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THE 2-LOCALIZATION OF A MODEL CATEGORY

DUBUC E. J., GIRABEL J.

Para mi amiga Marta

Abstract. In this paper we elaborate on a 2-categorical construction of the homotopy
category of a Quillen model category. Given any category A and a class of morphisms
Σ ⊂ A containing the identities, we construct a 2-category Ho(A ) obtained by the
addition of 2-cells determined by homotopies. A salient feature here is the use of a
novel notion of cylinder introduced in [1]. The inclusion 2-functor A −→ Ho(A ) has a
universal property which yields the 2-localization of A at Σ provided that the arrows of Σ
become equivalences inHo(A ). This result together with a fibrant-cofibrant replacement
is then used to obtain the 2-localization of a model category C at the weak equivalences
W. The set of connected components of the hom categories yields a novel proof of
Quillen’s results. We follow the general lines established in [1], [2] for model bicategories.

Introduction

In this paper we study a 2-dimensional version of Quillen’s homotopy category con-
struction. As in Quillen’s construction, our input is a 1-model category, but our out-
put are (2,1)-categories, and we set and establish their localization universal property
in the 3-category of 2-categories and 2-functors. Of particular interest will be to study
the relation with the simplicial localization developed in [4], [5], and the possibility of
a construction of this localization using homotopy-like constructions in place of ham-
mocks. We follow the general lines established in [1], [2] where the notion of model
2-category is introduced, and a fully 2-dimensional version is developed, with input and
output (2,2)-categories, and the localization universal property set in the 3-category of
2-categories and pseudofunctors. The developments here are not just an adaptation of
the general theory to a particular case, in particular most of proofs produced are not
simplified versions of the ones of the (2, 2) case. There are two substantial differences:
First, the absence of non-invertible 2-cells not only simplifies the theory, but also avoids
the need for the new axioms and definitions introduced in loc. cit. above, which con-
form a different theory in form and spirit. Second, we introduce the use of functorial
factorizations in the fibrant-cofibrant replacement, which allows us to dispense the use
of pseudofunctors keeping only 2-functors, a fact that adds important simplifications but
which has its own shortcomings. Only left homotopies suffice, there is no need to consider
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right homotopies. There are no fibrant nor cofibrant replacement 2-functors at the level
of the homotopy 2-categories, but a simultaneous fibrant-cofibrant replacement 2-functor.

We see in an appendix the role played by the right homotopies, and how the original
Quillen factorization axiom suffices to determine a fibrant and a cofibrant replacement at
the homotopy level, but given by pseudofunctors, not 2-functors, and the same happens
with the localization arrow, also given by a pseudofunctor.

We pass now to describe the content of the paper:

Section 1. In a first section we fix notation, terminology, and recall some definitions
whose explicit formulation become necessary to formulate the statements in this paper
and develop their proofs.

In particular, given a 2-category A , a class of morphisms Σ ⊂ A containing the
identities, and any 2-category D , we denote by Homp(A ,D) the 2-category with objects
the 2-functors, arrows the pseudonatural transformations and 2-cells the modifications,
and by Homp(A ,D)+ the full 2-subcategory spanned by the 2-functors which send the
class Σ into equivalences. Recall that we can consider categories as trivial 2-categories
whose only 2-cells are the identities.

Section 2. Given a category A and a class of morphisms Σ ⊂ A containing the
identities, this section concerns the construction of a 2-category Ho(A ) obtained by the

addition of 2-cells to A , and such that the inclusion 2-functor A
i−→ Ho(A ) has the

following universal property:

(up) Precomposition with i, i∗ : Homp(Ho(A ),D)+ −→ Homp(A ,D)+ induces an
isomorphism of 2-categories for any 2-category D .

It is clear that Ho(A ) will be the 2-localization of A at Σ as soon as the arrows of
Σ became equivalences in Ho(A ). We show that a sufficient condition for this is that Σ
has the 3 x 2 property and is generated by sections and retractions.

We construct Ho(A ) using cylinders and homotopies, so we call the members of Σ
weak equivalences and Ho(A ) the homotopy 2-category. Homotopies will determine the
2-cells of Ho(A ). We work using a definition of cylinder with respect to a class Σ, and
the corresponding homotopies, introduced in [12, 3.2.3], which is more general and less
rigid than Quillen’s.

A cylinder C for an object X is a configuration X
d0 //

d1
//

x %%

W,

s
◦

yy
Z

where s ∈ Σ

and sd0 = sd1 = x 1. A homotopy H with cylinder C from an arrow X
f−→ Y to an

arrow X
g−→ Y is defined in the usual way as an arrow W

h−→ Y such that f = h d0 and
g = h d1.

Homotopies can be vertically (actually sequences of composable homotopies) and hor-

1In [12, 3.3.1] it is also introduced a more restricted notion under the name ”fork”, where x is assumed
to be a weak equivalence.
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izontally composed but they are not yet the 2-cells of a 2-category Ho(A ) with the same
objects and arrows as C. The 2-category axioms are equations, thus, the homotopy on
the left of the equation should coincide with the one on the right, and if not, they should
be identified. We do this by defining an equivalence relation as follows:

If A is already a 2-category and s is an equivalence, it follows that there is a unique
2-cell Ĉ : d0 =⇒ d1 such that s Ĉ = x, and this determines a 2-cell Ĥ = h Ĉ : f =⇒ g.

A 2-functor A
F−→ D into a 2-category D sends cylinders to cylinders and homotopies

to homotopies, thus if it sends weak equivalences into equivalences, then there is a 2-cell
F̂H : Ff =⇒ Fg.

In view of this, given such a 2-functor F : A −→ D , we could extend F to a 2-functor

F̃ defined in Ho(A ) as in the diagram A � � i //

F %%

Ho(A )

∃!F̃ww
D

by defining F̃ = F

on objects and arrows, and F̃ (H) = F̂H on homotopies. For F̃ to be well defined on
equivalence classes it is then necessary that for any two equivalent homotopies H, K,
the equality F̂H = F̂K must hold for all such 2-functors. We just set this condition
as the definition of the equivalence relation we use to define Ho(A ), and call it the
ad-hoc relation.

We show that this relation indeed determines a 2-category, which is the 2-category
sought, that is, it satisfies the universal property (up) above.

We consider also another relation between homotopies, that we call the germ relation.
There is a natural definition of morphisms of cylinders, which then form a category. Fixing

two objects and two arrows X
f //
g // Y , the set of homotopies Hpy(X, Y )(f, g)(C) with

cylinder C defines a contravariant set valued functor on the variable C, and the germ
relation is the equivalence relation which computes its colimit. This relation was already
considered by Quillen himself in [10] and we think it will be meaningful for the work in
higher dimensions. Here we show that it is finer than the ad-hoc relation, a fact that
comes in handy to establish equality of 2-cells in Ho(A ), as we see in the next section.

Section 3. In this section we apply the construction of the homotopy 2-category in
Section 2 to develop a 2-dimensional version of Quillen’s localization of a model category
C , (F , Cof, W), notation refers to 1.4. We set Σ = W and we will consider the cases
A = C and A = Cfc, the full subcategory of fibrant-cofibrant objects.

In a first subsection 3.1 we work with Cfc. As usual, we check that weak equivalences
between fibrant-cofibrant objects factor though a fibrant-cofibrant object as a section
followed by a retraction, both weak equivalences. Then using Theorem 2.3.5 we establish

that the 2-functor Cfc
i−→ Ho(Cfc) is the 2-localization in a strict sense of Cfc at the

weak equivalences. For any 2-category D , precomposition with i establishes a 2-category
isomorphism

i∗ : Homp(Ho(Cfc),D) −→ Homp(Cfc,D)+

Note that Cfc is not a model category.
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There is another 2-categoryHofc(C ) ⊂ Ho(C ), the full 2-subcategory ofHo(C ) whose
objects are the fibrant-cofibrant objects, which is coarser than Ho(Cfc) since for the latter
the ad-hoc relation may include 2-functors on Cfc which do not extend to C . We abound
on this in Remark 3.1.5.

In a second subsection 3.2 we recall Quillen’s cylinders, denoted here q-cylinders, as

cylinders X
d0 //

d1
//

x %%

W,

s
◦

yy
Z

with Z = X, x = idX , that is X
d0 //

d1
//

id %%

W,

s
◦

yy
X

where

furthermore it is required that X ⨿X
(d0d1)−→ W be a cofibration. Quillen’s left homotopies,

denoted here q-homotopies, are homotopies whose cylinder is a q-cylinder.
We show using the germ relation that in Ho(Cfc) any 2-cell [H] can be given with

H a q-homotopy. On the other hand, we show how 2-cells determined by q-homotopies
compose vertically. In this way, the 2-category Ho(Cfc) coincides with the 2-category
with 2-cells given by classes (not sequences) of q-homotopies. We comment that gen-
eral homotopies are necessary for the horizontal composition because the composite of a
q-homotopy H with an arrow l on the right, H l, is given by a cylinder which is not any
more a q-cylinder, see Comment 3.2.7.

Taking the connected components in the hom-categories of our construction we derive
Quillen’s homotopy category of Cfc.

In subsection 3.3 we set A = C and develop its localization C
q−→ Ho(Cfc). Our

main theorem is the following: For any 2-category D , precomposition with q establishes
a 2-category pseudoequivalence

q∗ : Homp(Ho(Cfc),D) −→ Homp(C ,D)+

We remark that we will need the fundamental theorem 2.2.5, not only the localization
theorem 2.3.5 as it was in the case A = Cfc. We construct a fibrant and a cofibrant
replacement which, while they are defined on arrows, do not necessarily preserve compo-
sition. At this point we assume that the factorization axiom is functorial, a requirement
frequently used in the post-Quillen literature, and show that this yields a fibrant-cofibrant

replacement functor C
r−→ Cfc. We take then the composition with Cfc

i−→ Ho(Cfc) and

prove that it establishes the localization q = i r, C
q−→ Ho(Cfc) sought. We also re-

mark here that for the proof developed in subsection 3.3.7 it is necessary to count with a

fibrant-cofibrant replacement 2-functor Ho(C )
r−→ Ho(Cfc) at the level of the homotopy

categories. In subsection 3.3.1 we construct such a 2 functor. With this, the proof goes
as follows: We show that i r = r i, so that q = r i, and we prove that the 2-functor r∗ of
precomposition with r is a pseudoequivalence of 2-categories. Since by Theorem 2.2.5 we
already know that this is the case for the 2-functor i∗, the result follows.

Note that the 2-functor r is a simultaneous fibrant-cofibrant replacement, not a com-
position of a fibrant with a cofibrant replacement 2-functors, which do not necessarily
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exist. The reader should be aware also that since in subsection 3.3 we are assuming func-
torial factorization, the 2-categories Ho(Cfc) and Hofc(C ) coincide, discarding a possible
inconsistency. This fact is not used to prove the theorem.

Appendix. In this appendix we complete the picture. We briefly describe what is
the situation of the problem of the 2-localization of a model category in the absence of
functorial factorizations. Complete definitions and proofs are developed in [DDS2] for
model bicategories. The interest in the particular case of model categories is twofold.
One is that it is much simpler, avoiding the difficulties, complications and new axioms
necessary to be able to deal with non invertible 2-cells. The other is that surprisingly the
resulting theory is different from the theory developed in section 3, and this difference
adds a new light on the functorial factorization axiom and its consequences.

The concepts dual to that of cylinder and homotopy become necessary, left fibrant
and right cofibrant homotopies play an essential role. Pseudofunctors are unavoidable,
the localizing arrow q : C −→ Hofc(C ) is a pseudofunctor, and the localization theorem
becomes: Precomposition with q establishes a 2-category pseudoequivalence

q∗ : pHomp(Hofc(C ),D) −→ pHomp(C ,D)+

for every 2-category D . Now the hom 2-categories are pHomp, that is the 2-category
whose objects are the pseudofunctors. More importantly, there are fibrant and cofibrant
replacements at the level of the homotopy 2-categories, which allow to obtain the fibrant-
cofibrant replacement as a composition. There is no pseudofunctor C −→ Ho(Cfc), now
the homotopy category is Hofc(C ), not Ho(Cfc), which is a different 2-cate,gory in the
absence of functorial factorization.

1. Preliminaries

This section is necessary to recall some concepts that we will use explicitly later, and to
fix the notation and terminology.

1.1. 2-Categories.

1.1.1. Notation. A 2-category has objects X, arrows X
f−→ Y and 2-cells f

α
=⇒ g

(we will also say morphisms, maps, or 1-cells to refer to the arrows). The arrows and
2-cells are composed horizontally, which we simply denote as a juxtaposition, and the
2-cells are composed vertically, which we denote by ◦ , the arrows are considered to be
identity 2-cells for vertical composition, we will denote both f and idf as appropriate in

the context. Thus, given f
α

=⇒ g, we have α ◦ f = α and g ◦ α = α.

1.1.2. Remark. In the presence of vertical composition, to determine a horizontal com-
position of 2-cells it is enough to define a horizontal composition between 2-cells and
morphisms, which some authors call whiskering :
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For each X Y Z W,l

f

g

α
r suppose we have defined 2-cells r α and α l.

If the following axioms hold

1. For each X
f // Y

g // Z , Idgf = gIdf = Idgf .

2. For each X Y Z Wl

f

g

k

α

β

r , (βl) ◦ (αl) = (β ◦ α)l,

(rα) ◦ (rβ) = r(β ◦ α).

3. For each X Y Z,

f

g

α

f ′

g′

α′ (g′α) ◦ (α′f) = (α′g) ◦ (f ′α).

then the horizontal composition of any composable pair α′, α, can be defined by
α′ α = (g′α) ◦ (α′f) = (α′g) ◦ (f ′α).

1.1.3. Definition. A 2-functor F : C −→ D between 2-categories sends objects of C
into objects of D , arrows of C into arrows of D and 2-cells of C into 2-cells of D ,
preserving all the structure, vertical and horizontal compositions, and identities.

If G is another 2-functor between the same 2-categories, a pseudo-natural transfor-
mation η : F =⇒ G consists of a family of arrows ηX : FX −→ GX in D , for each X in
C , and for each arrow f : X −→ Y in C an invertible 2-cell ηf : GfηX =⇒ ηY Ff in D

FX
ηX //

Ff
��

GX

Gf
��⇐ηf

FY ηY
// GY

such that for each 2-cell α : f =⇒ g it is verified:

1. For each X in C , ηidX = ηX ;

2. Given X
f // Y

g // Z in C , we have ηgF (f)◦G(g)ηf = ηgf , according to notation
1.1.1.

FX
ηX //

Ff
��

GX

Gf
��⇐ηf

FY ηY
//

Fg
��

GY

Gg
��⇐ηg

=

FZ ηZ
// GZ

FX
ηX //

Fgf

��

GX

Ggf

��

⇐ηgf

FZ ηZ
// GZ
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3. For each 2-cell α : f =⇒ g : X −→ Y in C , the equation

ηg ◦ (GαηX) = (ηY Fα) ◦ ηf

holds:
FX

ηX //

Fg

��

GX

Gf

��

Gg =

��

Gα
=⇒⇐ηg

FY ηY
// GY

FX
ηX //

Fg

��

ff

��

Fα
⇐=

GX

Gf

��
⇐ηf

FY ηY
// GY

A 2-natural transformation is a pseudonatural transformation such that ηf is the identity
for every f , in which case the first two conditions are trivial and the third is the axiom of
2-naturalness.

Suppose now that τ, σ : F =⇒ G are pseudonatural transformations between 2-functors
F,G : C =⇒ D . A modification µ : τ −→ σ assigns to each object X of C a 2-cell
µX : τX =⇒ σX in D , such that for any arrow f : X −→ Y the equality

σf ◦ (Gf µX) = (µY Ff) ◦ τf

is verified:

FX
σX

//

τX //
⇓µX

⇐σfff

��

GX

Gf =

��
FY σY

// GY

FX

Ff

��

τX // GX

Gf

��
⇐τf

FY
σY

//

τY //
⇓µY GY

When τ, σ are 2-natural, the above equality reduces to µY Ff = Gf µX .

1.1.4. Notation. 2-natural (pseudonatural) transformations and modifications compose
vertically and horizontally (see, eg, [8] I.2.4, p. 25). If C and D are 2-categories, we
denote by Homp(C ,D) the 2-category where the objects are 2-functors from C into D ,
the arrows are the pseudonatural transformations and the 2-cells are the modifications,
and we denote Homs(C ,D) when we consider only the 2-natural transformations.

1.2. Equivalences.

1.2.1. Definition. We say that an arrow f : X −→ Y in a 2-category is an equivalence
if there is an arrow g : Y −→ X (which is called quasi -inverse) and two invertible cells
η : idX ⇒ gf , ε : fg ⇒ idY .

The quasi-inverse g is determined up to an invertible 2-cell, and one can allways choose
g, η, ε such that the triangular equations are verified (ε f) ◦ (f η) = idf (g ε) ◦ (η g) = idg.
Although any quasi-inverse is also an equivalence, we consider important to consider that
equivalences have a direction.

Recall the following non-trivial and fundamental fact:
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1.2.2. Proposition. In the 2-category Cat a functor F : X F−→ Y is an equivalence if
and only if it is fully faithful and essentially surjective.

If s : X −→ Y on a 2-category C is an equivalence, then it induces equivalences on
the categories of maps: For each object Z in C , the functor s∗ : C [Y, Z] −→ C [X,Z]
given by the precomposition f 7−→ fs is an equivalence of categories, with quasi-inverse
t∗ given by any quasi-inverse t of s. In the same way it can be seen that the post-
composition s∗ : C [Z,X] −→ C [Z, Y ] is an equivalence of categories. Furthermore, we
have the following

1.2.3. Proposition. Given s : X −→ Y in a 2-category C , then s is an equivalence
if and only if s∗ : C [Y, Z] −→ C [X,Z] is an equivalence for all Z in C if and only if
s∗ : C [Z,X] −→ C [Z, Y ] is an equivalence for all Z in C .

1.2.4. Definition. A 2-functor F : C −→ D is a pseudoequivalence of 2-categories if
there exist G : D −→ C and pseudo-natural transformations

η : IdC =⇒ GF, θ : FG =⇒ IdD

which are equivalents in Homp(C ,C ) and in Homp(D ,D), respectively. The 2-functor
F would be a pseudoequivalence of 2-categories in the strict sense when η and θ are
equivalences in Homs(C ,C ) and in Homs(D ,D), respectively (notation 1.1.4).

The following fact is frequently used in the literature, for a detailed demonstration of
it see [6].

1.2.5. Proposition. Let η : F =⇒ G : C −→ D be a pseudonatural transformation be-
tween 2-functors. Then η is an equivalence on Homp(C ,D) if and only if each component
ηX is an equivalence on the 2-category D .

We note that the previous proposition does not hold for 2-natural transformations.
That is, a 2-natural transformation that is a pointwise equivalence is not necessarily an
equivalence on Homs(C ,D).

1.3. 2-localizations. Adapting to 2-categories the definition in [9] for bi-categories we
have

1.3.1. Definition. Let C be a 2-category and Σ be a subclass of morphisms. The
2-localization of C at Σ is a 2-category C [Σ−1] together with a 2-functor q : C −→ C [Σ−1]
such that

1. q(s) is an equivalence for all s ∈ Σ;

2. for every 2-category D , q induces a pseudoequivalence of 2-categories given by the
precomposition

q∗ : Homp(C [Σ−1],D) −→ Homp(C ,D)+ ,

where Homp(C ,D)+ consists of the 2-functors that send the elements of Σ into
equivalences.

The 2-category C [Σ−1] is characterised up to pseudoequivalences.
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1.4. Model Categories. The model categories were introduced by Quillen ([10]), the
definition that we will use is stronger than the original definition and it is the one that
Quillen also introduced with the name of closed model category.

1.4.1. Definition. Let X be a category. We say that a map f on X has the left-lifting
property with respect to a map g if every problem of the form

· //

f

��

·
g

��
· //

h

@@

·

has a solution h, not necessarily unique, which makes both triangles commute. Equiva-
lently, we say that g has the right-lifting property with respect to f .

1.4.2. Definition. Given f : X −→ Y , g : X ′ −→ Y ′ in a category X , then f is a
retract of g if there is a commutative diagram:

X //

idX

((

f
��

X ′ //

g
��

X

f
��

Y //

idY

66Y ′ // Y

The following is a definition considered in [7], [3], and introduced by Quillen ([10]) in
a different but equivalent way,

1.4.3. Definition. A model category is a category C provided with three classes of
morphisms F , Cof and W, which we call, respectively, Fibrations, Cofibrations and Weak
Equivalences, satisfying the following axioms.

M1. C has finite limits and finite colimits.2

M2. If a cofibration is also a weak equivalence, then it has the left lifting property with
respect to any fibration.

If a fibration is also a weak equivalence, then it has the right-lifting property with
respect to any cofibration.

M3. If f is a retract of g and g is either a fibration, a cofibration, or a weak equivalence,
then so is f . Furthermore, the three classes are closed by composition and contain
the identities.

M4. Every map f in C can be factored s = pi, where p is a fibration and i a cofibration,
in two ways, one with p a weak equivalence, the other with i a weak equivalence.

2Nowadays many authors require the existence of all small limits and colimits.
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M5. Let X Y Z
f g

be in C . If any two of the three maps f , g and gf
are weak equivalences, then all three are (this axiom is often called the property of
“3 for 2”).

1.4.4.. Determination. Any two of the three distinguished classes of morphisms deter-
mine the third, that is, the model structure is determined by two of the three distinguished
classes F , Cof , W.

1.4.5.. Duality. The axioms of the 1.4.3 definition are self-dual. Given a model category
C , the opposite category Cop admits a model structure, where Wop = W, Fop = Cof ,
(Cof)op = F .

We note that, by axiom M1, in a model category we always have an initial object and
a terminal object, denoted 0 and 1, respectively.

1.4.6. Definition. An object X in a model category C is fibrant if X −→ 1 is a fibra-
tion, and cofibrant if 0 −→ X is a cofibration, a fibration or a cofibration are trivial if
they are also weak equivalences.

1.4.7. Notation. We will use the following notation:

i. · ◦ // · (weak equivalences)

ii. · // // · (fibrations) · ◦ // // · (trivial fibrations)

iii. · // // · (cofibrations) · // ◦ // · (trivial cofibrations)

Let us recall the following results, whose proofs can be seen, for example, in [7].

1.4.8.. Let C be a model category.

i. A map in C is a cofibration (trivial cofibration) if and only if it has the left-lifting
property with respect to all trivial fibration (fibration).

ii. A morphism in C is a fibration (trivial fibration) if and only if it has the right-lifting
property with respect to every trivial cofibration (cofibration).

1.4.9.. A map f is a weak equivalence if and only if it admits a factorization f = pi,
where p is a trivial fibration and i is a trivial cofibration.

1.4.10.. If C is a model category, then the classes of cofibrations and trivial cofibrations
are both pushout stable. Fibrations and trivial fibrations are both pullback-stable.

1.4.11.. While F (F ∩ W) and Cof (coF ∩ W ) are classes closed by pullbacks and
pushouts, respectively, it is not true that the class W of weak equivalences has any of
these properties.
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1.4.12. Definition. A weak factorization system on a category X is a pair (L,R) of
distinguished classes of maps such that

1. Every map h in X can be factored as h = gf , with f ∈ L and g ∈ R.

2. L is precisely the class of maps that have the left-lifting property with respect to
every map of R.
R is the class of maps that have the right-rise property with respect to every map in
L.

If C is a model category, the classes (C ∩ W ,F) and (C,F ∩ W) are both a weak
factorization system.

1.4.13. Definition.
1. We say that a weak factorization system (L,R) is functorial if for each f there is

a chosen factorization (λf , ρf ), λf ∈ L, ρf ∈ R, f = ρf ◦ λf , in such a way that every
time we have a commutative diagram like here below on the left, we have a map F (u, v)
making commutative the diagram on the right,

· u //

f
��

·
g
��

· v
// ·

· u //

λf ��
f

$$

·

g

zz

λg��
·

F (u,v)
//

ρf
��

·
ρg
��

· v
// ·

and such that F (u, v) depends functorialy on u and v, that is, if f = g then F (id, id) = id,
and F (u ◦ u′, v ◦ v′) = F (u, v) ◦ F (u′, v′).

2. We say that the factorization is normal if for f ∈ L, λf = id, and for f ∈ R,
ρf = id.

3. Exercise. The functorial factorization delivered by the small object argument in
cofibrantly generated categories is normal. Furthermore, given any f , it is initial in the
poset of the factorizations of f . We leave it to the reader to verify this by reviewing any
of the proofs of the small object argument in the literature.

1.4.14. Remark. We denote by
−→
C the category whose objects are the morphisms of C

and an arrow from f to g in
−→
C is a pair (u, v) of maps of C such that gu = vf . Let

dom, codom :
−→
C −→ C be the functors that choose the domain arrow and the codomain

arrow respectively. The above definition tells us precisely that a system (L,R) is functorial
if there exists a functor F :

−→
C −→ C and natural transformations λ : dom −→ F and

ρ : F −→ codom such that for all f in C we have

dom(f)
f //

λf %%

codom(f)

F (f)
ρf

88
with λf ∈ L, ρf ∈ R.
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We say that (F, λ, ρ) is a functorial realization for the weak factorization (L,R). See for
example [11].

2. The homotopy 2-category Ho(A )

In this section, we adapt to the context of 2-localization of 1-categories using 2-functors
the results on bilocalizations of bicategories using pseudofunctors developed in [1].

We construct the 2-localization of a category A at a class of morphisms Σ containing
the identities. The novel aspect over [9] is that we do it using a notion of cylinders and
homotopies, so we will call the members of Σ weak equivalences, and the 2-localization
the homotopy 2-category. We use a definition of cylinder more general and less rigid
than Quillen’s definition, and consequently we will obtain a more general definition of
homotopy.

Let us recall that the problem we want to solve consists of constructing a 2-category
Ho(A ) together with a 2-functor i : A −→ Ho(A ) which has the universal property of
a 2-localization by Definition 1.3.1.

2.1. Construction of Ho(A ).

2.1.1. Definition. A cylinder C = (W,Z, d0, d1, s, x) for an object X in A is a config-
uration

X
d0 //

d1
//

x
��

W,

s
◦

~~
Z

where s ∈ Σ and sd0 = sd1 = x.

A (left) homotopy H = (C, h) from f to g with cylinder C = (W,Z, d0, d1, s, x) is an
arrow h : W −→ Y satisfying hd0 = f and hd1 = g. We denote H : f +3 g .

X

f

&&
g

&&d0 //
d1

//

x
  

W h //

s
◦

~~

Y.

Z

(1)

Throughout this article (except in the appendix) we work only with left homotopies,
and thus omit to write the word ”left”.

We would like to take the homotopies as the 2-cells of a 2-category with the same
objects and arrows as A, but it turns out that the 2-category axioms do not hold. It is
necessary, therefore, to define an adequate equivalence relation between homotopies, so
that if we take the equivalence classes as 2-cells, then the 2-category axioms are verified. It
turns out that the 2-category thus obtained has invertible 2-cells, i.e. it is a (2, 1)-category
in contemporary terminology (see lemma 2.3.1).
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2.1.2. Equivalence classes of homotopies. The equivalence relation that we are
looking for comes from the following observation:

2.1.3. Remark. Let D be a 2-category and consider in D the diagram 1 now with s a
true equivalence. In this case s induces a fully faithful functor,

D [X,W ]
s∗ // D [X,Z]

(see 1.2.2, 1.2.3), so that we get a unique 2-cell Ĉ : d0 =⇒ d1 such that sĈ = x.

Let A F // D be a 2-functor that sends the arrows of the class Σ into equivalences,
and let H = (C, h) be a homotopy from f to g on A with cylinder C = (W,Z, d0, d1, s, x).
Applying F to the diagram 1 above yields

FX

Ff

&&Fg
&&Fd0 //

Fd1
//

Fx ##

FW Fh //

Fs{{

FY,

FZ

which is a commutative diagram in D . Since Fs is an equivalence, there is a unique 2-cell
F̂C : Fd0 =⇒ Fd1 such that FsF̂C = Fx.

2.1.4. Definition. Given a homotopy H = (C, h) on A and a 2-functor F : A −→ D

which sends the class Σ into equivalences, we define a 2-cell F̂H in D as

F̂H := FhF̂C : Ff =⇒ Fg,

where F̂C : Fd0 =⇒ Fd1 is the unique 2-cell that satisfies FsF̂C = Fx.

2.1.5. Definition. Let f, g : X −→ Y morphisms in A and H,H ′ : f +3 g be

two homotopies. We say that H ∼ H ′ if and only if F̂H = F̂H ′ for every 2-functor
F : A −→ D such that F (Σ) ⊆ Equiv(D), for every 2-category D .

Note that this definition of equivalence is not intrinsic to A , it is semantic in the
sense that it quantifies over 2-functors in the category of 2-categories.

It is clear that we can establish an equivalence relation between sequences of compos-
able homotopies. We define a 2-cell in Ho(A ) as the class [Hn, ..., H1] of a finite sequence

of homotopies f0
H1 +3 f1 . . . fn−1

Hn +3 fn , where: (Hn, ..., H1) ∼ (Km, ..., K1) if and only

if for every 2-functor F : A −→ D , F̂Hn ◦ ... ◦ F̂H1 = F̂Km ◦ ... ◦ F̂K1.

Let us see that Ho(A ) is thus effectively a 2-category.
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2.1.6. Vertical Composition. Ho(A )(X, Y ) is a category for each pair of objects X,
Y in A :

We define the vertical composition of 2-cells as the juxtaposition of the sequences.

[Hn, ..., H1] ◦ [Km, ..., K1] = [Hn, ..., H1, Km, ..., K1].

The associativity is an immediate consequence of the associativity of the vertical com-
position in D .

Note that the single-homotopy classes generate the 2-cells in Ho(A ).

2.1.7.. Identities for the vertical composition. Let f ∈ A [X, Y ] and let
H : f +3 f be a homotopy with cylinder C. By how the equivalence relation between
homotopy sequences is defined, it is clear that [H] will be the identity of f in Ho(A )(X, Y )

if and only if F̂H = Ff in D(FX,FY ) for all F ∈ Hom+(A ,D).
Thus, for example, either of the following two homotopies determines the vertical

identity for f :

X

f

$$f
$$idX //

idX
//

idX   

X
f //

idX
◦
~~

Y,

X

X

f

$$f
$$f //

f
//

f   

Y
idY //

idY
◦
~~

Y.

Y

2.1.8. Horizontal composition. Since we already have a vertical composition, if we
define the horizontal compositions l [H] = [Il] [H] and [H] r = [H] [Ir], the horizontal
composition of general 2-cells is obtained as follows, see Remark 1.1.2:

[H ′] [H] =
def

[H ′] g ◦ f ′ [H] =
(1)
g′ [H] ◦ [H ′] f

as long as the equality (1) is verified.

Let X ′ l // X
f //
g
// Y r // Y ′ y H = (C, h) : f +3 g a homotopy with cylinder

C = (W,Z, d0, d1, s, x). We consider Hl = (Cl, h) :
fl +3 gl and rH = (C, rh) :

rf +3 rg where Cl = (W,Z, d0l, d1l, s, xl) is a cylinder for X ′.

X ′ l //

xl ++

X

f

&&
g

&&d0 //
d1

//

x
  

W
h //

s
◦

~~

Y
r // Y ′

Z
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It is clear that both Hl and rH are homotopies. In addition, we have the equations

F̂ (Hl) = F̂HF l, F̂ (rH) = FrF̂H, (2)

since F̂ (Hl) = FhF̂ (Cl) and Fs(F̂CF l) = (FsF̂C)Fl = xl, by the uniqueness of F̂ (Cl)

in the definition 2.1.4 we have that F̂ (Cl) = F̂CF l, and then F̂ (Hl) = F̂HF l. The
second equation is obvious, since H and rH have the same cylinder. We define:

[H] l = [Hl], r [H] = [rH]. (3)

Now, if H ∼ H ′, then

F̂ (Hl) = F̂HF l = F̂HF l = F̂H ′Fl = F̂H ′Fl = F̂ (H ′l) .

This tells us that the composition with l is well defined, and in the same way we see the
well definition of the composition with r.

More generally, for any sequence [Hn, ..., H1] of composable homotopies, we define:

[Hn, ..., H1] l = [Hnl, ..., H1l], r [Hn, ..., H1] = [rHn, ..., rH1]

From the equations 2, and from the corresponding valid equation in D , it follows the
required equality (1), that is, the third axiom in the Remark 1.1.2. On the other hand,
we have by definition:

([K] l) ◦ ([H] l) = ([Kl]) ◦ ([Hl]) = [Kl,Hl] = [K,H] l = ([K] ◦ [H]) l,

[If ] l = [If l] = [Ifl].

Thus all the axioms of 1.1.2 are checked, so the horizontal composition of 2-cells inHo(A )
is determined and it is compatible with the vertical composition.

By virtue of the same equations (2) it follows that the horizontal composition is also
associative, and the identities in this case are, for each object X, the 2-cell [IidX ], which

we write [IX ] to simplify the notation, F̂ IX = idX .

2.2. The fundamental property of Ho(A ). The 2-category Ho(A ) thus obtained
comes equipped with a 2-functor i: A −→ Ho(A ) given by the inclusion, and although
in general it will not send weak equivalences into equivalences, it has the following
partial universal property.

2.2.1. Proposition. Let i : A −→ Ho(A ) be the inclusion, D be a 2-category, and
F : A −→ D be a 2-functor that sends the elements of Σ into equivalences. Then, there
exists a unique 2-functor F̃ : Ho(A ) −→ D such that F̃X = FX and F̃ f = Ff :

A � � i //

F   

Ho(A )

∃!F̃{{
D
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Proof. We define F̃ in the 2-cells as follows:

F̃ ([Hn, ..., H1]) = F̂Hn ◦ ... ◦ F̂H1, in particular F̃ ([H]) = F̂H. (4)

In this way, by the very definition of the equivalence relation F̃ is well defined and is
functorial for the vertical composition.

Since
F̃ lF̃ ([H]) = FlF̂H = F̂ lFH = F̂ (lH) = F̃ ([lH])

and, analogously, F̃ ([H])F̃ r = F̃ ([Hr]), from the definition in 2.1.8 it follows that F̃ is
functorial with respect to horizontal composition.

We now want to see the uniqueness of F̃ .
Let R : Ho(A ) −→ D be a 2-functor such that Ri = F . If H = (C, h) is a homotopy

on A with cylinder C = (W,Z, d0, d1, s, x), we write H = hH0 where H0 = (C, idW ).

X
d0 //

d1
//

x
  

W
idW //

s
◦

~~

W
h // Y

Z

Since R([H]) = RhR([H0]) = FhR([H0]) and F̃ (H) = F̂H = FhF̂C, to check that R

equals F̃ in [H], it suffices to see that R([H0]) = F̂C.

We know that F̂C : Fd0 =⇒ Fd1 is unique such that FsF̂C = Fx. On the other hand
FsR([H0]) = RsR([H0]) = R(s[H0]) = R([sH0]) = RIx = Rx = Fx (since [sH0] = Ix). It

follows R([H0]) = F̂C.

We will denote Homp(A ,D)+ and Homs(A ,D)+ to the subcategories of
Homp(A ,D) and Homs(A ,D), respectively, whose objects are the functors F such that
F (Σ) ⊆ Equiv(D).

The last proposition tells us that the precomposition with i

i∗ : Homs(Ho(A ),D)+ −→ Homs(A ,D)+ (5)

determines a bijection between the objects, in particular, it is essentially surjective. Let
us see that it is also fully faithful.

2.2.2. Lemma. Let D be a 2-category, F,G ∈ Hom(A ,D)+ and let

C = (W,Z, d0, d1, s, x)

be a cylinder for an object X ∈ A . If θ : F =⇒ G is a natural transformation, then
θW F̂C = ĜCθX holds.
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FX
θX

//

Fd0

��

F̂C⇒ Fd1

��

GX

Gd0

��

ĜC⇒ Gd1

��
FW

θW
// GW

Proof. Since ĜC : Gd0 =⇒ Gd1 is the ónly 2-cell that satisfies GsĜC = Gx, then
ĜCθX is the only one such that Gs(ĜCθX) = GxθX . Then, it is enough to see that

Gs(θW F̂C) = GxθX .
From the naturality of θ we obtain GsθW = θZFs and θZFx = GxθX . Therefore,

Gs(θW F̂C) = (GsθW )F̂C = (θZFs)F̂C = θZFx = GxθX .

2.2.3. Proposition. If F,G : A −→ D send the arrows of Σ into equivalences and θ :
F =⇒ G is a natural transformation, then there exists a unique 2-natural transformation
θ̃ : F̃ =⇒ G̃ such that θ̃i = θ.

Proof. For eachX in A , we know that F̃ i = F and G̃i = G. We define θ̃X : F̃X −→ G̃X
as θ̃X = θX , and let us see that θ̃ satisfies the 2-naturalness conditions.

Let f, g : X −→ Y and [H] : f =⇒ g be a 2-cell in Ho(A ). We want to prove

the equality θ̃Y F̃ [H] = G̃[H]θ̃X . If H = (C, h), from the naturalness of θ we have

θY Fh = GhθX , so θY F̂H = θY FhF̂C = GhθW F̂C. Also, ĜHθX = GhĜCθX . From the
previous lemma we get θW F̂C = ĜCθX and then θY F̂H = ĜHθX , which by definition of
F̃ , G̃ and θ̃, is exactly what we wanted to see.

As a consequence of the previous results, we obtain that the precomposition with i,
diagram 5, induces, for every 2-category D , an equivalence of categories, which is in fact
an isomorphism.

Regarding the 2-categorical aspect, we have the following

2.2.4. Lemma. Let F,G ∈ Hom+(A ,D). If η, θ: F =⇒ G are natural transformations
and µ : η −→ θ a modification, then there is a unique µ̃ : η̃ −→ θ̃ such that µ̃i = µ.

Proof. We define µ̃ : η̃ −→ θ̃ as µ̃X = µX for every X. Let f, g : X −→ Y , and
let H be a homotopy from f to g. We want to see that µ̃Y F̃ [H] = G̃[H]µ̃X ; that is,

µY F̂H = ĜHµX . Since µ is a modification, θY Fg = GgµX , and by the lemma 2.2.2 we
also have ηW F̂C = ĜCηX , then :

µY F̂H = µY Fg◦ηY F̂H = GgµX◦ηY FhF̂C = GgµX◦GhηW F̂C = GgµX◦GhĜCηX =
GgµX ◦ ĜHηX = ĜHµX .

The arguments in the proofs of 2.2.1, 2.2.2, 2.2.3, and 2.2.4 follow mutatis mutandis
in terms of 2-functors and pseudonatural transformations. We then have the main result
of this section:
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2.2.5. Theorem. The inclusion 2-functor i : A −→ Ho(A ) induces 2-category isomor-
phisms

i∗ : Homs(Ho(A ),D)+ −→ Homs(A ,D)+

and
i∗ : Homp(Ho(A ),D)+ −→ Homp(A ,D)+.

2.3. A condition to have the 2-localization. We see that from Theorem 2.2.5
it follows that as soon as the morphisms of Σ are equivalences in Ho(A ), the 2-functor

A
i−→ Ho(A ) will be the 2-localization of A at Σ. We now turn to consider a condition

that assures us that this will be the case.

2.3.1. Lemma. Every 2-cell in Ho(A ) is invertible.

Proof. Let H = (C, h) be a homotopy from f to g with cylinder C = (W,Z, d0, d1, s, x).
We define H−1 = (C−1, h), where C−1 is the cylinder obtained from C by exchanging d0
and d1, so that H−1 is a homotopy from g to f . Let’s see that [H−1] ◦ [H] = [If ].

Let F : A −→ D be a 2-functor. We have F̂C : Fd0 =⇒ Fd1 and F̂C−1 : Fd1 =⇒ Fd0
satisfying this equations FsF̂C = Fx and FsF̂C−1 = Fx. Then

Fs(F̂C−1 ◦ F̂C) = FsF̂C−1 ◦ FsF̂C) = Fx ◦ Fx = Fx.

Since there is only one 2-cell from Fd0 to Fd0 satisfying this equality, it follows that

F̂C−1 ◦ F̂C = idFd0 = Fd0.

Thus,

F̂H−1 ◦ F̂H = FhF̂C−1 ◦ FhF̂C = Fh(F̂C−1 ◦ F̂C) = FhFd0 = Ff ;

that is, [H−1, H] = [If ]. A similar account shows that [H,H−1] = [Ig], therefore [H] is
invertible and its inverse is [H]−1 = [H−1].

2.3.2. Definition. A map f : X −→ Y is a section if it admits a left inverse; that is,
there exists g : Y −→ X that satisfies gf = idX . Dually, we say that f is a retraction if
it has a right inverse. We say that a map is split if it is a section or a retraction.

2.3.3. Definition. We say that a class Σ of arrows satisfies the property “2 for 1”, if

given X
f−→ Y

g−→ X such that g f = idX , then f ∈ Σ ⇐⇒ g ∈ Σ.

We note that the well-known “3 for 2” property (axiom M5 in Definition 1.4.3) implies
the “2 for 1” property.

2.3.4. Proposition. If the class Σ satisfies the “2 for 1” property, then weak equiva-
lences that are sections or retractions are equivalences in Ho(A ).
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Proof. Let X
s−→ Y be a weak equivalence that is a section, with Y

r−→ X a left inverse.
To see that it is an equivalence in Ho(A ) we have to show that there is an isomorphism
between idY and the composition s r, but since in Ho(A ) every 2-cell is invertible, we
only need to prove the existence of such a 2-cell, that is a homotopy s r +3 idY .

Since rs r = r, the diagram

Y
sr //

idY
//

r   

Y
idY //

r
◦
~~

Y

X

is commutative and gives us a homotopy from s r to idY . Note that the 2 for 1 hypothesis
on Σ tells us that r is a weak equivalence, necessary fact to have a cylinder. Since the
case where s is a retraction is completely analogous, we can conclude the proof.

As the composition of equivalences is an equivalence, the Theorem 2.2.5 together with
the Proposition 2.3.4 give us (remember definition 1.3.1):

2.3.5. Theorem. If the class Σ satisfies the ”2 for 1” property and ev-
ery weak equivalence is a composition of split weak equivalences, the inclusion
i : A −→ Ho(A ) is the 2-localization of A at the class Σ. Furthermore, the 2-functors
i∗ : Homs(Ho(A ),D) −→ Homs(A ,D)+ and i∗ : Homp(Ho(A ),D) −→ Homp(A ,D)+
are both isomorphisms of 2-categories.

Homotopies (as in 2.1.1) were defined in [12, 3.2.3, 3.2.4] and used to define a con-
gruence between arrows rather than the 2-cells of a 2-category, and a quotient category
Ho(A) is obtained. In view of [12, 3.2.6] it follows that the connected components of the
hom-categories of Ho(A ) are the arrows of Ho(A), so Ho(A ) is a direct 2-dimensional
generalization of Ho(A).

2.4. The germs of homotopies. Fixing two objects and two arrows X
f //
g // Y we

consider for each cylinder C for X the set Hpy(X, Y )(f, g)(C) of all homotopies f +3 g
with cylinder C. This actually determine a contravariant set valued functor defined on
the category of cylinders for X, see 2.4.1 below. We call germ relation the equivalent
relation which computes the colimit set of this functor. A key property is that it is finer
than the ad-hoc relation used to define Ho(A ).

We start by introducing the concept of cylinder map, and we will prove that if two
homotopies are connected by a zig-zag of maps between their cylinders, then they deter-
mine the same class, a fact that we will use many times to show the equality of 2-cells in
Ho(A ).

2.4.1. Definition. [Cylinder maps] Let

C = (W,Z, d0, d1, s, x), C
′ = (W ′, Z ′, d′0, d

′
1, s

′, x′)

be two cylinders for X in A . A cylinder map C −→ C ′ consists of a pair of maps
ϕ : W −→ W ′ and ψ : Z −→ Z ′ that make the following diagram commutative
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W

s◦

��

ϕ

''
X

d0
77

d1

77

d′0 44

d′1

44W
′

s′◦
��

Z
ψ

''
X

x
77

x′
44 Z ′

It is straightforward to check that they compose and form a category, and that
Hpy(X, Y )(f, g)(C) is a contravariant functor on the variable C.

2.4.2. Definition. Given H = (C, h) and H ′ = (C ′, h′) two homotopies from f to g, we

say that H ′ g∼> H if there exists a morphism of cylinders C
(ϕ,ψ) // C ′ such that h′ ◦ϕ = h.

The germ relation ”
g∼ ” between homotopies is the equivalence relation generated by

”
g∼> ”. So, H

g∼ H ′ if they are connected by a zig-zag of cylinder maps.
Note that this definition of equivalence is syntactic in the sense that it is a condition

intrinsic to the 2-category A .

2.4.3. Lemma. If H, H ′ : f +3 g are two homotopies on A such that H
g∼ H ′, then

[H] = [H ′] in Ho(A ).

Proof. It suffices to prove the statement for the generators H ′ g∼> H. Let

C = (W,Z, d0, d1, s, x), C
′ = (W ′, Z ′, d′0, d

′
1, s

′, x′), H = (C, h), H ′ = (C ′, h′),

be such that H ′ g∼> H, and let C
(ϕ,ψ) // C ′ a cylinder map such that h′ϕ = h.

If D is a 2-category and A
F−→ D is a functor that sends weak

equivalences into equivalences, since FψFs = Fs′Fϕ, then we have
Fx = FψFx = FψFsF̂C = Fs′FϕF̂C, and FϕF̂C : Fd′0 =⇒ Fd′1. For uniqueness

of F̂C ′, it results FϕF̂C = F̂C ′, and then from the equation hϕ = h′ we get
F̂H ′ = Fh′FψF̂C = FhF̂C = F̂H.

2.4.4. Comment. The germ relation would allow to define another homotopy 2-category.
We have verified that the vertical and horizontal compositions of classes of homotopies
can be defined, and that all the requirements to have a 2-category can be proved, except for
the compatibility axiom that relates both compositions. We believe that this compatibility
would not be valid, see more on this in Comment A.1.6.

3. Homotopy 2-categories of a model category.

We pass now to apply the results of Section 2 to develop a 2-dimensional version of
Quillen’s localizations of a model category C , (F , Cof, W), notation refers to 1.4. We
set Σ = W and we will consider the cases A = C and A = Cfc, the full subcategory of
fibrant-cofibrant objects.
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3.1. The 2-localization of the category Cfc. Using Theorem 2.3.5 we see that
for the 2-category Ho(C ) to be the localization of C at the class W it is enough that
every weak equivalence be a composition of split weak equivalences. We will be able to
prove this if we restrict ourselves to the full subcategory Cfc of fibrant-cofibrant objects,
thus obtaining the 2-localization of Cfc at the weak equivalences. Note that Cfc is not a
model category.

We take the following proposition from [12, 3.1.19]:

3.1.1. Proposition. Let s : X −→ Y be a weak equivalence on a model category C . If

X is fibrant and Y is cofibrant, s factors as a composition X
i−→ Z

p−→ Y where i is a
section and p a retraction, both weak equivalences. If X and Y are fibrant-cofibrant, the
same happens with Z.

Proof. Axiom M4 gives us a factorization s = pi, where p is a fibration, i a cofibration
and one of the two is a weak equivalence. Since s is a weak equivalence, by M5 we obtain
that the three maps are weak equivalences.

Now, since X is a fibration, it follows that i is a section: Indeed, since it is a trivial
cofibration and X −→ 1 is a fibration, the lifting property guarantees the existence of the

dotted arrow in the commutative diagram

X
��

i◦��

X

����
Z

;;

// 1,

, so i has a left inverse. Dually, p

is a retraction thanks to Y being cofibrant. If X and Y are fibrant-cofibrant, it is clear
by axiom M3 that this is also the case for Z.

From this proposition together with Proposition 2.3.4 we have

3.1.2. Proposition. The inclusion i : Cfc −→ Ho(Cfc) sends weak equivalences into
equivalences.

Theorem 2.3.5 gives us:

3.1.3. Theorem. The inclusion i : Cfc −→ Ho(Cfc) is the 2-localization, in the strict
sense, of the subcategory Cfc at the class Wfc =W ∩ Cfc.

Furthermore, the 2-functors

i∗ : Homs(Ho(Cfc),D) −→ Homs(Cfc,D)+

and
i∗ : Homp(Ho(Cfc),D) −→ Homp(Cfc,D)+

are both 2-category isomorphisms.

We remark that we shall see in 3.2.13 below that the 2-cells in Ho(Cfc) are actually
given by single classical Quillen’s homotopies.

We denote Hofc(C ) the full sub-2-category whose objects are the fibrant and cofibrant
objects and whose 2-cells are classes of homotopies in Ho(C ). We also have:
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3.1.4. Proposition. The restriction i : C ⊃ Cfc −→ Hofc(C ) ⊂ Ho(C ) sends weak
equivalences into equivalences.

3.1.5. Remark. The 2-category Hofc(C ) does not coincide with Ho(Cfc) because
even in the case in which the cylinders can be taken in Cfc (as we will see
later 3.2.6) the equivalence relation (Definition 2.1.5) is less fine since it quan-
tifies only on 2-functors that admit an extension to C. There is a 2-functor
j : Ho(Cfc) −→ Hofc(C ) ⊂ Ho(C ) which is the identity in objects and arrows, but in
the hom-categories Ho(Cfc)(X, Y ) −→ Hofc(C )(X, Y ) would be neither full nor faith-
ful. However, it turns out to be full, see Remark 3.2.6, but possibly not faithful in
general. Assuming the normalised functorial factorization axiom, Definition 1.4.13, these
two categories coincide since then every 2-functor defined in Cfc extends to C .

3.2. Quillen’s homotopies as 2-cells. To construct the homotopy category of a
model category C , Quillen introduces a notion of cylinder and of left homotopy and
shows that these determine an equivalence relation between the morphisms of the full
subcategory of fibrant and cofibrant objects. Here we will see that the Quillen left ho-
motopies determine the 2-cells of a 2-category on those objects, which coincides with the
homotopy 2-category constructed in the subsection 3.1. Quillen left homotopies are in
particular left homotopies in the sense of the section 2, so we can use the results of that
section.

Homotopies such that the arrow s in their cylinders is a fibration play a relevant job,
so it is convenient to have the following definition:

3.2.1. Definition. A cylinder as in definition 2.1.1 is fibrant when the arrow s is a
fibration. A fibrant homotopy is an homotopy with fibrant cylinder.

We denote by q-cylinder and left q-homotopy the cylinders and the left homotopies of
[10]. We recall their definition:

3.2.2. Definition.A q-cylinder C = (W,d0, d1, s) for an object X in C is a factorization
of the codiagonal

X ⨿X

∇X

&&(d0d1) //W s // X,

where
(
d0
d1

)
is a cofibration and s is a weak equivalence. Thus in particular q-cylinders are

cylinders according to Definition 2.1.1

A left q-homotopy H = (C, h) from f to g is a homotopy according to Definition 2.1.1
whose cylinder is a q-cylinder, hd0 = f and hd1 = g.

X ⨿X //
(d0d1) //

(fg)

%%

∇X &&

W h //

s
◦

{{

Y,

X
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1. Note that by axiom M4 any object X has at least one fibrant q-cylinder.
2. Note that when X is cofibrant, since cofibrations are stable by pushout and composition,
it follows that the object W in any q-cylinder is also cofibrant.

We work only with left q-homotopies, thus as before we will omit to write the word
”left”.

Our next task will be to show that for every homotopy H between arrows of Cfc there
is a q-homotopy H ′ that determines the same 2-cell in Ho(C ), and whose cylinder C ′ is
in Cfc, Lemma 3.2.5. In this proof we use Lemma 2.4.3. Note that we will need cylinder
maps in both directions. Before two lemmas of independent interest.

3.2.3. Lemma. Given any two objects X, Y , f, g : X −→ Y , and H a fibrant homotopy
from f to g, there exists a fibrant q-homotopy H ′ such that H

g∼ H ′.

Proof.We thank M. Szyld who sent us the simple proof here. Let C = (W,Z, d0, d1, s, x)
be the cylinder of H, and take any fibrant q-cylinder C ′ = (W ′, d′0, d

′
1, s

′) for X. We get
the following diagram, where t is given by axiom M2.

X ⨿X
(d

′
0

d′1
)

�� ''
∇X

��

X ⨿X
(d0d1) ��

(xx)

��

W ′ t //

s′◦
����

xs′

''

W

s◦
����

X x // Z

This determines a fibrant q-homotopy h′ = h t from f to g which is in the same class as
H since (t, x) is a cylinder map which establishes the germ relation.

3.2.4. Lemma. Let Y be a fibrant object, then for any homotopy H between arrows with
codomain Y , there exists a fibrant homotopy H ′ such that H

g∼ H ′.

Proof. Let f H +3 g be X
d0 //

d1
//

x   

W h //

s
◦
~~

Y

Z

. Consider a factorization of s given

by W
s◦ //

!!

j
◦ !!

Z

W ′ s′
◦
== == , and a map h′ : W ′ −→ Y making the diagram commute W h //

��
j ◦
��

Y

����
W ′

h′
>>

// 1

.

Taking d′0 := jd0 and d′1 := jd1 we have X
d′0 //

d′1

//

x   

W ′ h′ //

s′
◦}}}}

Y

Z

, which is a fibrant

homotopy from f to g in the same class as H since (j, idZ) is a cylinder map is a cylinder
map which establishes the germ relation.
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3.2.5. Lemma. Let f, g : X −→ Y with X and Y both fibrant and cofibrant, and let H
be a homotopy from f to g in C . Then there exists H ′, a q-homotopy in Cfc such that

[H] = [H ′] in Ho(C ). Moreover, actually H
g∼ H ′ holds.

Proof. Assuming only that X is cofibrant and Y fibrant we use the previous lemmas in
turn, and obtain the desired q-homotopy H ′. It remains to see that W ′ in the cylinder of
H ′ is inside Cfc, for this we need that X be also fibrant. Indeed, W ′ is cofibrant by item

2. in Definition 3.2.2, and since W ′ s′−→ X is a fibration, it follows that W ′ is also fibrant.
Finally, Lemma 2.4.3 finishes the proof.

3.2.6. Remark. Note that this Lemma implies in particular that for the 2-functor
Ho(Cfc) −→ Hofc(C ) of the Remark 3.1.5, the functors between the hom-categories
Ho(Cfc)(X, Y ) −→ Hofc(C )(X, Y ) are full.

3.2.7. Comment. We refer to 2.1.8. The horizontal composition of classes of
q-homotopies with arrows on the right r[H] can be defined as r[H] = [rH] since if H
is a q-homotopy, so it is rH. It does not occur the same for arrows on the left. Lemma
3.2.5 tells us that when the objects are fibrant and cofibrant, the composite [H]l can be
defined as [H]l = [H ′] where H ′ is a q-homotopy such that [Hl] = [H ′]. Quillen solves the
problem posed by the definition of the left q-homotopy [H]l in a different way. Enhanc-
ing Quillen’s argument to our 2-dimensionl context, take a right q-homotopy K such that
[H] = [K], see Proposition A.1.3. Then Kl is a right q-homotopy, which in turn has a
left q-homotopy H ′ such that [Kl] = [H ′], then define [H]l = [H ′].

3.2.8.. Vertical composition of q-homotopies .

To construct the homotopy category in [10] Quillen shows that the (left) homotopies
define an equivalence relation between the morphisms of the full subcategory of cofibrant
objects. To prove the transitivity (we refer to the notations above), given q-homotopies

f
H +3 g

H′
+3 l, W

h−→ Y , W ′ h′−→ Y , he considers the q-cylinder C ′′ determined by
the pushout W ′′ of d1 and d′0, then the universal property of the pushout yields the

q-homotopy f H′′
+3 l, W ′′ h′′−→ Y that establishes the transitivity.

In the category of topological spaces, this pushout is precisely the cylinder that is
obtained by gluing the bottom of the first cylinder with the top of the second:
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W

��

h

##
W ′′

X

d1
..

d0

44

d′0
##

d′1

  

h′′ // Y
99

h′

::

W ′

We recall now Quillen’s development of these ideas with the necessary precision needed
to establish the vertical composition of arrows in the homotopy 2-category, Lemma 3.2.12.

3.2.9. Lemma. [10] Ch.I, §1, Lemma 2 Let X be a cofibrant object and let
C = (W,d0, d1, s) be q-cylinder for X, then d0 and d1 are trivial cofibrations.

This is used in the proof of the following:

3.2.10. Lemma. [10], Ch.I, §1, Lemmas 3, 4)
Let f, g, l : X −→ Y , and let H : f +3 g, H ′ : g +3 l two q-homotopies. If

X is cofibrant, then there is a q-homotopy H ′′ : f +3 l as the result of the following
construction:

Let C = (W,d0, d1, s) and C
′ = (W ′, d′0, d

′
1, s

′) be cylinders for H and H ′ respectively,
and let W ′′ be the pushout of d1 and d′0 with inclusions α, β as indicated in the diagram
6 below:

W

α ""

s◦

''

h

!!
X
<<

d0

<<

<< d1

<<

""
d′0

""

""

d′1 ""

W ′′ s′′◦ //

h′′

55X Y

W ′

β
<<

s′
◦

77

h′

==

(6)

We define a cylinder

C ′′ = (W ′′, d′′0, d
′′
1, s

′′), d′′0 = αd0, d
′′
1 = d′1β, s

′′α = s, s′′β = s′

which is indeed a q-cylinder. Then, since hd1 = g = h′d′0 we have an arrow h′′,

h′′α = h, h′′β = h′

which determines a q-homotopy H ′′ : f +3 l with cylinder C ′′.
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3.2.11. Remark. If X and Y are fibrant-cofibrant, in Lemma 3.2.10 we may assume
that the cylinder C ′′ is inside Cfc. To see that we may assume W ′′ fibrant, we proceed as
in 3.2.4, and observe that if H is a q-homotopy, then H ′ still is a q-homotopy. That W ′′

is cofibrant follows by Lemma 3.2.9 or 2. in Definition 3.2.2.

3.2.12. Lemma. Given f, g, l : X −→ Y in Cfc, and two composable q-homotopies inside
Cfc, H : f +3 g and H ′ : g +3 l, there exists a q-homotopy H ′′ : f +3 l inside
Cfc such that [H ′′] = [H ′, H] in Ho(Cfc).

Proof. Consider the homotopy H ′′ = (C ′′, h′′) in Lemma 3.2.10 which by Remark 3.2.11

is inside Cfc. Let’s see that F̂H ′′ = F̂H ′ ◦ F̂H for every 2-functor F : Cfc −→ D which
sends weak equivalences into equivalences. Consider diagram 6. Since

F̂H ′ ◦ F̂H = Fh′F̂C ′ ◦ FhF̂C = Fh′′FβF̂C ′ ◦ Fh′′FαF̂C = Fh′′(FβF̂C ′ ◦ FαF̂C),

it suffices to see that FβF̂C ′ ◦ FαF̂C = F̂C ′′. From the equations s = s′′α and s′ = s′′β
it follows that

idFX = idFX ◦ idFX = Fs′′FβF̂C ′ ◦ Fs′′FαF̂C = Fs′′(FβF̂C ′ ◦ FαF̂C),

so that FβF̂C ′ ◦ FαF̂C = F̂C ′′.

With what we have seen so far we can ensure that when we restrict ourselves to the
subcategory Cfc there is a correspondence between the classes of q-homotopies and the
classes of finite sequences of composable q-homotopies, and this together with Lemma
3.2.5 give us the following proposition:

3.2.13. Corollary. The 2-category Ho(Cfc) in Theorem 3.1.3 coincides with the one
whose 2-cells are the classes of q-homotopies.

3.2.14.. Classic Quillen’s localization of Cfc .

In this item we will see how to obtain the homotopy category of Cfc defined by Quillen
from the 2-category Ho(Cfc).

We will obtain Quillen’s localization by applying the functor of connected components
π0 : 2-Cat −→ Cat. Recall that if D is a 2-category, for every pair of objects X, Y ,
(π0D)(X, Y ) is the set of connected components of the category D(X, Y ). Remember
that π0 is the left adjoint of the functor d : Cat −→ 2-Cat which associates each category
X with itself seen as a discrete 2-category. Abusing notation we have an obvious 2-functor
D

π0−→ π0D which is universal with respect to 2-functors of D with values in a 1-category.
We have:

(1) The functor Hom(π0D ,X )
π∗
0−→ Homp(D ,X ) is an isomorphism of categories.

The composition of π0 with i : Cfc
i−→ Ho(Cfc)

π0−→ π0Ho(Cfc), sends weak equiv-
alences into isomorphisms since i(W) ⊆ EquivHo(Cfc), and, from the way in which π0
is defined in the 2-cells, it sends equivalences into isomorphisms. Then Theorem 3.1.3
together with (1) above show that the composite functor π0 i is the Quillen localization.
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3.2.15. Theorem. The functor defined by the composition Cfc
π0i−→ π0Ho(Cfc) is the

localization of Cfc with respect to the class W. The precomposition

(π0i)
∗ = i∗π∗

0 : Hom(π0Ho(Cfc),X ) −→ Hom(Cfc,X )+

is a isomorphism of categories for every category X .

Beyond the formality of the proof, we can understand how it works by looking at the
following diagram:

Cfc
� � i //

F

��

Ho(Cfc)
π0 //

∃!

��

π0Ho(Cfc),

∃!

uu
X

3.2.16. Remark. Note than by Remark 3.2.6 the hom categories of the 2-categories
Hofc(C ) and Ho(Cfc) have the same connected components.

3.3. The 2-localization of the category C . We want to define a functor
C −→ Cfc and take the composition with i : Cfc −→ Ho(Cfc). We will prove that this
2-functor, which we will call q : C −→ Ho(Cfc), is the 2-localization of the category C
with respect to the class W , which is our main goal . For this we will consider the full
subcategories Cf and Cc of fibrant and cofibrant objects respectively, and two assignments
R : C −→ Cf and Q : C −→ Cc which can be constructed from the model category axioms
in Definition 1.4.3, but it is clear on inspection of the construction that these assignments
are not necessarily functorial.

We adopt here an ad hoc solution to this problem by requiring that the factorization of
the axiom M4 be functorial, a requirement frequently used in the post-Quillen literature.
Assuming that the model structure of C admits a functorial factorization, the arrows

C
Q // Cc

R // Cfc will effectively determine a functor which together with what we

saw in subsection 3.1 for the subcategory Cfc, will allow us to conclude the localization
theorem. We remark that also the fundamental theorem 2.2.5 in subsection 2.2 will be
necessary.

3.3.1. Fibrant and cofibrant replacements. From now on we will work on a
model category C in which the factorizations of axiom M4 are normal functorial in the
sense of Definition 1.4.13.

3.3.2. Definition. Let Cc ⊆ C be the subcategory of cofibrant objects. We define a
functor Q : C −→ C that takes its values in the subcategory Cc and such that if X is
already cofibrant, QX = X and pX = idX , and such that if f is a weak equivalence, so is
Qf . We do this as follows:

Let F :
−→
C −→ C be the functor of the normal functorial realisation associated with

the factorization, we set QX = F (0→ X) and Qf = F (id0, f). Then by the functoriality
of F it follows that Q is also a functor:
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0 //

��

0

��
QX idQX //

pX ◦����

QX

pX◦����

and

X
idX

// Y

0 //

��

0 //

��

0

��
QX

Q(gf)
((

Qf
//

pX ◦����

QY
Qg

//

pY ◦����

QZ

pZ◦����
X

f
// Y g

// Z

By axiom M5, if f is a weak equivalence, then so is Qf .
Dually, we also obtain a functor R : C −→ C with RX a fibrant object, and a

trivial cofibration vX : X −→ RX, this time factoring the morphism X −→ 1, and for
f : X −→ Y , an arrow Rf : RX −→ RY satisfying RfvX = vY f . Also, if X is already
fibrant, RX = X and vX = idX , and if f is a weak equivalence, then so is Rf .

3.3.3. Remark. The functors Q and R are known as cofibrant replacement and
fibrant replacement, respectively, and determine by composition a functor RQ : C −→ C
with values in the subcategory Cfc.

3.3.4. Remark. We have natural transformations p : Q =⇒ Id and v : Id =⇒ R defined
by pX and vX , respectively. From the definitions of Q and R in the morphisms we have
the naturality equations for p and v. Combining both, we have

go Q
pks vQ +3 RQ , and for each X ∈ C , X QX

pXoo
vQX // RQX ,

where pX and vQX are weak equivalences.

3.3.5. Proposition. We have the following commutative diagram whose construction
we explain step by step in the proof below:

C
RQ //

r

((q

  
i

��

C

i

||

Cfc

i′

��

j

OO

ij

��

Ho(Cfc)

j
��

Ho(C )

r
77

RQ //Ho(C )

Proof.
1. Restricting R to the subcategory Cc and precomposing with Q we have a functor

r : C −→ Cfc , where ”j” denotes the full inclusion Cfc ⊂ C . Note that r is the
correstriction of the composition RQ, and that r j = id.

2. We define q : C −→ Ho(Cfc) to be the composition, q = i′ r.
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3. From Definition 3.3.2 and Proposition 3.1.2 we know that q sends weak equiva-
lences into equivalences, then from Proposition 2.2.1 there exists a unique 2-functor r
such that r i = q = i′ r.

4. We consider the restriction i j of i , and again by Proposition 3.1.2 we know that
i j sends weak equivalences into equivalences, and from Theorem 3.1.3 we get a unique
2-functor j such that j i′ = i j. Precomposing with i′ we compute r j i′ = r i j = i′ r j = i′,
then Theorem 3.1.3 gives us r j = id.

5. Finally we have a 2-functor RQ = j r wich satisfies RQ i = i RQ.

3.3.6. Remark. We remark that there are not 2-functors Q and R of cofibrant and
fibrant replacement defined on the homotopy category Ho(C ), RQ is not a composite
R ◦Q.

3.3.7. The 2-localization theorem. We want to see that the functor

q : C −→ Ho(Cfc)

determines the 2-localization of C at the weak equivalences, that is, that we have a
2-category pseudoequivalence

q∗ : Homp(Ho(Cfc),D) −→ Homp(C ,D)+

for every 2-category D .

Since q = r i, to prove that q∗ is a pseudoequivalence it would be
enough to see that r∗ : Homp(Ho(Cfc),D) −→ Homp(Ho(C ),D)+ as well as
i∗ : Homp(Ho(C ),D)+ −→ Homp(C ,D)+ are both 2-category pseudoequivalences.

Concerning i, we already saw in Theorem 2.2.5 that in fact it is an isomorphism. Now:

3.3.8. Theorem. The 2-functors

Homp(Ho(Cfc),D)
r̄∗ //

oo
j̄∗

Homp(Ho(C ),D)+

determine a 2-category pseudoequivalence.

Proof.We have j
∗
r∗ = (r j)∗ = id∗ = id (Proposition 3.3.5, item 4), then it only remains

to establish an equivalence of r∗ j
∗
= (j r)∗ with id.

Let F : Ho(C ) −→ D be such that it sends weak equivalences into equivalences. Ap-

plying the 2-functor C
i−→ Ho(C ) followed by F in the Remark 3.3.4, we have 2-natural

transformations fi F iQ
Fipks FivQ+3 FiRQ . We know that for each object X in C , both vX

and pX are weak equivalences (Remark 3.3.4), so (Fip)X and (FivQ)X are equivalences
in D . Let (Fip)′ be a pseudonatural quasi-inverse of Fip obtained by Proposition 1.2.5.
We define ηF : Fi =⇒ FiRQ as the composition FivQ ◦ (Fip)′. But iRQ = RQ i and
RQ = j r (Proposition 3.3.5, item 5), then we have ηF : Fi =⇒ F j r i. Finally Theorem
2.2.5 gives us an equivalence ηF : F =⇒ F j r = r∗ j

∗
(F ) in Homp(Ho(C ),D)+
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In turn, if η were pseudonatural in the variable F , then it would be the equivalence
sought, since by the above, each component ηF is so. Let’s see that η is indeed pseudo-
natural.

In the objects of Homp(Ho(C ),D)+, we have η already defined. Now, given an arrow
in Homp(Ho(C ),D)+, that is a pseudonatural transformation σ : F =⇒ G, we want to
define an invertible modification ησ : r∗ j

∗
(σ) ◦ ηF −→ ηG ◦ σ :

F
ηF +3

σ
��

r∗j
∗
(F )

r∗j
∗
(σ)��←ησ

G ηG
+3 r∗j

∗
(G)

For each X in C we have the following diagram that allows us to define ησ pointwise,
recall r∗ j

∗
(F ) = F j r and 3.3.5, 5.:

FiX
F ′(ipX) //

(ηF )X

%%

σiX

��
⇐σ′

(ipX )

FiQX
F (ivQX)

//

σiQX

��

FiRQX

σiRQX

��
⇐σ(ivQX )

GiX
G′(ipX) //

(ηG)X

99GiQX
G(ivQX)

// GiRQX

The 2-cell σ(ivQX) in the right square is the inverse of the pseudo-natural structure of σ.
In the left square we denote F ′(ipX), G

′(ipX) the quasi-inverses of F (piX), G(piX). We

have id
αG=⇒ G′(ipX)G(ipX) and F (ipX)F

′(ipX)
βF=⇒ id. The 2-cell σ′

(ipX) is defined by the
following composition:

σiQX F
′(ipX)

αG □□ +3 G′(ipX)G(ipX)σiQX F
′(ipX)

□σ(ipX ) □ +3

G′(ipX)σiX F (ipX)F
′(ipX)

□□βF +3 G′(ipX)σiX

Composing this pasting diagram the desired modification is obtained.

This finishes the proof of the localization theorem:

3.3.9. Theorem.Given a model category C , the 2-functor q : C −→ Ho(Cfc) in Proposi-
tion 3.3.5, item 2., is the 2-localization of C at the classW, that is, it sends the elements of
W into equivalences, and the 2-functor q∗ : Homp(Ho(Cfc),D) −→ Homp(C ,D)+ of pre-
composition with q, is a 2-category pseudoequivalence (see 1.2.4) for every 2-category D .

It is important to recall that although it is not necessary for the proof, in this theorem
Ho(Cfc) = Hofc(C ) since we are assuming functorial factorization, see 3.1.5.
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3.3.10.. Local smallness. We finish by observing that in Corollary A.1.5 in the appendix
it is established that the hom categories of the homotopy 2-categories in the 2-localizations
are locally small.

3.3.11.. Classic Quillen’s localization of C .

Applying the functor of connected components π0 we conclude a result analogous to
that of the item 3.2.14. More precisely, what we have is that the composition

C
q−→ Ho(Cfc)

π0−→ π0Ho(Cfc)

is the localization of the category C with the class W of weak equivalence, in the sense
that its precomposition induces an equivalence of categories. So it is not exactly Quillen’s
localization which establishes an isomorphism, but it is equivalent to it. From Theorem
3.3.9 as we did in the item 3.2.14 to obtain Theorem 3.2.15, and observing certain details,
we now obtain

3.3.12. Theorem. The functor defined by the composition C
π0q−→ π0Ho(Cfc) is the lo-

calization of C with respect to the class W in the sense that it sends weak equivalences
into isomorphisms, and the precomposition

(π0q)
∗ = i∗π∗

0 : Hom(π0Ho(Cfc),X ) −→ Hom(C ,X )+

is an equivalence of categories, for every category X .

A. Without functorial factorization

In this appendix we assume that the reader is familiar with the concept of pseudofunctor.
The 2-localization obtained assuming functorial factorization differs with the one we will
describe in this appendix using the original Quillen’s factorization axiom. The homotopy
category will be Hofc(C ), not Ho(Cfc), which is a different 2-category in the absence of
functorial factorization, see 3.1.5. The localising arrow is a pseudofunctor, not a 2-functor,
and more fundamentally, there are fibrant and cofibrant replacement on the homotopy
2-category, which allow to obtain the fibrant-cofibrant replacements as a composition,
while in the treatment with functorial factorization there is no fibrant or cofibrant re-
placement 2-functors on the homotopy 2-category, only a fibrant-cofibrant simultaneous
replacement.

We refer to the definition 3.3.2 and consider the following diagrams:

QX
Q(idX) //
idQX //

pX

��

QX

pX◦
����

X
idX //
idX // X

QX
Qf //

pX◦
����

Q(gf)

''
QY

Qg //

pY◦
����

QZ

pZ◦
����

X
f //

gf
88Y

g // Z

(7)



568 DUBUC E. J., GIRABEL J.

Clearly, the functoriality of Q would follow if pX and pZ were monomorphisms, but this
is not the case. However, in the homotopy category the equalities in the lower part of
the diagrams actually lift to homotopies idQX +3 Q(idX), QgQf +3 Q(gf) in the
upper part, yielding 2-cells that determine a pseudofunctor structure for Q. Moreover, it
extends to a pseudofunctor defined in the homotopy 2-category, fact which is necessary
to perform the composition with the dual fibrant replacement pseudofunctor.

We briefly describe now how this is done, complete definitions and proofs are developed
in [2] for model bicategories. The particular case of model categories merits to be treated
apart because it is much simpler, avoiding the difficulties and complications necessary to
be able to deal with non invertible 2-cells, which actually give rise to a different theory.

Without functorial factorzation pseudofunctors become unavoidable, and we need
Theorem 2.2.5 for the hom 2-categories whose objects are now pseudofunctors. It is
immediate to observe that the construction of Ho(A ), 2.1.7, 2.1.8, as well as the proofs
in 2.2.1, 2.2.2, 2.2.3 and 2.2.4, can be done literally word by word by requiring that the
cylinders (Definition 2.1.1), have the arrow W

s−→ Z in a subcategory F ⊂ Σ contain-
ing the identities. A 2-category Hof (A ) ⊂ Ho(A ) is thus determined. On the other
hand, Theorem 2.2.5 generalizes (but not easily) to the hom 2-category pHomp which has
pseudofunctors as objects, for a proof we refer the reader to [1, 3.38, 3.40] . We have the
following generalisation of Theorem 2.2.5:

A.0.1. Theorem. The inclusion 2-functor i : A −→ Hof (A ) induces a 2-category
isomorphism i∗ : pHomp(Hof (A ),D)+ −→ pHomp(A ,D)+.

Note that regardless of F , the subscript ”+” still indicates the 2-functors that send
the whole class Σ into equivalences.

We set A = C and let F be the class of trivial fibrations so that Hof (C ) is the
2-category with 2-cells determined by the fibrant (left) homotopies.

The concepts dual to that of cylinder and homotopy are also necessary, and fibrant
homotopies and their duals now play an essential role. It is necessary to establish several
facts about them, which we do now.

A.1. Right homotopies. Path objects and right homotopies are cylinders and homo-
topies in the dual model category. As with left homotopies, we get a more general version
of Quillen’s right homotopies. A homotopy 2-category can also be obtained by taking
as 2-cells the classes of finite sequences of right homotopies. We say that two right ho-
motopies K and K ′ are in the same class if and only if F̂K = F̂K ′ for every 2-functor
F : C −→ D such that F (W) ⊆ Equiv(D), for every 2-category D . We define the
vertical and horizontal compositions as we did before, thus building a 2-category that we
call Ho(C )r to distinguish it from Ho(C ) which in this section we will denote Ho(C )l.

Considering the inclusion i : C −→ Ho(C )r, the precomposition also gives us an
isomorphism as in Theorem 2.2.5, but this does not mean that both categories are iso-
morphic, since the 2-functor i in neither of the two cases sends weak equivalences into
equivalences.
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On the other hand, a right homotopy K = (P, k) and a left homotopy H = (C, h) are

related if F̂K = F̂H for all F : C −→ D that sends weak equivalences into equivalences.
Although Ho(C )r and Ho(C )l do not have to coincide, the following result will allow
us to establish that both categories coincide when the objects are fibrant and cofibrant,
Ho(Cfc)

r = Ho(Cfc)
l.

Now we explicitly precise this concepts and considerations in the case of q-homotopies:

A.1.1. Definition. A q-path object P = (V, δ0, δ1, σ) for an object Y is a factorization
of the diagonal

Y

∆Y

''
σ // V

(δ0,δ1) // Y × Y,
with (δ0, δ1) a fibration and σ a weak equivalence. When σ is a cofibration, we say that the
path object is cofibrant. By axiom M4 every object Y has at least one cofibrant path-object.

A.1.2. Definition. A right q-homotopý K : f +3 g with q-path-object
P = (V, δ0, δ1, σ) (for Y ) is a morphism k : X −→ V satisfying δ0k = f and
δ1k = g.

X
k // V

(δ0,δ1) // // Y × Y

Y
σ
◦
ee

∆Y

77 ,

A.1.3. Proposition. Let f, g : X −→ Y , H = (C, h) : f +3 g be a q-homotopy with
cylinder C = (W,Z, d0, d1, s, x), and let P = (V, δ0, δ1, σ) be a path-object of Y (which we
can choose cofibrant). If X is cofibrant, then there is a right q-homotopy K : f +3 g
with path-object P such that [K] = [H].

Proof. H is of the form X
d0 //

d1
//

id %%

W h //

syy

Y,

X

and by Lemma 3.2.9 both

d0 and d1 are trivial cofibrations, so there is a morphism k′ : W −→ V that making
commutative the following diagram

X
σf //

��

d0 ◦
��

V

(δ0,δ1)
����

W

∃ k′
88

(fs,h) // Y × Y
Defining k = k′d1, we obtain the right q-homotopy K we were looking for:

X k // V
δ0 //

δ1
// Y.

Y
σ
◦
ee

id

99

Given F : C −→ D , it is not immediate but also not difficult to prove that F̂H = F̂K.
This then tells us that [K] = [H], concluding the proof.
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Note that for fibrant-cofibrant objects any fibrant cylinder or cofibrant path object is
necessarily inside Cfc, it follows:

A.1.4. Remark. In A.1.3 when X and Y are fibrant-cofibrant all the objects involved
are fibrant-cofibrant.

From the previous proposition together with its dual version, it follows that when
the objects are fibrant and cofibrant, the classes of right q-homotopies correspond to the
classes of left q-homotopies, so that Hofc(C ) are the same 2-category in either version.
Considering its remark, the same holds for Ho(Cfc).

Furthermore we obtain for free that the hom-categories of the 2-categories Hofc(C )
and Ho(Cfc) are locally small.

A.1.5. Corollary. Let X, Y be fibrant and cofibrant, and let f, g : X −→ Y be mor-
phisms in C . Then Hofc(C )[X, Y ][f, g] and Ho(Cfc)[X, Y ][f, g] are sets.

Proof. Fix any cylinder C, by applying the proposition and its dual one after the other
it follows that for all the 2-cells [H] : f =⇒ g we can choose a homotopy H with C as its
cylinder.

A.1.6. Comment. Considering Lemma 3.2.5 we assume in Comment 2.4.4 that the ho-
motopies are q-homotopies. Quillen also defines an equivalence relation between homo-
topies (see [10] Ch.I §2), and we have verified that the relation between homotopies defined
by Quillen is just our germ relation under a different formulation. He also defines a ”cor-

respondence” relation between left homotopies H and right homotopies K, H
cd∼ K. It can

be easily seen that if H
cd∼ K then [H] = [K] (compare with Lemma 2.4.3). On the other

hand by its very definition the right homotopy K constructed in Proposition A.1.3 is such

that H
cd∼ K. In this way Lemma 1 in [10] Ch.I §2 corresponds to our Proposition A.1.3.

Quillen shows that classes of homotopies can be composed vertically and horizontally, but
it does not mention the compatibility between both compositions, which suggests that this
compatibility would not be valid. See more on this relation between homotopies in an
appendix in [1].

A.2. Some properties on fibrant homotopies. By inspecting the proof of item 2)
in Lemma 3.2.5 it is clear that we also have a proof of the following:

A.2.1. Proposition. Given any two objects X, Y , f, g : X −→ Y , and H a fibrant
homotopy from f to g, there exists a fibrant q-homotopy H ′ such that [H] = [H ′].

A.2.2. Proposition. Let X
p−→ Y be a trivial fibration, and p f

[H]
=⇒ p g be a 2-cell in

Ho(C )(Z, Y ) with H a q-homotopy, H = (C, h). Then there exists a unique 2-cell f
[H′]
=⇒ g

in Ho(C )(Z, Y ) with H ′ a q-homotopy (with same cylinder as H) such that [H] = p [H ′].
Note that if H is fibrant, so is H ′.
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Proof.

Z ⨿ Z
(fg) //

��

(d0d1)
��

X

p◦
����

W

∃h′

88

h // Y

That [H] = p [H ′] follows immediately by 3.2.7, see (3) in Definition 2.1.8. For the

uniqueness, if p [H] = p [K] then Fp F̂H = Fp F̂K, and since Fp is an equivalence, it

follows F̂H = F̂K, thus [H] = [K].

The need of the fibrant homotopies is precisely to allow the use of Proposition A.2.2, for
which the 2-cells considered have to be determined by q-homotopies, which by Proposition
A.2.1 is the case for fibrant homotopies, but not for the general 2-cell of Ho(C ).

A.3. Fibrant and Cofibrant replacement pseudofunctors. We refer to
Definition 3.3.2 and note that the definition of Q on objects and arrows does not use
the functoriality of the factorization. In fact, for each X in C , we factor 0 −→ X ob-
taining a cofibrant object QX and a trivial fibration pX : QX −→ X. If X is already
cofibrant, we choose QX = X and pX = idX . Given f : X −→ Y , Qf : QX −→ QY is
defined satisfying the equation pYQf = fpX as we see in the diagram

0 // //
��

��

QY

pY◦
����

QX

Qf

88

pX
◦ // // X

f
// Y

As before, by axiom M5, if f is a weak equivalence, then so is Qf .
It remains then to define Q on the homotopies and to define the pseudofunctor struc-

ture.

We found convenient to say that a 2-cell determined by a fibrant homotopy is a fibrant
2-cell.

1. Definition of Q on a fibrant 2-cell [H],

Given X

f //
⇓[H]

g
// Y we have a diagram

QX
Qf //
Qg //

pX

��

QY

pY◦
����

X

f //
⇓[H]

g
// Y

[H] pX is a fibrant 2-cell and so by Proposition A.2.2 there is a unique [H ′] such that
pY [H ′] = [H] pX . We set Q[H] = [H ′]. By this definition Q[H] is a fibrant 2-cell
characterised by the equation

pY Q[H] = [H] pX . (8)
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2. Definition of the pseudofunctor structure for Q,
Similarly, considering the equality in the lower part of the diagrams in 7 as fibrant

2-cells, we obtain fibrant 2-cells idQX
ξX=⇒ Q(idX), QgQf

ϕgf
=⇒ Q(g f) characterised by the

equations,
pX ξX = pX , pZ ϕgf = g f pX (9)

Using the characterisations 8, 9 it readily follow all the equations required for the pseud-
ofunctor axioms.

In what follows we will work with both left fibrant and right cofibrant homotopies,
for clarity we will indicate with a superscript ”ℓ f”, ”r c” which are the 2-cells of the
homotopy 2-category being considered.

From 1. and 2. above we have:

A.3.1. Proposition. (Cofibrant replacement) There is a pseudofunctor

Hoℓf (C )
Q−→ Hoℓf (C )

together with a 2-natural transformation Q
p

=⇒ id, such that for all X, QX is cofibrant
and pX is a trivial fibration. If X is already cofibrant, QX = X and pX = idX .

The dual statement takes the form:

A.3.2. Proposition. (Fibrant replacement) There is a pseudofunctor

Horc(C )
R−→ Horc(C )

together with a 2-natural transformation id
v

=⇒ R, such that for all X, RX is fibrant and
vX is a trivial cofibration. If X is already fibrant, RX = X and vX = idX .

Composition of the fibrant with the cofibrant replacements. We can apply
the fibrant replacement after the cofibrant one and obtain a fibrant-cofibrant replacement
as follows:

Let X
f //
g // Y , f

[H]
=⇒ g be a 2-cell in Hoℓf (C ), then Qf

Q[H]
=⇒ Qg has cofibrant

domain QX, thus by Proposition A.1.3 it can be considered as a 2-cell in Horc(C ),

thus we can apply the pseudofunctor R, obtaining RQf
RQ[H]
=⇒ RQg, which has a fibrant

codomain RQY , and in turn by the dual of Proposition A.1.3 it can be reconsidered as a
2-cell in Hoℓf (C ). In this way the pseudofunctors Q and R determine by composition a
pseudofunctor Hoℓf (C ) −→ Hoℓf (C ). We have:

A.3.3. Proposition. [Fibrant-cofibrant replacement] There exist a pseudofunctor

Hoℓf (C )
RQ−→ Hoℓf (C ) which is the composition of R after Q, and 2-natural transfor-

mations id
p⇐= Q

v Q +3 RQ such that pX is a trivial fibration and (v Q)X is a trivial
cofibration for each X. All the (RQ)X are fibrant-cofibrant objects, and if X is already
fibrant-cofibrant, then (RQ)X = X, pX = idX and (vQ)X = idQX . If f is a weak equiva-
lence so is (RQ)f .
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A.4. The 2-localization theorem. Now we can return safely to the previous sim-
pler notation, we drop the superscript ℓ assuming the homotopies are left homotopies,
Ho(C ) = Hoℓ(C ), also by Lemma 3.2.5, and Proposition A.1.3 and its dual, for fibrant-
cofibrant objects, we have Hofc(C ) = Hoℓffc(C ) = Hoℓffc(C ).

Let j be the full inclusion Hofc(C )
j−→ Hof (C ), it is clear that RQ factors

Hof (C ) r //

RQ

��
Hofc(C )

j //Hof (C ) , RQ = jr.

We define q as the composition C
i−→ Hof (C )

r−→ Hofc(C ). As in the subsection 3.3.7 we
now want to see that the pseudofunctor q : C −→ Hofc(C ) determines the 2-localization
of C at the weak equivalences, that is, that we have a 2-category pseudoequivalence

q∗ : pHomp(Hofc(C ),D) −→ pHomp(C ,D)+

for every 2-category D .

Since q = r i, to prove that q∗ is a pseudoequivalence it will be
enough to see that r∗ : pHomp(Hofc(C ),D) −→ pHomp(Hof (C ),D)+ and
i∗ : pHomp(Hof (C ),D)+ −→ pHomp(C ,D)+ are both 2-category pseudoequivalences.
Concerning i∗, Theorem A.0.1 already tells us that it is indeed an isomorphism. Having
at our disposal the pseudofunctors Q and R, the proof of the theorem corresponding to
Theorem 3.3.8 is much simpler.

A.4.1. Theorem. The 2-functors

pHomp(Hofc(C ),D)
r∗ //

oo
j∗

pHomp(Hof (C ),D)+

determine a 2-category pseudoequivalence.

Proof. We already have j∗ r∗ = (r j)∗ = id∗ = id, then we only have to see

id ≃ r∗ j∗= (jr)∗ = (RQ)∗.

Let id
p∗⇐= Q∗ (vQ)∗ +3 (RQ)∗ the pseudo-natural transformations induced by those of the

Proposition A.3.3. To see that they induce the sought equivalence, Proposition 1.2.5 tells

us that it is enough to see that for each Hof (C )
F−→ D that sends weak equivalences

into equivalences, and for every X in C , it suffices to show that ((p∗)F )X = F (pX) and
(((vQ)∗)F )X = F (vQX) are equivalences, which follows precisely from the Propositions
A.3.1 and A.3.2 and the hypothesis made on F .
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Giuseppe Rosolini, Università di Genova: rosolini@unige.it
Michael Shulman, University of San Diego: shulman@sandiego.edu
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
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