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PSEUDOCOMMUTATIVITY AND LAX IDEMPOTENCY FOR
RELATIVE PSEUDOMONADS

ANDREW SLATTERY

Abstract. We extend the classical work of Kock on strong and commutative monads,
as well as the work of Hyland and Power for 2-monads, in order to define strong and
pseudocommutative relative pseudomonads. To achieve this, we work in the more general
setting of 2-multicategories rather than monoidal 2-categories. We prove analogous
implications to the classical work: that a strong relative pseudomonad is a pseudo-
multifunctor, and that a pseudocommutative relative pseudomonad is a multicategorical
pseudomonad. Furthermore, we extend the work of López Franco with a proof that a
lax-idempotent strong relative pseudomonad is pseudocommutative.

We apply the results of this paper to the example of the presheaf relative pseudomonad.

1. Introduction

Context and motivation. The classical theory of monads provides a framework with
which to study algebraic structures on objects of a category. A landmark in this field
is Kock’s theory of commutative monads [15], developed in the setting of symmetric
monoidal categories. The basic notion in this theory is that of a strong monad, which
comprises a monad on a symmetric monoidal category equipped with a natural transfor-
mation with components

tX,Y : X ⊗ TY → T (X ⊗ Y ),

called the strength. The underlying endofunctor of a strong monad is a lax monoidal
functor, and the monad unit is a monoidal natural transformation. Furthermore, Kock
showed that the monad is commutative (a property of a given strength) if and only if the
monad is a monoidal monad, which is to say that the monad multiplication is monoidal.
Some nice properties follow when this happens. For example, if a symmetric monoidal
category C has a closed structure and T is a commutative monad on C, then the closed
structure gives rise to one on Eilenberg-Moore category of T -algebras.

Two-dimensional monad theory [3] has traditionally studied the strict notion of a 2-
monad, along with their algebras and lax, pseudo-, and strict algebra morphisms. Kelly
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[14] and Hyland & Power [12] extended Kock’s theory to 2-monads, defining pseudo-
commutative 2-monads. Some aspects of the theory become more subtle; for example,
one must distinguish between braiding and symmetry, and between closed structures and
pseudo-closed structures. In this setting, an important result is López Franco’s theorem
[19] that a lax-idempotent pseudomonad is pseudocommutative (extending work of Power,
Cattani and Winskel in [23]).

For some applications, it is useful to consider the notions of a pseudomonad [5, 10,
17, 21], in which the axioms for a 2-monad hold only up to coherent isomorphisms, and
of a relative pseudomonad [9], in which one further abandons the requirement of having
an underlying endofunctor. The latter can be seen as a 2-categorical counterpart of the
notion of a relative monad [1, 2, 18].

The aim of this paper is to provide an analogue of the theory of Hyland & Power and
of López Franco for relative pseudomonads. We are motivated to do so by the presheaf
construction; here, pseudocommutativity and lax idempotency are particularly intuitive
and correspond to important properties of the presheaf construction. As a byproduct of
the work in this paper, we obtain a theory of commutativity for relative monads. We
also expect a close relationship between the work in this paper and that on strength for
pseudomonads in [22], which have been developed independently.
Main contributions. We are naturally led to work in a multicategorical setting, as
was already partially done by Hyland & Power in [12]. This step is unavoidable if we
wish to avoid dealing with associator and unitor coherences while still having our work
apply directly to the 2-categories Cat and CAT of small and locally-small categories.
Multicategories subsume monoidal categories, with monoidal categories corresponding to
the subclass of ‘representable multicategories’, as laid out by Hermida in [11]. Thus we
work in general with n-ary maps f : X1, ..., Xn → Y , and our definitions reflect this.

We define the notion of strong relative pseudomonad (Definition 3.3), and prove
that for a strong relative pseudomonad, the underlying pseudofunctor becomes a multi-
pseudofunctor (Proposition 3.9) and the unit becomes multicategorical (part of Theo-
rem 4.7). We also define the notion of pseudocommutative relative pseudomonad, which
in our setting is particularly appealing; it amounts to asking for an isomorphism

(f t)s ∼= (f s)t.

We then prove that every pseudocommutative relative pseudomonad is a multicategorical
relative pseudomonad (Theorem 4.7). We define the notion of lax idempotency for strong
relative pseudomonads, extending earlier definitions in [8] and [9], and prove that every
lax-idempotent strong relative pseudomonad is pseudocommutative (Theorem 5.4). We
apply these definitions and results to the example of presheaves (Theorem 6.2).
Roadblocks and technical challenges. As with any venture at generalisation, we lose
some implications and equivalences. For example, while Kock [15] proves an equivalence
between strong monads and monads which are lax monoidal as functors, as well as one
between commutative and monoidal monads, in our setting we will only have implications
in the forward direction. Another assumption we must drop if we are to apply our results
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to the presheaf construction is that of closure; while Cat is closed, CAT is not (again due
to size issues—the functor category [X, Y ] need not be locally small even when both X
and Y are). This means in particular that the proof that lax-idempotent pseudomonads
are pseudocommutative given by López Franco in [19] cannot be readily transported to
our setting, as it makes heavy use of closure.

Other trade-offs come from working in the setting of multicategories. The classical
strength employs a binary map X ⊗ TY → T (X ⊗ Y ); we will need an n-ary formulation
in order to extend to the notion of strength to the multicategorical setting. In general,
we are able to obviate associativity and unitor coherences, at the expense of having to
work in an unbiased way on general n-ary morphisms, instead of being able to consider
only binary and nullary morphisms.
Organisation of the paper. Section 2 reviews the definition of a relative pseudomonad
and some immediate results, and introduces the example of the presheaf relative pseu-
domonad. Our new work begins in section 3, in which we introduce the setting of 2-
multicategories, define a notion of relative pseudomonad suitable for this setting (strong
relative pseudomonad) and prove that every strong relative pseudomonad is a pseudo-
multifunctor. In section 4 we focus on the class of strong relative pseudomonads which
are pseudocommutative, and prove that every pseudocommutative relative pseudomonad
is a multicategorical relative pseudomonad. Section 5 discusses a particularly nice class
of strong relative pseudomonads, the lax-idempotent strong relative pseudomonads, and
proves that every lax-idempotent strong relative pseudomonad is pseudocommutative.
We close in Section 6 by applying our results to the case of Psh, the presheaf relative
pseudomonad.

2. Background

We recall the definition of a relative pseudomonad from [9]; for our purposes it will suffice
to consider relative pseudomonads along a fixed 2-functor J : D→ C between 2-categories
C and D (as opposed to a pseudofunctor between bicategories).

2.1. Definition. (Relative pseudomonad) Let C,D be 2-categories and let J : D→ C be
a 2-functor. A relative pseudomonad (T, i, ∗; η, µ, θ) along J comprises

� for X ∈ ob D an object TX ∈ ob C and map iX : JX → TX (called a unit map),
and

� for X, Y ∈ ob D a functor

C(JX, TY )
(−)∗−−→ C(TX, TY )

(called an extension functor).

The units and extensions furthermore come equipped with three invertible families of 2-
cells
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� ηf : f → f ∗iX for f : JX → TY ,

� µf,g : (f ∗g)∗ → f ∗g∗ for g : JX → TY , f : JY → TZ, and

� θX : (iX)∗ → 1TX for X ∈ ob D,

satisfying the following two coherence conditions:

(1) for every f : JX → TY , g : JW → TX and h : JV → TW the diagram

((f ∗g)∗h)∗ (f ∗g)∗h∗

(f ∗g∗h)∗ f ∗(g∗h)∗ f ∗g∗h∗

(µf,gh)∗

µf∗g,h

µf,g∗h f∗µg,h

µf,gh
∗

commutes (the associativity axiom), and

(2) for every f : JX → TY the diagram

f ∗ (f ∗i)∗ f ∗i∗

f ∗1

(ηf )∗ µf,i

f∗θ

commutes (the unit axiom).

We usually omit subscripts from the unit maps i : JX → TX; we will also refer to
a given relative pseudomonad (T, i, ∗; η, µ, θ) simply as (T, i, ∗) or T , with the rest of the
structure inferred.

Given a relative pseudomonad T along J : D → C, the function ob D → obC : X 7→
TX can be given the structure of a pseudofunctor, with functors between hom-categories
given by

D(X, Y )→ C(TX, TY ) : f 7→ (iY ◦ Jf)∗.

2.2. Remark. A relative pseudomonad along the identity 1 : C → C induces and is
induced by an ordinary pseudomonad with the same action on objects (see [9] Remark 4.5).

We can infer more equalities between a relative pseudomonad’s structural 2-cells. The
following lemma is from [9]; the proof is analogous to the proof that three of the original
five axioms for a monoidal category are redundant [13], which also has a version for
(ordinary) pseudomonads [20].
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2.3. Lemma. Let T be a relative pseudomonad along J : D→ C. Then in addition to the
two equalities of 2-cells given by definition, the following three diagrams also commute:

(1) for every f : JX → TY and g : JW → TX, the diagram

f ∗g (f ∗g)∗i

f ∗g∗i

ηf∗g

µf,gi
f∗ηg

commutes.

(2) for every f : JX → TY , the diagram

(i∗f)∗ i∗f ∗

f ∗

θf∗

(θf)∗

µi,f

commutes, and

(3) for every object X ∈ ob D, the diagram

i i∗i

i

ηi

θi

commutes.

2.4. Example. The example of a relative pseudomonad which will be the focus of this
paper is that of the presheaf construction.

X 7→ PshX := [Xop, Set]

Write Cat for the 2-category of small categories, functors and natural transformations, and
write CAT for the 2-category of locally-small categories. Since the category of presheaves
on a small category is in general only locally small, it is natural to ask whether Psh can
be given the structure of a relative pseudomonad along the inclusion 2-functor J : Cat→
CAT.

This is shown in [9] via the construction of a relative pseudoadjunction; the structure
of a relative pseudomonad is given to Psh as follows:

� for an object X ∈ Cat we have PshX ∈ CAT and unit map yX : X → PshX given
by the Yoneda embedding,
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� for X, Y ∈ Cat and a functor f : X → PshY , the extension f ∗ : PshX → PshY is
given by the left Kan extension of f along the Yoneda embedding

X PshX

PshY

y

f∗:=Lany f
f

ηf

which also defines the 2-cells ηf : f → f ∗y (note that since the Yoneda embedding
is fully faithful the maps ηf are invertible, as required),

� for f : JX → TY and g : JW → TX, the 2-cell µf,g : (f ∗g)∗ → f ∗g∗ is uniquely
determined by the universal property of the left Kan extension:

W PshW W PshW

PshX PshX

PshY PshY

f∗

g

y

g∗

f∗g

y

(f∗g)∗

g∗

f∗

ηg

ηf∗g µf,g

� for X ∈ Cat, the 2-cell θX : y∗X → 1 is also uniquely determined by the universal
property of the left Kan extension:

X PshX X PshX

PshX PshX

y

y

1 y

y

i∗
11 ηy θX

3. Strong relative pseudomonads

The 2-categories Cat and CAT possess more structure than simply being 2-categories;
they are in particular cartesian monoidal 2-categories. Thus we will seek to develop
the Kock’s theory of monads on symmetric monoidal closed categories [15] for relative
pseudomonads, defining notions of strong relative pseudomonads and pseudocommutative
relative pseudomonads. These will specialise in the one-dimensional ordinary setting to
Kock’s strong monads and commutative monads, respectively. To avoid some of the
coherence isomorphisms inherent to working with monoidal 2-categories, we will work in
the related setting of 2-multicategories (see Definition 3.1).

We seek to consider the notion of a relative pseudomonad along J : D → C when C
and D are 2-multicategories. We will define a ‘strong relative pseudomonad’ from scratch
to take this role, and note that a every strong relative pseudomonad induces a canonical
relative pseudomonad structure. In order to do this, let us recall the definition of a
2-multicategory [11] (taking V = Cat to specialise the V -enriched theory).
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3.1. Definition. (2-multicategory) A 2-multicategory C is a multicategory enriched in
Cat. Unwrapping this statement a little, a 2-multicategory C is given by

1. a collection of objects X ∈ ob C, together with

2. a category of multimorphisms C(X1, ..., Xn;Y ) for all n ≥ 0 and objects X1, ..., Xn, Y
which we call a hom-category; an object of the hom-category C(X1, ..., Xn;Y ) is
denoted by f : X1, ..., Xn → Y ,

3. an identity multimorphism functor 1X : 1 → C(X;X) : ∗ 7→ 1X for all X ∈ ob C,
and

4. composition functors

C(X1, ..., Xn;Y )× C(W1,1, ...,W1,m1 ;X1)× ...× C(Wn,1, ...,Wn,mn ;Xn)

→ C(W1,1, ...,Wn,mn ;Y )

(f, g1, ..., gn) 7→ f ◦ (g1, ..., gn)

for all arities n,m1, ...,mn and objects Y,X1, ..., Xn,W1,1, ...,Wn,mn in C.

where the identity and composition functors satisfy the usual associativity and identity
axioms for an enrichment.

As a point of notation, given f : X1, ..., Xn → Y and g : W1, ...,Wm → Xj we will
abbreviate composites of the form f ◦ (1, ..., 1, g, 1, ..., 1) to f ◦j g .

3.2. Remark. We can relate 2-multicategories to more familiar structures.

� Every 2-multicategory C restricts to a 2-category by considering only the unary
hom-categories C(X;Y ).

� Monoidal 2-categories (defined in for example [7]) have underlying 2-multicategories,
where hom-categories C(X1, ..., Xn;Y ) are given by C(X1 ⊗ ... ⊗ Xn, Y ) (choosing
the leftmost bracketing of the tensor product); this is shown in [11] Proposition 7.1
(2). For example, both Cat and CAT can be given 2-multicategorical structures.

We seek to generalise Kock’s notion of a strong monad [15] (and Uustalu’s definition
of a strong relative monad [24]) on a monoidal category. A strong monad structure on a
monoidal category is given by a map

tX,Y : X ⊗ TY → T (X ⊗ Y )

satisfying some axioms [15]. To define a suitable notion of strong relative pseudomonad
in the 2-multicategorical setting, we extend a relative pseudomonad’s unary functors

C(JX, TY )
(−)∗−−→ C(TX, TY ) to general n-ary hom-categories

C(B1, ..., JX, ..., Bn;TY )
(−)ti−−−→ C(B1, ..., TX, ..., Bn;TY ),
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which we call strengthenings. To use this to construct the map t in the one-dimensional
monoidal J = 1 case, we begin with the unit

i : X ⊗ Y → T (X ⊗ Y ).

Passing to the underlying multicategory, this corresponds to a map

i : X, Y → T (X ⊗ Y ).

We can strengthen this map in the second argument to obtain

it : X,TY → T (X ⊗ Y ).

Now passing back to the original monoidal category we have found a strength map X ⊗
TY → T (X⊗Y ), and one can check that this satisfies the strength axioms. This derivation
justifies the use of the terminology ‘strength’ to refer to the functors

C(B1, ..., JX, ..., Bn;TY )
(−)ti−−−→ C(B1, ..., TX, ..., Bn;TY ).

3.3. Definition. (Strong relative pseudomonad) Let C and D be 2-multicategories and
let J : D → C be a (unary) 2-functor between them. A strong relative pseudomonad
(T, i, t; t̃, t̂, θ) along J comprises:

� for every object X in D an object TX in C and unit map iX : JX → TX,

� for every n, index 1 ≤ i ≤ n, objects B1, ..., Bi−1, Bi+1, ..., Bn in C and objects X, Y
in D a functor

C(B1, ..., Bi−1, JX,Bi+1, ..., Bn;TY )
(−)ti−−−→ C(B1, ..., Bi−1, TX,Bi+1, ..., Bn;TY )

called the strength (in the ith argument) and which is pseudonatural in all argu-
ments, along with three natural families of invertible 2-cells:

� t̃f : f → f tj ◦j i,

� t̂f,g : (f tj ◦j g)tj+k−1 → f tj ◦j gtk , and

� θX : (iX)t1 → 1TX

for f : B1, ..., JX, ..., Bn → TY and g : C1, ..., JW, ..., Cm → TX, satisfying the
coherence conditions (1) and (2) shown below.

As a notational shorthand, when a map f : B1, ..., JX, ..., Bn → TY has only one argu-
ment in the domain of the form JX for some X ∈ ob D, we will denote its strengthening
simply as f t, rather than f ti. We will furthermore write f t ◦t g to denote the composition
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of f t with g in this strengthened argument. In this notation the families of invertible
2-cells above are:

t̃f : f → f t ◦t i
t̂f,g : (f t ◦t g)t → f t ◦t gt

θ : it → 1

(We also omit subscripts from unit maps and from θ when unambiguous.) With this
notation in hand, the two coherence conditions for these 2-cells are:

(1) for every f : B1, ...JX...Bn → TY , g : C1, ..., JW, ...Cm → TX and
h : D1, ..., JV, ..., Dl → TW the diagram

((f t ◦t g)t ◦t h)t (f t ◦t g)t ◦t ht

(f t ◦t gt ◦t h)t f t ◦t (gt ◦t h)t (f t ◦t gt) ◦t ht
(t̂f,g◦th)t

t̂ft◦tg,h

t̂f,g◦tht

t̂f,gt◦th
f t◦t t̂g,h

commutes, and

(2) for every f : B1, ..., JX, ..., Bn → TY the diagram

f t (f t ◦t i)t f t ◦t it

f t

(t̃f )t t̂f,i

f t◦tθ

commutes.

3.4. Remark. The stipulation that the maps

C(B1, ..., JX, ..., Bn;TY )
(−)tj−−−→ C(B1, ..., TX, ..., Bn;TY )

be pseudonatural in all arguments asks in particular for invertible 2-cells of the form

� (f ◦k g)t ∼= f t ◦k g for g : C1, ..., Cm → Bk (where k 6= j).

Wherever such pseudonaturality isomorphisms arise in diagrams we will leave them anony-
mous, as they can be inferred from the source and target.
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3.5. Remark. The data for a strong relative pseudomonad resembles that for a (unary)
relative pseudomonad very closely. Indeed, restricting C and D to their 2-categories of
unary maps, (T, i, t) is exactly a (unary) relative pseudomonad, with

(−)∗ := (−)t,

η := t̃,

µ := t̂,

θ := θ.

As with relative pseudomonads, we can derive more equalities of 2-cells for a strong
relative pseudomonads. The proof of the following Lemma 3.6 is formally identical to the
proof of Lemma 2.3.

3.6. Lemma. Let T be a strong relative pseudomonad along J : D → C. Then the
following three diagrams commute:

(1) for every f : B1, ..., JX, ..., Bn → TY and g : C1, ..., JW, ..., Cm → TX, the diagram

f t ◦t g (f t ◦t g)t ◦t i

f t ◦t gt ◦t i

t̃ft◦tg

t̂f,g◦ti
f t◦t t̃g

commutes.

(2) for every f : B1, ..., JX, ..., Bn → TY , the diagram

(it ◦ f)t it ◦ f t

f t

θ◦f t
(θ◦f)t

t̂i,f

commutes, and

(3) for every object X ∈ ob D, the diagram

i it ◦ i

i

t̃i

θ◦i

commutes.
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3.7. Example. The presheaf relative pseudomonad from Example 2.4 can be given the
structure of a strong relative pseudomonad. Given a multimorphism

f : B1, ..., X, ..., Bn → PshY

with X, Y ∈ Cat and Bk ∈ CAT, its strengthening f t is defined to be the left Kan
extension

B1, ..., X, ..., Bn B1, ...,PshX, ..., Bn

PshY

f

1,...,yX ,...,1

f t:=Lan1,...,y,...,1 f
t̃f

which also defines the 2-cells t̃f : f → f t ◦t y. As when giving Psh a relative pseudomonad
structure, the 2-cells t̂f,g, θ are defined via the universal property of the left Kan extension.
For details and a proof that this indeed endows Psh with a strong relative pseudomonad
structure, see Proposition 6.1 in the final section.

Having generalised Kock’s notion of a strong monad, we seek to prove a generalisation
of his result that every strong monad is a lax monoidal functor. For this we define a
notion of a pseudo-multifunctor on a 2-multicategory.

3.8. Definition. (Pseudo-multifunctor) Given two multi-2-categories C,D, a pseudo-
multifunctor F : D→ C consists of:

� a function ob D
F−→ ob C : X 7→ FX,

� for each hom-category D(X1, ..., Xn;Y ) in D a functor

D(X1, ..., Xn;Y )→ C(FX1, ..., FXn;FY ) : f 7→ Ff,

along with

� for each X ∈ ob D an invertible 2-cell

F̃X : F1X =⇒ 1FX ,

� for each f : X1, ..., Xn → Y , 1 ≤ i ≤ n and g : W1, ...,Wm → Xi an invertible 2-cell

F̂f,g : F (f ◦i g) =⇒ Ff ◦i Fg

satisfying the following three coherence conditions which parallel the unit and associativity
diagrams for a lax monoidal functor:
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(1),(2) two unit axioms: for each f : X1, ..., Xn → Y and 1 ≤ i ≤ n the diagrams

F (1Y ◦ f) F1Y ◦ Ff F (f ◦i 1Xi) Ff ◦i F1Xi

Ff 1FY ◦ Ff Ff Ff ◦i 1FXi

F̂1,f

F̃Y ◦Ff

F̂f,1

Ff◦iF̃Xi

commute, and

(3) one associativity axiom: for each f : X1, ..., Xn → Y , 1 ≤ i ≤ n, g : W1, ...,Wm →
Xi, 1 ≤ j ≤ m and h : V1, ..., Vl → Wj the diagram

F (f ◦i (g ◦j h)) Ff ◦i F (g ◦j h) Ff ◦i (Fg ◦j Fh)

F ((f ◦i g) ◦i+j−1 h) F (f ◦i g) ◦i+j−1 Fh (Ff ◦i Fg) ◦i+j−1 Fh

F̂f,g◦jh

F̂f◦ig,h

Ff◦iF̂g,h

F̂f,g◦i+j−1Fh

commutes.

If the 2-cells F̃ , F̂ are all identities we call F a (strict) multicategorical 2-functor.

Just as the underlying functor of every strong monad is a lax monoidal functor, the
underlying pseudofunctor of every strong relative pseudomonad is a pseudo-multifunctor.

3.9. Proposition. Let T be a strong relative pseudomonad along multicategorical 2-
functor J : D→ C. Then T is a pseudo-multifunctor T : D→ C.

Proof. Suppose T is a strong relative pseudomonad. As a point of notation, given a
map f : X1, ..., Xn → Y let us define

f̄ := iY ◦ JF : JX1, ..., JXn → TY.

Now to show the T is a pseudo-multifunctor, we begin by defining the action of T on
1-cells by the functors

D(X1, ..., Xn;Y )
(iY ◦J−)t1t2...tn−−−−−−−−−→ C(TX1, ..., TXn;TY ),

so that for f : X1, ..., Xn → Y we have

Tf := (iY ◦ Jf)t1t2...tn = f̄ t1,...,tn : TX1, ..., TXn → TY.

We need to construct 2-cells T̃X : T1X =⇒ 1TX and T̂f,g : T (f ◦i g) =⇒ Tf ◦i Tg.
For the former, we can use the map

T1X = (iX ◦ J1X)t = (iX)t 1TX
θX
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and for the latter, we employ the composite

T (f ◦i g) = (i ◦ (Jf ◦i Jg))t1...tn+m−1 = (f̄ ◦i Jg)t1...tn+m−1

∼−→ (f̄ t1...ti−1 ◦i Jg)ti...tn+m−1

t̃−→ (f̄ t1...ti ◦i ḡ)ti...tn+m−1

t̂...t̂−−→ (f̄ t1...ti ◦i ḡt1...tm)ti+m...tn+m−1

∼−→ f̄ t1...tn ◦i ḡt1...tm = Tf ◦i Tg.

It remains to show that the three coherence conditions hold. For the first

T (1Y ◦ f) T1Y ◦ Tf

Tf 1TY ◦ Tf

T̂1,f

T̃Y ◦Tf

we rewrite everything in terms of parameterisation and obtain the diagram

(1̄ ◦ Jf)t1t2...tn (1̄t ◦ f̄)t1t2...tn 1̄t ◦ f̄ t1...tn

it ◦ f̄ t1...tn

(i ◦ Jf)t1t2...tn f̄ t1t2...tn

θ

t̃ t̂...t̂

To show that this commutes, we fill it in

(1̄ ◦ Jf)t1t2...tn (1̄t ◦ f̄)t1t2...tn 1̄t ◦ f̄ t1...tn

(i ◦ Jf)t1t2...tn (it ◦ f̄)t1t2...tn it ◦ f̄ t1...tn

f̄ t1t2...tn
θ

t̃ t̂...t̂

t̃ t̂...t̂

θ

with two naturality squares and equalities of 2-cells (3) and (2) from Lemma 3.6.
For the second

T (f ◦i 1Xi) Tf ◦i T1Xi

Tf Tf ◦i 1TXi

T̂f,1

Tf◦iT̃Xi
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we rewrite everything in terms of parameterisation and obtain the diagram

(f̄ ◦i J1)t1...tn (f̄ t1...ti−1 ◦i J1)ti...tn (f̄ t1...ti ◦i 1̄)ti...tn

(f̄ t1...ti ◦i 1̄t)ti+1...tn

f̄ t1...tn ◦i 1̄t

f̄ t1...tn ◦i it

f̄ t1...tn f̄ t1...tn ◦i 1

θ

∼ t̃

t̂

∼

To show that this commutes, we fill it in

(f̄ ◦i J1)t1...tn

f̄ t1...tn (f̄ t1...ti−1 ◦i J1)ti...tn

(f̄ t1...ti ◦i i)ti...tn (f̄ t1...ti ◦i 1̄)ti...tn

(f̄ t1...ti ◦i 1)ti+1...tn (f̄ t1...ti ◦i it)ti+1...tn (f̄ t1...ti ◦i 1̄t)ti+1...tn

f̄ t1...tn ◦i 1 f̄ t1...tn ◦i it f̄ t1...tn ◦i 1̄t
θ

∼

t̃

t̂

∼∼

θ

∼

t̂

t̃

with naturality squares and the equality of 2-cells (2) from Definition 3.3.
Finally, for the third diagram

T (f ◦i (g ◦j h)) Tf ◦i T (g ◦j h) Tf ◦i (Tg ◦j Th)

T ((f ◦i g) ◦i+j−1 h) T (f ◦i g) ◦i+j−1 Th (Tf ◦i Tg) ◦i+j−1 Th

T̂f,g◦jh

T̂f◦ig,h

Tf◦iT̂g,h

T̂f,g◦i+j−1Th

in the interest of space we shall merely note that verification involves, aside from nat-
urality squares, only the equality of 2-cells (1) from Lemma 3.6. Thus, with these three
coherence conditions, every strong relative pseudomonad is indeed a pseudo-multifunctor.
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3.10. Example. Proposition 3.9 will imply that the presheaf relative pseudomonad is a
pseudo-multifunctor. Using the coend formula for the left Kan extension, we find that for
example, given a functor F : A× B × C → D in Cat, the multicategorical action of Psh
on F has the form

PshF : PshA× PshB × PshC → PshD

(p, q, r) 7→
∫ c ∫ b ∫ a

p(a)× q(b)× r(c)× yF (a,b,c).

4. Pseudocommutativity

In the classical situation described in [15], a strong monad with left-strength s and right-
strength t can be given the structure of lax monoidal functor in two ways:

TX ⊗ TY t−→ T (TX ⊗ Y )
Ts−→ TT (X ⊗ Y )

µ−→ T (X ⊗ Y )

TX ⊗ TY s−→ T (X ⊗ TY )
Tt−→ TT (X ⊗ Y )

µ−→ T (X ⊗ Y )

It is then natural to ask about those strong monads for which these two composites are
equal, which Kock called commutative monads. Hyland and Power [12] extend this notion
to the 2-categorical setting, defining pseudocommutativity by asking only for an invertible
2-cell between the two composites.

Analogously, there is some freedom in the pseudo-multifunctorial structure we place
on a given strong relative pseudomonad T ; we defined the action of T on morphisms by

Tf := f̄ t1...tn ,

but we could equally well have chosen

Tf := f̄ tn...t1

with the strengthenings applied in the reverse order. We define pseudocommutativity in
our more general setting to imply that the two choices of definition of Tf are coherently
isomorphic.

4.1. Definition. (Pseudocommutative monad) Let T be a strong relative pseudomonad.
We say that T is pseudocommutative if for every pair of indices 1 ≤ j < k ≤ n and map

f : B1, ..., Bj−1, JX,Bj+1..., Bk−1, JY,Bk+1, ..., Bn → TZ

we have an invertible 2-cell

γf : f tktj → f tjtk : B1, ..., TX, ..., TY, ..., Bn → TZ
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which is pseudonatural in all arguments and which satisfies five coherence conditions (two
for t̃, two for t̂, and a braiding condition).

We will extend our notation in the following way. When a map

f : B1, ..., JX, ..., JY, ..., Bn → TZ

has two explicitly possible strengthenings, let strengthening in the leftmost of these two
arguments be denoted by f s with 2-cells s̃ : f → f s ◦s i and ŝ : (f s ◦s g)s → f s ◦ gt, and
let strengthening in the rightmost of these two arguments be denoted by f t with 2-cells t̃,
t̂. When f has three explicitly possible strengthenings we furthermore use fu, etc. The
coherence conditions γ must satisfy are as follows:

(1), (2) Precomposing γf in the jth or kth argument with a unit map i: the diagrams

f t f ts ◦s i f s (f t ◦t i)s

f st ◦s i f ts ◦t i

(f s ◦s i)t f st ◦t i

(t̃f )s

∼

γf◦ti
t̃fs(s̃f )t

s̃ft

∼

γf◦si

commute for f : B1, ..., JX, ..., JY, ..., Bn → TZ.

(3), (4) Precomposing γf in the jth or kth argument with the strengthening of a map g in
its lth argument: the diagrams

(f ts ◦s g)s f ts ◦s gt (f t ◦t h)ts (f t ◦t ht)s

(f st ◦s g)s (f t ◦t h)st f ts ◦t ht

(f s ◦s g)ts f st ◦s gt (f ts ◦t h)t

(f s ◦s g)st (f s ◦s gt)t (f st ◦t h)t f st ◦t ht

γft◦th

∼

γf◦tht

(t̂f,h)s

∼

(γf◦th)t

t̂fs,h

γfs◦sg

(ŝf,g)t

∼

γf◦sgt

∼

(γf◦sg)s

ŝft,g

commute for f : B1, ..., JX, ..., JY, ..., Bn → TZ, g : C1, ..., JW, ..., Cm → TX and
h : D1, ..., JV, ..., Dl → TY .

(5) Braiding axiom relating the six ways to strengthen a map

f : B1, ...JW, ..., JX, ..., JY, ..., Bn → TZ
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in all three arguments: the diagram

futs f tus f tsu

fust f sut f stu

(γf )s γft

(γf )uγfu

(γf )t γfs

commutes for all f : B1, ...JW, ..., JX, ..., JY, ..., Bn → TZ.

4.2. Remark. When J is the identity, this definition reduces to the definition of pseu-
docommutativity found in [12] Definition 5. The correspondence between the coherence
conditions given here and their conditions is enumerated in the following table:

Relative setting Hyland & Power
(1), (2) 4., 5.
(3), (4) 6., 7.

(5) 1., 2., 3.

4.3. Remark. The braiding axiom (5) allows us to extend our notation. Given a map
f : JX1, ..., JXn → TY and a permutation σ ∈ Sn, we can construct maps

f t1...tn → f tσ(1)...tσ(n)

as a composite of γ maps and their inverses. The braiding axiom (5) tells us that any two
such composites of γ and γ−1 maps are equal; we will denote this map by

γσ;f : f t1...tn → f tσ(1)...tσ(n) .

4.4. Example. The presheaf relative pseudomonad will turn out to be pseudocommu-
tative in this sense; recalling the formula for the multicategorical action of Psh on 1-cells
in Example 3.10, one should be able to permute the order of strengthenings by means
of Fubini isomorphisms for coends. However, proving that Psh is pseudocommutative
directly in this way is challenging; in section 5 we will discuss a property that implies
pseudocommutativity and which is much easier to verify.

In Kock [15] we have that a strong monad is lax-monoidal as a functor, and even that
the monad unit for a strong monad is a monoidal transformation, but that in order for
the monad multiplication (and thus the monad as a whole) to be monoidal, the monad
must be commutative. In our setting, every strong relative pseudomonad T has the
structure of a multicategorical pseudofunctor, and we are now interested in the question
of when T further has the structure of a multicategorical relative pseudomonad (defined
below); that is, when the pseudomonadic structure of T is compatible with the ambient
multicategorical structure. We will show in this section that every pseudocommutative
relative pseudomonad is a multicategorical relative pseudomonad.
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4.5. Definition. (Multicategorical relative pseudomonad) Let C,D be 2-multicategories
and let T be a relative pseudomonad along J : D → C. We say T is a multicategorical
relative pseudomonad if

� T is a pseudo-multifunctor, and

� The unit and extension of T are compatible with the multicategorical structure.

For the second bullet point, we explicitly ask that

� the monad unit i is multicategorical: for each f : X1, ..., Xn → Y we have an
invertible 2-cell

ı̄f : iY ◦ Jf → Tf ◦ (iX1 , ..., iXn),

JX1, ..., JXn TX1, ..., TXn

JY TY

Jf Tf

i

i,...,i

ı̄f

� the monad extension (−)∗ is multicategorical: for each 2-cell of the form α : h◦Jf →
Tf ′ ◦ (g1, ..., gn):

JX1, ..., JXn TX ′1, ..., TX
′
n

JY TY ′

Jf Tf ′

h

g1,...,gn

α

we have a 2-cell α∗ : h∗ ◦ Tf → Tf ′ ◦ (g∗1, ..., g
∗
n) fitting into the square

TX1, ..., TXn TX ′1, ..., TX
′
n

TY TY ′

Tf Tf ′

h∗

g∗1 ,...,g
∗
n

α∗

These must satisfy three coherence conditions (one for each of the families of 2-cells
making T a relative pseudomonad).

(1) Compatibility with η: given a 2-cell α : h ◦ Jf → Tf ′ ◦ (g1, ..., gn), the composite

JX1, ..., JXn TX1, ..., TXn TX ′1, ..., TX
′
n

JY TY TY ′

Tf Tf ′

h∗

g∗1 ,...,g
∗
n

α∗

i,...,i

i

Jf
ı̄f

h

ηh
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is equal to the composite

TX1, ..., TXn

JX1, ..., JXn TX ′1, ..., TX
′
n

JY TY ′

g1,...,gn

Jf Tf ′

h

α

i,...,i g∗1 ,...,g
∗
n

ηg1 ,...,ηgn

(2) Compatibility with µ: given 2-cells α : Tf ′ ◦ (g∗1, ..., g
∗
n) → h ◦ Jf and β : Tf ′′ ◦

(g′∗1 , ..., g
′∗
n )→ h′ ◦ Jf ′, the composite

TX1, ..., TXn TX ′1, ..., TX
′
n TX ′′1 , ..., TX

′′
n

TY TY ′ TY ′′

g∗1 ,...,g
∗
n

Tf Tf ′

h∗

α∗

g′∗1 ,...,g
′∗
n

Tf ′′

h′∗

β∗

(h′∗h)∗

µh′,h

is equal to the composite

TX ′1, ..., TX
′
n

TX1, ..., TXn TX ′′1 , ..., TX
′′
n

TY TY ′′

Tf Tf ′′

(g′∗1 g1)∗,...,(g′∗n gn)∗

(h′∗h)∗

(β∗α)∗

g∗1 ,...,g
∗
n g′∗1 ,...,g

′∗
n

µg′1,g1
,...,µg′n,gn

(where for clarity we have omitted whiskerings from the 2-cell here written (β∗α)∗),
and

(3) Compatibility with θ: given f : X1, ..., Xn → Y , the composite

TX1, ..., TXn TX1, ..., TXn

TY TY

TfTf

i∗

i∗,...,i∗

ı̄∗f

1,...,1

θ,...,θ
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is equal to the composite

TX1, ..., TXn TX1, ..., TXn

TY TY

TfTf

1

1,...,1

i∗

θ

4.6. Remark. In the one-dimensional, monoidal setting and when J is the identity, this
definition reduces to the notion of a monoidal monad.

In [15] it is noted that the monad unit of a strong monad is always a monoidal trans-
formation, but the monad multiplication is only a monoidal transformation if the monad
is commutative. We shall see in the following proposition an analogous result: that for
every strong relative pseudomonad, the monad unit is multicategorical (we can define
the invertible 2-cells ı̄f ), but in order to make the monad extension multicategorical we
require the relative pseudomonad to be pseudocommutative.

4.7. Theorem. Let T be a strong relative pseudomonad along multicategorical 2-functor
J : D → C. Suppose T is pseudocommutative. Then T is a multicategorical relative
pseudomonad.

Proof. By Proposition 3.9 we know that T is a pseudo-multifunctor. We must check
that the monad unit and extension are compatible with the multicategorical structure.
For the unit, we need to find invertible 2-cells ı̄f of shape

i ◦ Jf → Tf ◦ (i, ..., i)

for f : X1, ..., Xn → Y . Since Tf := (i ◦ Jf)t1...tn = f̄ t1...tn , we construct ı̄f as the
composite

i ◦ Jf = f̄
t̃−→ f̄ t1 ◦ (i, 1, ..., 1)

t̃−→ f̄ t1t2 ◦ (i, i, 1, ..., 1)

...

t̃−→ f̄ t1t2...tn ◦ (i, i, i, ..., i) = Tf ◦ (i, ..., i).

Note that we do not need the pseudocommutativity to construct the ı̄f 2-cells. The
construction of α∗ given α : h ◦ Jf → Tf ′ ◦ (g1, ..., gn) is more involved. We require a
2-cell of shape

h∗ ◦ Tf → Tf ′ ◦ (g∗1, ..., g
∗
n).
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We begin with the composite

h∗ ◦ Tf := ht ◦ f̄ t1...tn t̂−1

−−→ (ht ◦ f̄ t1...tn−1)tn

t̂−1

−−→ (ht ◦ f̄ t1...tn−2)tn−1tn

...

t̂−1

−−→ (ht ◦ f̄)t1...tn

t̃−1

−−→ (h ◦ Jf)t1...tn ,

at which point we can compose with αt1...tn to arrive at

(Tf ′ ◦ (g1, ..., gn))t1...tn := (f̄ ′t1....tn ◦ (g1, ..., gn))t1...tn .

From here we start needing the pseudocommutativity of T . Let σ ∈ Sn be the cyclic
permutation 1→ 2→ ...→ n→ 1. Now we compose as follows:

(f̄ ′t1....tn ◦ (g1, ..., gn))t1...tn

γσ−→ (f̄ ′t2....t1 ◦ (g1, ..., gn))t1...tn
t̂−→ (f̄ ′t2....t1 ◦ (gt1, g2, ..., gn))t2...tn

γσ−→ (f̄ ′t3....t2 ◦ (gt1, g2, ..., gn))t2...tn
t̂−→ (f̄ ′t3....t2 ◦ (gt1, g

t
2, g3, ..., gn))t3...tn

...

γσ−→ (f̄ ′t1....tn ◦ (gt1, ..., g
t
n−1, gt))

tn t̂−→ f̄ ′t1....tn ◦ (gt1, ..., , g
t
n)

= Tf ′ ◦ (g∗1, ..., g
∗
n).

For example, the full composite in the case where f is a binary map is given by the
diagram below:

ht ◦ f̄ st f ′st ◦ (g∗1, g
∗
2)

(f ′st ◦ (g∗1, g2))t

(ht ◦ f̄ s)t (f ′ts ◦ (g∗1, g2))t

(f ′ts ◦ (g1, g2))st

(ht ◦ f̄)st (h ◦ Jf)st (f ′st ◦ (g1, g2))st

t̂−1

ŝ−1

t̃−1 α

γ−1

ŝ

γ

t̂

α∗
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It now remains to verify that the three coherence conditions for a multicategorical
relative pseudomonad. Here we shall only do this for binary maps, and we shall abbreviate
the diagram chasing.

For the first condition, we begin with the composite 2-cell

h ◦ Jf h∗ ◦ i ◦ Jf h∗ ◦ Tf ◦ (i, i) Tf ′ ◦ (g∗1, g
∗
2) ◦ (i, i)

η ı̄ α∗

and must show that it is equal to the composite

h ◦ Jf Tf ′ ◦ (g1, g2) Tf ′ ◦ (g∗1, g
∗
2) ◦ (i, i).α η,η

Rewriting ı̄f and α∗ in terms of our constructions, we must show that the diagram

h ◦ Jf ht ◦ f̄ ht ◦ f̄s ◦ (i, 1) ht ◦ f̄st ◦ (i, i)

(ht ◦ f̄s)t ◦ (i, i)

(ht ◦ f̄)st ◦ (i, i)

(h ◦ Jf)st ◦ (i, i)

(f̄ ′st ◦ (g1, g2))st ◦ (i, i)

(f̄ ′ts ◦ (g1, g2))st ◦ (i, i)

(f̄ ′ts ◦ (gt1, g2))t ◦ (i, i)

(f̄ ′st ◦ (gt1, g2))t ◦ (i, i)

f̄ ′st ◦ (g1, g2) f̄ ′st ◦ (gt1, g2) ◦ (i, 1) f̄ ′st ◦ (gt1, g
t
2) ◦ (i, i)

t̃

α

s̃ t̃

t̂−1

ŝ−1

t̃−1

γ−1

α

ŝ

γ

t̂

t̃ t̃

commutes. We can fill in this diagram, aside from naturality squares, with four instances
of equality (1) from Lemma 3.6. So indeed the first coherence condition holds.

For the second coherence condition, we begin with the composite 2-cell

(h′∗ ◦ h)∗ ◦ Tf h′∗ ◦ h∗ ◦ Tf h′∗ ◦ Tf ′ ◦ (g∗1, g
∗
2)

Tf ′′ ◦ (g′∗1 , g
′∗
2 ) ◦ (g∗1, g

∗
2)

µ α∗

β∗
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and must show that it is equal to the composite

(h′∗ ◦ h)∗ ◦ Tf Tf ′′ ◦ ((g′∗1 g1)∗, (g′∗2 g2)∗) Tf ′′ ◦ (g′∗1 , g
′∗
2 ) ◦ (g∗1, g

∗
2).

(β∗α)∗ µ,µ

Unwrapping our definitions, we need to show that the diagram

(h′t ◦ h)t ◦ f̄st h′t ◦ ht ◦ f̄st

((h′t ◦ h)t ◦ f̄s)t h′t ◦ (ht ◦ f̄s)t

((h′t ◦ h)t ◦ f̄)st h′t ◦ (ht ◦ f̄)st

(h′t ◦ h ◦ Jf)st h′t ◦ (h ◦ Jf)st

(h′t ◦ f̄ ′st ◦ (g1, g2))st h′t ◦ (f̄ ′st ◦ (g1, g2))st

(f̄ ′′st ◦ (g′t1 g1, g
′t
2 g2))st h′t ◦ (f̄ ′ts ◦ (g1, g2))st

(f̄ ′′ts ◦ (g′t1 g1, g
′t
2 g2))st h′t ◦ (f̄ ′ts ◦ (gt1, g2))t

(f̄ ′′ts ◦ ((g′t1 g1)t, g′t2 g2))t h′t ◦ (f̄ ′ts ◦ (gt1, g2))t

(f̄ ′′st ◦ ((g′t1 g1)t, g′t2 g2))t h′t ◦ f̄ ′ts ◦ (gt1, g
t
2)

f̄ ′′st ◦ ((g′t1 g1)t, (g′t2 g2)t) f̄ ′′st ◦ (g′t1 g
t
1, (g

′t
2 g2)t) f̄ ′′ts ◦ (g′t1 , g

′t
2 ) ◦ (gt1, g

t
2)

t̂

t̂−1

ŝ−1

t̃−1

α

β∗

γ−1

ŝ

γ

t̂

t̂

t̂−1

ŝ−1

t̃−1

α

γ−1

ŝ

γ

t̂

β∗

t̂

commutes. Filling this diagram is involved, but aside from naturality squares we require
only

� five instances of the pentagon axiom (1) from Definition 3.3, and

� axioms (3) and (4) from Definition 4.1.

Thus also the second coherence condition holds.
For the third and final coherence condition, we begin with the composite 2-cell

i∗ ◦ Tf Tf ◦ (i, i) Tf
ı̄∗f θ,θ
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and must show that it is equal to

i∗ ◦ Tf Tf.θ

Rewriting everything in our terms shows that we must show the diagram

it ◦ f̄ st f̄ st

(it ◦ f̄ s)t f̄ st ◦s it

(it ◦ f̄)st f̄ st ◦ (it, it)

(i ◦ Jf)st (f̄ st ◦ (it, i))t

(f̄ s ◦s i)st (f̄ ts ◦ (it, i))t

(f̄ st ◦ (i, i))st (f̄ ts ◦ (i, i))st

t̂−1

ŝ−1

t̃−1

s̃

t̃

γ−1

ŝ

γ

t̂

θ

θ

θ

commutes. Filling the diagram requires, aside from naturality squares:

� instances of equalities (2) and (3) from Lemma 3.6,

� two uses of axiom (2) from Definition 3.3, and

� axioms (1) and (2) from Definition 4.1.

Hence the final coherence condition is satisfied, and thus we have shown that every pseu-
docommutative relative pseudomonad is a multicategorical relative pseudomonad.

As the above proof demonstrates, working directly with pseudocommutativity and
multicategoricality can be tedious. In the next section we will examine a condition on a
relative pseudomonad which both implies pseudocommutativity and which is much easier
to verify, being characterised by a universal property.

5. Lax idempotency

We will now consider a special class of relative pseudomonads. Defined in [9], the lax-
idempotent relative pseudomonad generalises the notion of a lax-idempotent or Kock-
Zöberlein 2-monad, discussed extensively in [16]. The aim of this section is to generalise
the result of López Franco in [19] that every lax-idempotent 2-monad is pseudocommu-
tative.

First, we recall the definition of lax-idempotent relative pseudomonad from [9].
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5.1. Definition. (Lax-idempotent relative pseudomonad) Let T : D → C be a relative
pseudomonad along J : D→ C. We say that T is a lax-idempotent relative pseudomonad
if ‘monad structure is left adjoint to unit’, which is to say that we have an adjunction

C(JX, TY ) C(TX, TY )

−◦i

(−)∗

a

for all objects X, Y of D, whose unit − =⇒ (−)∗i has components given by the ηf : f →
f ∗i from the pseudomonadic structure (note in particular that the unit is thus invertible).

5.2. Remark. The definition of lax idempotency is given equivalently in [9] in terms of
Kan extensions: T is lax-idempotent if for all maps f : JX → TY the diagram

JX TX

TY

f∗
f

i

ηf

exhibits f ∗ as the left Kan extension of f along i. This form of the definition makes
it immediate from the construction of Psh as a relative pseudomonad that Psh is lax-
idempotent.

We turn to showing that every lax-idempotent relative pseudomonad is pseudocom-
mutative. Just as in Section 3 we defined the notion of strong relative pseudomonad for
the multicategorical setting, we will define the notion of lax-idempotent strong relative
pseudomonad as follows:

5.3. Definition. (Lax-idempotent strong relative pseudomonad) Let J : D → C be a
pseudo-multifunctor and let T be a strong relative pseudomonad along J . We say T is a
lax-idempotent strong relative pseudomonad if the strength is left adjoint to precomposi-
tion with the unit. That is, we have an adjunction

C(B1, ..., JX, ..., Bn;TY ) C(B1, ..., TX, ..., Bn;TY )

(−)tj

−◦jiX

a

for every 1 ≤ j ≤ n and objects B1, ..., Bj−1, JX,Bj+1, ..., Bn;TY whose unit − =⇒
(−)tj ◦j i has components

t̃f : f → f tj ◦j iX
obtained from the strong structure (again the unit is invertible).

As in Remark 5.2 above, we can equivalently state this condition in terms of left Kan
extensions: T is lax-idempotent strong if for every map f : B1, ..., JX, ..., Bn → TY the
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diagram

B1, ..., JX, ..., Bn B1, ..., TX, ..., Bn

TY

f tj

1,...,i,...,1

f

t̃f

exhibits f tj as the left Kan extension of f along 1, ..., i, ..., 1. As a point of notation, we
will use Greek letters to denote the counit of the lax idempotency adjunction; where the
strengthening map is called (−)t and the unit t̃, the counit will be called

τf : (f ◦t i)t → f,

and where the strengthening is called (−)s and the unit s̃, the counit shall be called

σf : (f ◦s i)s → f

(and similarly for (−)u etc.).
Note that there is much less data to check in the course of showing that a relative pseu-

domonad is lax-idempotent compared with showing that it is pseudocommutative. The
following result generalising [19] therefore gives us a shortcut for showing relative pseu-
domonads like Psh are pseudocommutative (and hence by Theorem 4.7 a multicategorical
relative pseudomonad).

5.4. Theorem. Let T : D → C be a lax-idempotent strong relative pseudomonad. Then
T is pseudocommutative, with a pseudocommutativity whose components γg : gts → gst

are given by the composite

gts
(s̃g)ts−−−→ (gs ◦s i)ts

∼−→ (gst ◦s i)s
σgst−−→ gst.

Proof. To begin, we first show that that putative γg is invertible. We will show that the
composite

gst
(t̃g)st−−−→ (gt ◦t i)st

∼−→ (gts ◦t i)t
τgts−−→ gts

is its inverse. We have the commuting diagram

gts (gs ◦s i)ts (gst ◦s i)s gst

(gt ◦t i)ts ((gt ◦t i)s ◦s i)ts ((gt ◦t i)st ◦s i)s (gt ◦t i)st

((gts ◦t i) ◦s i)ts ((gts ◦t i)t ◦s i)s (gts ◦t i)t

((gts ◦s i) ◦t i)ts (gts ◦s i)s gts

s̃ ∼ σ

t̃

∼

τ

t̃

σ

t̃

∼

∼

σ

τ

σ

∼

∼

t̃

s̃

s̃

τ
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whose clockwise composite is the composite (γg)
−1 ◦ γg, entirely composed of naturality

squares. Then by the following diagram

gts

(gt ◦t i)ts gts

((gts ◦s i) ◦t i)ts (gts ◦s i)s gtsσ

t̃

s̃

τ

τ

s̃

composed of a naturality square and two triangle identities, the anticlockwise composite
of the first diagram is equal to the identity on gts, as required. The same argument
(swapping the roles of s and t) demonstrates that the other composite γg ◦ (γg)

−1 is also
the identity, and so our γg is indeed invertible.

We now must show that our γg satisfies the coherence conditions for a pseudocommu-
tativity. For the unit condition

gs (gt ◦t i)s f ts ◦t i

f st ◦t i

(t̃g)s ∼

γg◦ti
t̃gs

we write out γg ◦t i in terms of our composite and construct the commuting diagram

gs (gt ◦t i)s gts ◦t i

(gs ◦s i)s ((gs ◦s i)t ◦t i)s (gs ◦s i)ts ◦t i

((gst ◦s i) ◦t i)s (gst ◦s i)s ◦t i

((gst ◦t i) ◦s i)s gst ◦t i

∼t̃

s̃

∼

σ

s̃

∼

s̃

t̃

∼

∼

σ

t̃

comprising five naturality squares. Then the anticlockwise composite is, by the following
commuting diagram

gs

(gs ◦s i)s gs

((gst ◦t i) ◦s i)s gst ◦t i

s̃

σ

t̃

σ

t̃
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of a naturality square and a triangle identity, equal to t̃gs , as required. The other unit
condition is shown by the same argument, swapping the roles of s and t.

Now, for the strengthening condition

(f t ◦t g)ts (f t ◦t gt)s f ts ◦t gt

(f t ◦t g)st

(f ts ◦t g)t (f st ◦t g)t f st ◦t gt

γft◦tg

∼

γf◦tgt

(t̂f,g)s ∼

(γf◦tg)t t̂fs,g

we can write out the anticlockwise composite in terms of our γ and construct a large
commuting diagram filled in entirely with naturality squares and one triangle identity.
The other strengthening condition is shown by the same argument, swapping the roles of
s and t.

Finally, for the braiding coherence condition

futs f tus f tsu

fust f sut f stu

(γf )s γft

(γf )uγfu

(γf )t γfs

after writing each composite in terms of our γ we obtain a large diagram that may be
filled in entirely with naturality squares. So all five coherence conditions are satisfied and
hence indeed our γ is a pseudocommutativity for T .

In summary, the previous sections have proved the following implications for T a
relative pseudomonad along J : D→ C between 2-multicategories:

� Every strong relative pseudomonad T is a pseudo-multifunctor (Proposition 3.9).

� Every pseudocommutative relative pseudomonad T is a multicategorical relative
pseudomonad (Theorem 4.7).

� Every lax-idempotent strong relative pseudomonad T is pseudocommutative (The-
orem 5.4).

6. The presheaf relative pseudomonad

We apply our results to the presheaf construction. As shown in [9], the presheaf construc-
tion Psh : Cat→ CAT : X 7→ PshX := [Xop, Set] can be given the structure of a relative
pseudomonad, where the units are given by the Yoneda embedding yX : X → PshX and
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the extension of a functor f : X → PshY for small categories X, Y is given by the left
Kan extension

X PshX

PshY

f∗:=Lany f

y

f

ηf

along the Yoneda embedding, and this diagram also defines the map ηf : f → f ∗i.
In order to make use of the our results, we need to further show that the presheaf

relative pseudomonad is strong.

6.1. Proposition. The presheaf relative pseudomonad Psh along J : Cat → CAT is
strong, with the strengthening of a functor

f : B1, ..., Bj−1, JX,Bj+1, ..., Bn → PshY

defined as the left Kan extension

B1, ..., X, ..., Bn B1, ...,PshX, ..., Bn

PshY

f t:=Lan1,...,y,...,1 f

1,...,y,...,1

f

t̃f

along 1, ..., y, ..., 1, and the 2-cell in the above diagram defines the map t̃f .

Proof. We begin by constructing the rest of the data for a strong relative pseudomonad;
namely, the invertible families of 2-cells

t̂f,g : (f t ◦t g)t → f t ◦ gt, θ : it → 1.

Using the universal property of the left Kan extension, we define t̂f,g and θ to be the
unique 2-cells such that

f t ◦t g (f t ◦t g)t ◦t y y yt ◦ y

(f t ◦t g)t ◦t y y

t̂f,g◦ty

t̃ft◦tg

f t◦t t̃g
θ◦y

t̃y

commute, respectively. It remains to check the two coherence conditions of Definition 3.3.
For the first:

((f t ◦t g)t ◦t h)t (f t ◦t g)t ◦t ht

(f t ◦t gt ◦t h)t f t ◦t (gt ◦t h)t (f t ◦t gt) ◦t ht
(t̂f,g◦th)t

t̂ft◦tg,h

t̂f,g◦tht

t̂f,gt◦th
f t◦t t̂g,h
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by the universal property of the left Kan extension it suffices to show that the diagram

((f t ◦t g)t ◦t h)t ◦t y (f t ◦t g)t ◦t ht ◦t y

(f t ◦t gt ◦t h)t ◦t y f t ◦t (gt ◦t h)t ◦t y (f t ◦t gt) ◦t ht ◦t y

(t̂f,g◦th)t◦ty

t̂ft◦tg,h
◦ty

t̂f,g◦tht◦ty

t̂f,gt◦th
◦ty f t◦t t̂g,h◦ty

commutes. Rewriting terms we obtain the diagram

((f t ◦t g)t ◦t h)t ◦t y (f t ◦t g)t ◦t h (f t ◦t g)t ◦t ht ◦t y

(f t ◦t gt ◦t h)t ◦t y (f t ◦t gt) ◦t ht ◦t y

f t ◦t gt ◦t h f t ◦t (gt ◦t h)t ◦t y f t ◦t gt ◦t h

t̂ t̂

t̃−1 t̃

t̃−1

t̃ t̃−1

t̃

which we can fill in

((f t ◦t g)t ◦t h)t ◦t y (f t ◦t g)t ◦t h (f t ◦t g)t ◦t ht ◦t y

(f t ◦t gt ◦t h)t ◦t y f t ◦t gt ◦t h (f t ◦t gt) ◦t ht ◦t y

f t ◦t (gt ◦t h)t ◦t y

t̂ t̂

t̃−1

t̃−1

t̃

t̂

t̃−1

t̃

t̃

with two naturality squares. For the second:

f t (f t ◦t y)t f t ◦t yt

f t

(t̃f )t t̂f,y

f t◦tθ

again by the universal property of the left Kan extension we can equivalently show the
diagram

f t ◦t y (f t ◦t y)t ◦t y f t ◦t yt ◦t y

f t ◦t y

(t̃f )t◦ty t̂f,y◦ty

f t◦tθ◦ty
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commutes. Rewriting terms we obtain

f t ◦t y (f t ◦t y)t ◦t y f t ◦t y f t ◦t yt ◦t y

f t ◦t y

t̃ t̃−1 t̃

t̃−1

which immediately commutes. Hence indeed Psh is as constructed a strong relative pseu-
domonad.

We can now apply the results of this paper to the presheaf relative pseudomonad.

6.2. Theorem. The presheaf relative pseudomonad is:

(1) a lax-idempotent strong relative pseudomonad,

(2) a pseudocommutative relative pseudomonad, and

(3) a multicategorical relative pseudomonad.

Proof. By Theorem 5.4 we know (1) =⇒ (2), and by Theorem 4.7 we know (2) =⇒ (3).
So it suffices to check that Psh is lax-idempotent strong. By Proposition 6.1 Psh is strong,
and we have diagrams

B1, ..., X, ..., Bn B1, ...,PshX, ..., Bn

PshY

f t:=Lan1,...,y,...,1 f

1,...,y,...,1

f

t̃f

exhibiting f t as the left Kan extension of f along 1, ..., y, ..., 1. But this means precisely
that we have an adjunction

(−)t a − ◦t y

whose unit is t̃, as required. So indeed Psh is lax-idempotent strong, and hence also
pseudocommutative and a multicategorical relative pseudomonad.
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