pure incl.

complete spread

(15)

Here we have made use of the following equalities:

(⟨ϕ(Mop)⟩⟩Nop)op = ⟨⟨ϕ(M)⟩N ,
(
⟨ϕ(Mop)⟩⟩(eNe)op

)op
= ⟨⟨ϕ(M)⟩eNe,(∫

Nop

Y

)op

=

∫ N

Y, 1⊗Mop X = X ⊗M 1,

with Y a left N -set and X a right M -set. We can deduce from this the dual to Corollary
4.1.4.

5.1.3. Corollary. An essential geometric morphism f : PSh(M) → PSh(N) induced
by a semigroup homomorphism ϕ :M → N is pure if and only if ⟨⟨ϕ(M)⟩N = N .

Dualizing the argument preceding Proposition 4.1.9, we deduce that essential complete
spreads induced by semigroup homomorphisms are surjective. This produces the following
dual to Theorem 4.1.12.

5.1.4. Theorem. Let f : PSh(M) → PSh(N) be an essential geometric morphism
induced by a monoid homomorphism ϕ :M → N . Then the following are equivalent:

1. f is a complete spread;

2. ϕ is injective, ϕ(M) ⊆ N is left-factorable and for any n ∈ N there is some v ∈ N⋊

such that vn ∈ ϕ(M).
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More generally, if ϕ is merely a semigroup homomorphism, then f is a complete spread
if and only if the monoid homomorphism part of ϕ satisfies the conditions above, and the
inclusion eNe ⊆ N induces an equivalence, where e = ϕ(1).

The condition that for any n ∈ N there is some v ∈ N⋊ such that vn ∈ ϕ(M),

corresponds to the essential inclusion PSh(⟨⟨ϕ(M)⟩N) → PSh(
∫ N

eN ⊗M 1) being an
equivalence. Further, the condition that ϕ is injective with ϕ(M) ⊆ N left-factorable,
corresponds to the condition that the pure surjection part PSh(M) → PSh(⟨⟨ϕ(M)⟩N)
is an equivalence. The geometric morphisms such that the pure surjection part is an
equivalence are precisely the spreads, so:

5.1.5. Proposition. Let f : PSh(M) → PSh(N) be an essential geometric morphism
induced by a monoid homomorphism ϕ : M → N . Then f is a spread if and only if ϕ is
injective and ϕ(M) ⊆ N is left-factorable.

More generally, if f is induced by a semigroup homomorphism ϕ : M → N , then the
pure surjection part is given by PSh(M) → PSh(⟨⟨ϕ(M)⟩eNe), as shown in (15). Again,
f is a spread if and only if the pure surjection part is an equivalence, so if and only if ϕ
is injective and ϕ(M) ⊆ eNe is left-factorable.

Finally, we give an updated version of Example 4.1.14.

5.1.6. Example.

1. For H ⊆ G an inclusion of groups, we have that the induced geometric morphism
PSh(H) → PSh(G) is both étale and a complete spread.

2. Consider the monoid Zns
p of nonzero p-adic integers under multiplication. Then the

inclusion N → Zns
p , k 7→ pk induces an essential geometric morphism PSh(N) →

PSh(Zns
p ) that is both étale and complete spread.

In general, an étale geometric morphism f : PSh(M) → PSh(N) is not necessarily
a complete spread (and vice versa). In Subsection 6.4, we give an extreme example of a
geometric morphism which is both terminal-connected and a complete spread (so its étale
part is an equivalence), and dually, an example of a morphism which is both pure and
étale (so its complete spread part is an equivalence).

5.1.7. Remark. When we apply the dualization procedure employed in this section to
the (surjection, inclusion) and (hyperconnected, localic) factorization systems of Section
3, we find (by inspection of Corollaries 3.1.2 and 3.1.3) that we obtain the same result as
factorizing directly. In this sense, those factorization systems are self-dual.

5.2. The general case. As a consequence of Theorem 5.0.12 due to Bunge–Funk, the
(pure, complete spread) factorization works for general geometric morphisms with locally
connected domain. In the following, we describe the construction of this factorization in
detail, following [BF96] (with the same or similar notation), in the special case of presheaf
toposes.
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In this case, the comprehensive factorization discussed in the beginning of this section
simplifies a lot. Going back to diagram (12), if F is a presheaf topos, then we can take F ≃
PSh(D), with the geometric morphism i in (12) the identity geometric morphism. The
pullback morphism π : Dχ → PSh(C) is then an equivalence as well. So the comprehensive
factorization is of the form

E PSh
(∫ D

e! ◦ φ∗ ◦ y
)

PSh(D),ν (16)

see (13), with the right-hand factor induced by the projection functor
∫ D

e!◦φ∗◦y −→ D.
We now restrict our attention to geometric morphisms

f : PSh(M) → PSh(N)

between toposes of presheaves on monoids M and N . The geometric morphism f is given
by a [N,M)-set A, in the sense that f ∗(X) ≃ X ⊗N A, see Theorem 2.2.3.

In this case, the geometric morphism ϕ in (16) is given by f , and e in (16) corresponds
to the global sections geometric morphism γM : PSh(M) → Set. We have γM,!(X) ≃
X ⊗M 1 for any right M -set X, so we find that γM,! ◦ f ∗ is given by tensoring with the
left N -set A⊗M 1. So the comprehensive factorization (16) is of the form

PSh(M) PSh
(∫ N

A⊗M 1
)

PSh(N),ν π (17)

with π induced by the projection functor
∫ N

A⊗M 1 −→ N .
We can further describe ν via its associated flat functor ν∗ ◦ y, see the discussion

around (14). In this special case, we find:

5.2.1. Proposition. Let f : PSh(M) → PSh(N) be a geometric morphism, determined

by a [N,M)-set A via Theorem 2.2.3. The pure part ν : PSh(M) → PSh(
∫ N

A⊗M 1) is
determined by the flat functor

V :

∫ N

A⊗M 1 −→ PSh(M)

with V (c) the connected component of A, as right M-set, corresponding to the element

c ∈ A ⊗M 1. For n : c → n · c a morphism in
∫ N

A ⊗M 1, V (n) is the morphism
V (c) → V (n · c), x 7→ nx.

From the above discussion, we can also deduce:

5.2.2. Proposition. Let f : PSh(M) → PSh(N) be a complete spread, for monoids M
and N . Then f is essential.

So complete spreads PSh(M) → PSh(N) are completely characterized by Theorem
5.1.4. Note that from the work of Bunge and Funk it follows more generally that any
complete spread between presheaf toposes is essential, see the factorization (16). We shall
see that this is not the case for pure geometric morphisms.

In the setting of this paper, it is natural to ask when the intermediate toposPSh(
∫ N

A⊗M

1) in (17) is equivalent to PSh(B) for some monoid B.
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5.2.3. Proposition. Let f : PSh(M) → PSh(N) be the geometric morphism deter-

mined by a [N,M)-set A. Then PSh(
∫ N

A⊗M 1) ≃ PSh(B) for some monoid B if and
only if there is some c ∈ A ⊗M 1 such that for every c′ ∈ A ⊗M 1 there is some v ∈ N⋊

such that vc′ = c. In this case, the (pure, complete spread) factorization has the following
more concrete description. We can take B = {n ∈ N : nc = c}. Let A′ ⊆ A be the com-
ponent of A corresponding to c. Then the left N-action on A restricts to a left B-action
on A′, and A′ is flat as left B-set. The geometric morphism ν : PSh(M) → PSh(B)
from (17) is determined by the [B,M)-set A′, and the (essential) geometric morphism
π : PSh(B) → PSh(N) is induced by the inclusion of monoids B ⊆ N .

Proof. By Lemma 2.4.5, there is an equivalence PSh(
∫ N

A⊗M 1) ≃ PSh(B) for some

monoid B if and only if there is an object c of
∫ N

A ⊗M 1 of which every object in∫ N
A ⊗M 1 is a retract. Now c′ is a retract of c if and only if there are u, v ∈ N with

uv = 1 and vc′ = c and uc = c′ (the last equation follows from the first two). The stated

conditions follow, with B the endomorphism monoid of c in
∫ N

A⊗M 1.

The equivalence PSh(B) → PSh(
∫ N

A⊗M 1) is induced by the inclusion of B as a full

subcategory of
∫ N

A⊗M 1 (as the endomorphism monoid of c). If we compose this with
the projection to N , then we get the monoid inclusion B ⊆ N . By the construction of the
(pure, complete spread) factorization, the complete spread part π : PSh(B) → PSh(N)
is the geometric morphism induced by this monoid inclusion B ⊆ N . We now consider the
pure part ν : PSh(M) → PSh(B). It is determined by the [B,M)-set ν∗(B) via Theorem

2.2.3. Through the equivalence PSh(B) ≃ PSh(
∫ N

A⊗M 1), B corresponds to the object
y(c). By Proposition 5.2.1, we find ν∗(B) = A′, with the left B-action on A′ being the
restriction of the left N -action on A; this is well-defined since B = {n ∈ N : nc = c}.

The form of the pure part should come as no surprise after the following characteri-
zation.

5.2.4. Proposition. Let f : PSh(M) → PSh(N) be the geometric morphism corre-
sponding to the [N,M)-set A. Then f is pure if and only if A is connected as a right
M-set.

Proof. Since PSh(M) and PSh(N) are locally connected, f is pure if and only if f∗
preserves small coproducts, see Lemma 5.0.5. We have f∗ ≃ HomM(A,−), which preserves
small coproducts if and only if A is connected as right M -set.

We can apply this in particular to a geometric morphism f induced by a semigroup
morphism ϕ : M → N , where A = Ne with e = ϕ(1) as in Lemma 2.2.4. We then find
that f is pure if and only if Ne is connected as rightM -set, i.e. if and only if Ne⊗M 1 ≃ 1.
This provides an alternative route to Corollary 5.1.3. Indeed, by dualizing Lemma 4.1.3
we see that Ne⊗M 1 ≃ 1 if and only if ⟨⟨ϕ(M)⟩N = N .

For the sake of completeness, we also characterize spreads and injections by extending
the argument we saw in Proposition 3.2.1.
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5.2.5. Scholium. Let f : PSh(M) → PSh(N) be the geometric morphism corresponding
to the [N,M)-set A. Then f is a spread if and only if M is a retract of some connected
component of A, as a right M-set. Moreover, f is an injection if and only if M is a
retract of A.

Proof. We simply replace ‘subobject’ with ‘complemented subobject’ and ‘object’, re-
spectively, in the proof of Proposition 3.2.1.

Note that M is a retract of a connected component of A if and only if this connected
component generates PSh(M), see [KKM00, II, Theorem 3.16].

We can further combine Proposition 5.2.4 and Scholium 5.2.5 to give a characterization
of pure spreads, or equivalently by Remark 5.0.18, pure inclusions.

5.2.6. Corollary. Let f : PSh(M) → PSh(N) be the geometric morphism correspond-
ing to the [N,M)-set A. Then f is a pure spread (or equivalently, a pure inclusion) if
and only if A is connected as a right M-set and has M as a retract.

5.2.7. Example. Consider the [N,Z)-set Z, with the left and right action given by ad-
dition. Here Z is connected as a right Z-set and there is an epimorphism of right Z-sets
Z → Z (the identity map). So the geometric morphism PSh(Z) → PSh(N) described by
the [N,Z)-set Z is a pure inclusion.

More generally, let ϕ : N → Z be a monoid map such that Z is flat as a left N -
set. Equivalently, ϕ is flat as a functor, see [Bén96, 4.7]. Then the geometric morphism
PSh(Z) → PSh(N) described by the [N,Z)-set Z is a pure inclusion.

5.2.8. Remark. Since we have established that the (terminal-connected, étale) factoriza-
tion is dual to the (pure, complete spread) factorization, one might wonder why we did not
simply dualize the construction of the latter factorization in this section in order to obtain
the former factorization for arbitrary geometric morphisms. The reason is that ‘reversing’
an [N,M)-set produces a (Mop, Nop]-set, and hence a distribution going in the opposite
direction. This distribution can be factorized via the dual of the construction above, but
the result cannot in general be dualized back to a factorization of the original geometric
morphism. Alternatively, one can directly observe that the conditions of Lemma 4.2.1 and
Proposition 5.2.4 are not dual to one another.

6. Comparing étale and complete spread geometric morphisms

In Example 5.1.6, we saw examples of geometric morphisms which are both étale and
complete spreads. In this section, we examine the relationship between these classes of
morphism in more detail, first in general and then applied to our case of interest.

6.1. Locally constant étale morphisms. By definition, objects of a topos E corre-
spond (up to equivalence of domain toposes) to étale geometric morphisms with codomain
E . The most basic kind of étale maps are the constant étale maps. These correspond to
the objects A with A =

⊔
i∈I 1 a disjoint union of copies of the terminal object; these are
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called the constant objects, and when E is a Grothendieck topos they can equivalently
be expressed as being of the form p∗(I), where p is the global sections morphism of E .
The corresponding étale geometric morphism is equivalent to the codiagonal morphism∐

i∈I E → E , where
∐

i∈I E denotes the coproduct of I copies of E in the category of
toposes (beware that a colimit in the bicategory of Grothendieck toposes is constructed
as the limit of the corresponding diagram of inverse image functors in the bicategory of
cocomplete categories).

For objects A and U we say that A is trivialized by U if there is a commutative
diagram

A× U
⊔
i∈I U

U

ψ

∼=

with ψ an isomorphism, where the diagonal maps are the evident projection and codiag-
onal map.

6.1.1. Definition. An object A of a topos E is said to be locally constant if there is a
family of objects {Uk}k∈K whose morphisms to the terminal object are jointly epimorphic
such that A is trivialized by each of the Uk; we call {Uk}k∈K a trivializing family for
A. An étale geometric morphism with codomain E is called locally constant étale if it
is (up to equivalence of the domain) of the form E/A→ E with A locally constant.

Let S be a generating family for E . If {Uk}k∈K is a trivializing family for an object A,
then any refinement of {Uk}k∈K is again a trivializing family for A. So if we can find a
trivializing family, then we can also find a trivializing family where each Uk is contained
in S.

In particular, a locally constant object in the topos Sh(X), for X a topological space,
admits a trivializing family of the form {Uk}k∈K with each Uk given by an open set of X.
For an object A in Sh(X), the associated étale geometric morphism Sh(X)/A→ Sh(X)
is of the form Sh(Y ) → Sh(X), induced by a local homeomorphism ϕ : Y → X, see
[sga72, Exposé IV, §5.7]. The condition that A is locally constant then translates to the
condition that ϕ is a covering map. So the locally constant étale geometric morphisms
with codomain Sh(X) are precisely those of the form Sh(Y ) → Sh(X) induced by a
covering map Y → X.

We have seen that all étale morphisms over presheaf toposes are induced by discrete
fibrations (Proposition 4.1.1), and dually that complete spreads are induced by discrete
opfibrations (Proposition 5.1.1).

6.1.2. Definition. A functor F : C → D is a discrete bifibration if it is both a
discrete fibration and a discrete opfibration.

Locally constant étale geometric morphisms to presheaf toposes are characterized as
in the following proposition. The equivalence (1) ⇔ (4) is proven by Bunge and Funk
[BF98, Corollary 7.9] for connected presheaf toposes, but note that we do not require
connectedness in our proof.
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6.1.3. Proposition. For a presheaf A on a small category D, the following are equiva-
lent:

1. PSh(D)/A→ PSh(D) is locally constant étale,

2. A is locally constant as an object of PSh(D),

3. Given any morphism g : D′ → D of D, A(g) is an isomorphism,

4. The discrete fibration
∫
D A→ D is a discrete bifibration,

5. The étale geometric morphism PSh(D)/A→ PSh(D) is a complete spread.

Proof. The equivalence (2) ⇔ (3) follows from a more general result by Leroy in [Ler79,
Proposition 2.2.1]; we give a simplified argument in this special case.

(1) ⇔ (2) By definition.
(2) ⇒ (3) Given a trivializing family {Uk}k∈K for A which is jointly epimorphic over

1, there must in particular be some k ∈ K such that Uk(D) ̸= ∅, whence also Uk(D′) ̸= ∅.
Consider the naturality diagram,

A(D)× Uk(D)
⊔
i∈I Uk(D)

Uk(D)

A(D′)× Uk(D
′)

⊔
i∈I Uk(D

′)

Uk(D
′),

ψD

∼=

A(g)×Uk(g)
⊔

i∈I U(g)

U(g)

ψD′

∼=

where I is fixed. Let u ∈ Uk(D) and u′ := Uk(g)(u). Given x, y ∈ A(D) with A(g)(x) =
A(g)(y) = z, say, we write ψD(x, u) = (i, u) and ψD(y, u) = (j, u) for certain indices
i, j ∈ I. We have ψD′(z, u′) = (i, u′), and similarly ψD′(z, u′) = (j, u′), so i = j and as
a result x = y. Conversely, given z ∈ A(D′), we write ψD′(z, u′) = (i, u′) for some index
i ∈ I. Now take x ∈ A(D) with ψD(x, u) = (i, u). It follows that A(g)(x) = z.

(3) ⇒ (2) For A satisfying the given condition, let us take {y(D)}D∈ob(D) as our set
of trivializing objects. We have an isomorphism y(D)× A →

∐
a∈A(D) y(D) which at an

object D′ is defined by

Hom(D′, D)× A(D′) →
∐

a∈A(D)

Hom(D′, D)

(g, a) 7→ (A(g)(a), g),

which is a bijection since A(g) is.
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(3) ⇔ (4) We already know that
∫
D A → D is a discrete fibration, so it suffices to

check whether it is a discrete opfibration. Given an object (D, a) of
∫
D A and a morphism

g : D → D′ in D, we know that A(g) is a bijection, so we have a unique lifting of g to
the morphism g : (D, a) → (D′, A(g)−1(a)), as required. Conversely, if the projection is a
discrete opfibration, then each a′ ∈ A(D′) has a unique pre-image along A(g) for any g,
so A(g) is a bijection.

(4) ⇔ (5) Recall from Proposition 2.3.1 that the projection F :
∫
D A→ A induces the

étale morphism PSh(D)/A→ PSh(D) up to equivalence of the domain. The equivalence
then follows from the fact that a functor induces a complete spread if and only if it is a
discrete opfibration up to equivalence of the domain category (by Proposition 5.1.1); F
being a discrete fibration forces this equivalence to be an isomorphism.

This result applies in particular to the case where D is a monoid. We can combine it
with the characterizations of Theorems 4.1.12 and 5.1.4 to deduce the following.

6.1.4. Corollary. Let f : PSh(M) → PSh(N) be an essential geometric morphism
induced by a monoid homomorphism ϕ :M → N . Then the following are equivalent:

1. f is locally constant étale;

2. ϕ is injective, ϕ(M) ⊆ N is both left-factorable and right-factorable, and for any
n ∈ N there are elements u ∈ N⋉, v ∈ N⋊ such that nu ∈ ϕ(M) and vn ∈ ϕ(M).

More generally, if ϕ is merely a semigroup homomorphism, then f is locally constant étale
if and only if the monoid homomorphism part of ϕ satisfies the conditions above, and the
inclusion eNe ⊆ N induces an equivalence, where e = ϕ(1).

It follows from this corollary that if N is commutative, then f is étale if and only if
it is a complete spread, if and only if it is locally constant étale. Independently, if N is a
group, then any inclusion of a subgroup into N induces a locally constant étale morphism.

6.2. Étale geometric morphisms with fixed codomain. While the abstract char-
acterizations of subsemigroups inducing étale geometric morphisms and complete spreads
from the previous sections are useful for recognizing these properties, classifying such mor-
phisms of the form f : PSh(M) → PSh(N) for a fixed monoid N can still be challenging.
Here we explore a different approach in terms of N -sets.

We can use Lemma 2.4.5 and Proposition 2.3.1 to identify objects X of PSh(N) such
that

PSh(N)/X ≃ PSh(M)

for some monoidM ; namely, this happens if there is some object x ∈
∫
N
X of which every

object is a retract. Given an element y ∈ X, y is a retract of x as an object of
∫
N
X if and

only if ∃u ∈ N⋉ with x = yu. Letting v be the right inverse of u, this can be expressed
in the following diagram:

x yvu
u id

v

.
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6.2.1. Definition. Let N be a monoid and let X be a right N-set. An element x ∈ X
will be called a strong generator if for all y ∈ X there is an element u ∈ N⋉ such that
yu = x.

Note that a strong generator is in particular a generator, so a right N -set that admits
a strong generator is cyclic. If x is a strong generator and u ∈ N⋉, then xu is again a
strong generator.

6.2.2. Theorem. Let N be a monoid. Fix a right N-set X and a strong generator x ∈ X,
and set Nx = {n ∈ N : xn = x}. Then the inclusion Nx ⊆ N induces an étale geometric
morphism

PSh(Nx) PSh(N).

Conversely, every étale geometric morphism PSh(M) → PSh(N) is of this form (up to
precomposition with an equivalence).

Proof. The étale geometric morphisms with codomain PSh(N) are precisely the geo-
metric morphisms PSh(

∫
N
X) → PSh(N) for some right N -set X. Further, from the

above we see that PSh(
∫
N
X) ≃ PSh(M) for some monoid M if and only if X has a

strong generator x, and in this case we can take M to be Nx, which is the endomorphism
monoid of x in

∫
N
X.

Alternatively, one direction of the statement can be deduced from Theorem 4.1.12.

6.2.3. Remark. Suppose f : PSh(M) → PSh(N) is an étale geometric morphism in-
duced by a semigroup homomorphism ϕ : M → N . We have already seen that f must
be surjective: by the argument before Proposition 4.1.11, if e := ϕ(1) then the inclu-
sion eNe ⊆ N must induce an equivalence. In other words, we can replace N with the
Morita equivalent monoid eNe to obtain a monoid homomorphism (factoring ϕ) inducing
f . On the other hand, using Theorem 6.2.2 we see that we may instead replace the do-
main monoid M by a Morita equivalent monoid M ′ such that there is a monoid morphism
ϕ′ :M ′ → N inducing f .

This does not work for arbitrary surjective geometric morphisms. For example, take N
a monoid with a nontrivial idempotent e ∈ N , and consider the semigroup map ϕ : 1 → N
with ϕ(1) = e. This induces a geometric morphism f : Set → PSh(N) which is surjective
whenever the inclusion eNe ⊆ N induces an equivalence, by Corollary 3.1.2. However,
there are no monoids Morita equivalent to 1 (other than 1 itself), so it is impossible for
f to be induced by a monoid map M ′ → N for some monoid M ′.

6.2.4. Example. If we have a monoid N , a right N -set X, and strong generators
x, x′ ∈ X, then Nx and Nx′ are Morita equivalent, since both PSh(Nx) and PSh(Nx′)
are equivalent to PSh(

∫
N
X). We now show with an example that Nx and Nx′ are not

necessarily isomorphic.
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Let N = ⟨u, v, t : uv = 1, t2 = t⟩ and X = {a, b}. Consider the right N -action on X
defined on generators as a · u = a · v = a · t = b · t = b and b · u = b · v = a.

a b

u,v,t

u,v

t

Clearly, both a and b are strong generators, so the endomorphism monoids Na and Nb in∫
N
X are Morita equivalent, since both present the topos PSh(N)/X.
We shall show that Na ̸∼= Nb by examining the idempotents of the involved monoids.

First, observe that every element ofN can be reduced to the canonical form vl0uk0tvl1uk1t · · · tvlnukn ,
where ki, li, n ≥ 0 and ki+ li ≥ 1 for each 1 ≤ i ≤ n−1; call n the breadth of the element.
Squaring the canonical form expression, the result will have breadth 2n unless kn = l0
and k0 = ln = 0, in which case the breadth will be 2n − 1. From these possibilities, we
conclude that any idempotent element of N can be written as either vkuk or vktuk for
some k ∈ N. The idempotents lying in Na are all those of the form vkuk, plus those of
the form v2i+1tu2i+1 for some i ∈ N. On the other hand, Nb contains the idempotents
of the form vkuk and v2jtu2j for j ∈ N. In Na there is an idempotent e = vu ̸= 1 such
that ef = f for all other idempotent f ̸= 1 in Na. In Nb there is no idempotent with
this property, simply because t ∈ Nb. Indeed, from et = t and e ̸= 1 it would follow that
e = t, but this idempotent does not qualify because tvu ̸= vu (indeed, tvu is not even
idempotent).

6.3. Complete spreads with fixed codomain. We can dualize the results from the
previous subsection to complete spreads.

6.3.1. Definition. Let N be a monoid and let Y be a left N-set. An element y ∈ Y
will be called a strong generator if for all x ∈ Y there is an element v ∈ N⋊ such that
vx = y.

6.3.2. Theorem. Let N be a monoid. Fix a left N-set Y and a strong generator y ∈ Y ,
and set Ny = {n ∈ N : ny = y}. Then the inclusion Ny ⊆ N induces a complete spread

PSh(Ny) PSh(N).

Conversely, every complete spread PSh(M) → PSh(N) is of this form (up to precompo-
sition with an equivalence).

6.3.3. Remark. The dual of Remark 6.2.3 holds here. If f : PSh(M) → PSh(N) is
a complete spread, then we can assume that it is induced by a monoid map M → N ,
either by replacing N with a Morita equivalent monoid (using that f is surjective), or by
replacing M with a Morita equivalent monoid (using Theorem 6.3.2).

Observe that while we were able to characterize locally constant étale geometric mor-
phisms in terms of subsemigroups in Corollary 6.1.4, we cannot combine Theorems 6.2.2
and 6.3.2 so easily since they refer to fundamentally different objects (right and left N -
sets, respectively). We can instead employ the characterization from Proposition 6.1.3 to
deduce the following.
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6.3.4. Corollary. Let X be a right N-set with a strong generator x. Then the induced
étale geometric morphism PSh(Nx) → PSh(N) is locally constant étale if and only if N
acts on X by automorphisms, meaning that for each element n ∈ N , the map (− · n) :
X → X is a bijection. Dually, if Y is a left N-set with a strong generator y, then the
induced complete spread PSh(Ny) → PSh(N) is locally constant étale if and only if N
acts on Y by automorphisms.

6.4. A matrix monoid example. In this subsection, we deliver on our promise at the
end of Subsection 5.1: we give an example of a monoid homomorphism such that the
induced geometric morphism is both terminal-connected and a complete spread. After
dualizing, this additionally gives an example where the induced geometric morphism is
both pure and étale.

The example is inspired by some of the literature on the Arithmetic Site of Connes
and Consani [CC14], [CC19], [Hem19], [LB].

For a prime number p, consider the monoid

Qp =

{(
pn 0
k 1

)
: n ∈ N, k ∈ Z

}
under matrix multiplication, and the submonoid

Fp =

{(
pn 0
k 1

)
: n, k ∈ N, 0 ≤ k < pn

}
⊆ Qp.

Here we think of PSh(Fp) as corresponding to the prime p part of Conway’s site as
introduced in [LB]. Further, Qp is the prime p part of (the opposite of) the (ax + b)-
monoid, which is related to the study of parabolic Q-lattices, see [CC19]. The topos
PSh(Qp) is the prime p part of the topos associated to the (ax + b)-monoid, as studied
in [Hem19, §2.5].

6.4.1. Proposition. The monoid Fp is free, with as generators the matrices(
p 0
0 1

)
,

(
p 0
1 1

)
, . . .

(
p 0

p− 1 1

)
.

Proof. For n ∈ N, take natural numbers a0, . . . , an−1 with 0 ≤ ai < p for each i ∈
{0, . . . , n− 1}. We then calculate(

p 0
an−1 1

)(
p 0

an−2 1

)
. . .

(
p 0
a1 1

)(
p 0
a0 1

)
=

(
pn 0∑n−1

i=0 aip
i 1

)
.

The submonoid generated by the given matrices is then free, by the uniqueness of p-adic
expansions.
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6.4.2. Proposition. Let f : PSh(Fp) → PSh(Qp) be the geometric morphism induced
by the inclusion Fp ⊆ Qp. Then f is terminal-connected and a complete spread.

Proof. We first prove that f is terminal-connected. By Corollary 4.1.4, f is terminal-
connected if and only if ⟨Fp⟩⟩Qp = Qp. Take arbitrary n and k, with n ∈ N and k ∈ Z.
Choose a natural number r such that pn+r + k ≥ 0 and then choose m > r large enough
such that pn+r + k < pm+n. We compute(

pm 0
pr 1

)(
pn 0
k 1

)
=

(
pm+n 0

pn+r + k 1

)
.

The matrices

(
pm 0
pr 1

)
and

(
pm+n 0

pn+r + k 1

)
are both contained in Fp. It follows that(

pn 0
k 1

)
is contained in the right-factorable closure ⟨Fp⟩⟩Qp . Because n and k were

arbitrary, we conclude that ⟨Fp⟩⟩Qp = Qp. So f is terminal-connected.
We now prove that f is a complete spread. By Theorem 5.1.4, it is enough to show

that Fp ⊆ Qp is left-factorable, and that for any x ∈ Qp there is some v ∈ Q⋊
p such that

vx ∈ Fp. To show that Fp ⊆ Qp is left-factorable, we compute(
pn 0
k 1

)(
pm 0
l 1

)
=

(
pn+m 0
kpm + l 1

)
.

We now have to show that if 0 ≤ kpm + l < pn+m and 0 ≤ l < pm, then 0 ≤ k < pn. We
leave it to the reader to verify this. Now take

x =

(
pn 0
k 1

)
∈ Qp.

We have to find v ∈ Q⋊
p such that vx ∈ Fp. Note that

Q⋊
p = Q×

p =

{(
1 0
z 1

)
: z ∈ Z

}
and (

1 0
z 1

)(
pn 0
k 1

)
=

(
pn 0

zpn + k 1

)
.

So we need to find an integer z such that 0 ≤ zpn + k < pn. There is a unique such z,
namely the smallest z with 0 ≤ zpn + k.

Because terminal-connected is dual to pure, and étale is dual to being a complete
spread, we can dualize to get an example of a pure and étale geometric morphism.
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6.4.3. Corollary. Let g : PSh(F op
p ) → PSh(Qop

p ) be the geometric morphism induced
by the inclusion F op

p ⊆ Qop
p . Then g is pure and étale.

Now consider the inclusion Fp × F op
p ⊆ Qp ×Qop

p , and let

h : PSh(Fp × F op
p ) → PSh(Qp ×Qop

p )

be the induced essential geometric morphism. Then the (terminal-connected, étale) fac-
torization and (pure, complete spread) factorization are given by

PSh(Qp × F op
p )

PSh(Fp × F op
p ) PSh(Qp ×Qop

p )

PSh(Fp ×Qop
p )

étaleterminal-connected

pure complete spread

with each geometric morphism induced by the inclusion of submonoids. This gives an
example of an essential geometric morphism where the (terminal-connected, étale) fac-
torization and (pure, complete spread) factorization are both nontrivial and distinct from
each other.

To verify that the diagram above gives the correct (terminal-connected, étale) and
(pure, complete spread) factorizations, we can either use the characterizations of Corollary
4.1.4, Theorem 4.1.12, Proposition 5.2.4 and Theorem 5.1.4, or use the following shortcut:

6.4.4. Lemma. Let f : PSh(M) → PSh(N) be the essential geometric morphism induced
by a monoid map ϕ :M → N . For a monoid P , consider the monoid map ϕP :M ×P →
N×P with ϕP (m, p) = (ϕ(m), p). Let fP : PSh(M×P ) → PSh(N×P ) be the geometric
morphism induced by ϕP . If f is terminal-connected (resp. étale, pure, a complete spread),
then fP is terminal-connected (resp. étale, pure, a complete spread) as well.

Proof. It is enough to prove the statement for terminal-connected or étale geometric
morphisms; the statement for pure geometric morphisms and complete spreads then fol-
lows by dualization.

We can write PSh(N × P ) ≃ PSh(N) × PSh(P ), i.e. PSh(N × P ) is the product
of PSh(N) and PSh(P ) in the category of toposes, see [Joh77, Corollary 4.36]. If f :
PSh(M) → PSh(N) is étale, then so is fP : PSh(M ×P ) → PSh(N ×P ), because étale
geometric morphisms are stable under base change.

Now suppose that f : PSh(M) → PSh(N) is terminal-connected. By two applications
of Lemma 2.2.4 and Proposition 5.2.4, we see thatN is connected as leftM -set, from which
it follows that N×P is connected as left (M×P )-set, so fP : PSh(M×P ) → PSh(N×P )
is terminal-connected.
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7. Application: Galois theory

7.1. Background on Galois theory for toposes. For a locally connected topos
E , there is a well-known notion of Galois theory founded on the notion of locally constant
object we gave in Definition 6.1.1. We recall how this works below, following [Zoo02],
[Ler79], [BF98].

First, observe that if {Ai}i∈I is a family of locally constant objects, then in general the
coproduct

⊔
i∈I Ai need not be locally constant. For example, in the topos of continuous

actions of the profinite integers, each action of the form Z/nZ is locally constant and
trivialized by itself, but the disjoint union

⊔
n∈N Z/nZ is not locally constant, since there is

no object which can trivialize all of these cycles at once. If we consider the full subcategory
SLC(E) ⊆ E consisting of the objects that are disjoint unions of locally constant objects,
however, it turns out that SLC(E) is again a topos and the functor including SLC(E)
into E is the inverse image functor of a connected geometric morphism g : E → SLC(E);
see [Ler79, Théorème 2.4.(i)]. Moreover, SLC(E) is a Galois topos, i.e. a 2-categorical
cofiltered limit of toposes of the form PSh(G), with G a (discrete) groupoid; see [Zoo02,
Théorème 1.1]. More precisely, the cofiltered limit is taken over the different sieves {ϕk :
Uk → 1}k∈K in E that are covering sieves in the sense that the morphisms {ϕk}k are jointly
epimorphic. For each such covering sieve U , the category of locally constant objects in E
that are trivialized by U , in the sense described before Definition 6.1.1, is equivalent to
PSh(GU) for a certain discrete groupoid GU [Zoo02, Théorème 1.1]. Finally, the topos
SLC(E) is then the inverse limit of the toposes PSh(GU).

We say that a locally connected topos E is locally simply connected [BD81] if there
exists a single covering sieve U which trivializes each locally constant object in E . In this
case, SLC(E) ≃ PSh(GU) is itself a topos of presheaves on a (discrete) groupoid. For
example, let X be a path-connected, locally path-connected, semilocally simply connected
space. Then there exists an open covering

⋃
k∈K Uk = X by path-connected open subsets

Uk such that each π1(Uk) → π1(X) is the zero map (this property is independent of
the choice of basepoints). Now if Y is a covering space over X, then for each k ∈ K
the monodromy action of π1(Uk) on Y is trivial, so the restriction of Y to Uk is trivial.
Recalling that the covering maps over X correspond to the locally constant objects in
Sh(X), we see that the sieve generated by the subterminal objects {ϕk : Uk → 1}k∈K is
a covering sieve that trivializes all locally constant objects, so the topos Sh(X) is locally
simply connected as one would hope. In this case, we can identify SLC(Sh(X)) with the
category of right actions of the fundamental group π1(X) (with the discrete topology), or
with the category of covering spaces Y → X.

We can also consider the small étale topos E = Spec(K)ét associated to a field K,
which is equivalent to the topos Cont(Gal(Ks/K)) of continuous right Gal(Ks/K)-sets,
with Gal(Ks/K) the absolute Galois group of K [Sta22, Theorem 03QT].

We claim that E ≃ SLC(E) in this case. Indeed, E is equivalent to the category of
étale morphisms X → Spec(K) with X a scheme [Sta22, Lemma 03QR]. The connected
objects in the topos then correspond to morphisms of the form Spec(L) → Spec(K) with
K ⊆ L a separable field extension. If L′ is the normal closure of L in Ks, then L⊗K L

′ ∼=

https://stacks.math.columbia.edu/tag/03QT
https://stacks.math.columbia.edu/tag/03QR
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i=1 L

′ with n = [L : K]. So on the geometric side, we see that Spec(L) → Spec(K)
is locally constant, trivialized by Spec(L′). Any object is the sum of connected objects,
corresponding to the decomposition into orbits in Cont(Gal(Ks/K)), and we just showed
that any connected object is locally constant. We conclude that E ≃ SLC(E).

7.2. Galois theory for toposes of monoid actions. We now apply the concepts
above to the topos PSh(N) for a monoid N .

For every small category C there is a functor η : C → Π(C) to a groupoid Π(C), unique
up to equivalence, such that every functor from C to a groupoid factors uniquely through
η. Concretely, Π(C) can be constructed as the groupoid with the same objects as C in
which morphisms are equivalence classes of composites of morphisms and formal inverses
of morphisms in C. In the case that C is a monoid N , this construction produces a group,
that we will call the groupification and denote by π1(N); for N commutative, π1(N) is
known as the Grothendieck group of N .

We can deduce from Proposition 6.1.3 that in the special case of presheaf toposes,
coproducts of locally constant objects are locally constant, so SLC(PSh(C)) consists
precisely of the locally constant objects, and moreover we can recover the result that
SLC(PSh(C)) ≃ PSh(Π(C)) ([Ler79, Remark after Corollary 4.6.5]), by observing that
the locally constant presheaves on C are precisely those which extend along η : C →
Π(C). The connected geometric morphism PSh(C) → SLC(PSh(C)) then agrees with
the essential geometric morphism induced by the functor η : C → Π(C). In particular,
if N is a monoid, then we will in the remainder denote by g : PSh(N) → PSh(π1(N))
the essential geometric morphism induced by the homomorphism N → π1(N). The
locally constant objects in PSh(N) are precisely the objects of the form g∗(X) for X in
PSh(π1(N)), and hence a geometric morphism with codomain PSh(N) is locally constant
étale if and only if it is of the form

PSh(N)/g∗(X) PSh(N)

for X in PSh(π1(N)). In light of the discussion above, the following result should not be
unexpected.

7.2.1. Corollary. For any monoid N , PSh(N) is a locally simply connected topos.

Proof. We show that N , as a right N -set, trivializes every locally constant object.
Indeed, if A is locally constant then by Proposition 6.1.3 N acts by automorphisms on A,
so the mapping ∐

a∈A

N → A×N

(a, n) 7→ (a · n, n)

is easily verified to be an isomorphism which commutes with the required maps.
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More generally, any connected presheaf topos is locally simply connected, see [BF98,
Corollary 7.9]. The proof there works for general presheaf toposes as well.

We can rephrase Corollary 6.3.4 in terms of π1(N).

7.2.2. Theorem. Let N be a monoid and let X be an object of PSh(π1(N)). Let g :
PSh(N) → PSh(π1(N)) be the geometric morphism induced by the groupification map
η : N → π1(N). Then the following are equivalent:

1. there is an equivalence PSh(N)/g∗(X) ≃ PSh(M) for some monoid M ;

2. there is a subgroup H ⊆ π1(N) such that X ∼= H\π1(N) (the latter being the set of
right cosets of H) and for all y ∈ π1(N) there is some u ∈ η(N⋉) such that yu ∈ H.

In this case, M = η−1(H), and

PSh(N)/g∗(X) ≃ PSh(M) PSh(N)

agrees with the essential geometric morphism induced by the inclusion M ⊆ N .

Proof. We know from Theorem 6.2.2 that PSh(N)/g∗(X), being étale over PSh(N),
is equivalent to PSh(M) for some monoid M if and only if g∗(X) contains a strong
generator, i.e. an element x ∈ g∗(X) such that for all y ∈ g∗(X) there is some u ∈ N⋉

such that yu = x. This requires g∗(X) to be connected as a right N -set, so a fortiori it
must be connected (and hence transitive) as a right π1(N)-set. Because π1(N) is a group,
we may apply a version of the orbit-stabilizer theorem to deduce that X can be written
as a quotient X ∼= H\π1(N), where H ⊆ π1(N) is the stabilizer of x. The condition
that x is a strong generator can be reformulated by saying that for any y ∈ π1(N) there
is some u ∈ η(N⋉) such that yu ∈ H, as required. Conversely, given a presentation of
X as H\π1(N) satisfying the given conditions, it follows that the coset H1 is a strong
generator of X, and applying the formula from Theorem 6.2.2, a representing monoid M
is then given by

Nx = {n ∈ N : Hn = H} = η−1(H),

as required.

7.2.3. Example. Consider the monoid N = Zns
p of nonzero p-adic integers under multi-

plication. The groupification of Zns
p is the group Q∗

p of nonzero p-adic rational numbers.
Consider the subgroup H = {pk : k ∈ Z} ⊆ Q∗

p. For all g ∈ Q∗
p there is an u ∈ Z∗

p

such that gu = pk for some k ∈ Z. So we are in the setting of Theorem 7.2.2. We
find M = N ∩ H = {pk : k ∈ N} ∼= N. So we see that the geometric morphism
PSh(N) → PSh(Zns

p ) induced by the inclusion N → Zns
p , k 7→ pk is not only étale (as we

already saw in Example 4.1.14), but even locally constant étale. We can think of it as the
covering map of PSh(Zns

p ) corresponding to the subgroup H ⊆ Q∗
p.

Observe that if we are given a presentation of a monoid, we can easily compute the
groupification by interpreting the same presentation as a presentation of a group.
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7.2.4. Example. Consider the bicyclic semigroup B with presentation

B = ⟨u, v : uv = 1⟩.

Every element in B can be written in a unique way as viuj for some i, j ∈ N. The
right-invertible elements are B⋉ = {uk : k ∈ N} and the left-invertible elements are
B⋊ = {vk : k ∈ N}. We find π1(B) is the group with the same presentation as B,
which can be identified with Z, taking u as the generator; the groupification map is
η : B → Z, viuj 7→ j − i. The subgroups of Z are of the form dZ ⊆ Z for d ∈ N.
The equivalent conditions of Theorem 7.2.2 are satisfied, for X the right Z-set dZ\Z, if
and only if d ̸= 0, so for each d ∈ {1, 2, 3, . . . } we get a locally constant étale geometric
morphism

fd : PSh(Bd) → PSh(B)

with Bd = η−1(dZ) = {viuj ∈ B : i ≡ j mod d}. We borrowed the notation Bd

from [Mun68, (1.4)], where it is proved that Bd is a regular, simple semigroup whose
idempotents form a submonoid isomorphic to (N,max).
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