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NORMALIZERS IN THE NON-POINTED CONTEXT

DOMINIQUE BOURN

À la généreuse mathématicienne qui a encouragé mes premiers pas
en théorie des catégories

Abstract. The aim of this work is to point out a strong structural phenomenon
hidden behind the existence of normalizers through the investigation of this property in
the non-pointed context: given any category E, a certain property of the fibration of
points ¶E:Pt(E) // E guarentees the existence of normalizers. This property becomes
a characterization of this existence when E is quasi-pointed and protomodular. This
property is also showed to be equivalent to a property of the category GrdE of internal
groupoids in E which is almost opposite, for the monomorphic internal functors, of the
comprehensive factorization.

1. Introduction

The first place where the question of the existence of normalizers was investigated in a
conceptual way, namely outside specific contexts as groups, rings or Lie algebras, but more
generally inside any semi-abelian category (which is a pointed context) is [Gray, 2014].
Modulo a slight shifting in the requirement of the involved universal property, it was
showed in [Bourn, Gray, 2015] that, in the pointed protomodular context, the existence
of normalizers is unexpectedly equivalent to a much larger phenomenon involving the
split exact sequences and that it has two heavy structural consequences, namely that
the ground C is action accessible in the sense of [Bourn, G.Janelidze, 2009] and fiberwise
algebraically cartesian closed in the sense of [Bourn, Gray, 2012].

The notion of normal subobject having a plain meaning in a non-pointed context, the
notion of normalizer is then straightforward. The aim of this work was first to investigate
whether there is, in a non-pointed context, a condition which characterizes the existence
of normalizers, or in other words to transfer the pointed characteristic condition of [Bourn,
Gray, 2015] concerning the split exact sequences to a non-pointed one. Actually we do
better, introducing two equivalent conditions which, here again, are far from being ex-
pected (even in the pointed context and even in the categories Gp of groups and K-Lie
of Lie algebras on a field K) and pointing out much larger phenomenons:
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1) the existence of a universal decomposition for the monomorphisms between split epi-
morphisms in E; namely, any monomorphism (y, x) : (f ′s′) ↣ (f, s) produces a universal
dotted decomposition, as in the following left hand side diagram, where the left hand side
part is a pullback:

X ′

f ′

��

// x //
//
ū
// X̄

f̄
��

//
w̄
// X

f
��

U1
//
u1

//
// v1 //

d1
��

d0
��

X1

d1
��

d0
��

//
w1

// T1

d1
��

d0
��

Y

s′

OO

//
y

//
// u // Ȳ // w //

s̄

OO

Y

s

OO

U0
// u0 //
//

v0
//

OO

X0

OO

// w0 // T0

OO

2) the existence of a universal decomposition in the category GrdE of internal groupoids in
E which is almost opposite, for the monomorphic internal functors, of the comprehensive
factorization of [Street, Walters, 1975], [Bourn, 1987]; namely, any monomorphic functor
(v0, v1) : U1 ↣ T 1 between internal groupoids produces a dotted universal decomposition,
as in the above right hand side diagram, where the internal functor (u0, u1) is a discrete
fibration.

In a category E, any of these properties guarentees the existence of normalizers. They
become a characterization of this existence when E is quasi-pointed and protomodular.
The universal decomposition 1) in the category Gp of groups is described in detail in
Section 3.5, from which the decomposition 2) is straighforward with the end of Section 4.

Examples of non-pointed categories which satisfy this property are given with the
slice or coslice categories of any pointed protomodular categories with normalizers, and,
in various circumstances, with any fibre GrdYE of the fibration ( )0 : GrdE → E of
internal groupoids, for instance when E is a Mal’tsev category, and when E is Set or,
more generally, is any topos.

As a collateral effect, this new approach allows us to clarify the relationship between
existence of normalizers and Mal’tsevness or (strong) protomodularity of the ground cat-
egory E, see Section 3.1, Lemma 3.2, Corollaries 3.4 and 6.4. It also sheds a new light
on the non-pointed additive setting (in the sense of [Bourn, 2008]), giving rise to several
subtle differentiations, see Section 8.

The article is organized along the following lines:
Section 1) is devoted to introducing the notion of Θ-extremal decomposition of monomor-
phisms which is our categorical conceptual setting leading to the existence of normalizers.
Section 2) investigates the particular case of the categories which have ¶-extremal decom-
position of monomorphisms (namely which satisfy the above universal decomposition 1)),
and it determines their first properties: in particular they are showed to be necessarily
Mal’tsev categories (Corollary 3.4). Section 3) is devoted to the proof of the equivalence
between the above universal decompositions 1) and 2). Section 4) (Abstract normalizers)
is devoted to the relationship between the above universal decomposition 2) and the ex-
istence of normalizers; it will show how this last point is a small part of a much larger,
limpider and stronger phenomenon, and it is the main conceptual contribution of this
work, see the proof of Proposition 4.1. Section 5) is devoted to the stability of these
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decompositions under slicing and coslicing. Section 6) is devoted to the characterization
theorem associated with the quasi-pointed protomodular setting. Finally section 7) is de-
voted to the relationship between some kinds of these decompositions and the non-pointed
additive setting.

All the results developped here appeared in the long preprint [Bourn, 2017] (about
sixty pages) were many other results are given, among them the fact that, in the same way
as the existence of normalizers in the pointed case [Bourn, Gray, 2015], the ¶-extremal
decomposition implies that: 1) any equivalence relation R has a centralizer (i.e action
distinctiveness) and: 2) in the protomodular context, any subobject in a fibre PtYE has
a centralizer (i.e fiberwise algebraic cartesian closedness).

2. Θ-extremal decomposition

In this article every category E will be supposed finitely complete. Let Θ be a class of
morphisms in E: it is said to be quasi-proper when it contains the isomorphisms, is stable
under composition with them, and is stable under product and pullback; it is said to be
proper when it contains the isomorphisms, is stable under composition and pullback and
is such that, whenever g.f and g are in Θ, so is the map f . It is clear that a proper class
is quasi-proper.

2.1. Definition. Let Θ be any class in a category E, and v : U ↣ T a monomor-
phism. We say that a decomposition v = w.u with u ∈ Θ is Θ-extremal, when any other
decomposition v = w′.u′ with u′ in Θ:

X ′

w′

��

t��
X

w &&
U
88 u

88
@@

u′

@@

//
v

// T

determines a unique factorization t. A monomorphism v : U ↣ T in E will be said to be
a Θ-outsider when v = v.1U is an extremal decomposition.

Clearly the map u is a monomorphism, and a monomorphism v : U ↣ T is in Θ if and
only if v = 1T .v is an extremal decomposition. A map in Θ which is also a Θ-outsider is an
isomorphism. We shall now investigate the first properties of this kind of decomposition.

2.2. Lemma. Suppose the monomorphism v : U ↣ T is a Θ-outsider. Then v has no
other monomorphic decomposition v = w.u with u in Θ than v = v.1U , up to isomorphism.

Proof. Suppose v = u′.w′ with w′ monomorphic, then the factorization τ :

X ′
!!

w′

!!
τ
��

U //
1u
//

==
u′

==

U //
v
// T
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is a monomorphism since so is w′; then it is an isomorphism since it is split by u′, and u′

is an isomorphism as well.

The first important observation is the following one:

2.3. Lemma. Suppose Θ quasi-proper. If v = w.u is a Θ-extremal decomposition, then
the coreflector w is necessarily a monomorphism.

Proof. Complete the following right hand side square with the kernel equivalence rela-
tions R[v] and R[w] of the maps v and w:

R[v] = U
1U
//

1U //

R(u)
��

Uoo // v //

u
��

T

R[w]
p1

//

p0 //
Xoo

w
// T

Since the left hand side part of the diagram is a joint pullback and u is in Θ which is
quasi-proper, then R(u) is in Θ. Accordingly the decomposition v = (w.p0).R(u) produces
a unique factorization through w. So, we get p0 = p1, and w is a monomorphism.

2.4. Lemma. Suppose Θ is quasi-proper. Let v = v2.v1 be a monomorphic decomposi-
tion of v and v = w.u a Θ-extremal decomposition. Then the Θ-extremal decomposition
v1 = w1.u1 is given by the pullback of the Θ-extremal decomposition v = w.u along the
monomorphism v2.

Proof. The map v2 being a monomorphism, the following vertical rectangle is a pullback.
Introduce the lower quadrangle as a pullback and denote u1 the canonical factorization:

U1
��

v1

��

"" u1

""
||u′

1

||

U1
��

v2.v1

��

!! u
!!

X ′
1 ""

w′
1
""

X1||
w1||

//
x

// X}}
w}}

U2
//

v2
// T

So, the upper quadrangle is a pullback and u1 is a monomorphism in Θ. Let v1 = w′
1.u

′
1

be a decomposition with u′1 a monomorphism in Θ. Then the decomposition v = v2.v1 =
(v2.w

′
1).u

′
1 produces a factorization t : X ′

1 → X satisfying w.t = v2.w
′
1 which assures the

factorization through the vertex X1 of the lower quadrangled pullback.

The previous lemma gives immediately rise to the following one:

2.5. Lemma. Suppose Θ is quasi-proper. Let w = m.w′ be any monomorphic decomposi-
tion and w a Θ-outsider. Then w′ is a Θ-outsider.

Straighforward is the following one as well:
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2.6. Lemma. If Θ is is stable under composition and, a fortiori, if it is proper, when
v = w.u is a Θ-extremal decomposition, the map w is a Θ-outsider.

Here is the main tool of this work:

2.7. Definition. Let Θ be a quasi-proper class in a category E. This category will
be said to have Θ-extremal decompositions of monomorphisms when any monomorphism
v : U ↣ T has a Θ-extremal decomposition v = w.u with respect to the class Θ. It will be
said to have stably Θ-extremal decompositions of monomorphisms when these Θ-extremal
decompositions are stable under pullbacks along maps in Θ.

Warning: the Θ-extremal decompositions do not preserve the inclusion of subobjects.
When E has stably Θ-extremal decompositions of monomorphisms, the Θ-outsider

monomorphisms are stable under pullback along maps in Θ.

Define a normal monomorphism in the category Gp of groups as an injective homo-
morphism m : H ↣ G such that m(H) is a normal subgroup of G. The class N of normal
monomorphisms is quasi-proper in Gp but not proper, see also [Gray, 2014]:

2.8. Example.The category Gp has N-extremal decompositions of monomorphisms which
are not stable.

Proof. Starting from any monomorphism n : H ↣ G, its N -extremal decomposition

is given by ñ : H
≃
↣ n(H) ↣ N(n(H)) where N(G′) is the normalizer of the subgroup

G′ ↣ G.

In the same way, define an ideal monomorphism in the category Rg of non-unitary
rings (resp. K-Lie of Lie-algebras) as an injective homomorphism m : B ↣ A such that
m(B) is an ideal of A. The class I of ideal monomorphisms is quasi-proper in Rg but not
proper.

2.9. Example. The category Rg (resp. K-Lie) has I-extremal decompositions of mono-
morphisms which are not stable.

2.10. Proposition. Suppose Θ is proper and E has Θ-extremal decompositions of mono-
morphisms. When, in addition, the class Θ satisfies the three out of two condition,
any decomposition v = w.u of the monomorphism v with u in Θ and w a Θ-outsider
monomorphism is Θ-extremal.

Proof. Let v = w′.u′ be the Θ-extremal decomposition:

X ′
!!

w′

!!
U //

u
//

==
u′

==

X //
w
//

ū

OO

T

There is a factorization ū which is a monomorphism since so is w and which, according
to Lemma 2.5, is a Θ-outsider since so is w. Since, moreover, Θ satisfies the three out of
two condition (namely: if two maps among the triple (u, ū, u′ = ū.u) are in Θ, so is the
third one), then ū is in Θ; accordingly it is an isomorphism.
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We shall be specially interested by the following situation which will give us, in the
next section, many examples of categories having stable Θ-extremal decompositions.

2.11. Definition. Let F : D // C be a left exact fibration. We shall say that the
ground category C is (resp. stably) F -decomposable when D has (resp. stably) extremal
decompositions of monomorphisms with respect to the proper class of F -cartesian maps.

3. ¶-decomposable categories

Given a category E, recall [Bourn, 1991] that PtE denotes the category whose objects
are the split epimorphisms (where split epimorphism means split epimorphism with a
given splitting) in E and whose arrows are the commutative squares between such split
epimorphisms, and that ¶E:PtE // E denotes the functor associating with any split
epimorphism its codomain: it is the fibration of points. The ¶E-cartesian maps are nothing
but the pullbacks of split epimorphisms and determine a proper class in PtE we shall often
denote by ¶ for short. As we shall recall below this fibration ¶E has strong classification
properties.

3.1. Some structural observations. Let us begin with a first clarification related
to the ¶E-outsider monomorphims. For that, let us recall that a Mal’tsev category is a
category in which any reflexive relation is an equivalence relation, see [Carboni, Lambek,
Pedicchio, 1991] and [Carboni, Pedicchio, Pirovano, 1992], and that a protomodular cat-
egory is a category such that any base-change functor with respect to the fibration ¶E is
conservative. A category E is protomodular if and only if the class of ¶-cartesian mor-
phisms satisfies the three out of two property [Bourn, 1991] (see definition in the proof of
Proposition 2.10). Any protomodular category is a Mal’tsev one.

3.2. Proposition. Any category E in which any ¶E-invertible monomorphism is a ¶E-
outsider is necessarily a Mal’tsev category. In a protomodular category E, any ¶E-invertible
monomorphism is necessarily a ¶E-outsider, and any decomposition in PtE with a left hand
side pullback is necessarily ¶E-extremal:

X ′ // x //

f ′

��

X̄

f̄
��

// x̄ // X

f
��

Y ′ //
y

//

s′

OO

Y

s̄

OO

Y

s

OO

Proof. Let be given a reflexive relation (d0, d1) : R ⇒ X on the object X. Then consider
the following left hand side commutative diagram in PtE where, by assumption, the whole
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rectangle is a ¶-outsider:

R // s1 //

d0
��

DD

(d0,d1)

��
R[d0]

p0
��

(d1.p0,d1.p1)// X ×X

p0
��

R[d0]

d0
��

d2 // R

d0
��

X //
s0
//

s0

OO

R

s0

OO

d1
// X

s0

OO

R
d1
//

s0

OO

X

s0

OO

Since its left hand side part is a pullback, i.e. is a ¶-cartesian monomorphism, there is a
factorization (d1, d2) given as on the right hand side satisfying (d0, d1).d2 = (d1.p0, d1.p1);
this shows R[d0] ⊂ (d1)

−1(R), so that R is an equivalence relation.
Now suppose that E is protomodular and take any ¶E-invertible monomorphism (1Y , i) :

(f ′, s′) ↣ (f, s). Now, given any decomposition (1Y , i) = (β, β̄).(α, ᾱ)(∗) where (α, ᾱ) is
monomorphic and cartesian, consider the following pullback in PtE:

P

β̌
&&

g′

��

// j //W β̄
&&

g

��

X ′

f ′

��

// i // X

f

��
Z

β &&

t′

OO

Z

t

OO

β
&&

Y

s′
OO

Y

s

OO

The factorization (∗) in PtE produces the following factorization (α, α̌):

X ′ // α̌ //

f ′
��

FF

ᾱ

��
P

g′
��

// j //W

g
��

Y //
α
//

s′

OO

α

IIZ

t′

OO

Z

t

OO

Since (α, ᾱ) is cartesian (=underlying a pullback) and j is a monomorphism, the left hand
side square is a pullback as well. Now, when E is protomodular, the three of two condition
for the ¶-cartesian morphisms makes the right hand side diagram a pullback and j an
isomorphism. With (β, β̌.j−1) : (g, t) // (f ′, s′) we get the desired factorization which
makes (1Y , i) a ¶E-outsider.

As for the last point, consider any other decomposition with (v, u) ¶E-cartesian as on
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the left hand side:

U
g

��

u′

**X ′ //
x

//

f ′

��

88
u
88

X̄

��

//
x̄

// X

f

��

X ′ // i //

f ′

��

u

��
Ū

ḡ

��

// ū // U

g

��
V

t
OO

v′

++Y ′ //
y

//

s′

OO

88
v
88

Y

OO

Y

s

OO

Y ′ //
v

//

s′

OO

V

t̄

OO

V

t

OO

Take the pullback ū of x̄ along u′; it determines a monomorphism ū in PtVE whose image
by the change of base functor v∗ is the isomorphism 1X′ in PtY ′E since (v, u) is ¶E-
cartesian. Now, E being protomodular, ū is an isomorphism which produces the desired
factorization.

3.3. Proposition. Let E be a ¶-decomposable category. If the monomorphism (γ, γ̄) :
(a′, b′) ↣ (a, b) in PtE has a decomposition (w′, w̄′).(u′, ū′) where (w′, w̄′) is ¶E-invertible
and (u′, ū′) is a ¶E-cartesian monomorphism, its ¶E-extremal decomposition (w, w̄).(u, ū)
is such that (w, w̄) is ¶E-invertible as well. Accordingly any ¶E-invertible monomorphism
in PtE is a ¶E-outsider.

Proof. Consider the following diagrams of split epimorphisms where w′ is invertible and
the right hand side diagram is an extremal decomposition in PtE:

Ū

a′
��

GG

γ̄

��
// ū

′
// Ā′

ā′
��

w̄′
// T̄

a
��

Ū

a′
��

GG

γ̄

��
// ū // Ā

ā
��

// w̄ // T̄

a
��

U

b′

OO

��

γ

KK
//
u′
// A′

w′
≃ //

b̄′

OO

T

b

OO

U

b′

OO

��

γ

KK
//
u
// A //

w
//

b̄

OO

T

b

OO

Then there is a factorization:

Ā′

ā′
��

t̄ // Ā

ā
��

A

b̄′

OO

t
// A

b̄

OO

such that w.t = w′. Now, since w′ is an isomorphism and w is a monomorphism, the map
w is an isomorphism. The last assertion is then straightforward.

Now, with Proposition 3.2, we get immediately the following:

3.4. Corollary. Any ¶E-decomposable category E is a Mal’tsev one.
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3.5. Examples of ¶E-decomposable categories. As already said, Definition 2.11
will provide us with many examples of stably Θ-decomposable categories: as a first step,
let us show that the categories Gp, Rg and K-Lie are stably ¶-decomposable. Let us
begin by describing the extremal decomposition in Pt(Gp). Given any subobject (j, i) in
this category:

X ′

f ′
��

HH
i

��
// // X̄

f̄
��

// // X

f
��

Y ′
s′

OO

��
j

KK
// // Ȳ // //

s̄

OO

Y

s

OO

the subgroup Ȳ is {y ∈ Y | ∀u ∈ Kerf ′, s(y).u.s(y)−1 ∈ X ′ and s(y)−1.u.s(y) ∈ X ′}
while the subgroup X̄ is { x ∈ X | x ∈ f−1(Ȳ ) and x.sf(x)−1 ∈ X ′}. Let us show that it
is a ¶-extremal decomposition

Proof. The subset Ȳ is clearly a subgroup of Y . And X̄ is clearly stable under inversion.
Now suppose a and b in X̄. Then a.b is in f−1(Ȳ ). Moreover b.sf(b)−1 is in Kerf ′ and
f(a) in Ȳ , so that:
a.b.sf(b)−1.sf(a)−1 = (a.sf(a)−1).(sf(a).b.sf(b)−1.sf(a)−1) is in Kerf ′.
So, a.b in X̄, and X̄ is a subgroup of X.

The left hand side square is a pullback: suppose a ∈ X̄ and such that f(a) ∈ Y ′. Then
we have sf(a) ∈ X ′ and a = (a.sf(a)−1).sf(a) ∈ X ′.

Now consider a commutative diagram where the left hand side square is a pullback:

X ′

f ′
��

HH
i

��
// //W

g
��

k // X

f
��

Y ′
s′

OO

��
j

JJ
// // Z

h
//

t

OO

Y

s

OO

First, let us show that h(z) is in Ȳ . Let u be in Kerf ′, then we have to show that
sh(z).u.sh(z)−1 = kt(z).u.kt(z)−1 = k(t(z).u.t(z)−1) is in X ′. It is enough to show that
the image by g of t(z).u.t(z)−1 is in Y ′. Now g(t(z).u.t(z)−1) = z.1.z−1 = 1 which is in
X ′. It remains to show that k(w) is in X̄. 1) fk(w) = hg(w) is in Ȳ according to our
first step. 2) k(w).sfk(w)−1 = k(w.tg(w)−1) is in X ′ as soon as g(w.tg(w)−1) = 1 is in Y ′

which is straightforward.

Similarly: 1) in Rg the extremal decomposition is obtained in the following way:
Ȳ = {y ∈ Y | ∀u ∈ Kerf ′, s(y).u and u.s(y) ∈ X ′}
while X̄ = { x ∈ X | x ∈ f−1(Ȳ ) and x− sf(x) ∈ X ′};
2) in K-Lie it is obtained in the following way: Ȳ = {y ∈ Y | [s(y), u] ∈ X ′, ∀u ∈ Kerf ′}
while X̄ = { x ∈ X | x ∈ f−1(Ȳ ) and x− sf(x) ∈ X ′}.
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These three previous categories are pointed. Now, the above description for the cat-
egory Rg remains valid for the category Rg∗ of unitary rings which is longer a pointed
one.

It remains to show that these four categories are stably ¶-decomposable. This follows
from Proposition 2.6 in [Bourn, Gray, 2015]. Actually, knowing from this same article that
the existence of normalizers in the pointed protomodular context implies that the kernel
functor admits pre-cartesian liftings of monomorphisms as in Theorem 7.9 below, we get
the existence of ¶E-decompositions in any semi-abelian category with normalizers, and in
particular in any category of interest, in the sense of [Orzech, 1972], with normalizers.

3.6. The case of monoids and semi-rings. The category Mon of monoids is not a
Mal’tsev one; so, according to Corollary 3.4, it cannot be ¶E-decomposable. However it
is F -decomposable for some subfibration F of ¶E.

In [B-M-M-S, 2014] a split epimorphism (f, s) : X ⇄ Y in Mon is called a Schreier
split epimorphism when, for all y ∈ Y , the application µy : Kerf // f−1(y) defined
by µy(k) = k · s(y) is bijective. This defines class Σ of split epimorphims which is stable
under pullback, and then determines a subfibration ¶Σ of ¶E. Actually a split epimorphism
(f, s) : X ⇄ Y is a Schreier one if and only if there is a function q : X // Kerf such
that x = q(x).sf(x), ∀x ∈ X and q(k.s(t)) = k, ∀(k, t) ∈ Kerf × Y .

3.7. Proposition. The category Mon is stably ¶Σ-decomposable.

Proof. Given any subobject in Pt(Mon) between Schreier split epimorphims:

X ′

f ′
��

// //
// // X̄

f̄
��

// // X

f
��

Y ′
s′

OO

// //
// // Ȳ // //

s̄

OO

Y

s

OO

define the submonoid Ȳ by {y ∈ Y | ∀u ∈ Kerf ′, q(s(y).u) ∈ X ′} and the submonoid X̄
by {x ∈ X | x ∈ f−1(Ȳ ) and q(x) ∈ X ′}. The left hand side square is a pullback, since
x ∈ f−1(Y ′) and q(x) ∈ X ′ implies x ∈ X ′. Whence Kerf̄ = Kerf ′ where (f̄ , s̄) is the
induced split epimorphism. It is a Schreier one by taking the restriction of q : X //Kerf
to X̄ whose values are in Kerf ′(= Kerf̄) by its definition.

From this construction, checking the universal property of this construction and its
stablitily under pullback along ¶Σ-cartesian morphisms is straightforward.

Let SRg be the category of semi-rings and U : SRg // CoM (where CoM is the
category of commutative monoids) the forgetful functor; it is left exact and conservative.
In [B-M-M-S, 2014] a split epimorphism in Σ̄ = U−1(Σ) is, again, called a Schreier one.
Whence immediately:

3.8. Proposition. The category SRg is stably ¶Σ̄-decomposable.
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4. Internal groupoids

In this section, we shall show that a category E is ¶E-decomposable if and only if the
category GrdE of internal groupoids in E is DiF -decomposable, where DiF is the class
of discrete fibrations in GrdE.

Let us recall that an internal groupoid Y 1 is a reflexive graph as on the right hand
side:

Y 1 : R2[d
Y
0 ]

p2 //
p1 //

p0
//

R(dY2 )

��
R[dY0 ]

dY2

��
p1 //

p0
//

Y1
s0oo

s1oo
dY1 //

dY0

//
Y0s0oo

endowed with a map dY2 : R[dY0 ] → Y1 making the above diagram a 3-truncated simplicial
object. In the set-theoretical context, we have dY2 (ϕ, ψ) = ψ.ϕ−1. An internal functor is
a morphism of 3-truncated simplicial objects. It is a discrete fibration (also called fibrant
morphism) when any of the following rightward square indexed by 0 (or equivalently 1)
is a pullback:

X1

f1
��

d1
//

d0 //
X0

oo

f0
��

Y1
d1
//

d0 //
Y0oo

The class DiF of fibrant morphisms is a proper class in GrdE.

4.1. Theorem. The category E is (resp. stably) ¶-decomposable if and only if the cate-
gory GrdE of internal groupoids in E has (resp. stably) DiF -extremal decompositions of
monomorphisms.

Proof. The previous description of internal groupoids comes from the fact that GrdE is
actually the category of T -algebra, where T is the following monad on the category PtE,
see [Bourn, 1987]:

X // s1 //

f
��

R[f ]

df0
��

R2[f ]

df0 ��

df2oo

Y //
s

//

s

OO

X

sf0

OO

R[f ]

sf0

OO

df1

oo

(f, s) //
λ(f,s)

// T (f, s) T 2(f, s)µ(f,s)

oo

So, the theorem will be the consequence of the following more general result.
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4.2. Proposition. Let U : E → F be a left exact functor, Θ a proper class in F. Then
Θ′ = U−1(Θ) is a proper class in E. Suppose that U has a left exact left adjoint G
such that G.U preserves the maps in Θ. Suppose moreover the natural transformation
η : 1F ⇒ U.G is in Θ. If the category E has (resp. stably) Θ′-extremal decompositions of
monomomorphisms, then the category F has (resp. stably) Θ-extremal decompositions of
monomorphisms as well.
If, moreover, the functor U is monadic, the converse is true, namely if the category F
has (resp. stably) Θ-extremal decompositions on monomorphisms, then the category E
has (resp. stably) Θ′-extremal decompositions on monomorphisms as well. Moreover the
functor U preserves and reflects the extremal decompositions.

Proof. The fact that Θ′ is proper as soon as Θ is proper is straightforward. Now
let v : S ↣ T be a monomorphism in F. Since G is left exact, the map G(v) is a
monomorphism in E. Let m.n : G(S) ↣ W ↣ G(T ) be its extremal decomposition in
the category E, the right hand side square below be a pullback in F and u the induced
factorization:

S

ηS
��

//
u

//
EE

v

��
X

l
��

//
w

// T

ηT
��

U.G(S) //
U(n) //

��

U.G(v)

CC
U(W ) //

U(m)// U.G(T )

The map ηT being in Θ, so is l; the maps ηS and U(n) being in Θ (since n is in Θ′ =
U−1(Θ)), so is u.

Let us show that w.u is extremal in F. Let v = w′.u′ with u′ a monomorphism
in Θ. The map U.G(u′) being in Θ, the map G(u′) is in Θ′ and the decomposition
G(v) = G(u′).G(w′) produces a factorization t : G(X ′) → W in E such that we have
m.t = G(w′) and which, by adjunction, determimes a map τ : X ′ → U(W ) such that
U(m).τ = ηT .w

′; whence the desired factorization τ̄ : X ′ //X. Suppose moreover E has
stably Θ′-extremal decompositions. Starting with a map θ : T̄ → T in Θ, the pullback
along θ in F preserves the previous construction, since G(θ) is in Θ′ and U left exact.
Accordingly the category F has stably Θ-extremal decompositions.

Conversely we shall show that when the monad (T = U.G, η, µ) on F is such that T
is left exact, preserves the maps in Θ and is such that η : 1F ⇒ T is in Θ, the category
AlgT has (resp. stably) Θ′-extremal decompositions on monomorphisms as soon as the
category F has (resp. stably) Θ-extremal decompositions on monomorphisms where Θ′

is (UT )−1(Θ). So, let v : (U, α) ↣ (T, β) a monomorphism in AlgT . Let us consider the
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following diagram, where the lower row is the extremal decomposition of v in E:

T (U)

α
��

//
T (u)
//

EE

T (v)

��
T (X)

ξ
��

//
T (w)

// T (T )

β
��

U // u //
��

v

IIX // w // T

Let us show that the object X of F is endowed with a T -algebra structure ξ. The
monomorphisms ηU and T (u) are in Θ. So that the decomposition (β.T (w)).(T (u).ηU) =
β.ηT .w.u = w.u = v produces a factorization ξ : T (X) //X which is easily seen to be a
T -algebra structure since w is monomorphic; this makes v = w.u a decomposition in AlgT ;
it is then straightforward to check that it is extremal for the class Θ′. This construction
shows that the functor U preserves and reflects the extremal decompositions.
The stable aspect of this decomposition is straighforward from the left exactness of the
endofunctor T .

So, E is ¶E-decomposable if and only if any monomorphic internal functor (v0, v1) :
U1 ↣ T 1 between groupoids as on the left hand side diagram:

U1
// v1 //

d1
��

d0
��

T1

d1
��

d0
��

U1
// u1 //
HH

v1

��

d1
��

d0
��

X1

d1
��

d0
��

// w1 // T1

d1
��

d0
��

U0
//
v0
//

OO

T0

OO

U0
//
u0

//
��

v0

II

OO

X0

OO

//
w0

// T0

OO

produces an extremal decomposition as in the right hand side one, where the internal
functor (u0, u1) is a fibrant morphism. It is a kind of dual for the monomorphic functors
of the comprehensive factorization for internal functors between groupoids described in
[Street, Walters, 1975] and [Bourn, 1987]. Actually the result is even more precise: if a
monomorphism in PtE is underlying a functor between groupoids as on the left hand side:

U1
// v1 //

d1
��

d0
��

T1

d1
��

d0
��

U1
// u1 //
HH

v1

��

d1
��

d0
��

X1

d1
��

d0
��

// w1 // T1

d1
��

d0
��

U0
//
v0
//

OO

T0

OO

U0
//
u0

//
��

v0

II

OO

X0

OO

//
w0

// T0

OO
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then the extremal decomposition in PtE provides the middle vertical part with a unique
factorization d1 and a unique groupoid stucture, making fibrant the left hand side internal
functor. Whence the immediate:

4.3. Corollary. When E is a ¶-decomposable category, the following conditions are
equivalent:
1) the monomorphic functor (v0, v1) is a DiF-ousider;
2) its underlying monomorphism in PtE is a ¶-outsider.
Accordingly any ( )0-invertible functor is necessarily a DiF-outsider.

5. Abstract normalizers

In this section, we show in a very limpid way how the above DiF-decomposition is related
to the existence of normalizers. Let us recall the following:

5.1. Definition. [Borceux-B, 2004] A monomorphism u in E is said to be normal to an
equivalence relation R when:
i) we have: u−1(R) = ∇U

ii) the induced internal functor:

∇U = U × U // ũ //

p1
��

p0
��

R

d1
��

d0
��

U //
u

//

OO

X

OO

is a fibrant morphism in GrdE.
In the category Set of sets, when U is not empty, it is equivalent to saying that U

is an equivalence class of R. Clearly, in this category, a monomorphism can be normal
to many equivalence relations. In particular the inclusion ∅ ↣ X is normal to any
equivalence relation R on X and in particular to ∇X. However, in a protomodular
category a monomorphim is normal to at most one equivalence relation, so that, for a
monomorphism, being normal becomes a property [Bourn, 1991]. Recall now the following
definition from [Bourn, Gray, 2015]:

5.2. Definition. Given any category E, a monomorphism v : U ↣ T has a normalizer
when there is a triple (u,Rv, w) with u : U ↣ X normal to Rv and w : X // T a
factorization such that v = w.u which is universal with respect to this kind of specific
decomposition of v. A category E is said to have normalizers when any monomorphism
has a normalizer.

By the universal property of a normalizer, this equivalence relation Rv is the largest
equivalence relation R on X to which the monomorphism u is normal. From [Bourn,
Gray, 2015], let us recall the following:

5.3. Lemma. When a monomorphism v : U ↣ T has a normalizer, the factorization w
is necessarily a monomorphism.
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5.4. Proposition. In a protomodular category E any normal monomorphism u : U ↣ X
is its own normalizer.

Proof. Let v be any normal monomorphism and Rv the (unique) equivalence relation
to which v is normal in the protomodular category E. Let v = g.u be any decompo-
sition of v with u a normal monomorphism (to Ru). We have to show that Ru can be
factorized through Rv, which is equivalent to Ru ⊂ g−1(Rv). Clearly u−1(g−1(Rv)) =
v−1(Rv) = ∇Y . Then Ru ∩ g−1(Rv) is normal to u since it is included in Ru and such
that u−1(Ru ∩ g−1(Rv)) = ∇Y . Now, since E is protomodular, we get Ru ∩ g−1(Rv) ≃ Ru

and consequently Ru ⊂ g−1(Rv).

5.5. Proposition. Suppose E is ¶-decomposable. Then any monomorphism v : U ↣ T
in E has a normalizer in the previous sense. Any normal monomorphism u : U ↣ X in
E admits a largest equivalence Ru on X to which u is normal.

Proof. It is a straightforward consequence of Theorem 4.1 and Proposition 3.3 applied
to the following monomorphic morphism of equivalence relation:

U × U

pU0 ��
pU1��

// v×v //
//
ũ
// R //

w̃
//

dR0 ��
dR1��

T × T

pT0 ��
pT1��

U

OO

//
v

//
// u // X // w // T

OO

More generally, let R be any equivalence relation on the domain U of a monomophism
v : U ↣ T . We can produce the following central decomposition from the monomorphism
of equivalence relations given by the left hand side diagram which gives rise, with the
equivalence relation S, to a universal extension of R along v keeping unchanged the
equivalence classes of R:

R

dR0 ��
dR1��

//
v×v.(dR0 ,dR1 )

// T × T

pT0 ��
pT1��

R // ũ //
HH

v×v.(dR0 ,dR1 )

��

dR1��
dR0 ��

S

dS1��
dS0 ��

// w̃ // T × T

p1
��

p0
��

R // ũ //

dR1��
dR0 ��

R̄

dR̄1��
dR̄0 ��

U

OO

//
v

// T

OO

U //
u
//

��

v

JJ

OO

X

OO

//
w

// T

OO

U //
v

//

OO

T

OO

When E is ¶E-decomposable, the fibrant extremal decomposition given by the previous
theorem, produces the middle diagram, where S is an equivalence relation on X and
the left hand side functor (u, ũ) a fibrant monomorphism. This equivalence relation S
is the largest equivalence relation on X which produces such a left hand side fibrant
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monomorphism. Clearly, this kind of decomposition can be extended to any morphism of
equivalence relations as on right hand side.

The case of monoids and semirings

Let us recall from [B-M-M-S, 2014] the following:

5.6. Definition. Given any category E and any class Σ of split epimorphims, we call
Σ-equivalence relation any equivalence relation:

R

dR1 //

dR0

//
XsR0

oo

such that the split epimorphism (dR0 , s
R
0 ) is in Σ. A morphism f : X // Y is called Σ-

special when its kernel equivalence relation R[f ] is in Σ; an object X is called Σ-special
when the terminal map X // 1 is Σ-special.

Warning: a split Σ-special epimorphism is stronger than a split epimorphism in Σ;
however an equivalence relation is a Σ-one, if and only if (dR0 , s

R
0 ) is a split Σ-special

epimorphism. So if we denote by Σ̌ the class of split Σ-special epimorphisms, the monad
T of groupoids is stable on the subcategory ¶Σ̌.

In Mon and SRg the Schreier-special objects are respectively the groups and the
rings. According to the stability of the monad of groupoids on ¶Σ̌, in both cases, any
morphism of Schreier equivalence relation as on the left hand side produces a fibrant
extremal decomposition of Schreier equivalence relations as on the right and side:

R

dR0 ��
dR1��

// v̄ // R̄

dR̄0 ��
dR̄1��

R // ũ //
II

v̄

��

dR1��
dR0 ��

S

dS1��
dS0 ��

// w̃ // R̄

dR̄0 ��
dR̄1��

U

OO

//
v

// T

OO

U //
u
//

��

v

KK

OO

X

OO

//
w
// T

OO

6. Slicing and coslicing

In this section, we shall show that the ¶E-decomposition property is stable under slicing
and coslicing. Let us recall that, given a category C and any object Y in E, the slice
category E/Y is the category whose objects are the maps with codomain Y and whose
maps are the commutative triangles above Y . The coslice category Y/E is defined by
duality. The domain functor dom : E/Y → E is a discrete fibration which preserves and
reflects pullbacks and equalizers while the codomain functor cod : Y/E → E is a discrete
cofibration which preserves and relects pullbacks and equalizers as well.
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6.1. Proposition. Let U : E → F be a discrete fibration (resp. cofibration) which
preserves and reflects pullbacks. Set Θ′ = U−1(Θ). When F has (resp. stably) Θ-extremal
decompositions, then E has (resp. stably) Θ′-extremal decompositions. When F is (stably)
¶F-decomposable, then E is (stably) ¶E-decomposable.

Proof. Given any monomorphism v : Z ↣ T in E, consider the extremal decomposition
U(v) = w.u in F. When U is a discrete fibration (resp. cofibration) it determines a unique
monomorphic decomposition v = w̄.ū above it since U reflects the monomorphisms. The
map ū is in Θ′ since u is in Θ. It is then straightforward that this decomposition is
extremal. The fact that U preserves and reflects pullbacks and the fact that we have
Θ′ = U−1(Θ), induces the assertion about the stability of this decomposition. For the
last assertion, apply the first one to the functor PtU : PtE // PtF.

6.2. Corollary. The ¶E-decomposable and stably ¶E-decomposable categories are stable
under slicing and coslicing; accordingly they are both stable under the passage to any fibre
PtYE, since PtYE = 1Y /(E/Y ).

So, the slice and coslice categories of the categories Gp of groups, R of rings and
R-Lie of Lie algebras on the ring R produce new examples of non-pointed stably ¶-
decomposable categories. Starting with a (resp. stably) ¶-decomposable category, any
fiber PtYE becomes a pointed (resp. stably) ¶-decomposable category. So, according to
Proposition 7.7, this fiber is a pointed category with normalizers where, accordingly, all
the results of [Bourn, Gray, 2015] are valid.

6.3. Proposition. If E is stably ¶E-decomposable, the base-change functors with respect
to the fibration ¶E preserve the ¶-extremal decompositions in the fibres.

Proof. This comes from the two following observations:
1) given an object Y in E the domain functor dom : PtYE → E reflects the extremal
¶E-decompositions;
2) given a map h : Y ′ → Y in E, the base-change functor h∗ : PtYE → PtY ′E produces
¶E-cartesian maps in E.
The conclusion follows from the assumed stable aspect of the ¶E-decomposition in E.

6.4. Corollary. Let E be stably ¶E-decomposable. If E is protomodular, it is strongly
protomodular.

Proof. A protomodular category E is strongly protomodular when, in addition, any
(conservative) base-change functor h∗ : PtYE → PtY ′E reflects the normal monomor-
phisms; the categories Gp of groups and Rg of rings are examples of such categories, see
[Borceux-B, 2004]. This corollary is a consequence of following lemma and of the previous
proposition, when E is stably ¶E-decomposable.
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6.5. Lemma. Let H : E // F be a conservative left exact functor between protomodular
categories which are ¶-decomposable. Then the functor H reflects the normal monomor-
phisms as soon as H preserves the ¶-extremal decompositions.

Proof. We have to show that if the image by H of the monomorphism v : U ↣ T is
normal, then v is itself is normal. Let v = w.u the decomposition through the normalizer u
of v. Since H is left exact and preserves the ¶-extremal decompositions and since H(v) is
normal, then H(w) is an isomorphism. Accordingly, H being conservative, the morphism
w is an isomorphism as well, and v is normal.

7. Quasi-pointed categories

In Section 5, we showed that any ¶-decomposable category has normalizers. Now we
point out a context in which the two conditions are equivalent.

7.1. The general case. A category E is pointed when the terminal object is also
initial; it is said quasi-pointed when it has an initial object 0 and when, in addition, the
unique map 0 → 1 is a monomorphism, which implies that any initial map αX : 0 ↣ X
is a monomorphism. So, the fibre Pt0E becomes a pointed full subcategory of E.

Clearly the category Set of sets is quasi-pointed. Given any category E, consider the
fibration ( )0 : GrdE → E associating with any internal groupoid Y 1 its “object of objects”
Y0; the fibre Grd1E above 1 is nothing but the category GpE of internal groups in E which
is pointed; any other fibre GrdYE is quasi-pointed, its initial object being ∆Y the discrete
equivalence relation on Y and its terminal object being ∇Y the indiscrete equivalence
on Y . Furthermore any fibre GrdYE is protomodular [Bourn, 1991]. It will follow from
our characterization theorem, that any fiber GrdY is actually a stably ¶-decomposable
category.

Suppose E is quasi pointed; we call kernel of a map f : X → Y the upper horizontal
arrow in the following left hand side pullback where αY is the initial map:

K[f ] //
kf //

��

X
f��

EnX //ϵX //

��

X

��

EnX // ϵ̄X //
GG

ϵX

��

��

X ×X
pX0 ��

pX1 //

��

X

��
0 // αY

// Y 0 // // 1 0 // αX

// X // 1

For the special case of the terminal map, we use the notations of the middle pullback and
call this kernel EnX the endosome of X, while we denote by ϵ̄X the unique factorization
making ϵ̄X the kernel of pX0 . Clearly the subobject ϵX is normal to ∇X . The middle
pullback determines a left exact functor En : E // Pt0E which is a right adjoint to the
inclusion Pt0E ↪→ E.
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7.2. Lemma. Let E be a quasi-pointed category. Then if a monomorphism v : U ↣ X is
normal to an equivalence relation R, so is u.ϵU : EnU ↣ X. When E is protomodular,
the converse is true. In this case a monomorphism v : U ↣ T has a normalizer as soon
as v.ϵU : EnU ↣ X has one.

Proof. Since any ϵU is normal to ∇U , if u : U ↣ X is normal to R, so is u.ϵU in any
category. Conversely when u.ϵU is normal to R, then u−1(u.ϵU) = ϵU is normal to u−1(R).
If, in addition, E is protomodular, we get u−1(R) = ∇U , and thanks to the three out
of two conditions for the fibrant morphisms of equivalence relations, u is normal (to R).
Suppose now that v.ϵU = w.ũ is the factorization through the normalizer (ũ, Rũ) of the
monomorphism v.ϵU . Then, since ϵU is normal, we get a factorization u : U ↣ X where
X is the codomain of ũ such that w.u = v and u.ϵU = ũ. According to the second equality,
u is normal to Rũ. So, (u,Rũ) is necessarily the normalizer of v.

When E is quasi-pointed, we shall denote byKtE the category of split exact sequences,
namely of split epimorphisms with a chosen kernel in the previous sense, and by K :
KtE → Pt0E the functor associating with any split exact sequence the domain of its
kernel map. Not only the functor K is left exact, but it creates pullbacks and equalizers.
We shall denote by J : E //KtE the functor associating with any X the following exact
secquence:

EnX // ϵ̄X // X ×X
pX0

// X
oo

sX0oo

Clearly we have K.J = En. On the other hand, it is straightforward that the forgetful
functor H : KtE → PtE associating with any split exact sequence its underlying split
epimorphim is a fully faithful and essentially surjective, namely that it determines a
weak equivalence of categories, making the functor ¶E.H a fibration. Now, we need the
following:

7.3. Definition.Given any functor K : E //F, a map f : X //Y is pre-cartesian (resp.
cartesian) with respect to K whence it is universal among the maps in E with codomain
Y whose image by K is K(f) (resp. whose image by K factorizes through K(f)).
A left exact functor K : E //F is said to be pre-fibrant on monomorphisms (resp. fibrant
on monomorphisms) when, given any monomorphism u : U ↣ K(X) in F, there is a
monomorphic pre-cartesian (resp. cartesian) map ũ : Ũ ↣ X in E whose image by K is
isomorphic to u.

7.4. Lemma. Given any left exact functor K : E //F, the following conditions are equiv-
alent:
1) K is conservative and pre-fibrant on monomorphisms;
2) K is fibrant on monomorphisms;
3) K determines a bijection between the set of isomorphic classes of subobjects of K(X)
and the set of isomorphic classes of subobjects of X.
Then K determines a bijection between the set of isomorphic classes of equivalence rela-
tions on K(X) and the set of isomorphic classes of equivalence relations on X.
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Proof. This follows from the fact that any left exact functor is conservative as soon as
it is conservative on monomorphisms, and that any left exact conservative functor is such
that any monomorphism is cartesian. Then the point 3) determines a bijection between
the set of isomorphic classes of reflexive relations on K(X) and the set of isomorphic
classes of reflexive relations on X. Now, K being conservative and left exact, it reflects
the equivalence relations among the reflexive ones since a reflexive relation R is an equiv-
alence relation if and only if the comparison between two finite limits built from R is an
isomorphism, see the proof of Proposition 8 in [Bourn, 1996].

Let us begin by the following result which is a simple adaptation of Proposition 2.4 in
[Bourn, Gray, 2015] from the pointed case to the quasi-pointed one:

7.5. Proposition. Suppose E is quasi-pointed. A monomorphism v : U ↣ T with
U ∈ Pt0E has a normalizer in the sense of Definition 5.2 if and only if the monomorphism
Env : U ↣ EnT = KJ(T ) admits a K-pre-cartesian monomorphism above it. This
v : U ↣ T is isomorphic to its normalizer if and only if the associated pre-cartesian
monomorphism is ¶-invertible.

Proof. The full proof is given in [Bourn, 2017] and mimicks exactly the proof of Propo-
sition 2.4 for pointed categories in [Bourn, Gray, 2015]. It is why, here, we shall only
describe the two induced constructions.

Suppose v has a normalizer (u,Rv), the following right hand side map (w, w̃, v) in KtE
with w̃ = (w.dR0 , w.d

R
1 ) is pre-cartesian above Env:

U
(0,1U ) ��

FF

Env

��
U

(0,u) ��

// Env// EnT
ϵ̄T��

U × U
pU0 ��

v×v
��

// ū // Rv

dR0 ��

// w̃ // T × T
pT0 ��

U

sU0

OO

v

II
//

u
// X //

w
//

sR0

OO

T

sT0

OO

When v is isomorphic to its normalizer, the map w is an isomorphism and this pre-
cartesian map is ¶-invertible.
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Conversely, let (w, w̃, Env) be pre-cartesian above Env:

U
(0,kd0 ) ��

FF

Env

��
U

kd0 ��

// Env// EnT
ϵ̄T��

R[d0]
p0 ��

(δ1.p0,δ1.p1)

��
d2 // Rv

d0 ��

// w̃ // T × T
pT0 ��

Rv

s0
OO

δ1

IId1
// X //

w
//

s0
OO

T

sT0

OO

Then the map w̃ is necessarily of the form (w.d0, δ1) with δ1 : Rv
//T such that δ1.s0 = w

(from w̃.s0 = sT0 .w = (w,w)) and δ1.kd0 = v (from w̃.kd0 = ϵ̄T .Env). The universal
property of this pre-cartesian map applied to the morphism (δ1, (δ1.p0, δ1.p1), Env) induces
a factorization (d1, d2) which completes the equivalence relation structure on Rv and makes
u = d1.kd0 : U ↣ X normal to Rv and such that w.u = δ1.kd0 = v. This makes (u,Rv)
the normalizer of v. Saying that the pre-cartesian morphism (w, w̃, Env) is ¶-invertible
is saying that w is invertible and that v is isomorphic to its normalizer.

The following lemma is technical and straightforward:

7.6. Lemma. Let K : E // F be a left exact functor between finitely complete categories
which creates pullbacks. If u : U ↣ T is a monomorphism in E, and t : T ′ // T
any morphism such that K(t) is a monomorphism and there is map w satisfying k(u) =
K(t).w, then there is a pullback ū : Ū ↣ T ′ of u along t such that K(ū) = w. If moreover
u is K-pre-cartesian, so is ū. In particular, if u : U ↣ T is a monomorphic K-pre-
cartesian map in E and g : W // T a map such that K(g) is an identity map, then there
exits a pullback ū of u along g such that K(ū) = K(u) and ū is K-pre-cartesian.

7.7. Proposition. Suppose E is quasi-pointed. The following conditions are equivalent:
1) the functor K : KtE // E is pre-fibrant on monomorphisms
2) any monomorphism u : U ↣ T with U ∈ Pt0E has a normalizer.

Proof. We have 1) ⇒ 2) by the previous proposition. As for the converse, first notice
that any split exact sequence as on the left hand side vertical diagram can be embedded
in some J(T ) in the following way:

Kf ;
kf ��

//
Enkf // EnX

(0,ϵX)
��

EnX
ϵ̄X��

X
f ��

// (f,1) // Y ×X
pY0 ��

//s×X // X ×X
pX0 ��

Y

s

OO

Y //
s

//
(1,s)

OO

X

sX0

OO
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Given any monomorphism m : U ↣ Kf , in presence of 2), the monomorphism Enkf .m :
U ↣ EnX = K.J(X) has a normalizer which means that there is K-pre-cartesian map
(β, α,Enkf .m) above Enkf .m again by the previous proposition. According to the pre-
vious lemma there is a pullback (β̄, ᾱ,m) of this map along (s, (s.f, 1), Enkf ) which is
necessarily K-pre-cartesian above m.

In the pointed case, we recover the Theorem 2.8 of [Bourn, Gray, 2015]. The category
Set of sets is a non-pointed example satisfying our assumption since the functor K, being
a terminal functor, is trivially pre-fibrant on monomorphisms. The normalizer of any
initial map αT : ∅ ↣ T is nothing but (αT ,∇T ), so that any αT is isomorphic to its
normalizer.

7.8. Quasi-pointed protomodular categories. The protomodular context pro-
vides us with a much sharper observation:

7.9. Theorem. Suppose E is quasi-pointed. When E is ¶-decomposable, the functor K
is pre-fibrant on monomorphisms.
When moreover E is protomodular, the following conditions are equivalent:
1) the category E is ¶-decomposable
2) the functor K is pre-fibrant on monomorphisms
3) in the category E any monomorphism u : U ↣ T has a normalizer.
The category E is then necessarily stably ¶-decomposable.

Proof. Suppose 1). Let (a, b) : A ⇄ B be a split epimorphism and v : U ↣ K[a]
any monomorphism. Let us consider the extremal decomposition of the monomorphism
(αB, v.ka) where ka : K[a] ↣ A is the kernel of a:

U

��

II

v.ka

��
// ū // Ā

ā
��

// α // A

a
��

0

OO

��

αB

KK
//
αB̄

// B̄ //
β
//

b̄

OO

B

b

OO
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The left hand side square being a pullback, the map ū is a kernel of ā. Let us show that
the following right hand side monomorphism (β, α, v) in KtE is K-pre-cartesian above v:

U U

kf
��

HH

v

��
U

ū
��

// v // K[a]

ka
��

U

��

//
kf
// X

f
��

x
��

x̄ // Ā

ā
��

// α // A

a
��

0

OO

//
αY

// Y

s

OO

y

JJȳ
// B̄ //

β
//

b̄

OO

B

b

OO

So consider any map (y, x, v) in KtE. Now complete the diagram in KtE by the map
(αY , kf , 1U) on the left hand side; it produces a decomposition of the map (αB, v.ka) in
PtE, whence the dotted factorization (ȳ, x̄) such that (among other things) x̄.kf = ū,
which shows that the factorization of (ȳ, x̄) at the level of the kernels is 1U . Accordingly
the map (ȳ, x̄, 1U) is the required factorization in KtE. Whence 2.

Suppose 2). Then E has normalizer for any monomorphism u : U ↣ X with U ∈ Pt0E
by the previous proposition. When E is protomodular, then it has normalizer for any
monomorphism by Lemma 7.2. Whence 3). And it is clear that 3) implies 2), again by
the previous proposition.

Let us check 2) ⇒ 1). First it is easy to check, by Lemma 7.6 that the K-pre-
cartesian maps above the monomorphisms are necessarily monomorphic. Consider any
monomorphism (y, x) : (f ′, s′) → (f, s) in PtE. Complete the diagram by the kernels
and the factorization K(x), then take the K-pre-cartesian map (ȳ, x̄, K(x)) above this
monomorphism K(x):

K[f ′]
kf ′ ��

FF

K(x)

��
K[f ′]
kf̄ ��

//K(x)// K[f ]
kf��

X ′

f ′
��

FF x ��
// x // X̄

f̄ ��

// x̄ // X
f
��

Y ′
s′
OO

��

y

II
//

y
// Ȳ //

ȳ
//

s̄

OO

Y

s

OO

It determines a factorization (y, x, 1K[f ′]). Since E is protomodular, the isomorphic fac-
torization 1K[f ′] at the level of kernels implies that the map (y, x) in PtE is underlying a
pullback, namely that this map is ¶E-cartesian.

It remains to show that the decomposition (y, x) = (ȳ, x̄).(y, x) is extremal. So,

consider another decomposition of (y, x) = (b̄, ā).(b, a) with (b, a) monomorphic and ¶E-
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cartesian; this implies that the map a.kf ′ is a kernel of g. Complete the following diagram
with the kernels:

K[f ′]

kf ′
��

K[f ′]
EE

K(x)

��

a.kf
��

K[f ′]

kf̄ ��

//K(x) // K[f ]

kf
��

X ′

f ′
��

// a // A

g
��

ā ��
α // X̄

f̄
��

// x̄ // X

f
��

Y ′
s′

OO

//
b

// B

t

OO

b̄

IIβ
// Ȳ //

ȳ
//

s̄

OO

Y

s

OO

The map (b̄, ā, K(x)) in KtE gives a unique factorization (β, α, 1K[f ′]) through the K-pre-
cartesian map (ȳ, x̄, K(x)). The map (β, α) is actually the desired factorization in PtE, so
that E is ¶-decomposable. The fact that E is stably ¶-decomposable is a consequence of
the fact that the K-pre-cartesian morphisms are necessarily stable under pullbacks along
¶E-cartesian morphisms, again according to Lemma 7.6, since any ¶E-cartesian morphism
can be extented into a morphism in KtE whose image by K is an identity map.

7.10. Corollary. Let C be quasi-pointed, protomodular and ¶-decomposable. Then:
1) a morphism (y, x) : (f̄ , s̄) → (f, s) is ¶-cartesian if and only if it is K-invertible;
2) a monomorphism (y, x) : (f ′, s′) ↣ (f, s) is a ¶-outsider if and only if it determines a
K-pre-cartesian monomorphism above K(x) in KtE:

K[f̄ ]
kf̄ ��

//K(x)// K[f ]
kf��

X̄
f̄ ��

// x // X
f ��

Ȳ //
y
//

s̄

OO

Y

s

OO

3) a monomorphism v : U ↣ T is normal in C iff and only if the K-pre-cartesian
morphism associated with Env : U ↣ EnT is ¶-invertible.

Proof. The first point is a classical characterization of pullbacks in PtC. According to
the proof of [2) → 1)] in the previous theorem, the monomorphism (y, x) ∈ PtC is a
P -outsider if and only if the map y is 1Y , namely if and only if (y, x) is a ¶-outsider;
whence 2). In our protomodular context, a monomorphism is normal if and only if it is
isomorphic to its normalizer; then 3) is a consequence of Proposition 7.5.

7.11. Corollary. Let ( )0 : Grd → Set be the forgetful functor from groupoids to sets.
Then any fibre GrdY is stably ¶-decomposable.
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Proof.We recalled that any fibre GrdY is quasi-pointed and protomodular. A subobject
u1 : U1 ↪→ X1 is normal in GrdY if and only if, for any arrow ϕ : y // y′ in X1 and any
endomap τ on y in U1, the endomap ϕ.τ.ϕ−1 is in U1 [Bourn, 2008]. The normalizer of
any subobject v1 : U1 ↣ T 1 in GrdY is then defined by the subset X1 of those arrows
ϕ : y //y′ of T 1 which are such that, for any endomap τ on y in U1, the endomap ϕ.τ.ϕ−1

is in U1 and, for any endomap θ on y′ in U1, the endomap ϕ−1.θ.ϕ is in U1.

In Section 3.5, the construction of the ¶-decomposition in the category Gp of groups
needed the universal quantifier. It is why it is necessary to add the assumption of cartesian
closedness to show that the category GpE of internal groups in E has normalizers, see
[Bourn, Gray, 2015]. Of course, the universal quantifier is also used in the previous
corollary. It is showed in the preprint [Bourn, 2017] that, in the same way as for GpE,
any fibre GrdYE is stably ¶-decomposable, provided that the ground category E is locally
cartesian closed (which is true when E is a topos, see [Johnstone, 1977]).

7.12. The fibers CatYE. Let ( )0 : Cat // Set be the fibration associating to any
category its set of objects. The category Mon of monoids is the fiber above 1. Any other
fiber CatY is quasi-pointed. Call Schreier split epimorphism any split epimorphism (f

1
, s1)

in this fiber such that f
1
is a split fibration or, in other words, any split epimorphism

(f
1
, s1), where the splitting s1 is a fibrant splitting. This class ΣY of split epimorphisms

behaves in CatY exactly as the class of Schreier split epimorphisms inMon and determines
a subfibration ¶ΣY

of ¶CatY , see [Bourn, 2021]. On the model of Mon, see [Bourn, 2017],
we get:

7.13. Proposition.Any fiber CatY is stably ¶ΣY
-decomposable. When E is locally carte-

sian closed, it is the case for any fiber CatYE.

Proof. Given any subobject in Pt(CatY ) between split epimorphims with fibrant split-
tings:

X′

F ′
��

// //
// // X̄

F̄ ��

// // X
F
��

Y′
S′

OO

// //
// // Ȳ // //

S̄

OO

Y
S

OO

the morphisms of the subcategory Ȳ are those morphisms ψ ∈ Y such that q(S(ψ).u) ∈
X′, ∀u ∈ KerF ′ while the morphisms of the subcategory X̄ those morphisms ϕ ∈ X such
that F (ϕ) ∈ Ȳ, and q(ϕ) ∈ X′. From this construction, checking the universal property
and the stablitily under pullback along ¶Σ-cartesian morphisms is straightforward. In the
internal context CatYE, the proof is detailed in [Bourn, 2017]; and again the assumption
of the locally cartesian closedness is needed by the presence of the universal quantifier in
the definition of the subcategory Ȳ.
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8. ¶-decomposable category and additive setting

Let us recall that a pointed category A is additive if and only if any object X is endowed
with a natural internal group structure which is then necessarily commutative and that a
first kind of ”non-pointed additive” setting was introduced with the following definition
and proposition:

8.1. Definition. [Johnstone, 1989] A category A is said to be a naturally Mal’tsev cat-
egory when any object X is endowed with a natural Mal’tsev operation (namely ternary
operation pX : X × X × X // X satisfying pX(x, y, y) = x = pX(y, y, x)) which is then
necessarily associative and commutative.

8.2. Proposition. [Bourn, 1996] A category A is a naturally Mal’tsev one if and only
if any fibre PtYA is additive.

In Proposition 3.3, we observed that in a ¶-decomposable category E each ¶-invertible
monomorphism is a ¶-outsider. Here we shall investigate the inverse implication and show
that it is strongly related with this non-pointed additive setting.

8.3. ¶-invertible vs ¶-outsider.

8.4. Proposition. Consider the following conditions:
1) the category E is ¶-decomposable and any ¶-outsider is ¶-invertible;
2) the category E is a Mal’tsev one and any base-change y∗ with respect to the fibration
¶E along a monomorphism y is pre-fibrant on subobjects;
3) the category E is a Mal’tsev one and, for any monomorphism m : Y ′ ↣ Y and any
equivalence relation R on Y ′, there is a largest equivalence relation Σ on Y among those
ones which are such that m−1(S) is R and the induced monomorphism R ↣ Σ is fibrant;
4) the category E is a Mal’tsev one and, for any monomorphism m : Y ′ ↣ Y , there is a
largest equivalence relation Rm to which m is normal;
α) E is a Mal’tsev category with normalizers and, for any monomorphism m : Y ′ ↣ Y ,
there is a largest equivalence relation Rm to which m is normal.
Then we get 1)⇒ 2)⇒ 3) ⇒ 4) and 1)⇒ α)⇒ 4).
If, moreover, E is protomodular we get: 1) ⇐⇒ 2) and α) ⇐⇒ 4) ⇒ 5), with:
5) E is a naturally Mal’tsev category.

Proof. Suppose 1). By Corollary 3.4, we know that E is a Mal’tsev category. Given any
left hand side diagram where the square is a pullback:

X ′′ // ξ //

f ′′
��

FF

x

��
X ′

f ′
��

// x′
// X

f
��

X ′′ // x′′
//

f ′′
��

FF

x

��
X̄

f̄
��

// ξ̄ // X

f
��

Y ′
s′′

OO

Y ′
s′

OO

//
y
// Y

s

OO

Y ′ //
y

//
s′′

OO

Y

s̄

OO

Y

s

OO
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the extremal decomposition of (y, x′′) on the right hand side produces the desired y∗-pre-
cartesian map above ξ. Whence 2).

Suppose 2). Then consider the y∗-pre-cartesian map associated with the monomor-
phism (dR0 , y.d

R
1 ) in PtY ′E in the left hand side diagram which produces a reflexive relation

Σ on Y as on the right hand side and a monomorphism (y, ỹ) : (dR0 , s
R
0 ) ↣ (dΣ0 , s

Σ
0 ) of

split epimorphisms:

R //
(dR0 ,y.dR1 )

//

dR0 ��

DD

(y.dR0 ,y.dR1 )

��
Y ′ × Y

pY
′

0 ��

// y×Y // Y × Y

pY0 ��

R // ỹ //

dR0 ��

FF

(y.dR0 ,y.dR1 )

��
Σ

dΣ0 ��

//
(dΣ0 ,d

Σ
1 )// Y × Y

pY0 ��
Y ′

sR0

OO

Y ′
(1,y)

OO

//
y

// Y

sY0

OO

Y ′ //
y
//

sR0

OO

Y

sΣ0

OO

Y

sY0

OO

This reflexive relation Σ is actually an equivalence relation since E is a Mal’tsev cat-
egory and the monomorphism (y, ỹ) becomes a monomorphism R ↣ Σ of equivalence
relations which is fibrant since the square indexed by 0 is a pullback. Accordingly we
get y−1(Σ) = R. The universal property of the y∗-pre-cartesian map shows that Σ is the
largest equivalence relation on Y among those S which are such that y−1(S) is R and the
induced monomorphism R ↣ Σ is fibrant. Whence 3). The implication 3) ⇒ 4) is trivial.
The implication 1) ⇒ α) is a consequence of Proposition 5.5 and of (1 ⇒ 4)). Again the
implication α) ⇒ 4) is trivial.

Suppose now that E is protomodular and 2) is satified. Take any monomorphism in
PtE as in the left hand side diagram and take the pullback of (f, s) as in the middle
diagram:

X ′ // x //

f ′
��

X

f
��

X ′

f ′
��

HH

x

��
// ū // X̄

f̄
��

// w̄ // X

f
��

X ′

f ′
��

HH

x

��
// w̌ // X̄ ′

f̄ ′
��

// ǔ // X

f
��

Y ′ //
y
//

s′

OO

Y

s

OO

Y ′
s′

OO

Y ′ //
y
//

s̄

OO

Y

s

OO

Y ′
s′

OO

//
y
// Y

s̄

OO

Y

s

OO

This produces a monomorphism in PtYE which by 2) produces the right hand side above
diagram where its left hand part is a pullback. By Proposition 3.2, it is an extremal
¶-decomposition. That any extremal ¶-decomposition is of this kind implies that any
¶-outsider is ¶-invertible.

Suppose E protomodular and α). By Proposition 5.4, it is equivalent to saying that E
is a protomodular category and any monomorphism is normal. Then 4) becomes trivial.

Let us show 5). When E is protomodular, so is any (pointed) fiber PtYE. A category
is additive if and only if it is pointed protomodular and such that any monomorphism is
normal [Borceux-B, 2004].

Suppose E is protomodular and such that any monomorphism is normal. Let us show
that any monomorphism m in PtYE is normal in this fiber. Let R denote the equivalence
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relation on X to which the monomorphism m is normal in the ground category E:

X ′ // m //

f ′

��

X

f
��

X ′ ×X ′

pX
′

0 ��
pX

′
1��

//̃m // R

dR0
��

dR1
��

R[f ′]
��

��

// // R[f ] ∩R
��

��
Y

s′

OO

Y

s

OO

X ′ //
m

//

OO

X

OO

∇X′ //
(m,m̃)

// R

The monomorphism m lying in the fiber PtYE determines a cartesian morphism R[f ′] ↣
R[f ] abovem. Whence: m−1(R[f ]∩R) = m−1(R[f ])∩m−1(R) = R[f ′]∩∇X′ = R[f ′]; and
the above right hand side pullback in GrdE. Accordingly the monomorphism R[f ′] ↣
R[f ] ∩ R is fibrant, since so is ∇X′ ↣ R. By R[f ] ∩ R ⊂ R[f ] the equivalence relation
R[f ] ∩ R lies in PtYE. So, the monomorphism m of PtYE is normal to the equivalence
relation R[f ] ∩R in PtYE, and PtYE is additive.

8.5. Corollary. Let E be a quasi-pointed protomodular category E. The following con-
ditions are equivalent:
1) E is ¶-decomposable and such that any ¶-outsider is ¶-invertible;
2) the functor K : KtE // Pt0E is pre-fibrant on monomorphism, and any pre-cartesian
monomorphism is ¶-invertible:
3) any monomorphism in E is a normal monomorphism.
In this case, E is a naturally Mal’tsev category. In particular, a pointed protomodular
category E is additive if and only if it is is ¶-decomposable and such that any ¶-outsider
monomorphism is ¶-invertible.

Proof. By 1) ⇐⇒ 2) in Theorem 7.9 and by Corollary 7.10, when E is quasi-pointed
and protomodular we have immediately 1) ⇐⇒ 2). We noticed that, in the protomodular
context, saying that any monomorphism is normal is saying that any monomorphism is
isomorphic to its normalizer; so 1) ⇐⇒ 3) is a consequence of Theorem 7.9 and of
Proposition 7.5. The last point is then a straighforward consequence of Condition 5) in
the previous proposition.

An example of such a quasi-pointed context is given by any fiber GrdYE in a Mal’tsev
category E, see Corollary 2.8 in [Bourn, 2008].

8.6. ”Non-pointed additive” settings. The naturally Mal’tsev setting (1) is the
least restrictive of four, increasingly restrictive, ”non-pointed additive” settings we con-
sider here:

8.7. Definition. [Bourn, 2008] A category C is:
2) antepenessentially affine when any base-change functor is fully faithful;
3) penessentially affine when, in addition, any base-change functor is fibrant on monomor-
phisms;
4) essentially affine when any base-change functor is an equivalence of categories.

In [Bourn, 2008], a strict example of each level is given. These last three types of
non-pointed additive categories are necessarily protomodular since a fully faithful functor
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is necessarily conservative. They are naturally Mal’tsev categories; and in a penessentially
category, any morphism in normal, again see [Bourn, 2008]. We can now add, in the exact
context [Barr, 1971], some precision about the relationship between the above two first
levels:

8.8. Proposition. Consider the following conditions:
1) C is penessentially affine
2) C is an antepenessentially affine, ¶-decomposable and the ¶ outsiders coincide with the
¶-invertibles;
3) C is protomodular, ¶-decomposable and the ¶ outsiders coincide with the ¶-invertibles.
We get 1) ⇒ 2) ⇒ 3). When, in addition, C is exact, these three conditions are equivalent.

Proof. By definition of a penessentially affine category and by Proposition 8.4, we have
[1)⇒ 2)]. We already noticed that any antepenessentially affine is protomodular, whence
[2)⇒ 3)]. Now suppose C exact and 3). Any protomodular category is a Mal’tsev one.
In a regular (and a fortiori exact) Mal’tsev category, any base-change functor f ∗ along a
regular epimorphism f is fully faithful and fibrant on monomorphisms by Theorem 52 in
[Bourn, Gran, Jacqmin, 2021]. It remains to show that, in the exact context, this is the
case for any base-change m∗ along a monomorphim m as well.

The base-change m∗ is conservative since C is protomodular, and pre-fibrant on
monomorphims by Proposition 8.4; so, according to Proposition 7.4, it is fibrant on
monomorphims. It remains to show that m∗ is fully faithful. This will be the conse-
quence of the following lemma.

8.9. Lemma. Let U : E // F be any left exact functor which is fibrant on monomor-
phism. Then U is ”fully faithful on monomorphisms”. When, in addition, E is an exact
category and F a regular one, then U is fully faithful; it reflects and preserves the regular
epimorphims.

Proof. We know by Proposition 7.4 that U is conservative. Any left exact conservative
functor is faithful. First observe that two objects X and X ′ with same image Y by U
are isomorphic above 1Y in unique way. We have U(X ×X ′) = Y × Y . Take the fibrant
monomorphism i : W ↣ X×X ′ above the diagonal sY0 : Y ↣ Y ×Y . Then U(pX .i) = 1Y ,
so pX .i : W //X is an isomorphism, and the conclusion. From that, U is ”fully faithful
on isomorphisms”. Suppose now you have a monomorphism n : U(X) ↣ U(X ′). Let
m : W ↣ X ′ the cartesian monomorphism above it. Then U(W ) = U(X) and by the
previous isomorphism, you get a monomorphism above n.

Suppose, in addition, E exact and F regular. Let us show that U is ”fully faithful”
on regular epimorphisms. Let ϕ : U(X) ↠ U(X ′) be any regular epimorphism. Take S
the equivalence relation on X above the kernel equivalence relation R[ϕ] on U(X) given
by Lemma 7.4. This equivalence relation S has a quotient q : X ↠ Q since E is exact.
Its image U(q) has R[f ] as kernel equivalence relation. Since F is regular, you get a
monomorphic factorization n : U(X ′) ↣ U(Y ) such that n.ϕ = U(q) (∗). Let m be
the cartesian monomorphism above it. Denote m̄ : W ↣ X its pullback along q, and
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q̄ : W ↠ X ′ the induced regular epimorphism. Then (∗) makes U(m̄) invertible; and since
U is conservative, m itself is invertible. So, set f = q̄.m̄−1; you get U(f) = U(q̄.m̄−1) = ϕ.
This makes U fully faithful. Its reflects the regular epimorphism since m.f = q and q
being a regular epimorphism, the monomorphism m is an isomorphism; so, f is itself a
regular epimorphism.

Finally let us show that U preserves the regular epimorphisms. Let f : X ↠ X ′ be
a regular epimorphism in E. The functor U preserves R[f ], so U(R[f ]) is an effective
equivalence relation in the regular category F. Denote q̄ : U(X) ↠ Y its quotient and
n : Y ↣ U(X ′) the monomorphic factorization such that n.q̄ = U(f) (∗). Let m :
W ↣ X ′ be the cartesian monomorphism above it. Then the factorization (∗) induces
a factorization m.q = f . Since f is a regular epimorphism, m is an isomorphism. So is
n = U(m), and U(f) is a regular epimorphism.

We recalled that in a penessentially affine category any monomorphism is normal; now
we have:

8.10. Corollary. Let E be any exact quasi-pointed protomodular category. The two
following conditions are equivalent:
1) E is penessentially affine;
2) any monomorphism is normal.

Proof. Apply the previous proposition and Corollary 8.5
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Cahiers de Top. et Géom. Diff., 28, 1987, 197-226.

D. Bourn, Normalization equivalence, kernel equivalence and affine categories, in Lecture
Notes in Mathematics, vol. 1488, 1991, Springer-Verlag, 43-62.

D. Bourn, Mal’cev Categories and fibration of pointed objects, Applied categorical struc-
tures, 4, 1996, 302-327.

D. Bourn, Abelian groupoids and non-pointed additive categories, Theory and Applications
of Categories, 20, n04, 2008, 48-73.

D. Bourn, Normalizers in the non-pointed case, Technical report 528, LMPA-Université
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