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HIGHER COVERINGS OF RACKS AND QUANDLES � PART I

FARA RENAUD

Abstract. This article is the �rst part of a series of three articles, in which we develop
a higher covering theory of racks and quandles. This project is rooted in M. Eisermann's
work on quandle coverings, and the categorical perspective brought to the subject by
V. Even, who characterizes coverings as those surjections which are central, relatively to
trivial quandles. We extend this work by applying the techniques from higher categori-
cal Galois theory, in the sense of G. Janelidze, and in particular we identify meaningful
higher-dimensional centrality conditions de�ning our higher coverings of racks and quan-
dles.

In this �rst article (Part I), we revisit the foundations of the covering theory of interest,
we extend it to the more general context of racks and mathematically describe how
to navigate between racks and quandles. We explain the algebraic ingredients at play,
and reinforce the homotopical and topological interpretations of these ingredients. In
particular we study and insist on the crucial role of the left adjoint of the conjugation
functor Conj between groups and racks (or quandles). We rename this functor Pth,
and explain in which sense it sends a rack to its group of homotopy classes of paths.
We characterize coverings and relative centrality using Pth, but also develop a more
visual �geometrical� understanding of these conditions. We use alternative generalizable
and visual proofs for the characterization of central extensions of racks and quandles.
We complete the recovery of M. Eisermann's suitable constructions of weakly universal
covers, and fundamental groupoids from a Galois-theoretic perspective. We sketch how
to deduce M. Eisermann's detailed classi�cation results from the fundamental theorem
of categorical Galois theory. As we develop this complementary understanding of the
subject, we lay down all the ideas and results which will articulate the higher-dimensional
theory developed in Part II and III.

1. Introduction

Over the last decades, racks (see [41] for a detailed introduction to the subject and its
history) and quandles [61, 69] have been applied to knot theory, physics and computer
sciences in various works � see for instance [62, 9, 41, 26, 42, 23, 22, 63, 29] and references
there. In geometry, the earlier notion of symmetric space, as studied by O. Loos in
[65] (see also [77]), gives yet another context for applications (see [2, 47] for up-to-date
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introductions to the �eld). Racks and quandles have also received a lot of attention from
experts in categorical algebra [30, 32, 33, 34, 6, 8, 7], for the development of the notion
of Σ-local properties as well as in relation to the concept quandle covering.

This concept is due to M. Eisermann who developed a covering theory for quandles,
published in [29], where he studies quandle coverings in analogy with topological coverings.
In particular, he derives several classi�cation results for coverings, in the form of Galois
correspondences as in topology (or Galois theory). In order to do so, he works with some
suitable constructions such as a (weakly) universal covering or a fundamental group(oid)
of a quandle.

In his Ph.D. thesis [30], V. Even applies categorical Galois theory, in the sense of
G. Janelidze [49], to the context of quandles. By doing so, he establishes that M. Eiser-
mann's coverings arise from the admissible adjunction between trivial quandles (i.e. sets)
and quandles, in the same way that topological coverings arise from the admissible ad-
junction between discrete topological spaces (i.e. sets) and locally connected topological
spaces (see Section 6.3 in [4]). He also derives that M. Eisermann's notion of fundamental
group of a connected, pointed quandle coincides with the corresponding notion from cat-
egorical Galois theory. This, in turn, makes the bridge with the fundamental group of a
pointed, connected topological space. By doing so, V. Even strengthens the analogy with
topology and opens the door for the application of many tools from categorical Galois
theory, and categorical algebra.

In this article, we investigate the lower dimensional covering theory of quandles with
the perspective of developing a higher-dimensional covering theory in this context. In
order to do so, we explicitly extend M. Eisermann and V. Even's work to the more
general context of racks, as it was already suggested in their articles. We investigate
visual representations and a suitable categorical understanding of the di�erent algebraic
and topological ingredients of these covering theories in order to prepare the generalization
of these tools in higher dimensions. We use categorical Galois theory in order to access the
concepts and tools which are required for the development of such a higher-dimensional
covering theory, which is further developed in Higher coverings of racks and quandles �
Part II [73] and the forthcoming third part of this project [74].

In Section 1.1, we describe enough of categorical Galois theory to motivate the overall
project and explain the results we seek. We describe those key properties of the adjunction
between the category of racks (or quandles) and the category of trivial racks (i.e. sets) that
we need in order to achieve our higher-dimensional goals. Finally we comment on the use
of projective presentations, and a global strategy to characterize the central extensions
(coverings) arising in the context of such a suitable adjunction.

In Section 2, we recall and study the basics of the theory of racks and quandles
that we need for the investigation of the covering theories of interest. We start (Section
2.1) with a short study of the axioms, our �rst comments relating groups, racks and
quandles, and the basic concepts of symmetry, inner automorphisms, and their actions.
Next (Section 2.2), we develop some intuition about the geometrical features of a rack. We
illustrate our comments on the construction of the free rack, and recall the construction
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of the canonical projective presentation of a rack, which presents the elements in a rack
with the geometrical features of those in the appropriate free rack. We then introduce
the connected component adjunction (Section 2.3), from which the covering theory of
interest arises. The concepts of trivializing relation, connectedness, primitive path, orbit
congruence, etc. are recalled. We propose to derive the trivializing relation from the
geometrical understanding of free objects via projective presentations. We recall the
admissibility results for the connected component adjunction and comment on the non-
local character of connectedness. We illustrate our visual approach to coverings on the
characterization of trivial extensions.

Section 2.8 follows with a description of the links between the construction of Pth
(the group of paths functor), left adjoint of the conjugation functor, and the equivalence
classes of tails of formal terms in the language of racks. Again, we propose to look at
the simple description of Pth on free objects, and extend this description to all objects,
via the canonical projective presentations. We describe the action of the group of paths
and how it relates to inner automorphisms and equivalence classes of primitive paths
in general. The free action of this group on free objects is recalled. We emphasize the
functoriality of Pth on all morphisms by contrast with the non-functorial construction of
inner automorphisms. We describe the kernels of the induced maps between groups of
paths, in preparation for the characterizations of centrality. We insist on the fact that
the role of Pth (as left adjoint of the conjugation functor) is the same in racks and in
quandles, although it appears as more intimately related to racks in design. We conclude
this survey with a study of the adjunction between racks and quandles (Section 2.22).
We derive its admissibility and deduce that all extensions are central with respect to this
adjunction. We build the free quandle Fq(A) on a set A in a way that illustrates best the
journey from one context to the other. By doing so, we rephrase the interest for pairs of
generators with opposite exponents (the transvection group, understood via the functor
Pth◦). We show that the normal subgroup Pth◦(Fq(A)) ≤ Pth(Fq(A)) of the group of
paths acts freely on Fq(A) as expected.

In Section 3, we give a comprehensive Galois-theoretic account of the low-dimensional
covering theory of quandles, which we extend to the suitable context of racks. Coverings
are described, as well as their di�erent characterizations, using the kernels of induced maps
Pth(f) between groups of paths, but also via the concept of closing horns. We recall that
primitive extensions are coverings, and coverings are preserved and re�ected by pullbacks
along surjections (i.e. central extensions are coverings). We �nd counterexamples for
Theorem 4.2 in [16], and �nally illustrate our �geometrical� approach to centrality on the
characterization of normal extensions. In Section 3.15, we give a new proof � generalizable
to higher dimensions � for the characterization of central extensions of racks and quandles.
We investigate how the concepts of centrality in racks and in quandles relate (Section 3.19),
using the factorization of the connected component adjunction through the adjunction
between racks and quandles. Amongst other results, we derive that the centralizing
relations, if they exist, should be the same in both contexts. We then prove (Section
3.25) several characterizations of these centralizing relations, and extend the results from
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[28] on the re�ectivity of coverings in extensions. In preparation for the admissibility in
dimension 2, we show that coverings are closed under quotients along double extensions
(towards �Birkho��) and we show the commutativity property of the kernel pair of the
centralization unit (towards �strongly Birkho��). We then move to Section 3.32, and the
construction of weakly universal covers from the centralization of canonical projective
presentations. From there, we build the fundamental Galois groupoid of a rack and of a
quandle, establishing the homotopical interpretations of Pth and Pth◦. In Section 3.40 we
illustrate the use of the fundamental theorem of categorical Galois theory in this context.

1.1. The point of view of categorical Galois theory. Categorical Galois theory
(in the sense of G. Janelidze [49], see also [55]) is a very general theory with rich and var-
ious interpretations depending on the numerous contexts of application. On a theoretical
level, Galois theory exhibits strong links with, for example, factorization systems, com-
mutator theory, homology and homotopy theory (see for instance [57, 18, 54]). Looking
at applications, it uni�es, in particular, the theory of �eld extensions from classical Galois
theory (as well as both of its generalizations by A. Grothendieck and A. R. Magid.), the
theory of coverings of locally connected topological spaces, and the theory of central ex-
tensions of groups. The covering theory of racks and quandles [29] is yet another example
[30], which combines intuitive interpretations inspired by the topological example with
features of the group theoretic case. A detailed historical account of the developments of
Galois theory is given in [4] and [54] gives an overview of the developments of categorical
Galois theory (from the perspective of universal algebra). In this introduction we avoid
the technical details of the general theory, but hint at the very essentials needed by us.
Another suitable and more comprehensive introduction can be found in [72].

Categorical Galois theory always arises from an adjunction (say �relationship�) between
two categories (think �contexts�). For our purposes, there shall be a supposedly better
understood �primitive context�, say X , which sits inside a supposedely more di�cult
�sophisticated context�, say C; such that moreover C re�ects back on X � e.g. sets,
considered as discrete topological spaces, sit inside locally connected topological spaces
which re�ect back on sets via the connected component functor π0 [4, Section 6.3]. Under
certain hypotheses on these contexts and their relationship, categorical Galois theory
studies a (speci�c) sphere of in�uence of the context X in the context C, with respect
to this relationship � the idea of a relative notion of centrality [43, 66]. This in�uence
(centrality) is discussed in terms of a chosen class of morphisms in these categories which
we call extensions (e.g. the class of surjective étale maps). The data of such an adjunction
F a I (with unit η and counit ε) and a chosen class of extensions E is called a Galois
structure Γ ..= (C,X , F, I, η, ε, E) and provides the axiomatic framework for categorical
Galois theory to be applicable (provided that (C,X , F, I, η, ε, E) satis�es some conditions,
see [50, 55]).

Given such a Galois structure Γ, the idea is that extensions �which live in X �, which we
call primitive extensions, induce, in two steps, two other notions of extensions in C, which
are naturally related to primitive extensions �in a tractable way�. The �rst step in�uence:
trivial extensions, are those extensions t of C that are directly constructed from a primitive
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extension p in X , by pullback along a component of the unit η (see Figure 1 � this gives
topological trivial coverings in our example). Then the second step in�uence: central
extensions (which are topological coverings in our example), are those extensions which
�are locally trivial extensions�, i.e. extensions which can be split by another extension,
where an extension e splits an extension c when the pullback t of c along e is a trivial
extension � see Figure 1.

Under certain conditions on the Galois structure Γ (see admissibility in [55] and Section
1.1.1) the central extensions above a given object can be classi�ed using data which is
internal to X � in a form which is often called a Galois correspondence, as in the theory
of topological coverings.

More precisely, we need the Galois-theoretic concept of the fundamental groupoid of
an object. In topology, the classical concept of fundamental group(oid) of a (pointed)
space may be viewed as the Galois-theoretic concept of fundamental groupoid de�ned for
a Galois structure Γ. Given an extension n : A→ B, the kernel pair p1, p2 : Ker(n) ⇒ A of
n always determines the structure of an internal groupoid in C. If n is moreover a central
extension, which is split by itself, i.e. the projections of the kernel pair p1, p2 : Ker(n) ⇒ A
of n are trivial extensions, then n is called a normal extensions and the image G ..=
F (p1, p2 : Ker(n) ⇒ A) by the re�ector F of this groupoid induced by ker(n) is still a
groupoid in X . The fundamental theorem of categorical Galois theory then says that
internal presheaves over that groupoid G (think �groupoid actions in X �) yield a category
which is equivalent to the category of those extensions above B which are split by n. If n
splits all central extensions above B, for instance, in the contexts of interest, when it is a
weakly universal central extension above B (see Section 1.1.2), then G is the fundamental
groupoid of B, which thus classi�es all central extensions above B. A weakly universal
central extension above B is a central extension with codomain B, which factors through
any other central extension above B. Note that the conditions � connectedness, local path-
connectedness and semi-local simply-connectedness � on the space X in [46, Theorem
1.38] are there to guarantee the existence of a weakly universal covering above X (see

Figure 1: A kid's drawing of categorical Galois theory
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[4, Section 6.6-8]). Internal groupoids and internal actions are well explained in [60], a
standard reference for the use of groupoids is [11].

In the case of groups, the adjunction of interest is ab a I, the abelianization adjunc-
tion, where the left adjoint ab: Grp→ Ab sends a group G to the abelian group G/[G,G],
constructed by quotienting out the commutator subgroup [G,G] of G. In this context,
the extensions are chosen to be the regular epimorphisms, which are merely the surjec-
tive group homomorphisms. Given this Galois structure, the Galois-theoretic concept of
central extension coincides with the concept of a central extension from group theory.
The fundamental theorem can for instance be used to show that given a perfect group G,
the second integral homology group of G can be presented as a �Galois group� (see [49,
Remark 5.4], [4, Section 5.2.(10-17)] and [53]).

Note that in Part I, the adjunction which gives rise to the covering theory of racks
and quandles is related to ab a I and is also such that X is a subvariety of algebras in
C ..= Rck/Qnd. Such data always gives a Galois structure, by de�ning extensions to be
the surjective maps [55]. Moreover, X = Set is here equivalent to the category of sets,
such that the left adjoint F ..= π0 : Rck/Qnd = C → X can be interpreted as a connected
component functor like in topology.

Now from the example of groups, and the aforementioned links with homology, the
development of Galois theory led for instance to a generalization of the Hopf formulae for
the (integral) homology of groups [12] to other non-abelian settings, leading to a whole new
approach to non-abelian homology and cohomology, by means of higher central extensions
[51, 52, 38, 53, 45, 35, 36, 39, 37, 76, 27]. In order to access the relevant higher-dimensional
information, one actually �iterates� categorical Galois theory. The increase in dimension
consists in shifting from the context of C to the category of extensions of C: ExtC de�ned
as the full subcategory of the arrow category ArrC with objects being extensions. A
morphism α : fA → fB in such a category of morphisms is given by a pair of morphisms
in C, which we denote α = (α>, α⊥) (the top and bottom components of α), such that these
form an (oriented) commutative square (on the left).

A>

α> ,2

fA
��

(→)

B>

fB
��

A⊥ α⊥
,2 B⊥

A>

α> ,2

p "*

fA

��

B>

fB

��

P
π2
18

π1
z�

A⊥ α⊥
,2 B⊥

We call the comparison map of such a morphism (or commutative square) the unique map
p : A> → P induced by the universal property of P ..= A⊥×B⊥B>, the pullback of α⊥ and fB.
Now from the study of the admissible adjunction F a I (within the Galois structure Γ),
Galois theory produces the concept of a central extension, and thus we may look at the full
subcategory CExtC of ExtC whose objects are central extensions. The category of central
extensions CExtC is not re�ective (even less so admissible) in the category of extensions
ExtC in general (see [56]). In groups one can universally centralize an extension, along a
quotient of its domain, and there CExtC is actually a full replete (regular epi)-re�ective
subcategory of ExtC. When such a re�ection exists, one may further wonder whether
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there is a Galois structure behind it, and whether it is admissible. What is the sphere of
in�uence of central extensions in extensions, and with respect to which class of extensions
of extensions, i.e. can we re-instantiate Galois theory in this induced (two-dimensional)
context?

An appropriate class of morphisms to work with, in order to obtain an admissible
Galois structure in such a two-dimensional setting, is the class of double extensions (see
for instance [51, 44, 40, 35]). A double extension is a morphsim α = (α>, α⊥) in ExtC such
that both α> and α⊥ are extensions and the comparison map of α is also an extension.
Double central extensions of groups were described in [51], and higher-dimensional Galois
theory developed further [52, 38], leading to the aforementioned results in homology and
cohomology.

Similarly in topology, higher homotopical information of spaces can be studied via the
higher fundamental groupoids in the higher-dimensional Galois theory of locally connected
topological spaces. A detailed survey about the study of higher-dimensional homotopy
group(oid)s can be found in [10], see also [13]. Some insights are given in [15] where higher
Galois theory is used to build a homotopy double groupoid for maps of spaces (see also
[14]).

In this article we consolidate the understanding of the one-dimensional covering theory
of racks and quandles, and introduce all the necessary ideas to start a higher-dimensional
Galois theory in this context. Note that the generalization of the covering theory to higher
dimensions is far from trivial and the existing literature on the lower-dimensional theory
(see for instance [29, 30, 31, 33, 28]) was not aimed at facilitating such a development.
In this article, we thus enable the expansion of the theory's scope to higher dimensions
with the interesting homological and homotopical perspectives that have led to many new
results in previous applications.

1.1.1. Admissibility via the strong Birkhoff condition, in two steps. Note
that in the literature, most instantiations of higher categorical Galois theory are such that
the �base� category C is a Mal'tsev category (see [20, 21, 19]), and such that moreover all
the induced higher-dimensional categories of extensions (ExtC, ExtExtC, and so on) are
also Mal'tsev categories. Admissibility conditions (for Galois theory to be applicable) as
well as computations with higher extensions are easier to handle in such a context. The
categories we are interested in are not Mal'tsev categories. Showing how higher categorical
Galois theory can apply in this more general setting thus requires some re�nements on
the arguments which are used in the existing examples (see for instance [31]).

The di�culty is in the induction for higher dimensions which will be detailed in Part
II and Part III [73, 75, 74]. As a necessary foundation for these higher-dimensional
goals, we sketch, without technical details, which properties of the adjunctions (or Galois
structures) of interest to focus on in lower-dimensions.

Our starting context is that of [55] which we refer to for more details. The Galois
structures Γ = (C,X , F, I, η, ε, E) of interest are then such that X is a Birkho� subcategory
of C [17, 55]. In particular, X is closed in C under quotients along extensions, which in this
context is equivalent to the fact that the re�ection squares of extensions are pushouts.
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Given f : A→ B in C, the re�ection square at f (with respect to Γ) is the morphism
(ηA, ηB) with domain f and codomain IF (f) in Arr(C). The subcategory X is then
said to be strongly Birkho� in C if moreover these re�ection squares of extensions are
themselves double extensions.

A
ηA ,2

p  )

f

��

IF (A)

IF (f)

��

P
π2
18

π1
{�

B ηB
,2 IF (B)

(1)

Proposition 2.6 in [38] implies that if Γ is strongly Birkho�, then it is in particular
admissible (and thus categorical Galois theory is applicable). This strongly Birkho�
condition is the condition of interest to us. For the Galois structures Γ we consider (such
as in [55]) Proposition 5.4 in [19] implies that if Γ is Birkho�, it is strongly Birkho� if
and only if, for any object A in C, the kernel pair of ηA commutes (in the sense of the
composition of relations) with any other equivalence relation on A (see [68, 19]). For
instance, in the category of groups, any two equivalence relations commute with each
other (see Mal'tsev categories [19]). Hence since Ab is a Birkho� subcategory of Grp,
it is actually strongly Birkho� in Grp, which implies the admissibility of ab a I (see [55,
Theorem 3.4]). However, working in a Mal'tsev category is not necessary, as it was already
known (see for instance [55]), and observed again by V. Even in [30] and [31], where he
uses the permutability property of the kernel pairs of unit morphisms to conclude the
admissibility of his Galois structure. In Part I, we brie�y re-discuss these results and
illustrate the argument on a new adjunction. In higher dimensions, we shall also aim to
obtain strongly Birkho� Galois structures by splitting the work in two steps: (1) closure
by quotients along higher extensions and (2) the permutability condition on the kernel
pairs of the unit morphisms.

1.1.2. Splitting along projective presentations and weakly universal cov-

ers. Remember that in any category, an object E is projective � with respect to a given
class of morphisms, which we always take to be our extensions � if for any extension
f : A� B and any morphism p : E → B, there exists a factorization of p through f
i.e. g : E → A such that f ◦ g = p. A projective presentation of an object B is then
given by an extension p : E � B such that E is projective (with respect to extensions).
For instance, in varieties of algebras (in the sense of universal algebra), there are enough
projectives, in particular each object has a canonical projective presentation given by the
counit of the �free-forgetful� monadic adjunction with sets [67].

We may assume that in the Galois structures Γ (as it is the case in groups or in Part
II-III) the �sophisticated context� C has enough projectives. Then any central extension
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f is in particular split by any projective presentation p of its codomain. We have

E ×B A
pA ,2

t
&-

pE
��

A

f
��

T ×B A
pT

��

3;

E
p

,2

p′ '.

B

T

2:

(2)

where p′ is induced by E being projective, t is induced by the universal property of T×BA
and pT is a trivial extension by assumption. Then with no assumptions on C, the left
hand face is a pullback since the back face and the right hand face are. Assume that the
Galois structure we consider is admissible; trivial, central and normal extensions are then
pullback stable (see for instance [55]), and thus pE is a trivial extension, since it is the
pullback of a trivial extension. Hence if C has enough projectives, then for any object B
in C the category of central extensions CExt(B) above B is the same as the category of
those extensions which are split by one given morphism such as the foregoing projective
presentation p of B.

Now when central extensions are re�ective in extensions, a weakly universal central
extension can always be obtained from the centralization of a projective presentation.
One can for example recover this idea from [70]. Consider an extension f : A→ B, and
the centralization of a projective presentation of B:

E
p

��

centralization
v�

a
�(

E ′

p′ �$
b

4< A

f{�

B

We get a since E is projective and b by the universal property of p′. In the contexts of
interest (see for instance Proposition 3.34), a central extension is split by each weakly
universal central extension of its codomain. Such weakly universal central extensions
above an object B are then split by themselves which makes them normal extensions.
The re�ection of the kernel pair of such is then the fundamental Galois groupoid of B,
which classi�es central extensions above B.

1.1.3. General strategy for characterizing central extensions. Finally we
describe our general strategy, suggested by G. Janelidze, when it comes to identifying
a property which characterizes central extensions. It is easy to show that if a central
extension f is split by a split epimorphism p, then it is a trivial extension. As a con-
sequence, those central extensions that have projective codomains are trivial extensions.
Now suppose one has identi�ed a special class of extensions, called candidate-coverings,
such that candidate-coverings are preserved and re�ected by pullbacks along extensions.
Provided primitive extensions are candidate-coverings, then all trivial extensions are
candidate-coverings and also central extensions are. Moreover, given a candidate-covering
f : A→ B, pulling back f along a projective presentation p of B yields a candidate-
covering with projective codomain. Since f is central if and only if it is split by such a p,
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we see that candidate-coverings are central extensions if and only if all candidate-coverings
with projective codomains are actually trivial extensions, which is usually easier to check.

2. An introduction to racks and quandles

We introduce all the ingredients of the theory of racks and quandles needed for this work,
which we describe and develop from the perspective inspired by the covering theory of
interest.

2.1. Axioms and basic concepts.

2.1.1. Racks and quandles as a system of symmetries. Symmetry is classically
modeled/studied using groups. Informally speaking: given a space X, one studies the
group of automorphisms Aut(X) of X. In his Ph.D. thesis [61], D.E. Joyce describes
quandles as another algebraic approach to symmetry such that, locally, each point x
in a space X would be equipped with a global symmetry Sx of the space X. Groups
always come with such a system of symmetries given by conjugation and the de�nition of
inner automorphisms. Quandles, and more primitively racks, can be seen as an algebraic
generalisation of such.

2.1.2. Describing the algebraic axioms. Consider a set X that comes equipped
with two functions

X
S ,2

S−1
,2 X

X ,

which assign functions Sx and S−1
x in XX (the set of functions from X to X) to each

element x in X. Each element x then acts on any other y in X via those functions Sx and
S−1
x . By convention we shall always write actions on the right:

y · Sx ..= Sx(y) y · S−1
x

..= S−1
x (y)

The functions Sx and S−1
x at a given point x ∈ X are required to be inverses of one

another, in particular for all y in X we have

(y · S−1
x ) · Sx = y = (y · Sx) · S−1

x .

Note that, under this assumption, S−1 and S determine each other. Now we want to call
such bijections Sx symmetries (or inner automorphisms) of X. But observe that the set
X is now equipped with two binary operations

X ×X
/ ,2

/−1
,2 X,

de�ned by x / y ..= x · Sy and x /−1 y ..= x · S−1
y for each x and y in X. Read �y acts on x

(positively or negatively)�. Automorphisms of X should then preserve these operations.
In particular we thus require that for each x, y and z in X:

(x / y) / z = (x / y) · Sz = (x · Sz) / (y · Sz) = (x / z) / (y / z).
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2.1.3. Defining a rack. Any set X equipped with such structure, i.e. two binary op-
erations / and /−1 on X such that for all x, y and z in X:

(R1) (x / y) /−1 y = x = (x /−1 y) / y;

(R2) (x / y) / z = (x / z) / (y / z);

is called a rack. We write Rck for the category of racks with rack homomorphisms de�ned
as usual (functions preserving the operations).

We refer to the axiom (R2) as self-distributivity. For each x in X, the positive
(resp. negative) symmetry at x is the automorphism Sx (resp. S−1

x ). A symmetry, also
called right-translation, of X is Sx or S−1

x for some x in X. The symmetries of X refers
to the set of those.

2.1.4. Racks from group conjugation. A crucial class of examples is given by group
conjugation. D.E. Joyce describes quandles as �the algebraic theory of conjugation� [61].
We have the functor Conj : Grp → Rck which sends a group G to the rack Conj(G) with
same underlying set, and whose rack operations are de�ned by conjugation: x / a ..=
a−1xa and x /−1 a ..= axa−1, for a and x in G. Group homomorphisms are sent to rack
homomorphisms by just keeping the same underlying function. The forgetful functor
U: Grp→ Set thus factors through U: Rck→ Set via Conj. However the functor Conj
is not full, since given groups G and H, there are more rack homomorphisms between
Conj(G) and Conj(H) than there are group homomorphisms between G and H.

An important ingredient for understanding the relationship between groups, racks and
quandles is the left adjoint of Conj (Subsection 2.8). The study of this left adjoint (�rst
de�ned by D.E. Joyce as Adconj, referred to as Adj in [29]) is central to this piece of
work. In what follows, we often consider groups as racks without necessarily mentioning
the functor Conj.

2.1.5. Other identities and self-distributivity. Note that for the symmetries Sx
to de�ne automorphisms of racks, one needs distributivity of / on /−1, distributivity of
/−1 on /, and self-distributivity of /−1. All these identities are induced by the chosen
axioms. Besides, it su�ces for a function f to preserve one of the operations in order for
it to preserve the other. Actually the roles of / and /−1 are interchangeable. Swapping
them in a given equation, gives again a valid equation. Finally we recall that under the
axiom (R1), the axiom (R2) is equivalent to

(R2') x / (y / z) = ((x /−1 z) / y) / z.

or similarly to x / (y /−1 z) = ((x / z) / y) /−1 z. From the preceding discussion we also
have

x /−1 (y /−1 z) = ((x / z) /−1 y) /−1 z, and �nally x /−1 (y / z) = ((x / z) / y) /−1 z.

Considering these as identities between formal terms in the language of racks (see for
instance Chapter II, Section 10 in [17]), we say that the term on the right-hand side is
unfolded, whereas the term on the left hand side isn't.
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2.1.6. Composing symmetries � inner automorphisms. By construction, given a
rack X, the images of S and S−1 are in the group of automorphisms of X. The group
of inner automorphisms is de�ned as the subgroup Inn(X) of Aut(X) generated by the
image of S. For each rack X, we may then restrict S to the morphism S: X → Inn(X).
Note that the construction of the group of inner automorphisms Inn does not de�ne a
functor from Rck to Grp. It does so when restricted to surjective morphisms (see for
instance [16]). Observe that if z = x/y in X, then Sz = S−1

y ◦ Sx ◦ Sy by self-distributivity
(R2'). The function S is actually a rack homomorphism from X to Conj(Inn(X)).

Of course inner automorphisms of a group coincide with the inner automorphisms of
the associated conjugation rack. However, observe that for a group G, a composite of
symmetries is always a symmetry, whereas in a general rack, the composite of a sequence
of symmetries does not always reduce to a one-step symmetry.

2.1.7. Acting with inner automorphisms � representing sequences of sym-

metries.Given a rackX, we have of course an action of Inn(X) onX given by evaluation.
Remember that we write actions on the right, hence we use the notation z · (Sx ◦ Sy) ..=
Sy(Sx(z)) for x, y, and z in X. Now any g ∈ Inn(X) decomposes as a product g =
Sδnx1 ◦ · · · ◦ Sδ1xn for some elements x1, . . . , xn in X and exponents δ1, . . . , δn in {−1, 1}.
Such a decomposition is not necessarily unique, but for any x in X the action of g on x
is well de�ned by

x · g ..= x · (Sδnx1 ◦ · · · ◦ Sδ1xn) = x /δ1 x1 /
δ2 x2 · · · /δn xn,

where we omit parentheses using the convention that one should always compute the
left-most operation �rst.

2.1.7.1. As we shall see, we need these successive applications of symmetries in order to
study connectedness in racks. For our purposes, using the group of inner automorphisms
for their study is not satisfactory. Note that given x 6= y in a rack X, two symmetries Sx
and Sy are identi�ed in Inn(X) if they de�ne the same automorphism. Motivated by the
covering theories of interest, we study di�erent ways to organize the set of symmetries
{Sx, S−1

x }x∈X into a group acting on X. Note that we may understand the de�nition of
augmented quandles (or racks) [61], see Paragraph 2.10.1, as a tool to abstract away from
�representing� sequences of symmetries via composites of such (in the sense of the group
of inner automorphisms).

2.1.8. Quandles, the idempotency axiom. As explained by D.E. Joyce, it is reason-
able (in reference to applications) to require that a symmetry at a given point �xes that
point. If for each x in a rack X we have moreover that

(Q1) x / x = x;

then X is called a quandle. We have the category of quandles Qnd de�ned as before.
Again, (Q1) is equivalent to (Q1'): x /−1 x = x, under the axiom (R1).

For the purpose of this article, we shall mainly be working in the more general context
of racks since these exhibit all the necessary features for the covering theory of interest.
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Actually all concepts of centrality and coverings remain the same whether one works
with the category of racks or of quandles. The addition of the idempotency axiom still
has certain consequences on ingredients of the theory such as the fundamental groupoid
or the homotopy classes of paths. We shall always make explicit these di�erences and
similarities, also using the enlightening study of the �free-forgetful� adjunction between
racks and quandles.

2.1.9. Idempotency in racks. Note that even though (Q1) doesn't hold in each rack,
a weaker version of the idempotency axiom still holds in all racks as a consequence of
self-distributivity. Observe that in a rack X, given any y and x ∈ X, we have

x / (y / y) = x /−1 y / y / y = x / y.

The symmetries Sy and S(y/y), at y and y / y are always identi�ed in Inn(X), even when
y 6= (y / y) in X. Similarly, for x and y in X any chain y /k y (for k ∈ Z, the action of y
on y, repeated |k| times � use /−1 when k < 0) is such that x / (y /k y) = x / y (see also
Sections 2.22.1 and 3.19).

2.2. From axioms to geometrical features.

We informally highlight two additional elementary features of the axioms
which play an important role in what follows. We then illustrate them in
the characterization of the free rack on a set A

2.2.1. Heads and tails � detachable tails. Observe that on either side of the
identities de�ning racks, the head x of each term is the same and does not play any role
in the described identi�cations.

(R1) x / y /−1 y = x = x /−1 y / y (R2') x / (y / z) = x /−1 z / y / z

Now consider any formal term in the language of racks (built inductively from atomic
variables and the rack operations � see Chapter II Section 10 in [17]), such as for instance

(x / y) /−1 (· · · ((a / b) /−1 c) / d) · · · / z. (3)

Remember that roughly speaking, the elements of the free rack on a set A can be con-
structed as equivalence classes of such formal terms, built inductively from the atomic
variables in A, where two terms are identi�ed if one can be obtained from the other by re-
placing subterms according to the axioms, or according to any provable equations derived
from the axioms.

Given any term such as above, we shall distinguish the head x of the term from the
rest of it which is called the tail of the term. The informal idea is that the �behaviour�
of the tail is independent from the head it is attached to. It thus makes sense to consider
the tails (or equivalence classes of such) separately from the heads these tails might act
upon.

Observe that the idempotency axiom plays a slightly di�erent role in that respect since,
although the heads of terms are left unchanged under the use of (Q1), the identi�cations
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in the tails of terms might depend on the heads these are attached to. We shall however
see that the discussion about racks still lays a clear foundation for understanding the case
of quandles which we discuss in Section 2.22.

2.2.2. Tails as sequences of symmetries. By Paragraph 2.1.5, acting with a sym-
metry of the form S(x/y) translates into successive applications of S−1

y , Sx, Sy from left to
right.

• ,2
S−1
y

��Sx/y

•
�� Sx

• •lr
Sy

Now consider any formal term such as in Equation (3) for instance. Using (R2')
repeatedly, we may unfold the tail of a term into a string of successive actions of the form

x / y /−1 c / c /−1 b /−1 a / b /−1 c / c / d · · · / z.

We can then interpret the tail as a path of successive actions of the symmetries which
are applied to the head x. Using (R1) repeatedly again, we may also discard all possible
occurrences of the successive application of a symmetry and its inverse

x / y /−1 b /−1 a / b / d · · · / z.

Such unfolded and reduced terms provide normal forms (unique representatives) for ele-
ments in the free rack. The elements of a free rack on a set A are thus described with
this architectural feature of having a head in A and an independent tail, such that the
tail is a sequence of �representatives� of the symmetries which organize themselves as the
elements of the free group on A.

2.2.3. The free rack. The following construction can be found in [41]. It was also
studied in [64].

Given a set A, the free rack on A is given by

Fr(A) ..= Ao Fg(A) ..= {(a, g) | g ∈ Fg(A); a ∈ A},

where Fg(A) is the free group on A and the operations on Fr(A) are de�ned for (a, g) and
(b, h) in Ao Fg(A) by

(a, g) / (b, h) ..= (a, gh−1bh) and (a, g) /−1 (b, h) ..= (a, gh−1b−1h).

In order to distinguish elements x inA from their images under the injection ηgA : A→ Fg(A),
we shall use the convention to write

a ..= ηgA(a).

Looking for the unit of the adjunction, we then have the injective function which sends
an element in A to the trivial path starting at that element, i.e. ηrA : A→ Fr(A) : a 7→
(a, e), where e is the empty word (neutral element) in Fg(A).
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Note that since any element g ∈ Fg(A) decomposes as a product g = g1
δ1 · · · gnδn ∈

Fg(A) for some gi ∈ A and exponents δi = 1 or −1, with 1 ≤ i ≤ n, we have, for any
(a, g) ∈ Fr(A), a decomposition as

(a, g) = (a, g1
δ1 · · · gnδn) = (a, e) /δ1 (g1, e) /

δ2 (g2, e) · · · /δn (gn, e).

Using such decompositions, any group cancellation in g can be expressed as an instance of
the �rst axiom of racks, and conversely, any instance of the �rst axiom of racks translates
as a group cancellation in the path component. The universal property of the unit ηr and
the de�nition of Fr : Set→ Rck on morphisms then follows easily, yielding the left adjoint
of the forgetful functor U: Rck→ Set.

2.2.3.1. Terminology and visual representation In order to emphasize its visual
representation, we call an element (a, g) ∈ Fr(A) a trail. We call g the path (or tail)
component and a the head component of the trail (a, g). It is understood that the path
g formally acts on a to produce an endpoint of the trail (see Paragraph 2.2.3). Formally
(a, g) stands for both the trail and its endpoint:

a ,2
g

(a, g).

The action of a trail (b, h) on another trail (a, g) consists in adding, at the end of the path
g, the contribution of the symmetry associated to the endpoint of (b, h) (see Subsection
2.2.4 and further). We say that a trail acts on another by endpoint, as in the diagram
below, where composition of arrows is computed by multiplication in the path component:

a

��g /

b

��h =

a
�� g

(a, g)
�� h−1bh

(a, g) (b, h) (a, gh−1bh)

(4)

2.2.4. Canonical projective presentations. Since Rck is a variety of algebras, any
object X can be canonically presented as the quotient

Fr FrX
Fr εrX ,2

εrFr X

,2 FrXFr ηrX
lr

εrX ,2 X

where we have omitted the forgetful functor U: Rck→ Set (understand X alternatively
as a rack or a set), and εrX is the counit of the �free-forgetful� adjunction Fr a U. This
counit εrX is the coequalizer of the re�exive graph on the left. This canonical presentation
of racks allows us to capture a sense in which the geometrical features of free objects are
carried through to any general rack. We shall illustrate this on the important functorial
constructions of the Galois theory of interest. Let us make explicit these objects and
morphisms to exhibit some of the mechanics at play. Think of what this right-exact fork
represents for groups, where the operation is associative.
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First of all we may exhibit heads and tails and rewrite this right-exact fork as

(X o Fg(X)) o Fg(X o Fg(X))
εrX×Fg[εrX ]

,2

εrFr X

,2 X o Fg XFr ηrX
lr

εrX ,2 X

By Paragraph 2.2.3, the counit εrX should send a pair (x, g) = (x, g1
δ1 · · · gnδn) for

gi ∈ X to the element in the rack X given by εrX(x, g) = x · g ..= x /δ1 g1 · · · /δn gn.
Hence the canonical projective presentation εrX of a rack X covers each element x ∈ X

by all possible formal decompositions (x0, g) of that element x, such that x is the endpoint
of the trail (x0, g), i.e. the result of the action of a path on a head : x = x0 ·g. Now this head
x0 and each �representative of a symmetry� gi

δi in the path component g = g1
δ1 · · · gnδn

may itself be expressed as the endpoint of some trail (i.e. x0 = x00 · h, and gi = yi · ki for
h and ki in Fg X). This is what is captured by the object Fr Fr(X) on the left of the fork.

Then from the de�nition of the counit, we may derive the two projections. These may
be understood as expressing two things:

First observe that an element t = [(a, g); e] in Fr Fr(X) (i.e. an element which has a
trivial path component, but an interesting head) is sent to ((a·g), e) by the �rst projection
and to (a, g) by the second projection. The two projections thus allow us to move part of
the tail of a trail towards the head of that trail and part of the head towards the tail.

Then an element [(a, e); (b, h)] � i.e. an element with a trivial head component and a
non trivial (but simple) tail � is sent by the �rst projection to (a, (b · h)), and by the second

projection to (a, h−1bh). Coequalizing these two projections expresses self-distributivity
(see Paragraphs 2.1.5 and 2.2.2). In other words it illustrates how to compute the repre-
sentative of the symmetry associated to the endpoint of a trail. This is already part of
the de�nition of the rack operation in the free rack. We have the rack homomorphism on
the left

X o Fg(X)
iX ,2 Fg(X)

(x, g) � iX ,2 g−1xg

X
ηgX ,2

ηrX �'

Conj(Fg(X))

Fr(X)
iX

3;

which sends a path to the symmetry associated to its endpoint. It is actually induced by
the universal property of free racks as displayed in the diagram on the right.

2.3. The connected component adjunction.

2.3.1. Trivial racks and trivializing congruence.Another important theoretical
example of racks is given by the so-called trivial racks (or trivial quandles) for which each
symmetry at a given point is chosen to be the identity. Each point acts trivially on the
rest of the rack. This may be expressed as an additional axiom:

(Triv) x / y = x.

Since each set comes with a unique structure of trivial rack and each function between
trivial racks is a homomorphism, we get an isomorphism between the category of sets (Set)
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and the category of trivial racks. The category of sets is thus a subvariety of algebras
within racks.

The inclusion functor I : Set→ Rck sends a set to the trivial rack on that set. Now
this inclusion functor has a left adjoint, which sends a rack to the freely trivialized rack.
The trivialization A/(C0A) of a rack A can be easily obtained by quotienting out the
congruence C0A generated by the pairs (x, x/y) for x and y in A. However, the congurence
C0A can be conveniently characterised by the fact that x and y in X are in relation by
C0A if and only if they are connected in the following sense (see [61]).

2.3.2. Connectedness and primitive paths. Two elements x and y in a rack A are
said to be connected ([x] = [y]) if there exists n ∈ N and elements a1, a2, . . ., an in A such
that

y = x /δ1 a1 /
δ2 a2 · · · /δn an,

for some coe�cients δi ∈ {−1, 1} for 1 ≤ i ≤ n.
Such a sequence of elements together with the choice of coe�cients is viewed as a

formal sequence of symmetries (see Paragraph 2.1.7.1). Bearing in mind Paragraphs 2.2.1
and 2.2.2, we call such a formal sequence of symmetries (ai, δi)1≤i≤n a primitive path of
the rack A. In particular this speci�c primitive path connects x to y but may be applied
to di�erent elements in the rack. We call the data of such a pair T = (x, (ai, δi)1≤i≤n) a
primitive trail in X, where x is the head of T and y the endpoint of T . As we mentioned
before, (x, y) is in C0A if and only if there exists a primitive path which connects x to y.

Observe that for any rack homomorphism f : A→ X for some trivial rack X we have
C0A ≤ Eq(f). The functor π0 : Rck→ Set, such that π0(A) ..= A/(C0A) is the set of
connected components of A (i.e. the set of C0A-equivalence classes), is left adjoint to
I : Set → Rck with unit ηA : A → π0(A), sending an element a ∈ A to its connected
component ηA(a) (also denoted [a]) in π0(A).

2.3.3. From free objects to all � definition as a colimit. Observe that the
composite

Set I ,2 Rck U ,2 Set

gives the identity functor. As a consequence, the composite of left adjoints π0 Fr also
gives the identity functor. More precisely we may deduce from the composite of adjunc-
tions that, given a set X, the unit ηFr(X) : X o Fg(X)→ X is �projection on X�, i.e. the
connected component of a trail (x, g) ∈ Fr(X) is given by projection on its head x.

Since π0 is a left adjoint, it preserves colimits, hence π0(X) should be the coequalizer,
in Set, of the pair:

π0((X o Fg(X)) o Fg(X o Fg(X)))
π0(εrX×Fg[εrX ])

,2

π0(εrFr UX)
,2 π0(X o Fg X),

which indeed reduces to being the coequalizer of the pair p1, p2 : X × Fg(X) ⇒ X, where
p1(x, g1

δ1 · · · gnδn) = x /δ1 g1 · · · /δn gn and p2(x, g1
δ1 · · · gnδn) = x.
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2.3.4. Equivalence classes of primitive paths. The term primitive path is used to
express the idea that it is the most unre�ned way we shall use to acknowledge that two
elements are connected. Literally it is just a formal sequence of symmetries.

As explained in Paragraph 2.1.7, inner automorphisms also �represent� sequences of
symmetries. Again, each primitive path naturally reduces to an inner automorphism
simply by composing all the symmetries in the sequence. We also have that (x, y) is in
C0A if and only if there exists g ∈ Inn(A) such that x · g = y. In other words, C0A is
the congruence generated by the action of Inn(A). It is called the orbit congruence of
Inn(A) (see Paragraph 2.3.7). In what follows, we like to view inner automorphisms as
equivalence classes of primitive paths. As mentioned earlier we shall consider other such
equivalence classes of primitive paths which lie in between formal sequences of symmetries
and composites of such. Each of these represent di�erent witnesses of how to connect
elements in a rack A. All of these generate the same trivializing congruence C0A.

2.3.5. Conjugacy classes. Observe that for a group G, the set of connected compo-
nents of Conj(G) is given by the set of conjugacy classes in G. In this case the congruence
C0(Conj(G)) is characterised as follows: (a, b) ∈ C0(Conj(G)) if and only if there exists
c ∈ G such that b = c−1ac. Again, any primitive path, or sequence of symmetries, can be
described via a single symmetry obtained as the symmetry of the product of the elements
in the sequence. Note that if H is an abelian group, then Conj(H) is the trivial rack on
the underlying set of H. More precisely the restriction to Ab of the functor Conj yields
the forgetful functor U: Ab→ Set.

2.3.6. Racks and quandles have the same connected components.The functor
π0 may be restricted to the domain Qnd and is then left adjoint to the inclusion functor
I : Set→ Qnd by the same arguments as above. More precisely we have for any rack X
that π0 rFq(X) = π0(X), where rFq(X) is the free quandle on the rack X.

2.3.7. Orbit congruences permute. In order to obtain the admissibility of Set in
Qnd, V. Even shows that certain classes of congruences commute with all congruences. As
for quandles, we de�ne orbit congruences [16] as the congruences induced by the action
of a normal subgroup of the group of inner automorphisms. More precisely, if X is a
rack, and N a normal subgroup of Inn(X) we shall write ∼N for the N-orbit congruence
de�ned for elements x and y in X by: x ∼N y if and only if there exists g ∈ N such that
x · g = y. As it is explained in [31] (see Proposition 2.3.9), this is well de�ned and yields
a congruence (also in Rck). We then have the following � see [32] and [31, Lemma 3.1.2]
for the proof, which also holds in Rck.

2.4. Lemma. Let X be a rack, R a re�exive (internal) relation on X and N a normal
subgroup of Inn(X), then the relations ∼N and R permute: ∼N ◦R = R◦ ∼N .

2.4.1. Admissibility for Galois theory. Of course the kernel pair of any unit mor-
phism ηX : X → π0(X) is an orbit congruence, since by Paragraph 2.3.4, two elements
are in the same connected component if and only if they are in the same orbit under the
action of Inn(X).
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As it was recalled in Section 1.1.1 (see also [55]), this yields Theorem 1 of [30]:

2.5. Proposition. The subvariety Set is strongly Birkho� and thus admissible in Rck.
Similarly for Set in Qnd.

The Galois structure Γ ..= (Rck, Set, π0, I, η, ε, E) (respectively for quandles Γq ..=
(Qnd, Set, π0, I, η, ε, E)) (see [55]) where E is the class of surjective morphisms of racks
(respectively quandles), is thus admissible, i.e. the study of Galois theory is relevant in
this context and gives rise, in principle, to a meaningful notion of relative centrality.

2.5.1. Connected components are not connected. Given an element a in a rack
A, we may consider its connected component Ca, i.e. the elements of A which are connected
to a. The set Ca is actually a subrack of A as it is closed under the operations in A. We
may construct the rack Ca as a pullback in Rck:

Ca
,2

��

1
[a]
��

A
ηA ,2 π0(A),

(5)

where 1 = {∗} is the one element set, which is the terminal object in Rck and also the
free quandle on the one element set. Note that if A is connected, then by de�nition
π0(A) = {∗} and thus Ca = A. However if Ca ⊂ A, then Ca might have more than one
connected component itself (i.e. π0(Ca) has cardinality |π0(Ca)| > 1), since the existence
of a primitive path between some c and b in Ca, might depend on elements which are not
connected to a.

2.6. Example. A rack A is called involutive if the two operations / and /−1 coincide.
The subvariety of involutive racks is thus obtained by adding the axiom

(Inv) x / y / y = x.

We de�ne the involutive quandle Qab? with three elements a, b and ? such that the
operation / is de�ned by the following table (see Q(2,1) from [29, Example 1.3]).

/ a b ?
a a a b
b b b a
? ? ? ?

The connected component of a is the trivial rack Ca = {a, b} which has itself two con-
nected components {a} and {b}.

We like to say that, for racks (and quandles) the notion of connectedness is not local.
In categorical terms, we may say that the functor π0 is not semi-left-exact [24, 18]. This
property is indeed characterised, in this context, by the preservation of pullbacks such as in
Equation (5) above, i.e. π0 is semi-left-exact if and only if any such connected component
(Ca) is connected (π0(Ca) = {∗}) (see for instance [4] and [78, Theorem 2.1]). This is an
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important di�erence with the case of topological spaces for instance, where the connected
components are connected and thus the corresponding π0 functor is semi-left-exact. See
also [32] for further insights on connectedness. Looking at [25, Corollary 2.5], we further
compute that π0(Fr(1)×Fr(1)) = Z and thus that π0 : Rck→ Set does not preserve �nite
products; wheareas π0 : Qnd→ Set does, as was shown in [30, Lemma 3.6.5].

2.6.1. Towards covering theory.Knowing that Γ is admissible, we may now wonder
what is the �sphere of in�uence� of Set in Rck, with respect to surjective maps, and start
to develop the corresponding covering theory. Since Set is strongly Birkho� in Rck, trivial
extensions (�rst step in�uence) are easy to characterize as those surjections which are
�injective on connected components�:

2.7. Proposition. (See also [30, 31]) Given a surjective morphism of racks t : X → Y ,
the following conditions are equivalent:

(i) t is a trivial extension;

(ii) Eq(t) ∩ C0X = ∆X ;

(iii) if a and b in X are connected, then t(a) = t(b) implies a = b.

Recall that the construction of inner automorphisms (Inn) induces a functor on surjec-
tive morphisms: given a surjective morphism t : X → Y , we write Inn(t) : Inn(X)→ Inn(Y )
or t̂ for the induced homomorphism between the inner automorphism groups (see �rst two
sections of [16]).

We may then also describe a trivial extension as an extension which re�ects loops :
trivial extensions are those extensions such that for any a in A, if g in Inn(A) is such that
t(a) · t̂(g) = t(a), then a · g = a.

(a ,2
g

a · g) � t ,2 t(a) = t(a · g)

,2
t̂(g)

⇒ a = a · g

,2
g

In what follows, we shall use such geometrical interpretations to make sense of the
algebraic conditions of interest for the covering theory of racks and quandles. However,
the non-functoriality of Inn on general morphisms appears as a serious weakness (see
for instance the need for Remark 2.12 in the proof of Proposition 3.16). It will become
clear from what follows that a more suitable way to represent sequences of symmetries
is needed. This is achieved by the group of paths which we motivate and describe in the
next section. It is not a new concept, but our name for the left adjoint of the conjugation
functor, which was described by D.E. Joyce and then used by M. Eisermann to construct
weakly universal covers and a suitable fundamental groupoid for quandles. We provide
an alternative description of the construction and the role of this functor.

2.8. The group of paths.
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2.8.1. Definition. Consider a rack X and two elements x and y in X which are con-
nected by a primitive path Sδ1x1 , . . . , Sδnxn :

x · (Sδ1x1 , . . . , Sδnxn) ..= x /δ1 x1 · · · /δn xn = y.

Because of (R1), we discussed that it makes sense to identify such formal sequences so as
to obtain elements of the free group on X. Now in the same way that we used Paragraph
2.1.5 to unfold formal terms, we still have that whenever xi = b / c for 1 ≤ i ≤ n and b, c
in X, acting with Sxi amounts to successively acting with S−1

c , Sb and Sc. From a rack X
we may thus build the quotient:

Fg(X)
qX ,2 Pth(X) ..= Fg(X)/〈c−1a−1x a | a, x, c ∈ X and c = x / a〉,

which is understood as a group of equivalence classes of primitive paths. Two primitive
paths are identi�ed in the group of paths if and only if one can be formally obtained
from the other, using the identities induced by the graph of the rack operations (such as
c = x / a), as well as the axioms of racks (or more precisely the axiom-induced identities
between tails of formal terms).

2.8.2. Unit and universal property. The function ηg : X → Fg(X) composed with
this quotient qX : Fg(X)→ Pth(X) yields a morphism of racks pthX : X → Conj(Pth(X)),
which sends each element x of X to pthX(x) in Pth(X), such that pthX(x) �represents�
the positive symmetry at x in the same way Sx does in Inn(X) (see Paragraph 2.10.1).
As for the inclusion in the free group, we shall use the convention

x ..= pthX(x).

Now given a rack homomorphism f : X → Conj(G) for some group G, there is a unique
group homomorphism f ′ induced by the universal property of the free group, which, more-
over, factors uniquely through qX : Fg(X)→ Fg(X)/〈(x / a)−1a−1x a | a, x ∈ X〉, since for
any a and x in X, f(x / a) = f(a)−1f(x)f(a) in G:

X
ηgX ,2

f !)

Fg(X)

∃!f ′
��

qX ,2 Pth(X)

∃!f̄s{
G

Hence, the construction Pth uniquely de�nes a functor which is the left adjoint of Conj
with unit pth: 1Rck → Conj Pth. As usual, given f : X → Y in Rck, there is a unique
morphism Pth(f), such that

X
pthX ,2

f
��

Conj(Pth(X))
∃! Conj(Pth(f))
��

Y
pthY ,2 Conj(Pth(Y )),

which de�nes the functor Pth on morphisms.



500 FARA RENAUD

2.9. Notation. In what follows, we write ~f for the image Pth(f) of a morphism f from
Rck.

2.9.1. From free objects to all � construction as a colimit. Again, ob-
serve that the composite Pth Fr is left adjoint to the forgetful functor U: Grp→ Set,
i.e. Pth(Fr(X)) = Fg(X). More precisely, we may interpret pth as the extension to all
objects of the functorial construction on free objects

iX : X o Fg(X)→ Fg(X) : (x, g) 7→ g−1xg

which sends a trail to the �representative of the symmetry� associated to its endpoint
(Subsection 2.2.4). Indeed, by the composition of adjunctions, as before, this i is easily
seen to de�ne the restriction to free objects of the unit pth of the Pth a Conj adjunction:

X
ηgX ,2

ηrX $,

Conj(Fg(X))

∃! Conj(f ′′)

��

Fr(X)

∀f $,

iX=pthFr(X)
2:

Conj(G)

where iX(x, e) = iXη
r
X(x) = ηgX(x) = x. (6)

Then since Pth is a left adjoint, qX : Fg(X)→ Pth(X) should be the coequalizer of the
pair

Pth((X o Fg(X)) o Fg(X o Fg(X)))
Pth(εrX×Fg[εrX ])

,2

Pth(εrFr UX)
,2 Pth(X o Fg X)

which, using i above, we compute to be the pair p1, p2 : Fg(X × Fg(X)) ⇒ Fg(X), where
p1 and p2 are de�ned by

p1(x, g) = iX(x · g, e) = ηgX(x · g) = x · g and p2(x, g) = iX(x, g) = g−1xg.

The universal property of the unit and de�nition on morphisms then follows easily as
before. We use this detailed construction of Pth as a colimit, in the proof of Proposition
2.19.

2.10. Remark. Note that the relationship between π0 a I in Rck (or Qnd) and the
abelianization in groups using the adjunction Pth a Conj has played an important role in
the study of the present paper. It is conveniently pictured in the square of adjunctions of
Diagram (8), where all squares of functors (I, Pth, Fab, I), (π0, Fab, Pth, ab) and (U, I, I,
Conj) commute while the square (π0, Conj, U, ab) does not. Given a group G, the image
π0(Conj(G)) is given by the set of conjugacy classes. The corresponding congruence in
Qnd is given by

a ∼ b⇔ (∃c ∈ G)(c−1ac = b). (7)

Then the abelianization ab(G) is the quotient of G by the congruence generated in Grp
by the identities {c−1ac = a | a, c ∈ G}. In general the equivalence relation de�ned
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in (7) does not de�ne a group congruence. A counter-example is given by the group of
permutations S3. It has three conjugacy classes given by cycles, two permutations and
the unit. The derived subgroup is the alternating group A3 which is of order 2. This
shows that there are less elements in the abelianization of S3 than conjugacy classes in
S3.

Rck

a
π0

07

Pth

��

> Set

a

I
pw

Fab

��

Grp >

Conj

RZ

ab

07 Ab

I
pw

U

RZ

(8)

As we mentioned before, the restriction of Conj to abelian groups gives the forgetful
functor to Set. By uniqueness of left adjoints we must also have Fab π0 = ab Pth. Finally,
starting with a set X in Set we may consider it as a trivial quandle by application of I.
Then we compute

Pth(I(X)) ..= Fg(X)/〈(x / a)−1a−1xa|a, x ∈ X〉 = Fg(X)/〈x−1a−1xa|a, x ∈ X〉,

which shows that for each set X we have Pth(I(X)) = I Fab(X), which then easily gives
Pth I = I Fab, i.e. the restriction of Pth to trivial racks gives the free abelian group functor.

2.10.1. Action by inner automorphisms. It is already clear from the construction
of Pth that the group of paths Pth(X) acts on the rack X �via representatives of the
symmetries�. For any x and y in X we have

x · (y) = x / y,

which uniquely de�nes the action of any element in Pth(X).
Compare this action with the action by inner automorphisms: for each rack X, the

universal property of pthX on S: X → Inn(X) (de�ned in Subsection 2.1.6) gives

X
pthX ,2

S !*

Pth(X)
s
��

Inn(X),

(9)

where we have omitted Conj, and s is the group homomorphism which relates the rep-
resentatives of symmetries in Pth(X) to those in Inn(X). The morphism s is called the
excess of X in [41]. It is shown to be a central extension of groups in [29, Proposition
2.26]. Note that if N / Pth(X) is a normal subgroup of Pth(X), then s(N) is a normal
subgroup of Inn(X). Hence the congruence ∼N induced by the action of N on X always
de�nes an orbit congruence (∼N = ∼s(N)) in the sense of Paragraph 2.3.7.

We extend the concept of a trail from Paragraph 2.2.3.1.
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2.11. Definition. Given a rack X, a trail (in X) is the data of a pair (x, g) given by
a head x ∈ X and a path g ∈ Pth(X). The endpoint of such a trail is then the element
obtained by the action x · g, of g on x.

Let us recall (see for instance [41, Section 2]) that, using the notion of an augmented
rack, Pth(X) is the initial group containing representatives of the symmetries of X and
acting via those symmetries on X � whereas Inn(X) is the terminal such. Augmented
racks are given by a group G and a rack homomorphism ι : X → Conj(G) together with
a right action of G on X such that for g, h in G and x, y in X,

1. if e is the neutral element in G, then x · e = x;

2. x · (gh) = (x · g) · h;

3. (x / y) · g = (x · g) / (y · g);

4. ι(x · g) = g−1ι(x)g.

Looking at augmented racks on a �xed rack X, a morphism between augmented racks
ι : X → G and ι′ : X → G′ is given by a group homomorphism f : G → G′ such that
fι = ι′. An example of such is given by s : Pth(X) → Inn(X) from Diagram (9). It is
then easy to derive that pthX : X → Pth(X) is initial amongst augmented racks (on X)
whereas S: X → Inn(X) is terminal. This describes why Inn can be used as the reference
to de�ne such actions by representatives of the symmetries, described as actions by inner
automorphisms. On the other hand, it exhibits Pth(A) as the freest way to produce an
augmented rack.

2.12. Remark. As mentioned before, Pth has the crucial advantage of functoriality,
i.e. for any morphism of racks f : X → Y (including non-surjective ones), and for any
x ∈ Y , g = g1

δ1 · · · gnδn ∈ Pth(X), we have that

x · (~f(g)) = x · (~f(g1
δ1 · · · gnδn)) = x · (f(g1)δ1 · · · f(gn)δn) = x /δ1 f(g1) · · · /δn f(gn).

In the next paragraph, we observe that in the case of free objects Fr(X), these two
constructions coincide (Pth(Fr(X)) = Inn(Fr(X)) is Fg(X)) and, most importantly for
what follows, they act freely on Fr(X) (results �rst discussed in [41, 64]).

2.12.1. Free actions on free objects. By Paragraph 2.9.1, and for any set X, the
group of paths Pth(Fr(X)) ∼= Fg(X) is freely generated by the elements

pthFr(X)[η
r
X(x)] = pthFr(X)[(x, e)] = (x, e)

for x ∈ X. Using the identi�cation (x, e) ↔ x, for any element (x, g) of Fr(X) and any

word h = h1
δ1 · · ·hnδn in Pth(Fr(X)) = Fg(X), with hi ∈ X and δi ∈ {−1, 1} for each

1 ≤ i ≤ n, we have that

(x, g) · h = (x, g) · (h1
δ1 · · ·hnδn) = (x, g) /δ1 (h1, e) · · · /δn (hn, e) = (x, gh).



HIGHER COVERINGS OF RACKS AND QUANDLES � PART I 503

2.13. Proposition. The action of Fg(X) = Pth(Fr(X)) on Fr(X) = X o Fg(X) corre-
sponds to the usual Fg(X) right action in Set

(X × Fg(X))× Fg(X)→ X × Fg(X) : ((a, g), h) 7→ (a, g) · h = (a, gh),

given by multiplication in Fg(X). Such an action is free, since if (a, hg) = (a, g), then
hg = g and thus h = e.

Observe that Inn(Fr(X)) is generated as a group by the elements in the image of S ηrX .
Indeed for each (a, g) = (a, gδ11 · · · gδnn ) = (a, e)/δ1 (g1, e) · · ·/δn (gn, e) = (a, e) · g, in Fr(A),
as before, we have

S(a,g) = S−δn(gn,e)
· · · S−δ1(g1,e)

S(a,e) Sδ1(g1,e)
· · · Sδn(gn,e)

;

see identity (4) from page 502: S(a,e)·g = g−1 S(a,e) g.
We conclude that Inn(Fr(X)) is actually freely generated. Indeed, the group homo-

morphism s : Pth(Fr(X)) = Fg(X)→ Inn(Fr(X)) de�ned in Subsection 2.10.1, is such
that:

� it is surjective, since the generating set s(X) = {S(x,e) | x ∈ X} ⊂ Inn(Fr(X)) is the
image of X ⊂ Fg(X) by s;

� it is injective, since s(h1
δ1 · · ·hnδn) = e for some hi ∈ X and δi ∈ {−1, 1} for

1 ≤ i ≤ n, if and only if

(x, g) = (x, g) · (Sδ1(h1,e)
· · · Sδn(hn,e)

) = (x, g) · (h1
δ1 · · ·hnδn),

for all (x, g) ∈ Fr(X), which implies that h1
δ1 · · ·hnδn = e since the action of Fg(X)

is free.

2.14. Proposition.We may always identify Inn(Fr(X)), Pth(Fr(X)) and Fg(X) as well
as their action on Fr(X), which is free. We refer to them as the group of paths of Fr(X).

2.14.1. The kernels of induced morphisms ~f . In this section we introduce the
results which we use to describe the relationship between the group of paths Pth and the
central extensions (coverings) and centralizing relations of racks and quandles.

Our Lemma 2.16 is only a slight generalization of a Lemma in [3]. We further generalize
to higher dimensions in Part II.

2.15. Definition. Given a group homomorphism f : G→ H, and a generating set A ⊆
G (i.e. such that G = 〈a | a ∈ A〉G), we de�ne (implicitly with respect to A)

(i) two elements ga and gb in G are f -symmetric (to each other) if there exists n ∈ N
and a sequence of pairs (a1, b1), . . ., (an, bn) in the set (A× A) ∩ Eq(f), such that

ga = aδ11 · · · aδnn , and gb = bδ11 · · · bδnn ,
for some δi ∈ {−1, 1}, where 1 ≤ i ≤ n. Alternatively say that ga and gb are an
f -symmetric pair.

(ii) Kf is the set of f -symmetric paths de�ned as the elements g ∈ G such that g =
gag
−1
b for some ga and gb ∈ G which are f -symmetric to each other.
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2.16. Lemma.Given the hypotheses of De�nition 2.15, the set of f -symmetric paths Kf ⊆
G de�nes a normal subgroup in G. More precisely it is the normal subgroup generated by
the elements of the form ab−1 such that a, b ∈ A, and (a, b) ∈ Eq(f):

Kf = Gf
.

.= 〈〈ab−1 | (a, b) ∈ (A× A) ∩ Eq(f)〉〉G.

Proof. First we show that Kf is a normal subgroup of G. Let ga and gb be f -symmetric
(to each other). Observe that g−1

b and g−1
a are also f -symmetric, and thus Kf is closed

under inverses. Moreover, if ha and hb are f -symmetric, and g = gag
−1
b , h = hah

−1
b , then

gh = kak
−1
b , with ka = hah

−1
a ga and kb = hbh

−1
a gb which are f -symmetric. Finally since

A generates G, for any k ∈ G, kga and kgb are f -symmetric to each other, and thus
kgk−1 ∈ Kf is an f -symmetric path.

Since the generators of Gf are in the normal subgroup Kf , it su�ces to show that Kf ≤
Gf . Given an f -symmetric pair ga and gb, we show that g = gag

−1
b ∈ Gf by induction, on

the minimum length ng of the sequences (ai, bi)1≤i≤n in the set (A×A)∩Eq(f) such that
ga = aδ11 · · · aδnn and gb = bδ11 · · · bδnn for some δi ∈ {−1, 1}. If ng = 1, then g is a generator
of Gf . Suppose that g = gag

−1
b ∈ Gf for all such f -symmetric pair with ng < n for some

�xed n ∈ N. Then given a pair ga = aδ11 · · · aδnn and gb = bδ11 · · · bδnn for some (a1, b1), . . .,
(an, bn) in the set (A × A) ∩ Eq(f), and δi ∈ {−1, 1}, we have that ha ..= a−δ11 ga and
hb ..= b−δ11 gb are such that h = hah

−1
b ∈ Gf by assumption. Moreover, g = aδ11 ha

−δ1
1 aδ11 b

−δ1
1

which is a product of elements in Gf .

2.17. Observation. Consider a function f : A→ B, and a word ν = aδ11 · · · aδnn with
ai ∈ A and δi ∈ {−1, 1}, for 1 ≤ i ≤ n. This word represents an element g in the free
group Fg(A). As usual, a reduction of ν consists in eliminating, in the word ν, an adjacent

pair aδii a
δi+1

i+1 such that δi = −δi+1 and ai = ai+1. Every element g ∈ Fg(A) represented by
a word ν admits a unique normal form i.e. a word ν ′ obtained from ν after a sequence of
reductions, such that there is no possible reduction in ν ′, but ν ′ still represents the same
element g in Fg(A).

Suppose that ν represents an element g which is in the kernel Ker(Fg(f)). The normal
form of the word f [ν] .

.= f(a1)δ1 · · · f(an)δn (which represents Fg(f)(g) = e ∈ Fg(B)) is
the empty word ∅, and thus there is a sequence of reductions of f [ν] such that the end
result is ∅. From this sequence of reductions, we may deduce that n = 2m for some m ∈ N
and the letters in the word (or sequence) ν organize themselves in m pairs (aδii , a

δj
j ) (the

pre-images of those pairs that are reduced at some point in the aforementioned sequence
of reductions) such that i < j, f(ai) = f(aj), δi = −δj, each letter of the word g appears

in only one such pair and �nally given any two such pairs (aδii , a
δj
j ) and (aδll , a

δm
m ), then

l < i (respectively l > i) if and only m > j (respectively m < j), i.e. drawing lines which
link those letters of the word ν that are identi�ed by the pairing, none of these lines can
cross.

aδ11 aδ22 aδ33 aδ44 aδ55 aδ66 aδ77 aδ88 aδ99 aδ1010 aδ1111 aδ1212 aδ1313 aδ1414
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Given such a pairing of the letters of ν, for each k ∈ {1, . . . , n} we write (a
δik
ik
, a

δjk
jk

) for
the unique pair such that either ik = k or jk = k. Note that, conversely, any element g
in Fg(A) which is represented by a word ν which admits such a pairing of its letters, is
necessarily in Ker(Fg(f)).

Using this observation, we characterize the kernels of maps between free groups.

2.18. Proposition. Given a function f : A→ B, the kernel Ker(Fg(f)) of the induced
group homomorphism Fg(f) : Fg(A)→ Fg(B) is given by the normal subgroup KFg(f) of
Fg(f)-symmetric paths (as in De�nition 2.15): Ker(Fg(f)) = KFg(f).

Proof. The inclusion Ker(Fg(f)) ⊇ KFg(f) is obvious. Consider a reduced word ν =

aδ11 · · · aδnn of length n ∈ N which represents an element g in Fg(A) with δi ∈ {−1, 1}, for
1 ≤ i ≤ n and suppose that g ∈ Ker(Fg(f)). Then the letters aδkk of the sequence (or word)

ν ..= (aδkk )1≤k≤n organize themselves in pairs (a
δik
ik
, a

δjk
jk

) as in Observation 2.17. De�ne the

word ν ′ = bδ11 · · · bδnn such that for each 1 ≤ k ≤ n, bk ..= aik . Then by construction ν ′

represents an element h which reduces to the empty word in Fg(A), so that g = gh−1.
Moreover, g and h form an f -symmetric pair, which shows that g ∈ KFg(f).

Finally we obtain the following result.

2.19. Proposition. Given a surjective morphism of racks f : X � Y , the kernel Ker(~f)

of the group homomorphism ~f .

.= Pth(f) : Pth(X) � Pth(Y ) is given by the normal sub-

group K~f of ~f -symmetric paths (as in De�nition 2.15):

Ker(~f) = K~f = 〈〈ab−1 | (a, b) ∈ Eq(f)〉〉Pth(X).

Proof. From Subsection 2.9.1, we reconstruct the image ~f as in Diagram (10), where we

also draw the kernels of Fg(f) and ~f . Since qX and qY are the coequalizers of the pairs
above (see Subsection 2.9.1 for more details), and the map Fg(f × Fg(f)) is surjective,
by Lemma 1.2 in [5], the square (∗) is a double extension (regular pushout), and thus

the comparison map k1 is surjective. Then Ker(~f) coincides with the image ker Fg(f)
along qX , by uniqueness of (regular epi)-mono factorizations in Grp. We may compute

this image to be K~f . Indeed, in elementary terms, any g ∈ Pth(X) such that ~f(g) = e
can be �covered� by an element h ∈ Fg(X) such that qX(h) = g and Fg(f)[h] = e as well.

Fg(X × Fg(X))

����

Fg(f×Fg(f))
,2,2 Fg(Y × Fg(Y ))

����

Ker(Fg(f))

k1
��

,2
ker(Fg(f)

,2 Fg(X)

(∗)qX
��
��

Fg(f)
,2,2 Fg(Y )

qY
��
��

Ker(~f) ,2
ker(Fg(f)

,2 Pth(X)
~f

,2,2 Pth(Y )

(10)
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By Proposition 2.18, we have that h = hah
−1
b for some ha and hb in Fg(X) which are

Fg(f)-symmetric to each other. The images qX(ha) and qX(hb) are thus ~f -symmetric

by commutativity of (∗), and the quotient g = qX(h) = qX(ha)qX(hb)
−1 ∈ K~f is an ~f -

symmetric path.

2.20. Notation. For a morphism of racks f , we often write f -symmetric (pair or path)

instead of ~f -symmetric (pair or path). An f -symmetric trail (x, g) is a trail with an
f -symmetric path g.

2.20.1. The left adjoint Pth is not faithful. Observe that given a set A, the
morphism

Fr(A)
iA=PthFr(A)

,2 Fg(A) ,

is not injective. Indeed the elements (a, ag) and (a, g) have the same image. We shall
see that the kernel pair of iA yields the quotient producing the free quandle from the free
rack. Then the free quandle Fq(A) on the set A embeds in the group Conj(Fg(A)), which
is why D.E. Joyce calls quandles the algebraic theory of conjugation. Observe, though,
that not all quandles embed in a group.

2.21. Example. In the involutive quandle Qab? de�ned in Example 2.6, the elements a
and b are identi�ed in Pth(Qab?). Indeed, a and b act trivially onQab?, hence they are in the
center of the group Pth(Qab?). Moreover, a and b are in the same connected component,
and thus they are also sent to conjugates in Pth(Qab?), which yields a = b. Note that
from there we have Pth(Qab?) = Fg({a, ?})/〈〈a−1 ?−1 a?〉〉Fg({a, ?}) = Fab({a, ?}) = Z×Z,
where Fab is the free abelian group functor, and in Z × Z, we have a = b = (1, 0) and
? = (0, 1) (also see [29, Proposition 2.27]).

In particular, the unit of the adjuntion Pth a Conj is not injective and Pth is not
faithful (note that the right adjoint Conj is faithful, but not full). As a consequence
Qab? is not a subquandle of a quandle in Conj(Grp) since this would imply that pthQab?

is
injective. We may also observe that a subquandle of a conjugation quandle is such that
(x / y = x)⇔ (y / x = y).

2.21.1. Racks and quandles have the same group of paths. Observe that we
may restrict Pth to the domain Qnd. By the same argument Pth I : Qnd→ Grp (which we
denote Pth) is then left adjoint to Conj : Grp→ Qnd. We may conclude by uniqueness of
left adjoints that if rFq is the left adjoint to the inclusion I : Qnd→ Rck, then Pth rFq

∼=
Pth: Rck→ Grp. The adjunction between racks and groups factorizes into Diagram (11)
(where Pth · I = Pth, I ·Conj = Conj, Pth · rFq = Pth, rFq ·Conj = Conj). Considering
the comment of Paragraph 2.1.9 about the idempotency axiom, we may want to rephrase
this as follows: for each rack X, the quotient de�ning Pth(X) always identi�es generators
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that would be identi�ed in the free quandle on X.

Rck

rFq

)/

Pth

�)

⊥ Qnd

I

io

Pth a

�


Grp

Conj

AJ

a Conj

`i

(11)

2.22. Working with quandles. We introduce the necessary material to make the
transition from the context of racks to the context of quandles. See also the associated
quandle in [41].

2.22.1. The free quandle on a rack. Remember from Paragraph 2.1.9 that the
idempotency axiom is a consequence of the axioms of racks �for elements in the tail of a
term�. In order to turn a rack into a quandle the identi�cations that matter are thus of
the form

x /δx x /δx · · ·x /δx x /δ1 a1 · · · /δn an = x /δ1 a1 · · · /δn an,

where a use of the idempotency axiom cannot be avoided. Now by self-distributivity of
the operations, we may write y ..= (x /δ1 a1 · · · /δn an), and then rewrite these identities as

y /δx y /δx · · · y /δx y = y.

2.23. Definition. Given a rack X, de�ne QX as the relation (in Set) de�ned for (x, y) ∈
X ×X by (x, y) ∈ QX if and only if x = y /k y for some integer k (see Paragraph 2.1.9),
where y /0 y .

.= y.

2.24. Lemma. Given a rack X, the relation QX de�nes a congruence on X.

Proof.

1. The relation QX is re�exive by de�nition.

2. As aforementioned, for x and a in some rack, any chain a /k a for some k ∈ Z is
such that x / (a /k a) = x / a. Hence QX is symmetric since b = a /k a implies that
b /−k b = b /−k a = a.

3. Now QX is transitive by self-distributivity.

4. And �nally it is internal since if a = b/k b and c = d/ld then a/c = (b/k b)/(d/ld) =
(b /k b) / d = (b / d) /k (b / d).
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2.25. Lemma. Given a rack X, then a pair of elements (x, y) ∈ X ×X is in the kernel
pair Eq(rηqX) of rηqX : X → rFq(X) if and only if y = x/n x for some integer n, i.e. QX =
Eq(rηqX).

Proof. Since Rck is a Barr-exact category [1], it su�ces to show that the quotient of X
by the equivalence relation QX (on the left) is the same as the quotient of X by Eq(rηqX)
(on the right):

X
q
,2 X/QX X

rηqX ,2
rFq(X).

For this we show that X/QX is a quandle and that q has the same universal property as
rηqX . Indeed we have that q(a) / q(a) = q(a / a) = q(a) since (a, a / a) ∈ QX for each a.
Finally observe that if f : X → Q is a rack homomorphism such that Q is a quandle, then
we necessarily have that f coequalizes the projections π1, π2 : QX ⇒ X of the congruence
QX . We then conclude by the universal property of the coequalizer.

2.25.1. Galois theory of quandles in racks.We may now study the Galois struc-
ture rΓq ..=(Rck, Qnd, rFq, I, rηq, rεq, E) where E is the class of surjective morphisms (see
Section 1.1 and [55]).

Since Qnd is a Birkho� subcategory of Rck, for rΓq to be admissible, it su�ces to show
that for each rack X the kernel pair Eq(rηqX) of the unit permutes with other congruences
on X (see Section 1.1.1). Observe that this is not a consequence of Lemma 2.4.

2.26. Lemma. Given a rack X, then the congruence QX = Eq(rηqX) permutes with any
other internal relation R on X.

Proof. We prove that a pair (a, b) ∈ X × X is in Eq(rηqX)R if and only if it is in
R Eq(rηqX). As in Lemma 2.4, we show that if there is c ∈ X such that (a, c) is in one
of these relations (say for instance Eq(rηqX)) and (c, b) in the other one (R), then there
is a c′ ∈ X such that (a, c′) is in the latter (R) and (c′, b) in the former (Eq(rηqX)). Now
observe that if (x, y) ∈ R, then (x, y)/k (x, y) = (x/kx, y/ky) is in R for any integer k. The
result then follows from reading the following diagram for any k ∈ Z, where horizontal
arrows represent membership in Eq(rηqX) and vertical arrows represent membership in R.
Indeed from the top right corner below we construct the bottom left corner and the other
way around:

c1 /
−k c1 = a

Sk
a ,2 c1 = a /k a

S−k
c1

lr

b /−k b = c2

Sk
c2 ,2 b = c2 /

k c2
S−k
b

lr

where we use the fact that if x = y /k y then Sx = Sy. Algebraically we read (a, c1) ∈ QX

implies c1 /
−k c1 = a for some k ∈ Z and (c1, b) ∈ R implies (c1 /

−k c1, b /
−k b) ∈ R,

thus choosing c2 = b /−k b yields one of the implications. The other direction translates
similarly.
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2.27. Remark.Given a rackX, the congruence QX is not an orbit congruence in general.
For instance, observe that QFr({a,b}) contains the pairs (a, a / a) and (b, b / b). Suppose by
contradiction that there is a normal subgroup N ≤ Inn(Fr({a, b})) = Fg({a, b}) for which
∼N= QFr({a,b}). Then since Fg({a, b}) acts freely on Fr(X), both inner automorphisms Sa
and Sb need to be in N . This leads to a contradiction since a ∼N (a / b) but (a, a / b) 6∈
QFr({a,b}). By contrast QFr({∗}) is of course an orbit congruence.

2.28. Corollary. Quandles form a strongly Birkho� (and thus admissible) subcategory
of Rck.

Proof. By Proposition 5.4 in [19], the re�ection squares of surjective morphisms are
double extensions (see Section 1.1.1). This implies the admissibility of the Galois structure

rΓq, for instance by [38, Proposition 2.6].

Note that the left adjoint rFq is actually semi-left-exact as we may deduce from the
fact that �connected components are connected� (see Paragraph 2.5.1).

2.29. Proposition. Any pullback of the form

Ca
p2

,2

p1
��

1
[a]
��

X
rηqX

,2
rFq(X),

in Rck, is preserved by the re�ector rFq, i.e. rFq(Ca) = 1; and thus by [78, Theorem 2.1],
we conclude that rFq is semi-left-exact in the sense of [24, 18].

Proof.Observe thatX×1 ∼= X and thus elements of the pullback Ca are merely elements
x ∈ X such that that rηq(x) = [a] ∈ rFq(X) i.e. all elements x and y in Ca are such that
there is k ∈ Z such that x = y /k y. Hence by Lemma 2.25 the image of this pullback by

rFq gives indeed 1, which concludes the proof.

Observe that there is a limit to the exactness properties satis�ed by rFq: we already
saw in Paragraph 2.5.1 that rFq cannot preserve �nite products, since π0 : Qnd → Set
does but π0 rFq : Rck → Set does not. Moreover, since Qnd is an idempotent subvariety
of Rck, Proposition 2.6 of [25] induces that rFq does not have stable units (in the sense
of [24]).

To conclude, we show that, besides semi-left-exactness, the rFq-covering theory is
�trivial� in the sense that all surjections are rFq-central. We use the general strategy
which was stated in Section 1.1.3. Since the Galois structure is strongly Birkho�, the
��rst step in�uence� is as usual:

2.30. Lemma. A surjective morphism f : X → Y , in the category of racks, is rFq-trivial
if and only if QX ∩ Eq(f) = ∆X .
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Proof. The morphism f is trivial if and only if the re�ection square at f is a pullback
(see Section 1.1.1, Diagram (1)). Since this re�ection square is a double extension, it
su�ces for the comparison map to be injective. Since the square is a pushout, the kernel
pair of the comparison map is given by the intersection QX ∩Eq(f) of the kernel pairs of
qX and f respectively.

2.31. Proposition. All surjections f : X → Y in the category of racks are rFq-central.

Proof. Consider the canonical projective presentation εrY : Fr(UY )→ Y , and take the
pullback of f along εrY . This yields a morphism

f̄ : X ×Y Fr(UY )→ Fr(UY ).

Now any morphism g : X → Fr(Y ) with free codomain is rFq-trivial since if x = x/k x
in X for some integer k and if, moreover, f(x) = f(x)/k f(x) in Fr(Y ), then f(x)k = e by
the free action of Pth(Fr(Y )) on Fr(Y ). However this can only be if k = 0, which implies
that QX ∩ Eq(f) = ∆X .

2.31.1. Towards the free quandle. Given a set A, in order to develop a good can-
didate description for the free quandle on A (see also [61]), we may now consider Fq(A)
as the free quandle on the rack Fr(A). As aforementioned and roughly speaking, the
following identi�cations between terms:

x /δx x /δx · · · x /δx x /δ1 a1 · · · /δk ak = x /δ1 a1 · · · /δk ak, (12)

de�ne the relation QFr(A) such that Fq(A) = Fr(A)/QFr(A).
We want to select one representative (a, g) ∈ A o Fg(A) for each equivalence class

determined by these identi�cations. Thinking in terms of trails, we observe that if (a, g)
and (b, h) are identi�ed, then they must have the same head a = b. We thus focus on the
paths and use a clever semi-direct product decomposition of Fg(A).

2.31.1.1. Characteristic of a path We have the following commutative diagram in
Set,

A
ηgA ,2

Cst
��

Fg(A)

χ..=Fg(Cst)
��

1
ηg1

,2 Z = Fg(1),

where Z is the underlying set of the additive group of integers, and the composite ηg1 Cst
is the constant function with image 1 ∈ Z. Given an element g ∈ Fg(A), there exists a
decomposition g = gδ11 · · · gδnn for some gi ∈ A and exponents δi = {−1, 1}, with 1 ≤ i ≤ n.
The characteristic function sums up the exponents χ(g) =

∑n
i=1 δi (of course the result

doesn't depend on the chosen decomposition of g). We may then classify paths in Fg(A) in
terms of their characteristic (i.e. their image by χ). Looking at Equation (12), two terms
with same head, and same characteristic, that are moreover identi�ed by QFr(A), must
actually be equal. In other words, given a �xed head a each equivalence class [(a, g)] in
Fq(A) has only one representative (a, g′) such that the path g′ is of a given characteristic.
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2.31.1.2. Characteristic zero and semi-direct product decomposition The kernel
of χ de�nes a normal subgroup F◦g(A) ≤ Fg(A) which is characterized (see [61] and
Proposition 2.18) by

F◦g(A) = 〈ab−1 | a, b ∈ A〉Fg(A).

Then for each a ∈ A, we may identify Z with the subgroup 〈an | n ∈ Z〉 ≤ Fg(A) which
may be seen as the subgroup of Fg(A) which �xes [(a, e)] ∈ Fq(A) ..= Fr(A)/QFr(A). This
then gives a splitting for χ, on the left, yielding the split short exact sequence on the
right:

ιa : Z→ Fg(A) : k 7→ ak F◦g(A) ,2
νA ,2 Fg(A)

χ
,2,2 Z
u}

ιa
gn

2.31.1.3. Characteristic zero representatives Given an element a ∈ A, any g ∈
Fg(A) decomposes uniquely as aχ(g)g0, where g0 = a−χ(g)g. This de�nes a function sending
equivalence classes [(a, g)] ∈ Fq(A), to their representatives of characteristic zero (a, g0).
Note that, for two di�erent a and b in A, the construction of g0 will vary, however elements
of Fr(A) with di�erent heads are always sent to di�erent equivalence classes in Fq(A).

2.31.1.4. Transporting structure This function is indeed bijective, and thus we may
transport the quandle structure from the quotient Fr(A)/QFr(A) to the set of representa-
tives A× F◦g(A). More explicitly we compute for (b, h) and (a, g) in Fr(A) that

(a, g0) / (b, h0) = (a, g0h
−1
0 bh0),

where w ..= g0h
−1
0 bh0 is not of characteristic zero. We then want to take w0 = a−1g0h

−1
0 bh0

and de�ne in Fq(A):
(a, g0) / (b, h0) ..= (a, w0).

2.31.2. The free quandle. After this analysis, we may con�dently build the free quan-
dle (�rst described in [61]) as follows.

Given a set A the free quandle on A is given by

Fq(A) ..= Ao F◦g(A) ..= {(a, g) | g ∈ F◦g(A); a ∈ A},

where the operations on Fq(A) are de�ned for (a, g) and (b, h) in Ao F◦g(A) by

(a, g) / (b, h) ..= (a, a−1gh−1bh) and (a, g) /−1 (b, h) ..= (a, agh−1b−1h).

As before, g is the path component and a is the head component of the so-called trail
(a, g) ∈ Fq(A) and we say that an element (b, h) acts on an element (a, g) by endpoint.
These operations indeed de�ne a quandle structure.

From there, we translate all main results from the construction of free racks. Looking
for the unit of the adjunction, we have the injective function ηqA : A→ Fq(A) : a 7→ (a, e).

Moreover, since any element g ∈ F◦g(A) decomposes as a product g = g1
δ1 · · · gnδn ∈

Fg(A) for some gi ∈ A and exponents δi ∈ {−1, 1}, with 1 ≤ i ≤ n, and
∑

i δi = 0, we
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have, for any (a, hg) ∈ Fq(A) with g and h ∈ F◦g(A), a decomposition as

(a, hg) = (a, hg1
δ1 · · · gnδn) = (a, a

∑
i−δihg1

δ1 · · · gnδn) = (a, a−δn · · · a−δ1hg1
δ1 · · · gnδn)

= (a, h) /δ1 (g1, e) · · · /δn (gn, e).

Observing that if gi
−δi = gi+1

δi+1 for some (a, g) = (a, g1
δ1 · · · gnδn) ∈ Fq(A) as above,

then

(a, e) /δ1 (g1, e) · · · /δi−1 (gi−1, e) /
δi+2 (gi+2, e) · · · /δn (gn, e) =

= (a, g1
δ1 · · · gi−1

δi−1gi+2
δi+2 · · · gnδn) = (a, g1

δ1 · · · gi−1
δi−1gi

δigi+1
δi+1gi+2

δi+2 · · · gnδn)

= (a, e) /δ1 (g1, e) · · · /δn (gn, e),

which expresses the �rst axiom of racks, using group cancellation, as before.
From there we derive the universal property of the unit: given a function f : A → Q

for some quandle Q, we show that f factors uniquely through ηqA. Given an element
(a, g) ∈ Fq(A), we have that for any decomposition g = g1

δ1 · · · gnδn as above, we must
have

f(a, g) = f(a, g1
δ1 · · · gnδn) = f((a, e)/δ1(g1, e) · · ·/δn(gn, e)) = f(a)/δ1f(g1) · · ·/δnf(gn)

which uniquely de�nes the morphism of quandles f : Fq(A)→ Q as extension of f along
ηqA. This extension is well de�ned since equal such decompositions in Fq(A) are equal
after f by the �rst axiom of racks.

Finally the left adjoint Fq : Set → Qnd of the forgetful functor U: Qnd → Set with
unit ηq is then de�ned on functions f : A→ B by

Fq(f) ..= f × F◦g(f) : Ao F◦g(A)→ B o F◦g(B),

where F◦g(f) is the restriction of Fg(f) to the normal subgroup F◦g(A) ≤ Fg(A), whose
image is in F◦g(B). This de�nes quandle homomorphisms. Also functoriality of Fq and
naturality of ηq are immediate.

2.31.2.1. Free action of F◦g(A) Now remember the action by inner automorphisms of
Fg(A) = Pth(Fq(A)) de�ned by the commutative diagram in Set:

A
ηgA ,2

ηqA
&-

Fg(A)

s
��

Fq(A) pthFq(A)

18

S
&-

Inn(Fq(A)),

where s is the group homomorphism induced by the universal property of ηgA or equiva-
lently that of pthFq(A).

This action is not in general given by left multiplication in F◦g(A), since in particular
an h in Fg(A) is of course not always of characteristic zero. However, from Paragraph
2.31.2 we deduce that whenever h ∈ F◦g(A), the action of h on an element (a, g) ∈ Fq(A)
gives (a, gh) as before.
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2.32. Proposition. The action of F◦g(A) on Fq(A) given via the restriction

F◦g(A) s◦ ,2 Inn◦(Fq(A)),

of s thus corresponds to the usual left-action of F◦g(A) in Set: (A × F◦g(A)) × F◦g(A)) →
A×F◦g(A), given by multiplication in F◦g(A). Such an action is free since if (a, gh) = (a, g),
then gh = g and thus h = e.

2.32.1. The group of paths of a quandle. Observe that the construction of χ for
the free group Fg(A) = Pth(Fr(A)) generalizes to any rack X. The function Cst : X → 1
is actually a rack homomorphism to the trivial rack 1. It thus induces a group homomor-
phism χ = Pth(Cst):

X
pthX ,2

Cst
��

Pth(X)
χ=Pth(Cst)��

1
pth1

,2 Z = Pth(1).

As in the case of the free rack, we have the short exact sequence of groups:

Pth◦(X) ,2
νX ,2 Pth(X)

χ
,2,2 Z = Pth(1),

where νX : Pth◦(X)→ Pth(X) is the kernel of χ. This construction de�nes a functor
Pth◦ : Rck → Grp. Most importantly it de�nes a functor Pth◦ : Qnd→ Grp which can be
interpreted as sending a quandle to its group of equivalence classes of primitive paths,
such that two primitive paths are identi�ed if one can be obtained from the other with
respect to the axioms de�ning quandles. In the same way that Pth describes homotopy
classes of paths in racks, Pth◦ describes homotopy classes of paths in quandles, as it was
already explained in [29] and we shall rediscover in the covering theory described below.

2.32.1.1. The transvection group As in the case of free groups, given a rack X,
Proposition 2.19 implies that the kernel Pth◦(X) of χ is characterized as the subgroup:

Pth◦(X) = 〈a b−1 | a, b ∈ X〉Pth(X), (13)

which is the de�nition that was used by D.E. Joyce in [61]. Then the restriction of the
quotient s : Pth(X)→ Inn(X) (de�ned in Subsection 2.1.7) yields the normal subgroup

Inn◦(X) ..= 〈a b−1 | a, b ∈ X〉Inn(X),

which was called the transvection group of X by D.E. Joyce.
This transvection group plays an important role in the literature. In the context

of this work, we understand that the construction Pth◦ has better properties such as
functoriality, and is of more signi�cance to the theory of coverings than its image Inn◦

within inner automorphisms.

2.32.1.2. The case of free quandles Observe that for a set X, Pth◦(Fq(X)) = F◦g(X)
(for instance by Equation (13)). As in the case of free racks we get that:
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2.33. Proposition. Given a set A, we may identify the three groups Inn◦(Fq(A)) =
Pth◦(Fq(A)) = F◦g(A), and their actions on Fq(A). We refer to them as the group of
paths of Fq(A). This group acts freely on Fq(A) by Corollary 2.32.

Proof. Given a set A, the morphism s◦ : F◦g(A)→ Inn◦(Fq(A)) is a group isomorphism:

� it is surjective, since Inn◦(Fq(A)) is generated by the image of AA−1 ⊂ F◦g(A) by s
which is the set s(A)s(A)−1 = {S(a,e)(S(b,e))

−1 | a, b ∈ A} ⊂ Inn◦(Fq(A)).

� it is injective, as before because of the free action of F◦g(A) via s◦.

2.33.0.1. Inner automorphism groups In the case of quandles, the group of inner
automorphisms Inn(Fq(A)) is not isomorphic to Fg(A) in general. However, the only
counter-example is actually the case A = {1}: Fq({1}) = {1} is the trivial quandle on
one element and Inn({1}) = {e} is the trivial group, whereas Fg({1}) is Z. Of course we
do have F◦g({1}) = {e}. Now in all the other cases Inn(Fq(A)) ∼= Fg(A). The case A = ∅
is trivial. Then whenever

x /δx x /δx · · · x /δx x /δ1 a1 · · · /δk ak = x /δ1 a1 · · · /δk ak,

it su�ces to pick y 6= x ∈ A and then y/δx x/δx x/δx · · ·x/δ1 a1 · · ·/δk ak 6= y/δ1 a1 · · ·/δk ak,
showing that in Inn(Fq(A)): xδxxδx · · · xδxa1

δ1 · · · akδk 6= a1
δ1 · · · akδk , just as in Inn(Fr(A)).

3. Covering theory of racks and quandles

In this section we study the relative notion of centrality induced by the sphere of in�uence
of Set in Rck, with respect to extensions (surjective homomorphisms). Remember that
pullbacks of primitive extensions (surjections in Set) along the unit η induce the concept
of trivial extensions, which we saw are those extensions which re�ect loops. Central
extensions in Rck are those from which a trivial extension can be reconstructed by pullback
along another extension. Equivalently, central extensions are those extensions whose
pullback, along a projective presentation of their codomain, is trivial. In Section 3.1 we
thus look for a condition (C) such that, if a surjective rack homomorphism f : A→ B
satis�es (C), then the pullback t of f along εrB : Fr(B)→ B re�ects loops (see Section 1.1
and references there).

3.1. One-dimensional coverings. Quandle coverings were de�ned in [29], and shown
to characterize Γq-central extensions of quandles in [30]. We give the same de�nition for
rack coverings (already suggested in M. Eisermann's work), which we then characterize in
several ways. In Section 3.15 we further show that these are exactly the central extensions
of racks.

Remember that in dimension zero, a rack A is actually a set, if zero-dimensional data,
i.e. an element a ∈ A, acts trivially on any element x ∈ A : x / a = x. We saw that this
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may be expressed by the fact that Pth(A) acts trivially on A or alternatively by the fact
that any two elements which are connected by a primitive path are actually equal.

Now in dimension one, an extension f : A� B is a covering if one-dimensional data,
i.e. a pair (a, b) in the kernel pair of f , acts trivially on any element in A:

3.2. Definition.A morphism of racks f : A→ B is said to be a covering if it is surjective
and for each pair (a, b) ∈ Eq(f), and any x ∈ A we have x / a /−1 b = x.

Of course a trivial example is given by surjective functions between sets (the primitive
extensions). The following implies that central extensions are coverings:

3.3. Lemma. Coverings are preserved and re�ected by pullbacks along surjections in Rck.

Proof. Same proof as in [31] see also [30].

3.3.1. Coverings and the group of paths. Observe that given data f , x, a and b,
such as in De�nition 3.2, we have in particular that x /−1 a = x /−1 a / a /−1 b = x /−1 b.
In fact we can easily deduce that f is a covering if and only if for all such x, a and b as
before

x /−1 a / b = x.

This is to say that f is a covering if and only if any path of the form a b−1 or a−1b ∈ Pth(A),
for a and b in A, such that f(a) = f(b), acts trivially on elements in A. But then f
is a covering if and only if the subgroup of Pth(A) generated by those elements acts
trivially on elements of A. Now, given g ∈ Pth(A), if z · g = z for all z in A, then also
x · a−1 · g · a = (x/−1 a) · g · a = (x/−1 a) · a = x for all a ∈ A. Hence we conclude that f is
a covering if and only if the normal subgroup 〈〈ab−1 | (a, b) ∈ Eq(f)〉〉Pth(A) acts trivially
on elements of A. Finally by Proposition 2.19 we get the following result which illustrates
the importance of Pth in the covering theory of racks and quandles.

3.4. Theorem.Given a surjective morphism f : A→ B in Rck (or in Qnd), the following
conditions are equivalent:

1. f is a covering;

2. the group of ~f -symmetric paths K~f acts trivially on A (as a subgroup of Pth(A)) �
i.e. any f -symmetric trail loops in A;

3. Ker(~f) acts trivially on A (as a subgroup of Pth(A));

4. Ker(~f) is a subobject of the kernel Ker(s), where s : Pth(A)→ Inn(A) is the canon-
ical quotient described in Paragraph 2.10.1.

Proof. The statements (1), (2) and (3) are equivalent by the previous paragraph (and
thus by Proposition 2.19). Statement (4) is merely a way to rephrase (3) using the fact
that elements of the inner automorphism groups are de�ned by their action.
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3.5. Remark. Note that a morphism of groups is central if and only if it gives a covering
in racks [29, Example 2.34], see also [29, Example 1.2] and comments below. Conversely
any covering in racks induces a central extension between the groups of paths [29, Propo-
sition 2.39]. However, certain morphisms, such as f : Qab? → {∗}, which are not central
in Rck (or Qnd) are sent by Pth to central extensions of groups, e.g.

~f : Pth(Qab?) = Z× Z→ Z = Pth({∗}) : (k, l) 7→ k + l.

As it was observed by M. Eisermann in Qnd, we have:

3.6. Corollary. A rack covering f : A→ B induces a surjective morphism of groups
f̄ : Pth(B)→ Inn(A) such that ~ff̄ = s and thus induces an action of Pth(B) on A given
for gB ∈ Pth(B) and x ∈ A by x · gB .

.= x · gA, where gA is any element in the pre-image
~f−1(gb).

Observe that an easy way to obtain a rack covering is by constructing a quotient
f : A� B such that ~f is an isomorphism.

3.7. Example. The components of the unit rηq of the rFq adjunction are rack cov-
erings. Indeed, we discussed in Paragraph 2.21.1 that Pth rFq = Pth, see also Para-
graph 2.1.9. In particular, we look at the one element set 1 and consider the map
f ..= rηqFr(1) : Fr(1)→ Fq(1) = 1. We then compute that ~f = Pth(rηqFr(1)) and Inn(f) =

Inn(rηqFr(1)) are respectively the morphisms

Pth(Fr(1)) = Z idZ ,2 Pth(Fq(1)) = Z and Inn(Fr(1)) = Z3
,2 Inn(Fq(1)) = {e} ,

where Z is the in�nite cyclic group, Z3 = Z/3Z is the cyclic group with 3 elements and

{e} the trivial group. In this case ~f is an isomorphism, but Inn(f) is not.

3.8. Remark. In the article [16], Theorem 4.2 says that quandle coverings (such as in (3)
of Proposition 3.4 above) should coincide with rigid quotients of quandles, i.e. surjective
morphisms f : A→ B which induce an isomorphism Inn(f) : Inn(A)→ Inn(B). Looking
at the proof on page 1150, the authors assume �by construction� that the map η (between
the excess of Q and R [41]) is surjective, which is equivalent to asking for the bottom
right-hand square cR Adconj(h) = Inn(h) cQ to be a pushout. This doesn't seem to hold
in the generality asked for in [16]. Note that these results are presented in such a way
that they should also hold in Rck, since the idempotency axiom is never used. Then the
example above provides a counter-example to [16, Theorem 4.2] in Rck. We further give
a counter-example in Qnd, which shows that [16, Theorem 4.2] must be incorrect.

3.9. Example. Consider the quandle Qab? from Example 2.6, which by Example 2.21
is such that Pth(Qab?) = Z × Z with a = b = (1, 0) and ? = (0, 1). Moreover, observe
that the trivial quandle with two elements π0(Qab?) is also such that Pth(π0(Qab?)) =
Fab({[a], [?]}) = Z × Z where [a] = (1, 0) and [?] = (0, 1). Hence the morphism of

quandles f ..= ηQab?
: Qab? → π0(Qab?) is such that ~f = idZ×Z. In particular Ker(~f) = {e}
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is the trivial group, but Inn(f) : Z/2Z→ {e} is not an isomorphism. Other such examples
can be built using morphisms between quandles from Example 1.3, as well as Proposition
2.27 and Remark 2.28 in [29].

3.9.1. Visualizing coverings. Coverings are characterized by the trivial action of f -
symmetric paths, which are the elements g = gag

−1
b ∈ Pth(A) such that ga and gb are

f -symmetric to each other. Notice that an f -symmetric pair ga, gb is obtained from the
projections of a primitive path in Eq(f). We emphasize the geometrical aspect of these 2-
dimensional primitive paths by de�ning membranes and horns. An f -symmetric trail is a
compact 1-dimensional concept which remains so when generalized to higher dimensions.
The concept of f -horn allows for a more visual, geometrical and elementary description
of these ingredients as well as their higher-dimensional generalizations.

3.10. Definition. Given a morphism f : A→ B in Rck (or Qnd), we de�ne an f -
membrane M = ((a0, b0), ((ai, bi), δi)1≤i≤n) to be the data of a primitive trail in Eq(f)
(see Paragraph 2.3.2). We call such an f -membrane M a f -horn if a0 = b0 =: x which
we denote M = (x, (ai, bi, δi)1≤i≤n). The associated f -symmetric pair of the membrane
or horn M is given by the paths gMa

.

.= a1
δ1 · · · anδn and gMb

.

.= b1
δ1 · · · bnδn in Pth(A).

The top trail is ta = (a0, g
M
a ) and the bottom trail is tb = (b0, g

M
b ). The endpoints of the

membrane or horn are given by aM = a0 · gMa and bM = b0 · gMb .

Given an f -symmetric trail (x, g) for g = gag
−1
b ∈ Ker(~f) as before, there is an f -

horn such that its associated f -symmetric pair is given by ga and gb (in particular the
associated f -symmetric trail is then (x, g)). Given a horn M = (x, (ai, bi, δi)1≤i≤n), we
represent it (with n = 3 and δi = 1 for 1 ≤ i ≤ 3) as in the left-hand diagram below.

3.11. Definition. A horn M = (x, (ai, bi, δi)1≤i≤n) is said to close (into a disk) if its
endpoints are equal: aM = x · gMa = x · gMb = bM . The horn M is said to retract if for
each 1 ≤ k ≤ n, the truncated horn M≤k .

.= (x, (ai, bi, δi)1≤i≤k) closes.

x

w�

a1
a2

a3
�'

b1
b2

b3

f
f

x · (a1 a2 a3)
f

x · (b1 b2 b3)

x

��

a1

a2

a3

��

b1

b2

b3

f
f

f

aM = bM

x

��

a1
a2
a3

��

b1
b2
b3

aM = bM

3.12. Corollary. A surjective morphism f : A� B in Rck (or Qnd) is a covering if
and only if every f -horn retracts (or equivalently, if every f -horn closes into a disk).

3.12.1. Visualizing normal extensions.Normal extensions of quandles are described
by V. Even in [30]. The same description works in racks. We reinterpret it using our own
terminology.

3.13. Definition. Given a surjective morphism f : A→ B in Rck, together with an f -
membrane M = (ai, bi, δi)0≤i≤n, we say that the membrane M forms a cylinder if both the
top and the bottom trails of M are loops.
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3.14. Proposition. A surjective morphism f : A→ B in Rck (or Qnd) is a normal
extension if and only if f -membranes are rigid, i.e. if and only if given any f -membrane
M = (ai, bi, δi)0≤i≤n, M forms a cylinder as soon as either the top or the bottom trail of
M is a loop.

Proof. The surjection f is normal if and only if the projections π1, π2 : Eq(f) ⇒ A of the
kernel pair of f are trivial. Such projections are trivial if and only if they re�ect loops.
The π1 (resp. π2) projection of a trail t = ((a0, b0), h) in Eq(f) loops if and only if there
is an f -membrane M = ((a0, b0), ((ai, bi), δi)1≤i≤n) such that ~π1(h) = gMa , ~π2(h) = gMb and
the top (resp. bottom) trail of M loops (see also [30, Proposition 3.2.3]).

3.15. Characterizing central extensions. V. Even's strategy to prove the char-
acterization is to split coverings along the weakly universal covers constructed by M. Eis-
ermann. These weakly universal covers can be understood as the centralization of the
canonical projective presentations (using free objects � see Section 3.32). Their structure
and properties used to show V. Even's result derive from the structure and properties of
the free objects we described before. Thus even though V. Even's proof can be translated
to the context of racks, we prefer to work directly with free objects in the alternative proof
below. This approach then easily generalizes to higher dimensions without us having to
build the weakly universal higher-dimensional coverings from scratch.

3.16. Proposition. Any rack-covering with free codomain f : A→ Fr(B) is a trivial
extension.

Proof. In order to test whether f is a trivial extension, consider x ∈ A and g =
a1
δ1 · · · anδn ∈ Pth(A) for n ∈ N, a1, . . ., an in A and δ1, . . ., δn in {−1, 1}. Assume

that f sends the trail (x, g) to the loop (f(x), ~f(g)):

f(a) · (f(a1)δ1 · · · f(an)δn) = f(x) /δ1 f(a1) · · · /δn f(an) = f(x /δ1 a1 · · · /δn an) = f(x),

where we write f(ai) ..= pthFr(B)(f(ai)) (which does not mean that f(ai) is in B). We
have to show that (x, g) was a loop in the �rst place:

x · g = x /δ1 a1 · · · /δn an = x.

Now since the action of Pth(Fr(B)) on Fr(B) is free, any loop in Pth(Fr(B)) must be

trivial, and in particular f(a1)δ1 · · · f(an)δn = e. Hence g ∈ Ker(~f), and thus by Theorem
3.4, x · g = x, which concludes the proof.

Note �nally that the exact same proof works for quandle coverings, using the fact that
if A is a quandle, we may then always choose ai's and δi's such that

∑
i δi = 0. Then

f(a1)δ1 · · · f(an)δn is in Pth◦(Fq(B)) which acts freely on Fq(B). The rest of the proof
remains identical.

3.17. Proposition. If a quandle-covering f : A→ Fq(B) has a free codomain, then it is
a trivial extension.

By Lemma 3.3, and the previous propositions, the strategy of Section 1.1.3 yields
Theorem 2 from [30], as well as:
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3.18. Theorem. Rack coverings are the same as central extensions of racks.

3.19. Comparing admissible adjunctions by factorization. The notions of triv-
ial object and connectedness, or trivialising relation C0, coincide in racks and quandles.
These are understood as the zero-dimensional central extensions and centralizing rela-
tions. In dimension 1, the notions of central extensions in racks and quandles also coin-
cide. Further we also have coincidence of the centralizing relations and the corresponding
notions in dimension 2. Before we move on, we show how these results are no coincidence
and can be studied systematically as a consequence of the tight relationship between the
π0-admissible adjunctions of interest.

Expanding on Paragraph 2.3.6 we get a factorization (Diagram (14)) as in 2.21.1 (where
π0 · I = π0, I · I = I, π0 · rFq = π0, rFq · I = I) and all the adjunctions are admissible. Since
we are dealing here with several di�erent Galois structures: Γ from Rck to Set, rΓq from
Rck to Qnd and say Γq ..= (Qnd, Set, π0, I, η, ε, E), we specify the Galois structure with
respect to which the concepts of interest are discussed.

Rck

rFq

)/

π0

�)

⊥ Qnd

I

io

π0

�	

Set.

I

AJ

I

`i

aa
(14)

3.20. Lemma. If f : A→ B is a Γ-trivial extension, then f is also rΓq-trivial, and the
image rFq(f) of f is a Γq-trivial extension in Qnd.

Proof. The Γ-canonical square of f in Rck is given on the left, and factorizes into the
composite of double extensions on the right in Diagram (15). Hence if f is a trivial
extension,

A
f
��

ηA ,2 π0(A)

π0(f)
��

B ηA
,2 π0(B),

A
f
��

rηqA ,2
rFq(A)

rFq(f)
��

η rFq(A)
,2 π0(A) = π0( rFq(A))

π0(f)
��

B
rηqB

,2
rFq(B) η rFq(B)

,2 π0(B) = π0( rFq(B)).

(15)

then this composite is a pullback square. The composite of two double extensions is a
pullback if and only if both double extensions are pullbacks (see for instance [73, Lemma
2.1.4]).

3.21. Lemma. An extension f : A→ B in Qnd is

(i) Γq-trivial in Qnd if and only if I(f) is Γ-trivial in Rck;

(ii) Γq-central in Qnd if and only if I(f) is Γ-central in Rck.
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Proof. The �rst point (i) is immediate by the previous lemma, and the fact that the
π0-canonical squares of I(f) in Rck is the same as the image by I of the Γq-canonical
square of f in Qnd. Note also that I preserves and re�ects pullbacks.

For the second statement (ii), if f is Γq-central, then there is an extension p : E → B
such that the pullback of f along p is Γq-trivial. We may conclude by taking the image
by I of this pullback square. Now if I(f) is Γ-central in Rck, there exists p : E → B in Rck
such that the pullback t of I(f) along p is Γ-trivial in Rck. Taking the quotient along rηq

of this pullback square (1) yields a factorization of (1):

E ×B A
t
��

rηqP ,2
rFq(E ×B A)

rFq(t)
��

,2 A
f
��

E
rηqE

,2
rFq(E)

rFq(p)
,2 B.

Again, since the left hand square is a double extension, and the composite is a pullback,
both squares are actually pullbacks and thus f is Γq-central.

Now since the π0-adjunction is strongly Birkho� (both in Rck and Qnd), central ex-
tensions are closed by quotients along double extensions in ExtRck (or ExtQnd � see also
Proposition 3.30).

3.22. Corollary. The image by rFq of a Γ-central extension f : A→ B in Rck is a
Γq-central extension in Qnd.

Proof. The image rFq(f) is Γq-central extension if and only if I( rFq(f)) is Γ-central.
Since Set is strongly Birkho� in Rck, I( rFq(f)) is the quotient of a Γ-central extension in
Rck along a double extension and thus is still Γ-central in Rck.

3.23. Proposition. If the image by rFq of an rΓq-trivial extension f : A→ B in Rck is
a Γq-central extension in Qnd, then f is Γ-central in Rck.

Proof. Consider the following commutative cube in Rck where we omit the inclusion
I : Qnd→ Rck. The back face is a pullback by construction. The right hand face is a
pullback by assumption, and the left hand face is a pullback by Proposition 2.31.

P1
,2

t

��

rηqP1

z�

A

f

��

rηqA
z�

rFq(P1) ,2

rFq(t)

��

rFq(A)

rFq(f)

��

Fr(B)
rηq

Fr(B)

z�

εrB ,2B

rηqBz�

Fq(B)
rFq(εrB)

,2
rFq(B)
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We deduce that the front face is a pullback as well. Since rFq(f) is Γq-central by assump-
tion, and since rFq(εrB) : Fq(B) = rFq(Fr(B))→ rFq(B) factorizes as

Fq(B)
Fq( rηqB)

,2 Fq( rFq(B))
Fq(εq

rFq(B)
)
,2

rFq(B),

both rFq(t) and t are Γ-trivial as the pullback of a trivial extension.

Note that some extensions of racks which are not central, still have central images
under rFq (see example in [72]). Of course some morphisms of racks which are not rΓq-
trivial are still Γ-central: we already mentioned the important example of rηqA for any
rack A.

Before even studying the next steps of the covering theory, we can predict that what
happens in Qnd directly follows from what happens in Rck.

3.24. Corollary. If the full subcategory CExtRck of central extensions of racks is re-
�ective within the category of extensions ExtRck (see Theorem 3.26 for details), then also
CExtQnd is re�ective in ExtQnd and the re�ection is computed as in ExtRck, via the in-
clusion I : Qnd→ Rck.

Proof. Since Qnd is closed under quotients in Rck, the centralization of an extension in
Qnd � Rck yields an extension in Qnd which is moreover central by Lemma 3.21. The
universality in CExtQnd directly derives from the universality in CExtRck by the same
arguments.

3.25. Centralizing extensions.We adapt the result from [28], showing the re�ectiv-
ity of quandle coverings in the category of extensions, to the context of racks. We put the
emphasis on our new characterizations of the centralizing relation which works the same
for racks and for quandles. We also prepare the ingredients to show the admissibility of
coverings within extensions, and the forthcoming covering theory in dimension 2.

Let us de�ne E1 to be the class of double extensions in ExtRck.

3.26. Theorem. The category CExtRck is an (E1)-re�ective subcategory of the category
ExtRck with left adjoint F1 and unit η1 de�ned for an object f : A→ B in ExtRck by η1

f
.

.=
(η1
A, idB), where η1

A : A→ A/C1(f) is the quotient of A by the centralizing congruence
C1(f), which can be de�ned in the following equivalent ways:

(i) C1(f) is the equivalence relation on A generated by the pairs (x / a /−1 b, x) for x,
a, and b in A such that f(a) = f(b),

(ii) a pair (a, b) of elements from A is in the equivalence relation C1(f) if and only if a
and b are the endpoints of a horn, i.e. there exists a horn M = (x, (ai, bi, δi)1≤i≤n)
such that x · gMa = a and x · gMb = b,

(iii) C1(f) is the orbit relation ∼Ker(~f) (or equivalently ∼K~f
) induced by the action of the

kernel of ~f (i.e. the group of f -symmetric paths).
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Observing that C1(f) ≤ Eq(f), the image of f by F1 is de�ned as the unique factorization
of f through this quotient:

A

η1A
#+

f
,2 B

A/C1(f)
F1(f)

3:

The de�nition of F1 on morphisms α = (α>, α⊥) : fA → fB decomposes into the top compo-
nent F>

1(α) : A>/C1(fA) → B>/C1(fB) de�ned by the universal property of the quotients
η1
A>

for fA : A> → A⊥; and the bottom component F⊥
1(α) = α⊥ which simply returns the

bottom component of α.

Proof. Using de�nition (i) for the centralizing relation, the proof of Theorem 5.5 in [28]
easily translates to the context of racks. Then given an extension f : A→ B, the unit
η1
f = (η1

A, idB) is a double extension since its bottom component is an isomorphism. It
remains to show that the de�nitions (ii) and (i) are equivalent, since (iii) is equivalent to
(ii) by Proposition 2.19.

First we show by induction on n ∈ N that C1(f), de�ned as in (i), contains all pairs
that are endpoints of a horn. Then we show that the collection of such pairs de�nes a
congruence containing the generators of C1(f). This then concludes the proof.

Step 0 is satis�ed by re�exivity of C1(f). Now assume that if (a, b) is a pair of elements
in A, which are endpoints of a horn M = (x, (ai, bi, δi)1≤i≤n) of length n ≤ k, for some
�xed natural number k, then (a, b) ∈ C1(f). We show that the endpoints a ..= x · gMa and
b ..= x · gMb of any given horn M = (x, (ai, bi, δi)1≤i≤k+1) of length k + 1 are in relation
by C1(f). Indeed, de�ne a′ = a /−δk+1 ak+1 and b′ = b /−δk+1 bk+1. Then we have that
(a′, b′) ∈ C1(f) by assumption and, moreover,(

a = a′ /δk+1 ak+1

)
C1(f)

(
b′ /δk+1 ak+1

)
C1(f)

(
b′ /δk+1 bk+1 = b

)
,

by compatibility of C1(f) with the rack operation, together with re�exivity, and further
by de�nition (i) of C1(f). We may conclude by transitivity of C1(f).

Now de�ne the symmetric set relation S as the subset of A × A, given by pairs of
endpoints of f -horns. Looking at horns of length 0 and 1, S de�nes a re�exive relation
containing the generators of C1(f). It is also easy to observe that it is compatible with
the rack operation. Thus it remains to show transitivity. In order to do so, for k and n in
N, consider a horn M = (x, (ai, bi, δi)1≤i≤k), and its endpoints a and b as before, as well
as a horn N = (z, (ci, di, γi)1≤i≤n) with endpoints c = z · gNa and d = z · gNb . If b = c then
also (a, d) is in S since:

a = x /δ1 a1 · · · /δk ak /−γn cn · · · /−γ1 c1 /
γ1 c1 · · · /γn cn,

d = x /δ1 b1 · · · /δk bk /−γn cn · · · /−γ1 c1 /
γ1 d1 · · · /γn dn.
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By Corollary 3.24, what we deduced about the functor F1 restricts to the domain
CExtQnd, and so also describes the left adjoint to the inclusion in ExtQnd from Theorem
5.5. in [28]. In addition to Corollary 3.24, we further describe how centralization behaves
with respect to rFq.

3.26.1. Navigating between racks and quandles. Observe that the adjunction

rFq : Rck � Qnd : I induces (in the obvious way) an adjunction rFq
1 : ExtRck � ExtQnd : I

with unit given by r
1η
q = (rηq, rηq). Then by Corollary 3.22 this adjunction restricts to

the full subcategories rFq
1 : CExtRck � CExtQnd : I.

3.27. Proposition.We have the following square of adjunctions, in which the 4 obvious
squares of functors (one for each oriented diagonal) commute (up to isomorphism), i.e. :

ExtRck

a
rFq

1

.5

F1

��

> ExtQnd

a

I
nu

F1

��

CExtRck >

I

RZ

rFq
1

.4
CExtQnd.

I
nu

I

RY

Proof. Corollary 3.28 gives commutativity of the square F1 I = I F1 from the top right
to the bottom left. In the opposite direction, I rFq

1 = rFq
1 I by Corollary 3.22 again.

Finally bottom-right to top-left I I = I I commutes trivially, from which we can deduce,
by uniqueness of left adjoints, that rFq

1 F1 = F1 rFq
1.

3.28. Corollary. In particular, if f : A→ B is a morphism of racks, then the central-
ization

F1( rFq(f)) : rFq(A)/C1( rFq(f))→ rFq(B)

of rFq(f) is equal (up to isomorphism) to rFq(F1(f)) : rFq(A/C1(f))→ rFq(B) which is
the re�ection of the centralization F1(f) of f .

3.28.1. Towards admissibility in dimension 2. A re�ector such as F1, of a subcat-
egory of morphisms containing the identities into a larger class of morphisms can always
be chosen such that the bottom component of the unit of the adjunction is the identity
[48, Corollary 5.2]. This is important in order to obtain higher order re�ections and ad-
missibility, for we relate certain problems back to the �rst level context. For dimension
2, we need this re�ection to be strongly Birkho�. Below we have the results we need for
the permutability condition on the kernel pair of the unit (�strongly�) and for the closure
by quotients of central extensions (�Birkho��).

3.29. Proposition. Given a rack extension f : A→ B (or in particular an extension
in Qnd) as before, the kernel pair C1(f) of the domain-component η1

A of the unit η1
f

.

.=
(η1
A, idB), commutes with all congruences on A, in Rck (and so also in particular in Qnd).

Proof. By Theorem 3.26, the centralizing relation C1(f) is an orbit congruence which
thus commutes with any other congruence on A.
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As we shall see in Part II and III, the following property is a consequence of the fact
that the Galois structure Γ, in dimension 0, is strongly Birkho�. For now we show by
hand:

3.30. Proposition. If α = (α>, α⊥) is a double extension of racks (or in particular
quandles)

A>

α> ,2
p &-

fA

��

B>

fB

��

A⊥ ×B⊥ B>

π2
07

π1
u~

A⊥ α⊥
,2 B⊥

then the morphism ᾱ induced between the centralizing relations C1(fA) and C1(fB) is a
regular epimorphism. Moreover, if fA is a central extension then fB is a central extension.

Proof. Certainly if we show that ᾱ is a regular epimorphism, then assuming that fA
is central, then its centralizing relation is trivial, hence the centralizing relation of fB
is trivial, showing that fB is central (note that in this context, it is enough to have
preservation of centrality by quotients along double extensions in order to have surjectivity
of ᾱ, see Part II and III).

We pick a pair (x/y, x/z) amongst the generators of C1(fB) (i.e. with fB(y) = fB(z)).
Since α⊥ is surjective we get a ∈ A⊥ such that α⊥(a) = fB(y). Now both pairs (a, y) and
(a, z) are in the pullback A⊥ ×B⊥ B> hence there exist t and s in A> such that α>(t) = y,
α>(s) = z and fA(t) = fA(s) = a, by surjectivity of p. Now there is also u ∈ A> such that
t(u) = x and the pair (u / t, u / s) is a generator of C1(fA) by de�nition. It is also sent
to (x / y, x / z) ∈ C1(fB) by ᾱ by construction. All generators of C1(fB) are thus in the
image of ᾱ, and this concludes the proof.

3.31. Corollary. Given a morphism α = (α>, α⊥) : fA → fB in ExtRck such that α> and
α⊥ are surjections, then the square below (where P .

.= (A>/C1(fA)) ×(B>/C1(fB)) B>) is a
double extension of racks. Similarly in ExtQnd.

A>

α> ,2

p
'.

η1A>
��

B>

η1B>
��

P
π2

/6

π1
t}

(A>/C1(fA))
F>1(α)

,2 (B>/C1(fB))

Proof. By Lemma 1.2 in [5], this square is a pushout as a consequence of Proposition
3.30. Then by Proposition 5.4 in [19], p is a surjection as well, making α into a double
extension.

In Part II we complete the proof that Γ1 = (ExtRck,CExtRck,F1, I, η
1, ε1, E1) forms an

admissible Galois structure such that morphisms in E1 are of e�ective E1-descent [59, 58].

3.32. Weakly universal covers and the fundamental groupoid.
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3.32.1. Centralizing the canonical presentations. Weakly universal covers for
quandles were described by M. Eisermann. He also indicated how to adapt his theory
to the case of racks. In this section, we recover his constructions from the centralization
of the canonical projective presentations as explained in the introduction. Note that
the di�erence between the weakly universal covers (w.u.c.) in racks and in quandles is
then due to the di�erence between the canonical projective presentations rather than the
centralizations which are the same.

Given the canonical projective presentation of a rack εrX : Fr(X)→ X, we saw in
Paragraph 2.9.1 that the induced morphism ~ε rX is actually the quotient map ~ε rX =
qX : Fg(X)→ Pth(X) from Subsection 2.8. Hence the kernel of ~ε rX is given by

Ker(~ε rX ) = 〈〈c−1a−1x a | a, x, c ∈ X and c = x / a〉〉Fg(X).

Since the action of Pth(Fr(X)) = Fg(X) is by right multiplication, two elements (a, g)
and (b, h) in Fr(X) are identi�ed by the centralizing relation C1(εrX) if and only if a = b
and there is k ∈ Ker(~ε rX ) such that g = hk. In other words, the domain component η1

Fr(X)

of the centralization unit is given by the product idX ×qX : X o Fg(X) → X o Pth(X),
where the operation in X̃ ..= XoPth(X) is de�ned as in Paragraph 2.2.3.1, Equation (4).

3.33. Definition. Given a rack X, we de�ne the associated weakly universal cover of X
to be the centralised map ωX .

.= F1(εrX)

X̃ .

.= X o Pth(X)
ωX ,2 X,

where ωX sends a trail (a, g) ∈ X̃ to its endpoint a ·g, and trails in X̃ �act by endpoint� as
in Fr(X). Note that this construction is functorial in X, yielding a functor −̃ : Rck→ Rck

which sends a morphism of racks f : A→ B to the morphism f̃ .

.= f × ~f : Ã→ B̃; and a
natural transformation ω : −̃ → idRck, whose component at X is ωX .

Then the action of Pth(X) induced by the covering ωX on X̃ = X o Pth(X) is by
right multiplication, and is thus free. Given any other covering f : B → X, together with
a splitting function s : X → B in Set such that fs = idX , a factorization ωf : X̃ → B of
ωX through f is given by ωf (a, e) ..= s(a) and compatibility with the action of Pth(X) on
X̃ and B (see Corollary 3.6).

Considering the canonical projective presentation of a quandle εqX : X o Pth◦(X)→ X,
the same reasoning yields a w.u.c. with the same properties ωqX : X̃◦ ..= XoPth◦(X)→ X,
such that the quandle structure on XoPth◦(X) is as for Fq(X) (Paragraph 2.31.2). As in
the case of racks, this describes a functor as well as a natural transformation whose compo-
nent at any quandle A is ωqA. Observe that Corollary 3.28 implies that X̃◦ ..= XoPth◦(X)
is actually the free quandle on the rack X̃ ..= X o Pth(X) and thus if X is a quandle,
then ωqX is merely the image of ωX by rFq.

As it was proved by V. Even [31], every covering of X is split by ωqX in Qnd and a
similar argument shows that every covering of X is split by ωX in Rck. This derives more
generally from Corollary 3.31:
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3.34. Proposition. If the extension c : A→ B is split by an extension e : E → B, then
it is also split by the centralization F1(e) : E → B of this extension e. As a consequence,
c must be split by any weakly universal cover above B.

Proof. Consider the re�ection by F1 of the pullback P of e and c as on the right-hand
side of Diagram (16). Since the composite of two double extensions is a pullback if
and only if both double extensions are pullbacks themselves, Corollary 3.31 implies that
the commutative squares t′η1

P = η1
Et and cF1(f) = F1(e)t′ are pullback squares, where

t′ ..= F>
1[(t, c)].

π0(P ) rl
ηP

π0(t)

��

P
f

,2

t

��

η1P

z�

A

c

��

π0(P ) rl η(P/C1(f))

π0(t)=π0(t′)

��

P/C1(f)
F1(f)

,2

t′

��

A

c

��

π0(E) rl
ηE

E

η1E

z�

e ,2B

π0(E) rl η(E/C1(e))
E/C1(e)

F1(e)
,2B

(16)

Hence, since ηE = η(E/C1(e))η
1
E, and similarly ηP = η(P/C1(f))η

1
P , the F -re�ection square

ηEt = π0(t)ηP at t (which is a pullback by assumption) factors through the F -re�ection
square π0(t′)η(P/C1(f)) = η(E/C1(e))t

′ at t′ via the pullback square t′η1
P = η1

Et. Since the
square π0(t′)η(P/C1(f)) = η(E/C1(e))t

′ is a double extension, it is actually a pullback, which
shows that t′ is a trivial extension. We conclude by observing that a weakly universal
cover above B factors through F1(e) and trivial extensions are stable by pullbacks (see
also Diagram 2).

Given any X in Rck (respectively Qnd), the covering ωX (respectively ωqX) is split by
itself and thus it is a normal covering. Hence its kernel pair is sent to a groupoid by the
re�ection π0 (see [4, Lemma 5.1.22]) and thus we can construct the fundamental groupoid
(see Galois groupoid of a weakly universal central extension as in [4]) yielding functors
πr1 : Rck→ Grpd and πq1 : Qnd→ Grpd, with codomain the category of ordinary groupoids
Grpd (i.e. the category of internal groupoids in Set).

3.35. Definition. The functor π1 : Rck→ Grpd is de�ned on objects by sending a rack
X to πr1(X), the image by π0 of the groupoid induced by taking the kernel pair of ωX .
Functoriality is induced by functoriality of ω.

Similarly the functor πq1 : Qnd→ Grpd is de�ned by sending a quandle X to πq1(X),
the image by π0 of the groupoid induced by taking the kernel pair of ωqX .

From there, the Galois theorem yields an equivalence of categories between the cate-
gory of coverings of X and the category of internal covariant presheaves over π1(X) (and
similarly for Qnd, see Section 1.1 and references).
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3.35.1. The fundamental groupoid.We show that the fundamental groupoid π1(X)
(respectively πq1(X)) for an object X in the category Rck (respectively Qnd) is indeed the
groupoid induced by the action of Pth(X) (respectively Pth◦(X)) on X, as suggested in
M. Eisermann's work (see [29, Section 8]). As was mentioned in the introduction, these
results, and categorical Galois theory, give a positive answer to M. Eisermann's questions
about the relevance of his analogies with topology. Results about the fundamental group
of a connected pointed quandle were given by V. Even in [30]. We generalize these results
to the non-connected, non-pointed context in both categories Rck and Qnd. Exploiting
the analogy with the covering theory of locally connected topological spaces, this result
con�rms the intuition that the elements of the group Pth(X) (respectively Pth◦(X)) are
representatives of the classes of homotopically equivalent paths which connect elements in
the rack (respectively quandle) X.

3.36. Definition. Given a set X and a group G together with an action of G on X, we
build the ordinary groupoid (of elements) G(X,G) (in Set)

X2

p1
,2

p2
,2

m ,2 X1

−1
��

c ,2

d
,2
Xilr

where X0
.

.= X, X1
.

.= X ×G and for a ∈ X0, (a, g) ∈ X1,

d(a, g) .

.= a; c(a, g) .

.= a · g; i(a) .

.= (a, e); (a, g)−1
.

.= (a · g, g−1);

p1, p2 : X2 ⇒ X1 form the pullback of c and d; and m is the composition function de�ned
for 〈(a, g), (b, h)〉 in X2 by m〈(a, g), (b, h)〉 .

.= (a, g) · (b, h) .

.= (a, gh). Note that this
construction actually de�nes a functor from the category of group actions to the category
of ordinary groupoids.

3.37. Theorem. Given an object X in Rck (respectively Qnd), the fundamental groupoid
π1(X) (resp. πq1(X)) is given by the set groupoid G(X,Pth(X)) (resp. G(X,Pth◦(X))). Moreover,
the groupoid morphisms induced by f : X → Y via Pth (resp. Pth◦) and G correspond to
π1(f) (resp. πq1(f)).

Proof. Given the kernel pair d1, d2 : X ′1 ⇒ X ′ of the weakly universal cover ωX : X̃ → X
(resp. ωqX : X̃◦ → X), we de�ne the groupoid G as:

X ′2

p′1 ,2

p′2

,2
m′ ,2 X ′1

−1
��

d2 ,2

d1
,2
X ′ulr

where X ′2 is the pullback of d2 and d1, and m
′ is the composition function de�ned by the

unique factorization of d2 ◦ p′2, d1 ◦ p′1 : X ′2 ⇒ X ′ through d2, d1 : X ′1 ⇒ X ′.
Remember that a trail (a, g) ∈ X ′ is represented as an arrow g : a ,2 a · g ; and the

action of a trail on another is as in Paragraph 2.2.3.1, Equation (4), where the composition
of arrows is understood by multiplication in Pth(X) (resp. Pth◦(X)).
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By de�nition, the elements in X ′1 are then pairs of trails with same endpoint (diagram
on the left), and the rack (resp. quandle) operation is de�ned component-wise such that
we have the equality on the right:

a · g = b · h

a

6@g

b

^h h ;

a′ · h′ = b′ · g′
5

a · (hk) = b · (gk)

a′
5?h′

a · h = b · g b′
_i g′

= a · h = b · g
LRk

a

5>h

b

`i g

a

4<h

b

bj g

(17)

where k ..= (h′)−1a′h′ (resp. k ..= (a · h)−1(h′)−1a′h′). Finally observe that X ′2 is composed
of pairs of elements in X ′1 with one matching leg (such as represented on the left), which
images by m′ are given as in the right-hand diagram:

a · g = b · h = a′ · g′

a

3:g

b

LRh

a′
dl g
′ � m′ ,2

a · g = a′ · g′

a

5=g

a′
aj g′

Again the operation in X ′2 is de�ned component-wise and behaves as in X ′1.
We compute the image π0(G) which is π1(X) (resp. πq1(X)) by de�nition. Working

on each object separately, �rst observe that as for Fr(X) (resp. Fq(X)), the unit ηX′ :
X ′ → π0(X ′) = X sends a trail (a, g) ∈ X o Pth(X) (resp. in X o Pth◦(X)) to its head
a ∈ X, i.e. ηX′ is given by the product projection on X. Now for each pair of trails
α = 〈(a, g), (b, h)〉 in X ′1, we de�ne the trail µ(α) ..= (a, gh−1) in X ′:

α =
a · g = b · h

a

5>g

b
`i h 7→

a · g = b · h
 ) h−1

a

5>g

b
=: µ(α).

Observe that this trail µ(α) is invariant under the action on α, of other pairs β =
〈(a′, g′), (b′, h′)〉 in X ′1, since µ(α / β) = (a, hkk−1g−1) = µ(α), where k = (h′)−1a′h′

(resp. k = (a · h)−1 (h′)−1a′h′) is the common part of both left and right legs as in
Equation (17). Conversely suppose that α, α′ in X ′1 have the same image by µ, we
show that α and α′ are connected in X ′1. Indeed, α and α′ must then be of the form
α = 〈(a, g), (b, h)〉 and α′ = 〈(a, g′), (b, h′)〉, such that moreover gh−1 = g′h′−1. Then
the path l ..= h−1h′ = g−1g′ ∈ Pth(X) (resp. in Pth◦(X)) decomposes as a product
l = x0

δ0 · · · xnδn , such that all the pairs 〈(xi, e), (xi, e)〉 are in X ′1 (and we have moreover∑n
i=0 δi = 0 in the context of Qnd). By acting with these pairs �− /δi 〈(xi, e), (xi, e)〉� on

α, we may obtain α′ as in the diagram on the right:

α ..=
a · g = b · h

a

6?g

b

_h h and α′ ..=
a · g′ = b · h′

a

5?g′

b

_i h′ =

a · (gl) = a · (hl)

a · g = b · h
LRl

a

3;g

b
ck h
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Hence we have the unit morphism ηX′1 = µ : X ′1 → π0(X ′1) where π0(X ′1) is π0(Eq(ωX)) =
X × Pth(X) (resp. π0(Eq(ωqX)) = X × Pth◦(X)). We may then compute π0(d2) = c,
π0(d1) = d, π0(i) = u and π0(−1) = −1, as displayed in the commutative Diagram (18) of
plain arrows, where the bottom groupoid is the inclusion in Rck (resp. Qnd) of the groupoid
G(X,Pth(X)) (resp. G(X,Pth◦(X))) from Set. HenceX1 = X×Pth(X) (resp.X1 = X×Pth◦(X))
has the same underlying set as X ′, and the underlying functions of ηX′ and d are both
given by �projection on X�.

X ′2
ηX′2

=µ×µ
��

p′1 ,2

p′2

,2
m′ ,2 X ′1

ηX′1
=µ

��

−1
�� d2 ,2

d1
,2
X ′

ηX′=d
��

ulr
ωX (resp. ωq

X)
,2 X

X2

p1
,2

p2
,2

m ,2 X1

−1

CK

c ,2

d
,2
Xilr

(18)

Then since ωX (resp. ωqX) is a normal covering, d1 and d2 are trivial extensions, so that
the commutative squares dd1 = dµ and dd2 = cµ are actually pullback squares. Hence the
pullback p′1, p

′
2 : X ′2 ⇒ X ′1 of d2 and d1 and the pullback p1, p2 : X2 ⇒ X1 of c and d, induce

a morphism f : X ′2 → X2 which is thus the pullback of ηX′1 = µ and computed component-
wise as f = µ × µ. By admissibility of the Galois structure Γ (see Paragraph 2.4.1 and
[55]), this morphism is also the unit component f = ηX′2 . Finally the commutativity of the
square µm′ = mηX′2 is given by construction (and easy to check by hand), which concludes
the proof that π1(X) = π0(G) = G(X,Pth(X)) (resp. π

q
1(X) = G(X,Pth◦(X)) in Qnd).

3.37.0.1. Remarks One of D.E. Joyce's main results is to show that the knot quandle
is a complete invariant for oriented knots. Now the knot group [71] of an oriented knot,
which is the fundamental group of the ambient space of the knot, is also computed as the
group of paths of the knot quandle. In other words, the knot group is the fundamental
group of the knot quandle, in the sense of the covering theory of racks (not in the sense
of the covering theory of quandles).

Finally observe that π1(X) (resp. πq1(X)) can be equipped with a non-trivial ad-hoc
structure of rack (resp. quandle) making it into an internal groupoid in Rck (resp. Qnd)
with internal object of objects the rack (resp. quandle) X. Given two trails (a, g) and
(b, h) in X1, de�ne (a, g) / (b, h) ..= (a / b, b−1gh−1bh) (note that if g, h ∈ Pth◦(X), then
b−1gh−1bh ∈ Pth◦(X)). Unlike in X̂ (resp. X̂◦), trails act on each other with both their
heads and end-points, which means that both projections to X are morphisms in Rck
(resp. Qnd). The rest of the structure is easy to derive.

3.37.0.2. Working with skeletons As we shall see in the next section, we are interested
in the fundamental groupoid, up to equivalence. Given a rack A, we thus also describe a
skeleton S of π1(A) (in the sense of [67, Section IV.4]). The resulting groupoid S is not
regular like π1(A), it is totally disconnected and its vertices are the connected components
of A. With the objective of interpreting the fundamental theorem of Galois theory, the
homotopical information contained in π1(A) can be made more explicit using its skeleton.



530 FARA RENAUD

3.38. Definition. Given an object A in Rck (respectively in Qnd), we call a pointing of
A any choice of representatives I .

.= {ai}i∈π0(A) ⊆ A such that ηA(ai) = [ai] = i for each
equivalence class i ∈ π0(A). Then for any element a ∈ A, de�ne Loopa as the group of
loops l ∈ Pth(A) (resp. l ∈ Pth◦(A)) such that a · l = a. Observe that if [a] = [b], for some
a and b in A, then there is g ∈ Pth(A) (resp. g ∈ Pth◦(A)) such that a = b ·g and thus the
subgroups Loopa and Loopb are isomorphic, via the automorphism of Pth(A) (resp. Pth◦)
given by conjugation with g.

Let us �x a pointing I .

.= {ai}i∈π0(A) ⊆ A of A, then we de�ne the groupoid π1(A, I)
(resp. πq1(A, I)) as

A2

p1
,2

p2
,2

m ,2 A1

−1
�� c ,2

d
,2
π0(A),ilr

where A1
.

.=
∐

i∈π0(A) Loopai is de�ned as the disjoint union, of the underlying sets

of Loopai's indexed by i ∈ π0(A). The domain and codomain maps send a loop l ∈
Loopai to the index i ∈ π0(A). The set A2 is then the disjoint union of products A2

.

.=∐
i∈π0(A)(Loopai ×Loopai) and m is de�ned by multiplication in Loopai ≤ Pth(A) (resp.

Loopai ≤ Pth◦(A)).

From the description of the skeleton of a groupoid obtained as in De�nition 3.36, we
deduce:

3.39. Lemma. For each I pointing of A object of Rck (respectively of Qnd), π1(A, I) (re-
spectively πq1(A, I)) is a skeleton of the fundamental groupoid π1(A) (respectively πq1(A)).

3.40. The fundamental theorem of categorical Galois theory. In sections 5,
6 and 7 of [29], M. Eisermann studies in detail di�erent classi�cation results for quandle
coverings. We will not go into so much depth ourselves, however we show how to recover
and extend the main theorems from these sections using categorical Galois theory.

Given an object A in Rck (respectively Qnd), the category of internal covariant
presheaves over π ..= π1(A) (resp. π ..= πq1(A)) are externally described as the category of
functors from π to Set and thus as the category of π-groupoid actions on sets Setπ. Given a
pointing I of A, de�ne π(I) ..= π1(A, I) (resp. π(I) ..= πq1(A, I) and deduce from π(I) ∼= π
that Setπ ∼= Setπ(I). Now π(I) is totally disconnected, thus the category of π(I)-actions is
equivalent to the category

∐
i∈π0(A) Set

Loopai whose objects are sequences of Loopai-group

actions (see De�nition 3.38), indexed by i ∈ π0(A), and morphisms between these are π0-
indexed sums of group-action morphisms. From the fundamental theorem of categorical
Galois theory (see for instance [55, Theorem 6.2]), classifying central extensions above an
object we deduce in particular:

3.41. Theorem. Given an object A in Rck and a pointing I .

.= {ai}i∈π0(A) ⊆ A of
A, there is a natural equivalence of categories between the category CExt(A) of central
extensions above A and the category Setπ1(A). The latter category is then also equivalent
(but not naturally) to Setπ1(A,I) ∼=

∐
i∈π0(A) Set

Loopai . The same theorem holds in Qnd,
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using the appropriate de�nition of Loopai and using πq1(A) and πq1(A, I) instead of π1(A)
and π1(A, I).

3.42. Corollary. The category of central extensions above a connected rack A is equiva-
lent to the category of Loopa-actions (from De�nition 3.38), for any given element a ∈ A.
The same is true in Qnd.

3.43. Example. We illustrate this result on a trivial example, to show the di�erence
between the context of Rck and that of Qnd. Consider the one element set 1. The
coverings above 1 in Qnd should all be surjective maps to 1 in Set, whereas the coverings
above 1 in Rck include for instance the unit morphism rηqFr(1) = ηFr1

: Fr(1)→ Fq(1) = 1,

whose domain is not a set. Then observe that Pth(1) = Z and thus Pth◦(1) = {e} and
since there is only one element ∗ ∈ 1, Loop∗ is the former in Rck and the latter in Qnd.
Hence the category of coverings above 1 in Qnd is Set{e} which is indeed equivalent to Set.
The category of coverings above 1 in Rck is given by SetZ, the category of Z-actions on
sets, where Z is the additive group of integers.
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